xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 01801d5274101273f85b85221392a4e2e2bc574b)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
701   StatusTy getStatus() const { return Status; }
702   Value *getOriginalValue() const { return OriginalValue; }
703   Value *getBaseValue() const { return BaseValue; }
704 
705   bool isBase() const { return getStatus() == Base; }
706   bool isUnknown() const { return getStatus() == Unknown; }
707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   // Values of type BDVState form a lattice, and this function implements the
710   // meet
711   // operation.
712   void meet(const BDVState &Other) {
713     auto markConflict = [&]() {
714       Status = BDVState::Conflict;
715       BaseValue = nullptr;
716     };
717     // Conflict is a final state.
718     if (isConflict())
719       return;
720     // if we are not known - just take other state.
721     if (isUnknown()) {
722       Status = Other.getStatus();
723       BaseValue = Other.getBaseValue();
724       return;
725     }
726     // We are base.
727     assert(isBase() && "Unknown state");
728     // If other is unknown - just keep our state.
729     if (Other.isUnknown())
730       return;
731     // If other is conflict - it is a final state.
732     if (Other.isConflict())
733       return markConflict();
734     // Other is base as well.
735     assert(Other.isBase() && "Unknown state");
736     // If bases are different - Conflict.
737     if (getBaseValue() != Other.getBaseValue())
738       return markConflict();
739     // We are identical, do nothing.
740   }
741 
742   bool operator==(const BDVState &Other) const {
743     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
744       Status == Other.Status;
745   }
746 
747   bool operator!=(const BDVState &other) const { return !(*this == other); }
748 
749   LLVM_DUMP_METHOD
750   void dump() const {
751     print(dbgs());
752     dbgs() << '\n';
753   }
754 
755   void print(raw_ostream &OS) const {
756     switch (getStatus()) {
757     case Unknown:
758       OS << "U";
759       break;
760     case Base:
761       OS << "B";
762       break;
763     case Conflict:
764       OS << "C";
765       break;
766     }
767     OS << " (base " << getBaseValue() << " - "
768        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
769        << " for  "  << OriginalValue->getName() << ":";
770   }
771 
772 private:
773   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
774   StatusTy Status = Unknown;
775   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
776 };
777 
778 } // end anonymous namespace
779 
780 #ifndef NDEBUG
781 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
782   State.print(OS);
783   return OS;
784 }
785 #endif
786 
787 /// For a given value or instruction, figure out what base ptr its derived from.
788 /// For gc objects, this is simply itself.  On success, returns a value which is
789 /// the base pointer.  (This is reliable and can be used for relocation.)  On
790 /// failure, returns nullptr.
791 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
792   Value *Def = findBaseOrBDV(I, Cache);
793 
794   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
795     return Def;
796 
797   // Here's the rough algorithm:
798   // - For every SSA value, construct a mapping to either an actual base
799   //   pointer or a PHI which obscures the base pointer.
800   // - Construct a mapping from PHI to unknown TOP state.  Use an
801   //   optimistic algorithm to propagate base pointer information.  Lattice
802   //   looks like:
803   //   UNKNOWN
804   //   b1 b2 b3 b4
805   //   CONFLICT
806   //   When algorithm terminates, all PHIs will either have a single concrete
807   //   base or be in a conflict state.
808   // - For every conflict, insert a dummy PHI node without arguments.  Add
809   //   these to the base[Instruction] = BasePtr mapping.  For every
810   //   non-conflict, add the actual base.
811   //  - For every conflict, add arguments for the base[a] of each input
812   //   arguments.
813   //
814   // Note: A simpler form of this would be to add the conflict form of all
815   // PHIs without running the optimistic algorithm.  This would be
816   // analogous to pessimistic data flow and would likely lead to an
817   // overall worse solution.
818 
819 #ifndef NDEBUG
820   auto isExpectedBDVType = [](Value *BDV) {
821     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
822            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
823            isa<ShuffleVectorInst>(BDV);
824   };
825 #endif
826 
827   // Once populated, will contain a mapping from each potentially non-base BDV
828   // to a lattice value (described above) which corresponds to that BDV.
829   // We use the order of insertion (DFS over the def/use graph) to provide a
830   // stable deterministic ordering for visiting DenseMaps (which are unordered)
831   // below.  This is important for deterministic compilation.
832   MapVector<Value *, BDVState> States;
833 
834 #ifndef NDEBUG
835   auto VerifyStates = [&]() {
836     for (auto &Entry : States) {
837       assert(Entry.first == Entry.second.getOriginalValue());
838     }
839   };
840 #endif
841 
842   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
843     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
844       for (Value *InVal : PN->incoming_values())
845         F(InVal);
846     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
847       F(SI->getTrueValue());
848       F(SI->getFalseValue());
849     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
850       F(EE->getVectorOperand());
851     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
852       F(IE->getOperand(0));
853       F(IE->getOperand(1));
854     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
855       // For a canonical broadcast, ignore the undef argument
856       // (without this, we insert a parallel base shuffle for every broadcast)
857       F(SV->getOperand(0));
858       if (!SV->isZeroEltSplat())
859         F(SV->getOperand(1));
860     } else {
861       llvm_unreachable("unexpected BDV type");
862     }
863   };
864 
865 
866   // Recursively fill in all base defining values reachable from the initial
867   // one for which we don't already know a definite base value for
868   /* scope */ {
869     SmallVector<Value*, 16> Worklist;
870     Worklist.push_back(Def);
871     States.insert({Def, BDVState(Def)});
872     while (!Worklist.empty()) {
873       Value *Current = Worklist.pop_back_val();
874       assert(!isOriginalBaseResult(Current) && "why did it get added?");
875 
876       auto visitIncomingValue = [&](Value *InVal) {
877         Value *Base = findBaseOrBDV(InVal, Cache);
878         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
879           // Known bases won't need new instructions introduced and can be
880           // ignored safely. However, this can only be done when InVal and Base
881           // are both scalar or both vector. Otherwise, we need to find a
882           // correct BDV for InVal, by creating an entry in the lattice
883           // (States).
884           return;
885         assert(isExpectedBDVType(Base) && "the only non-base values "
886                "we see should be base defining values");
887         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
888           Worklist.push_back(Base);
889       };
890 
891       visitBDVOperands(Current, visitIncomingValue);
892     }
893   }
894 
895 #ifndef NDEBUG
896   VerifyStates();
897   LLVM_DEBUG(dbgs() << "States after initialization:\n");
898   for (auto Pair : States) {
899     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
900   }
901 #endif
902 
903   // Iterate forward through the value graph pruning any node from the state
904   // list where all of the inputs are base pointers.  The purpose of this is to
905   // reuse existing values when the derived pointer we were asked to materialize
906   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
907   // feeding it does.)
908   SmallVector<Value *> ToRemove;
909   do {
910     ToRemove.clear();
911     for (auto Pair : States) {
912       Value *BDV = Pair.first;
913       auto canPruneInput = [&](Value *V) {
914         Value *BDV = findBaseOrBDV(V, Cache);
915         if (V->stripPointerCasts() != BDV)
916           return false;
917         // The assumption is that anything not in the state list is
918         // propagates a base pointer.
919         return States.count(BDV) == 0;
920       };
921 
922       bool CanPrune = true;
923       visitBDVOperands(BDV, [&](Value *Op) {
924         CanPrune = CanPrune && canPruneInput(Op);
925       });
926       if (CanPrune)
927         ToRemove.push_back(BDV);
928     }
929     for (Value *V : ToRemove) {
930       States.erase(V);
931       // Cache the fact V is it's own base for later usage.
932       Cache[V] = V;
933     }
934   } while (!ToRemove.empty());
935 
936   // Did we manage to prove that Def itself must be a base pointer?
937   if (!States.count(Def))
938     return Def;
939 
940   // Return a phi state for a base defining value.  We'll generate a new
941   // base state for known bases and expect to find a cached state otherwise.
942   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
943     auto I = States.find(BaseValue);
944     if (I != States.end())
945       return I->second;
946     assert(areBothVectorOrScalar(BaseValue, Input));
947     return BDVState(BaseValue, BDVState::Base, BaseValue);
948   };
949 
950   bool Progress = true;
951   while (Progress) {
952 #ifndef NDEBUG
953     const size_t OldSize = States.size();
954 #endif
955     Progress = false;
956     // We're only changing values in this loop, thus safe to keep iterators.
957     // Since this is computing a fixed point, the order of visit does not
958     // effect the result.  TODO: We could use a worklist here and make this run
959     // much faster.
960     for (auto Pair : States) {
961       Value *BDV = Pair.first;
962       // Only values that do not have known bases or those that have differing
963       // type (scalar versus vector) from a possible known base should be in the
964       // lattice.
965       assert((!isKnownBaseResult(BDV) ||
966              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
967                  "why did it get added?");
968 
969       BDVState NewState(BDV);
970       visitBDVOperands(BDV, [&](Value *Op) {
971         Value *BDV = findBaseOrBDV(Op, Cache);
972         auto OpState = GetStateForBDV(BDV, Op);
973         NewState.meet(OpState);
974       });
975 
976       BDVState OldState = States[BDV];
977       if (OldState != NewState) {
978         Progress = true;
979         States[BDV] = NewState;
980       }
981     }
982 
983     assert(OldSize == States.size() &&
984            "fixed point shouldn't be adding any new nodes to state");
985   }
986 
987 #ifndef NDEBUG
988   VerifyStates();
989   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
990   for (auto Pair : States) {
991     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
992   }
993 #endif
994 
995   // Handle all instructions that have a vector BDV, but the instruction itself
996   // is of scalar type.
997   for (auto Pair : States) {
998     Instruction *I = cast<Instruction>(Pair.first);
999     BDVState State = Pair.second;
1000     auto *BaseValue = State.getBaseValue();
1001     // Only values that do not have known bases or those that have differing
1002     // type (scalar versus vector) from a possible known base should be in the
1003     // lattice.
1004     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1005            "why did it get added?");
1006     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1007 
1008     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1009       continue;
1010     // extractelement instructions are a bit special in that we may need to
1011     // insert an extract even when we know an exact base for the instruction.
1012     // The problem is that we need to convert from a vector base to a scalar
1013     // base for the particular indice we're interested in.
1014     if (isa<ExtractElementInst>(I)) {
1015       auto *EE = cast<ExtractElementInst>(I);
1016       // TODO: In many cases, the new instruction is just EE itself.  We should
1017       // exploit this, but can't do it here since it would break the invariant
1018       // about the BDV not being known to be a base.
1019       auto *BaseInst = ExtractElementInst::Create(
1020           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1021       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1022       States[I] = BDVState(I, BDVState::Base, BaseInst);
1023     } else if (!isa<VectorType>(I->getType())) {
1024       // We need to handle cases that have a vector base but the instruction is
1025       // a scalar type (these could be phis or selects or any instruction that
1026       // are of scalar type, but the base can be a vector type).  We
1027       // conservatively set this as conflict.  Setting the base value for these
1028       // conflicts is handled in the next loop which traverses States.
1029       States[I] = BDVState(I, BDVState::Conflict);
1030     }
1031   }
1032 
1033 #ifndef NDEBUG
1034   VerifyStates();
1035 #endif
1036 
1037   // Insert Phis for all conflicts
1038   // TODO: adjust naming patterns to avoid this order of iteration dependency
1039   for (auto Pair : States) {
1040     Instruction *I = cast<Instruction>(Pair.first);
1041     BDVState State = Pair.second;
1042     // Only values that do not have known bases or those that have differing
1043     // type (scalar versus vector) from a possible known base should be in the
1044     // lattice.
1045     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1046            "why did it get added?");
1047     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1048 
1049     // Since we're joining a vector and scalar base, they can never be the
1050     // same.  As a result, we should always see insert element having reached
1051     // the conflict state.
1052     assert(!isa<InsertElementInst>(I) || State.isConflict());
1053 
1054     if (!State.isConflict())
1055       continue;
1056 
1057     auto getMangledName = [](Instruction *I) -> std::string {
1058       if (isa<PHINode>(I)) {
1059         return suffixed_name_or(I, ".base", "base_phi");
1060       } else if (isa<SelectInst>(I)) {
1061         return suffixed_name_or(I, ".base", "base_select");
1062       } else if (isa<ExtractElementInst>(I)) {
1063         return suffixed_name_or(I, ".base", "base_ee");
1064       } else if (isa<InsertElementInst>(I)) {
1065         return suffixed_name_or(I, ".base", "base_ie");
1066       } else {
1067         return suffixed_name_or(I, ".base", "base_sv");
1068       }
1069     };
1070 
1071     Instruction *BaseInst = I->clone();
1072     BaseInst->insertBefore(I);
1073     BaseInst->setName(getMangledName(I));
1074     // Add metadata marking this as a base value
1075     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1076     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1077   }
1078 
1079 #ifndef NDEBUG
1080   VerifyStates();
1081 #endif
1082 
1083   // Returns a instruction which produces the base pointer for a given
1084   // instruction.  The instruction is assumed to be an input to one of the BDVs
1085   // seen in the inference algorithm above.  As such, we must either already
1086   // know it's base defining value is a base, or have inserted a new
1087   // instruction to propagate the base of it's BDV and have entered that newly
1088   // introduced instruction into the state table.  In either case, we are
1089   // assured to be able to determine an instruction which produces it's base
1090   // pointer.
1091   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1092     Value *BDV = findBaseOrBDV(Input, Cache);
1093     Value *Base = nullptr;
1094     if (!States.count(BDV)) {
1095       assert(areBothVectorOrScalar(BDV, Input));
1096       Base = BDV;
1097     } else {
1098       // Either conflict or base.
1099       assert(States.count(BDV));
1100       Base = States[BDV].getBaseValue();
1101     }
1102     assert(Base && "Can't be null");
1103     // The cast is needed since base traversal may strip away bitcasts
1104     if (Base->getType() != Input->getType() && InsertPt)
1105       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1106     return Base;
1107   };
1108 
1109   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1110   // deterministic and predictable because we're naming newly created
1111   // instructions.
1112   for (auto Pair : States) {
1113     Instruction *BDV = cast<Instruction>(Pair.first);
1114     BDVState State = Pair.second;
1115 
1116     // Only values that do not have known bases or those that have differing
1117     // type (scalar versus vector) from a possible known base should be in the
1118     // lattice.
1119     assert((!isKnownBaseResult(BDV) ||
1120             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1121            "why did it get added?");
1122     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1123     if (!State.isConflict())
1124       continue;
1125 
1126     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1127       PHINode *PN = cast<PHINode>(BDV);
1128       const unsigned NumPHIValues = PN->getNumIncomingValues();
1129 
1130       // The IR verifier requires phi nodes with multiple entries from the
1131       // same basic block to have the same incoming value for each of those
1132       // entries.  Since we're inserting bitcasts in the loop, make sure we
1133       // do so at least once per incoming block.
1134       DenseMap<BasicBlock *, Value*> BlockToValue;
1135       for (unsigned i = 0; i < NumPHIValues; i++) {
1136         Value *InVal = PN->getIncomingValue(i);
1137         BasicBlock *InBB = PN->getIncomingBlock(i);
1138         if (!BlockToValue.count(InBB))
1139           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1140         else {
1141 #ifndef NDEBUG
1142           Value *OldBase = BlockToValue[InBB];
1143           Value *Base = getBaseForInput(InVal, nullptr);
1144           // In essence this assert states: the only way two values
1145           // incoming from the same basic block may be different is by
1146           // being different bitcasts of the same value.  A cleanup
1147           // that remains TODO is changing findBaseOrBDV to return an
1148           // llvm::Value of the correct type (and still remain pure).
1149           // This will remove the need to add bitcasts.
1150           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1151                  "Sanity -- findBaseOrBDV should be pure!");
1152 #endif
1153         }
1154         Value *Base = BlockToValue[InBB];
1155         BasePHI->setIncomingValue(i, Base);
1156       }
1157     } else if (SelectInst *BaseSI =
1158                    dyn_cast<SelectInst>(State.getBaseValue())) {
1159       SelectInst *SI = cast<SelectInst>(BDV);
1160 
1161       // Find the instruction which produces the base for each input.
1162       // We may need to insert a bitcast.
1163       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1164       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1165     } else if (auto *BaseEE =
1166                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1167       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1168       // Find the instruction which produces the base for each input.  We may
1169       // need to insert a bitcast.
1170       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1171     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1172       auto *BdvIE = cast<InsertElementInst>(BDV);
1173       auto UpdateOperand = [&](int OperandIdx) {
1174         Value *InVal = BdvIE->getOperand(OperandIdx);
1175         Value *Base = getBaseForInput(InVal, BaseIE);
1176         BaseIE->setOperand(OperandIdx, Base);
1177       };
1178       UpdateOperand(0); // vector operand
1179       UpdateOperand(1); // scalar operand
1180     } else {
1181       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1182       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1183       auto UpdateOperand = [&](int OperandIdx) {
1184         Value *InVal = BdvSV->getOperand(OperandIdx);
1185         Value *Base = getBaseForInput(InVal, BaseSV);
1186         BaseSV->setOperand(OperandIdx, Base);
1187       };
1188       UpdateOperand(0); // vector operand
1189       if (!BdvSV->isZeroEltSplat())
1190         UpdateOperand(1); // vector operand
1191       else {
1192         // Never read, so just use undef
1193         Value *InVal = BdvSV->getOperand(1);
1194         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1195       }
1196     }
1197   }
1198 
1199 #ifndef NDEBUG
1200   VerifyStates();
1201 #endif
1202 
1203   // Cache all of our results so we can cheaply reuse them
1204   // NOTE: This is actually two caches: one of the base defining value
1205   // relation and one of the base pointer relation!  FIXME
1206   for (auto Pair : States) {
1207     auto *BDV = Pair.first;
1208     Value *Base = Pair.second.getBaseValue();
1209     assert(BDV && Base);
1210     // Only values that do not have known bases or those that have differing
1211     // type (scalar versus vector) from a possible known base should be in the
1212     // lattice.
1213     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1214            "why did it get added?");
1215 
1216     LLVM_DEBUG(
1217         dbgs() << "Updating base value cache"
1218                << " for: " << BDV->getName() << " from: "
1219                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1220                << " to: " << Base->getName() << "\n");
1221 
1222     Cache[BDV] = Base;
1223   }
1224   assert(Cache.count(Def));
1225   return Cache[Def];
1226 }
1227 
1228 // For a set of live pointers (base and/or derived), identify the base
1229 // pointer of the object which they are derived from.  This routine will
1230 // mutate the IR graph as needed to make the 'base' pointer live at the
1231 // definition site of 'derived'.  This ensures that any use of 'derived' can
1232 // also use 'base'.  This may involve the insertion of a number of
1233 // additional PHI nodes.
1234 //
1235 // preconditions: live is a set of pointer type Values
1236 //
1237 // side effects: may insert PHI nodes into the existing CFG, will preserve
1238 // CFG, will not remove or mutate any existing nodes
1239 //
1240 // post condition: PointerToBase contains one (derived, base) pair for every
1241 // pointer in live.  Note that derived can be equal to base if the original
1242 // pointer was a base pointer.
1243 static void
1244 findBasePointers(const StatepointLiveSetTy &live,
1245                  MapVector<Value *, Value *> &PointerToBase,
1246                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1247   for (Value *ptr : live) {
1248     Value *base = findBasePointer(ptr, DVCache);
1249     assert(base && "failed to find base pointer");
1250     PointerToBase[ptr] = base;
1251     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1252             DT->dominates(cast<Instruction>(base)->getParent(),
1253                           cast<Instruction>(ptr)->getParent())) &&
1254            "The base we found better dominate the derived pointer");
1255   }
1256 }
1257 
1258 /// Find the required based pointers (and adjust the live set) for the given
1259 /// parse point.
1260 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1261                              CallBase *Call,
1262                              PartiallyConstructedSafepointRecord &result) {
1263   MapVector<Value *, Value *> PointerToBase;
1264   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1265   // We assume that all pointers passed to deopt are base pointers; as an
1266   // optimization, we can use this to avoid seperately materializing the base
1267   // pointer graph.  This is only relevant since we're very conservative about
1268   // generating new conflict nodes during base pointer insertion.  If we were
1269   // smarter there, this would be irrelevant.
1270   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1271     for (Value *V : Opt->Inputs) {
1272       if (!PotentiallyDerivedPointers.count(V))
1273         continue;
1274       PotentiallyDerivedPointers.remove(V);
1275       PointerToBase[V] = V;
1276     }
1277   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1278 
1279   if (PrintBasePointers) {
1280     errs() << "Base Pairs (w/o Relocation):\n";
1281     for (auto &Pair : PointerToBase) {
1282       errs() << " derived ";
1283       Pair.first->printAsOperand(errs(), false);
1284       errs() << " base ";
1285       Pair.second->printAsOperand(errs(), false);
1286       errs() << "\n";;
1287     }
1288   }
1289 
1290   result.PointerToBase = PointerToBase;
1291 }
1292 
1293 /// Given an updated version of the dataflow liveness results, update the
1294 /// liveset and base pointer maps for the call site CS.
1295 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1296                                   CallBase *Call,
1297                                   PartiallyConstructedSafepointRecord &result);
1298 
1299 static void recomputeLiveInValues(
1300     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1301     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1302   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1303   // again.  The old values are still live and will help it stabilize quickly.
1304   GCPtrLivenessData RevisedLivenessData;
1305   computeLiveInValues(DT, F, RevisedLivenessData);
1306   for (size_t i = 0; i < records.size(); i++) {
1307     struct PartiallyConstructedSafepointRecord &info = records[i];
1308     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1309   }
1310 }
1311 
1312 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1313 // no uses of the original value / return value between the gc.statepoint and
1314 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1315 // starting one of the successor blocks.  We also need to be able to insert the
1316 // gc.relocates only on the path which goes through the statepoint.  We might
1317 // need to split an edge to make this possible.
1318 static BasicBlock *
1319 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1320                             DominatorTree &DT) {
1321   BasicBlock *Ret = BB;
1322   if (!BB->getUniquePredecessor())
1323     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1324 
1325   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1326   // from it
1327   FoldSingleEntryPHINodes(Ret);
1328   assert(!isa<PHINode>(Ret->begin()) &&
1329          "All PHI nodes should have been removed!");
1330 
1331   // At this point, we can safely insert a gc.relocate or gc.result as the first
1332   // instruction in Ret if needed.
1333   return Ret;
1334 }
1335 
1336 // Create new attribute set containing only attributes which can be transferred
1337 // from original call to the safepoint.
1338 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1339                                             AttributeList AL) {
1340   if (AL.isEmpty())
1341     return AL;
1342 
1343   // Remove the readonly, readnone, and statepoint function attributes.
1344   AttrBuilder FnAttrs = AL.getFnAttributes();
1345   for (auto Attr : {Attribute::ReadNone, Attribute::ReadOnly,
1346                     Attribute::NoSync, Attribute::NoFree})
1347     FnAttrs.removeAttribute(Attr);
1348 
1349   for (Attribute A : AL.getFnAttributes()) {
1350     if (isStatepointDirectiveAttr(A))
1351       FnAttrs.remove(A);
1352   }
1353 
1354   // Just skip parameter and return attributes for now
1355   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1356                             AttributeSet::get(Ctx, FnAttrs));
1357 }
1358 
1359 /// Helper function to place all gc relocates necessary for the given
1360 /// statepoint.
1361 /// Inputs:
1362 ///   liveVariables - list of variables to be relocated.
1363 ///   basePtrs - base pointers.
1364 ///   statepointToken - statepoint instruction to which relocates should be
1365 ///   bound.
1366 ///   Builder - Llvm IR builder to be used to construct new calls.
1367 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1368                               ArrayRef<Value *> BasePtrs,
1369                               Instruction *StatepointToken,
1370                               IRBuilder<> &Builder) {
1371   if (LiveVariables.empty())
1372     return;
1373 
1374   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1375     auto ValIt = llvm::find(LiveVec, Val);
1376     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1377     size_t Index = std::distance(LiveVec.begin(), ValIt);
1378     assert(Index < LiveVec.size() && "Bug in std::find?");
1379     return Index;
1380   };
1381   Module *M = StatepointToken->getModule();
1382 
1383   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1384   // element type is i8 addrspace(1)*). We originally generated unique
1385   // declarations for each pointer type, but this proved problematic because
1386   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1387   // towards a single unified pointer type anyways, we can just cast everything
1388   // to an i8* of the right address space.  A bitcast is added later to convert
1389   // gc_relocate to the actual value's type.
1390   auto getGCRelocateDecl = [&] (Type *Ty) {
1391     assert(isHandledGCPointerType(Ty));
1392     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1393     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1394     if (auto *VT = dyn_cast<VectorType>(Ty))
1395       NewTy = FixedVectorType::get(NewTy,
1396                                    cast<FixedVectorType>(VT)->getNumElements());
1397     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1398                                      {NewTy});
1399   };
1400 
1401   // Lazily populated map from input types to the canonicalized form mentioned
1402   // in the comment above.  This should probably be cached somewhere more
1403   // broadly.
1404   DenseMap<Type *, Function *> TypeToDeclMap;
1405 
1406   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1407     // Generate the gc.relocate call and save the result
1408     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1409     Value *LiveIdx = Builder.getInt32(i);
1410 
1411     Type *Ty = LiveVariables[i]->getType();
1412     if (!TypeToDeclMap.count(Ty))
1413       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1414     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1415 
1416     // only specify a debug name if we can give a useful one
1417     CallInst *Reloc = Builder.CreateCall(
1418         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1419         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1420     // Trick CodeGen into thinking there are lots of free registers at this
1421     // fake call.
1422     Reloc->setCallingConv(CallingConv::Cold);
1423   }
1424 }
1425 
1426 namespace {
1427 
1428 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1429 /// avoids having to worry about keeping around dangling pointers to Values.
1430 class DeferredReplacement {
1431   AssertingVH<Instruction> Old;
1432   AssertingVH<Instruction> New;
1433   bool IsDeoptimize = false;
1434 
1435   DeferredReplacement() = default;
1436 
1437 public:
1438   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1439     assert(Old != New && Old && New &&
1440            "Cannot RAUW equal values or to / from null!");
1441 
1442     DeferredReplacement D;
1443     D.Old = Old;
1444     D.New = New;
1445     return D;
1446   }
1447 
1448   static DeferredReplacement createDelete(Instruction *ToErase) {
1449     DeferredReplacement D;
1450     D.Old = ToErase;
1451     return D;
1452   }
1453 
1454   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1455 #ifndef NDEBUG
1456     auto *F = cast<CallInst>(Old)->getCalledFunction();
1457     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1458            "Only way to construct a deoptimize deferred replacement");
1459 #endif
1460     DeferredReplacement D;
1461     D.Old = Old;
1462     D.IsDeoptimize = true;
1463     return D;
1464   }
1465 
1466   /// Does the task represented by this instance.
1467   void doReplacement() {
1468     Instruction *OldI = Old;
1469     Instruction *NewI = New;
1470 
1471     assert(OldI != NewI && "Disallowed at construction?!");
1472     assert((!IsDeoptimize || !New) &&
1473            "Deoptimize intrinsics are not replaced!");
1474 
1475     Old = nullptr;
1476     New = nullptr;
1477 
1478     if (NewI)
1479       OldI->replaceAllUsesWith(NewI);
1480 
1481     if (IsDeoptimize) {
1482       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1483       // not necessarily be followed by the matching return.
1484       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1485       new UnreachableInst(RI->getContext(), RI);
1486       RI->eraseFromParent();
1487     }
1488 
1489     OldI->eraseFromParent();
1490   }
1491 };
1492 
1493 } // end anonymous namespace
1494 
1495 static StringRef getDeoptLowering(CallBase *Call) {
1496   const char *DeoptLowering = "deopt-lowering";
1497   if (Call->hasFnAttr(DeoptLowering)) {
1498     // FIXME: Calls have a *really* confusing interface around attributes
1499     // with values.
1500     const AttributeList &CSAS = Call->getAttributes();
1501     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1502       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1503           .getValueAsString();
1504     Function *F = Call->getCalledFunction();
1505     assert(F && F->hasFnAttribute(DeoptLowering));
1506     return F->getFnAttribute(DeoptLowering).getValueAsString();
1507   }
1508   return "live-through";
1509 }
1510 
1511 static void
1512 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1513                            const SmallVectorImpl<Value *> &BasePtrs,
1514                            const SmallVectorImpl<Value *> &LiveVariables,
1515                            PartiallyConstructedSafepointRecord &Result,
1516                            std::vector<DeferredReplacement> &Replacements) {
1517   assert(BasePtrs.size() == LiveVariables.size());
1518 
1519   // Then go ahead and use the builder do actually do the inserts.  We insert
1520   // immediately before the previous instruction under the assumption that all
1521   // arguments will be available here.  We can't insert afterwards since we may
1522   // be replacing a terminator.
1523   IRBuilder<> Builder(Call);
1524 
1525   ArrayRef<Value *> GCArgs(LiveVariables);
1526   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1527   uint32_t NumPatchBytes = 0;
1528   uint32_t Flags = uint32_t(StatepointFlags::None);
1529 
1530   SmallVector<Value *, 8> CallArgs(Call->args());
1531   Optional<ArrayRef<Use>> DeoptArgs;
1532   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1533     DeoptArgs = Bundle->Inputs;
1534   Optional<ArrayRef<Use>> TransitionArgs;
1535   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1536     TransitionArgs = Bundle->Inputs;
1537     // TODO: This flag no longer serves a purpose and can be removed later
1538     Flags |= uint32_t(StatepointFlags::GCTransition);
1539   }
1540 
1541   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1542   // with a return value, we lower then as never returning calls to
1543   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1544   bool IsDeoptimize = false;
1545 
1546   StatepointDirectives SD =
1547       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1548   if (SD.NumPatchBytes)
1549     NumPatchBytes = *SD.NumPatchBytes;
1550   if (SD.StatepointID)
1551     StatepointID = *SD.StatepointID;
1552 
1553   // Pass through the requested lowering if any.  The default is live-through.
1554   StringRef DeoptLowering = getDeoptLowering(Call);
1555   if (DeoptLowering.equals("live-in"))
1556     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1557   else {
1558     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1559   }
1560 
1561   Value *CallTarget = Call->getCalledOperand();
1562   if (Function *F = dyn_cast<Function>(CallTarget)) {
1563     auto IID = F->getIntrinsicID();
1564     if (IID == Intrinsic::experimental_deoptimize) {
1565       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1566       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1567       // verifier does not allow taking the address of an intrinsic function.
1568 
1569       SmallVector<Type *, 8> DomainTy;
1570       for (Value *Arg : CallArgs)
1571         DomainTy.push_back(Arg->getType());
1572       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1573                                     /* isVarArg = */ false);
1574 
1575       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1576       // calls to @llvm.experimental.deoptimize with different argument types in
1577       // the same module.  This is fine -- we assume the frontend knew what it
1578       // was doing when generating this kind of IR.
1579       CallTarget = F->getParent()
1580                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1581                        .getCallee();
1582 
1583       IsDeoptimize = true;
1584     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1585                IID == Intrinsic::memmove_element_unordered_atomic) {
1586       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1587       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1588       // Specifically, these calls should be lowered to the
1589       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1590       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1591       // verifier does not allow taking the address of an intrinsic function.
1592       //
1593       // Moreover we need to shuffle the arguments for the call in order to
1594       // accommodate GC. The underlying source and destination objects might be
1595       // relocated during copy operation should the GC occur. To relocate the
1596       // derived source and destination pointers the implementation of the
1597       // intrinsic should know the corresponding base pointers.
1598       //
1599       // To make the base pointers available pass them explicitly as arguments:
1600       //   memcpy(dest_derived, source_derived, ...) =>
1601       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1602       auto &Context = Call->getContext();
1603       auto &DL = Call->getModule()->getDataLayout();
1604       auto GetBaseAndOffset = [&](Value *Derived) {
1605         assert(Result.PointerToBase.count(Derived));
1606         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1607         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1608         Value *Base = Result.PointerToBase.find(Derived)->second;
1609         Value *Base_int = Builder.CreatePtrToInt(
1610             Base, Type::getIntNTy(Context, IntPtrSize));
1611         Value *Derived_int = Builder.CreatePtrToInt(
1612             Derived, Type::getIntNTy(Context, IntPtrSize));
1613         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1614       };
1615 
1616       auto *Dest = CallArgs[0];
1617       Value *DestBase, *DestOffset;
1618       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1619 
1620       auto *Source = CallArgs[1];
1621       Value *SourceBase, *SourceOffset;
1622       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1623 
1624       auto *LengthInBytes = CallArgs[2];
1625       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1626 
1627       CallArgs.clear();
1628       CallArgs.push_back(DestBase);
1629       CallArgs.push_back(DestOffset);
1630       CallArgs.push_back(SourceBase);
1631       CallArgs.push_back(SourceOffset);
1632       CallArgs.push_back(LengthInBytes);
1633 
1634       SmallVector<Type *, 8> DomainTy;
1635       for (Value *Arg : CallArgs)
1636         DomainTy.push_back(Arg->getType());
1637       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1638                                     /* isVarArg = */ false);
1639 
1640       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1641         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1642         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1643           switch (ElementSize) {
1644           case 1:
1645             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1646           case 2:
1647             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1648           case 4:
1649             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1650           case 8:
1651             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1652           case 16:
1653             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1654           default:
1655             llvm_unreachable("unexpected element size!");
1656           }
1657         }
1658         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1659         switch (ElementSize) {
1660         case 1:
1661           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1662         case 2:
1663           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1664         case 4:
1665           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1666         case 8:
1667           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1668         case 16:
1669           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1670         default:
1671           llvm_unreachable("unexpected element size!");
1672         }
1673       };
1674 
1675       CallTarget =
1676           F->getParent()
1677               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1678               .getCallee();
1679     }
1680   }
1681 
1682   // Create the statepoint given all the arguments
1683   GCStatepointInst *Token = nullptr;
1684   if (auto *CI = dyn_cast<CallInst>(Call)) {
1685     CallInst *SPCall = Builder.CreateGCStatepointCall(
1686         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1687         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1688 
1689     SPCall->setTailCallKind(CI->getTailCallKind());
1690     SPCall->setCallingConv(CI->getCallingConv());
1691 
1692     // Currently we will fail on parameter attributes and on certain
1693     // function attributes.  In case if we can handle this set of attributes -
1694     // set up function attrs directly on statepoint and return attrs later for
1695     // gc_result intrinsic.
1696     SPCall->setAttributes(
1697         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1698 
1699     Token = cast<GCStatepointInst>(SPCall);
1700 
1701     // Put the following gc_result and gc_relocate calls immediately after the
1702     // the old call (which we're about to delete)
1703     assert(CI->getNextNode() && "Not a terminator, must have next!");
1704     Builder.SetInsertPoint(CI->getNextNode());
1705     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1706   } else {
1707     auto *II = cast<InvokeInst>(Call);
1708 
1709     // Insert the new invoke into the old block.  We'll remove the old one in a
1710     // moment at which point this will become the new terminator for the
1711     // original block.
1712     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1713         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1714         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1715         "statepoint_token");
1716 
1717     SPInvoke->setCallingConv(II->getCallingConv());
1718 
1719     // Currently we will fail on parameter attributes and on certain
1720     // function attributes.  In case if we can handle this set of attributes -
1721     // set up function attrs directly on statepoint and return attrs later for
1722     // gc_result intrinsic.
1723     SPInvoke->setAttributes(
1724         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1725 
1726     Token = cast<GCStatepointInst>(SPInvoke);
1727 
1728     // Generate gc relocates in exceptional path
1729     BasicBlock *UnwindBlock = II->getUnwindDest();
1730     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1731            UnwindBlock->getUniquePredecessor() &&
1732            "can't safely insert in this block!");
1733 
1734     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1735     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1736 
1737     // Attach exceptional gc relocates to the landingpad.
1738     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1739     Result.UnwindToken = ExceptionalToken;
1740 
1741     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1742 
1743     // Generate gc relocates and returns for normal block
1744     BasicBlock *NormalDest = II->getNormalDest();
1745     assert(!isa<PHINode>(NormalDest->begin()) &&
1746            NormalDest->getUniquePredecessor() &&
1747            "can't safely insert in this block!");
1748 
1749     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1750 
1751     // gc relocates will be generated later as if it were regular call
1752     // statepoint
1753   }
1754   assert(Token && "Should be set in one of the above branches!");
1755 
1756   if (IsDeoptimize) {
1757     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1758     // transform the tail-call like structure to a call to a void function
1759     // followed by unreachable to get better codegen.
1760     Replacements.push_back(
1761         DeferredReplacement::createDeoptimizeReplacement(Call));
1762   } else {
1763     Token->setName("statepoint_token");
1764     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1765       StringRef Name = Call->hasName() ? Call->getName() : "";
1766       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1767       GCResult->setAttributes(
1768           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1769                              Call->getAttributes().getRetAttributes()));
1770 
1771       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1772       // live set of some other safepoint, in which case that safepoint's
1773       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1774       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1775       // after the live sets have been made explicit in the IR, and we no longer
1776       // have raw pointers to worry about.
1777       Replacements.emplace_back(
1778           DeferredReplacement::createRAUW(Call, GCResult));
1779     } else {
1780       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1781     }
1782   }
1783 
1784   Result.StatepointToken = Token;
1785 
1786   // Second, create a gc.relocate for every live variable
1787   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1788 }
1789 
1790 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1791 // which make the relocations happening at this safepoint explicit.
1792 //
1793 // WARNING: Does not do any fixup to adjust users of the original live
1794 // values.  That's the callers responsibility.
1795 static void
1796 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1797                        PartiallyConstructedSafepointRecord &Result,
1798                        std::vector<DeferredReplacement> &Replacements) {
1799   const auto &LiveSet = Result.LiveSet;
1800   const auto &PointerToBase = Result.PointerToBase;
1801 
1802   // Convert to vector for efficient cross referencing.
1803   SmallVector<Value *, 64> BaseVec, LiveVec;
1804   LiveVec.reserve(LiveSet.size());
1805   BaseVec.reserve(LiveSet.size());
1806   for (Value *L : LiveSet) {
1807     LiveVec.push_back(L);
1808     assert(PointerToBase.count(L));
1809     Value *Base = PointerToBase.find(L)->second;
1810     BaseVec.push_back(Base);
1811   }
1812   assert(LiveVec.size() == BaseVec.size());
1813 
1814   // Do the actual rewriting and delete the old statepoint
1815   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1816 }
1817 
1818 // Helper function for the relocationViaAlloca.
1819 //
1820 // It receives iterator to the statepoint gc relocates and emits a store to the
1821 // assigned location (via allocaMap) for the each one of them.  It adds the
1822 // visited values into the visitedLiveValues set, which we will later use them
1823 // for sanity checking.
1824 static void
1825 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1826                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1827                        DenseSet<Value *> &VisitedLiveValues) {
1828   for (User *U : GCRelocs) {
1829     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1830     if (!Relocate)
1831       continue;
1832 
1833     Value *OriginalValue = Relocate->getDerivedPtr();
1834     assert(AllocaMap.count(OriginalValue));
1835     Value *Alloca = AllocaMap[OriginalValue];
1836 
1837     // Emit store into the related alloca
1838     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1839     // the correct type according to alloca.
1840     assert(Relocate->getNextNode() &&
1841            "Should always have one since it's not a terminator");
1842     IRBuilder<> Builder(Relocate->getNextNode());
1843     Value *CastedRelocatedValue =
1844       Builder.CreateBitCast(Relocate,
1845                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1846                             suffixed_name_or(Relocate, ".casted", ""));
1847 
1848     new StoreInst(CastedRelocatedValue, Alloca,
1849                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1850 
1851 #ifndef NDEBUG
1852     VisitedLiveValues.insert(OriginalValue);
1853 #endif
1854   }
1855 }
1856 
1857 // Helper function for the "relocationViaAlloca". Similar to the
1858 // "insertRelocationStores" but works for rematerialized values.
1859 static void insertRematerializationStores(
1860     const RematerializedValueMapTy &RematerializedValues,
1861     DenseMap<Value *, AllocaInst *> &AllocaMap,
1862     DenseSet<Value *> &VisitedLiveValues) {
1863   for (auto RematerializedValuePair: RematerializedValues) {
1864     Instruction *RematerializedValue = RematerializedValuePair.first;
1865     Value *OriginalValue = RematerializedValuePair.second;
1866 
1867     assert(AllocaMap.count(OriginalValue) &&
1868            "Can not find alloca for rematerialized value");
1869     Value *Alloca = AllocaMap[OriginalValue];
1870 
1871     new StoreInst(RematerializedValue, Alloca,
1872                   RematerializedValue->getNextNode());
1873 
1874 #ifndef NDEBUG
1875     VisitedLiveValues.insert(OriginalValue);
1876 #endif
1877   }
1878 }
1879 
1880 /// Do all the relocation update via allocas and mem2reg
1881 static void relocationViaAlloca(
1882     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1883     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1884 #ifndef NDEBUG
1885   // record initial number of (static) allocas; we'll check we have the same
1886   // number when we get done.
1887   int InitialAllocaNum = 0;
1888   for (Instruction &I : F.getEntryBlock())
1889     if (isa<AllocaInst>(I))
1890       InitialAllocaNum++;
1891 #endif
1892 
1893   // TODO-PERF: change data structures, reserve
1894   DenseMap<Value *, AllocaInst *> AllocaMap;
1895   SmallVector<AllocaInst *, 200> PromotableAllocas;
1896   // Used later to chack that we have enough allocas to store all values
1897   std::size_t NumRematerializedValues = 0;
1898   PromotableAllocas.reserve(Live.size());
1899 
1900   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1901   // "PromotableAllocas"
1902   const DataLayout &DL = F.getParent()->getDataLayout();
1903   auto emitAllocaFor = [&](Value *LiveValue) {
1904     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1905                                         DL.getAllocaAddrSpace(), "",
1906                                         F.getEntryBlock().getFirstNonPHI());
1907     AllocaMap[LiveValue] = Alloca;
1908     PromotableAllocas.push_back(Alloca);
1909   };
1910 
1911   // Emit alloca for each live gc pointer
1912   for (Value *V : Live)
1913     emitAllocaFor(V);
1914 
1915   // Emit allocas for rematerialized values
1916   for (const auto &Info : Records)
1917     for (auto RematerializedValuePair : Info.RematerializedValues) {
1918       Value *OriginalValue = RematerializedValuePair.second;
1919       if (AllocaMap.count(OriginalValue) != 0)
1920         continue;
1921 
1922       emitAllocaFor(OriginalValue);
1923       ++NumRematerializedValues;
1924     }
1925 
1926   // The next two loops are part of the same conceptual operation.  We need to
1927   // insert a store to the alloca after the original def and at each
1928   // redefinition.  We need to insert a load before each use.  These are split
1929   // into distinct loops for performance reasons.
1930 
1931   // Update gc pointer after each statepoint: either store a relocated value or
1932   // null (if no relocated value was found for this gc pointer and it is not a
1933   // gc_result).  This must happen before we update the statepoint with load of
1934   // alloca otherwise we lose the link between statepoint and old def.
1935   for (const auto &Info : Records) {
1936     Value *Statepoint = Info.StatepointToken;
1937 
1938     // This will be used for consistency check
1939     DenseSet<Value *> VisitedLiveValues;
1940 
1941     // Insert stores for normal statepoint gc relocates
1942     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1943 
1944     // In case if it was invoke statepoint
1945     // we will insert stores for exceptional path gc relocates.
1946     if (isa<InvokeInst>(Statepoint)) {
1947       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1948                              VisitedLiveValues);
1949     }
1950 
1951     // Do similar thing with rematerialized values
1952     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1953                                   VisitedLiveValues);
1954 
1955     if (ClobberNonLive) {
1956       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1957       // the gc.statepoint.  This will turn some subtle GC problems into
1958       // slightly easier to debug SEGVs.  Note that on large IR files with
1959       // lots of gc.statepoints this is extremely costly both memory and time
1960       // wise.
1961       SmallVector<AllocaInst *, 64> ToClobber;
1962       for (auto Pair : AllocaMap) {
1963         Value *Def = Pair.first;
1964         AllocaInst *Alloca = Pair.second;
1965 
1966         // This value was relocated
1967         if (VisitedLiveValues.count(Def)) {
1968           continue;
1969         }
1970         ToClobber.push_back(Alloca);
1971       }
1972 
1973       auto InsertClobbersAt = [&](Instruction *IP) {
1974         for (auto *AI : ToClobber) {
1975           auto PT = cast<PointerType>(AI->getAllocatedType());
1976           Constant *CPN = ConstantPointerNull::get(PT);
1977           new StoreInst(CPN, AI, IP);
1978         }
1979       };
1980 
1981       // Insert the clobbering stores.  These may get intermixed with the
1982       // gc.results and gc.relocates, but that's fine.
1983       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1984         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1985         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1986       } else {
1987         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1988       }
1989     }
1990   }
1991 
1992   // Update use with load allocas and add store for gc_relocated.
1993   for (auto Pair : AllocaMap) {
1994     Value *Def = Pair.first;
1995     AllocaInst *Alloca = Pair.second;
1996 
1997     // We pre-record the uses of allocas so that we dont have to worry about
1998     // later update that changes the user information..
1999 
2000     SmallVector<Instruction *, 20> Uses;
2001     // PERF: trade a linear scan for repeated reallocation
2002     Uses.reserve(Def->getNumUses());
2003     for (User *U : Def->users()) {
2004       if (!isa<ConstantExpr>(U)) {
2005         // If the def has a ConstantExpr use, then the def is either a
2006         // ConstantExpr use itself or null.  In either case
2007         // (recursively in the first, directly in the second), the oop
2008         // it is ultimately dependent on is null and this particular
2009         // use does not need to be fixed up.
2010         Uses.push_back(cast<Instruction>(U));
2011       }
2012     }
2013 
2014     llvm::sort(Uses);
2015     auto Last = std::unique(Uses.begin(), Uses.end());
2016     Uses.erase(Last, Uses.end());
2017 
2018     for (Instruction *Use : Uses) {
2019       if (isa<PHINode>(Use)) {
2020         PHINode *Phi = cast<PHINode>(Use);
2021         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2022           if (Def == Phi->getIncomingValue(i)) {
2023             LoadInst *Load =
2024                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2025                              Phi->getIncomingBlock(i)->getTerminator());
2026             Phi->setIncomingValue(i, Load);
2027           }
2028         }
2029       } else {
2030         LoadInst *Load =
2031             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2032         Use->replaceUsesOfWith(Def, Load);
2033       }
2034     }
2035 
2036     // Emit store for the initial gc value.  Store must be inserted after load,
2037     // otherwise store will be in alloca's use list and an extra load will be
2038     // inserted before it.
2039     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2040                                      DL.getABITypeAlign(Def->getType()));
2041     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2042       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2043         // InvokeInst is a terminator so the store need to be inserted into its
2044         // normal destination block.
2045         BasicBlock *NormalDest = Invoke->getNormalDest();
2046         Store->insertBefore(NormalDest->getFirstNonPHI());
2047       } else {
2048         assert(!Inst->isTerminator() &&
2049                "The only terminator that can produce a value is "
2050                "InvokeInst which is handled above.");
2051         Store->insertAfter(Inst);
2052       }
2053     } else {
2054       assert(isa<Argument>(Def));
2055       Store->insertAfter(cast<Instruction>(Alloca));
2056     }
2057   }
2058 
2059   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2060          "we must have the same allocas with lives");
2061   if (!PromotableAllocas.empty()) {
2062     // Apply mem2reg to promote alloca to SSA
2063     PromoteMemToReg(PromotableAllocas, DT);
2064   }
2065 
2066 #ifndef NDEBUG
2067   for (auto &I : F.getEntryBlock())
2068     if (isa<AllocaInst>(I))
2069       InitialAllocaNum--;
2070   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2071 #endif
2072 }
2073 
2074 /// Implement a unique function which doesn't require we sort the input
2075 /// vector.  Doing so has the effect of changing the output of a couple of
2076 /// tests in ways which make them less useful in testing fused safepoints.
2077 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2078   SmallSet<T, 8> Seen;
2079   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2080 }
2081 
2082 /// Insert holders so that each Value is obviously live through the entire
2083 /// lifetime of the call.
2084 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2085                                  SmallVectorImpl<CallInst *> &Holders) {
2086   if (Values.empty())
2087     // No values to hold live, might as well not insert the empty holder
2088     return;
2089 
2090   Module *M = Call->getModule();
2091   // Use a dummy vararg function to actually hold the values live
2092   FunctionCallee Func = M->getOrInsertFunction(
2093       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2094   if (isa<CallInst>(Call)) {
2095     // For call safepoints insert dummy calls right after safepoint
2096     Holders.push_back(
2097         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2098     return;
2099   }
2100   // For invoke safepooints insert dummy calls both in normal and
2101   // exceptional destination blocks
2102   auto *II = cast<InvokeInst>(Call);
2103   Holders.push_back(CallInst::Create(
2104       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2105   Holders.push_back(CallInst::Create(
2106       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2107 }
2108 
2109 static void findLiveReferences(
2110     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2111     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2112   GCPtrLivenessData OriginalLivenessData;
2113   computeLiveInValues(DT, F, OriginalLivenessData);
2114   for (size_t i = 0; i < records.size(); i++) {
2115     struct PartiallyConstructedSafepointRecord &info = records[i];
2116     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2117   }
2118 }
2119 
2120 // Helper function for the "rematerializeLiveValues". It walks use chain
2121 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2122 // the base or a value it cannot process. Only "simple" values are processed
2123 // (currently it is GEP's and casts). The returned root is  examined by the
2124 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2125 // with all visited values.
2126 static Value* findRematerializableChainToBasePointer(
2127   SmallVectorImpl<Instruction*> &ChainToBase,
2128   Value *CurrentValue) {
2129   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2130     ChainToBase.push_back(GEP);
2131     return findRematerializableChainToBasePointer(ChainToBase,
2132                                                   GEP->getPointerOperand());
2133   }
2134 
2135   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2136     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2137       return CI;
2138 
2139     ChainToBase.push_back(CI);
2140     return findRematerializableChainToBasePointer(ChainToBase,
2141                                                   CI->getOperand(0));
2142   }
2143 
2144   // We have reached the root of the chain, which is either equal to the base or
2145   // is the first unsupported value along the use chain.
2146   return CurrentValue;
2147 }
2148 
2149 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2150 // chain we are going to rematerialize.
2151 static InstructionCost
2152 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2153                        TargetTransformInfo &TTI) {
2154   InstructionCost Cost = 0;
2155 
2156   for (Instruction *Instr : Chain) {
2157     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2158       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2159              "non noop cast is found during rematerialization");
2160 
2161       Type *SrcTy = CI->getOperand(0)->getType();
2162       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2163                                    TTI::getCastContextHint(CI),
2164                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2165 
2166     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2167       // Cost of the address calculation
2168       Type *ValTy = GEP->getSourceElementType();
2169       Cost += TTI.getAddressComputationCost(ValTy);
2170 
2171       // And cost of the GEP itself
2172       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2173       //       allowed for the external usage)
2174       if (!GEP->hasAllConstantIndices())
2175         Cost += 2;
2176 
2177     } else {
2178       llvm_unreachable("unsupported instruction type during rematerialization");
2179     }
2180   }
2181 
2182   return Cost;
2183 }
2184 
2185 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2186   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2187   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2188       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2189     return false;
2190   // Map of incoming values and their corresponding basic blocks of
2191   // OrigRootPhi.
2192   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2193   for (unsigned i = 0; i < PhiNum; i++)
2194     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2195         OrigRootPhi.getIncomingBlock(i);
2196 
2197   // Both current and base PHIs should have same incoming values and
2198   // the same basic blocks corresponding to the incoming values.
2199   for (unsigned i = 0; i < PhiNum; i++) {
2200     auto CIVI =
2201         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2202     if (CIVI == CurrentIncomingValues.end())
2203       return false;
2204     BasicBlock *CurrentIncomingBB = CIVI->second;
2205     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2206       return false;
2207   }
2208   return true;
2209 }
2210 
2211 // From the statepoint live set pick values that are cheaper to recompute then
2212 // to relocate. Remove this values from the live set, rematerialize them after
2213 // statepoint and record them in "Info" structure. Note that similar to
2214 // relocated values we don't do any user adjustments here.
2215 static void rematerializeLiveValues(CallBase *Call,
2216                                     PartiallyConstructedSafepointRecord &Info,
2217                                     TargetTransformInfo &TTI) {
2218   const unsigned int ChainLengthThreshold = 10;
2219 
2220   // Record values we are going to delete from this statepoint live set.
2221   // We can not di this in following loop due to iterator invalidation.
2222   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2223 
2224   for (Value *LiveValue: Info.LiveSet) {
2225     // For each live pointer find its defining chain
2226     SmallVector<Instruction *, 3> ChainToBase;
2227     assert(Info.PointerToBase.count(LiveValue));
2228     Value *RootOfChain =
2229       findRematerializableChainToBasePointer(ChainToBase,
2230                                              LiveValue);
2231 
2232     // Nothing to do, or chain is too long
2233     if ( ChainToBase.size() == 0 ||
2234         ChainToBase.size() > ChainLengthThreshold)
2235       continue;
2236 
2237     // Handle the scenario where the RootOfChain is not equal to the
2238     // Base Value, but they are essentially the same phi values.
2239     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2240       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2241       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2242       if (!OrigRootPhi || !AlternateRootPhi)
2243         continue;
2244       // PHI nodes that have the same incoming values, and belonging to the same
2245       // basic blocks are essentially the same SSA value.  When the original phi
2246       // has incoming values with different base pointers, the original phi is
2247       // marked as conflict, and an additional `AlternateRootPhi` with the same
2248       // incoming values get generated by the findBasePointer function. We need
2249       // to identify the newly generated AlternateRootPhi (.base version of phi)
2250       // and RootOfChain (the original phi node itself) are the same, so that we
2251       // can rematerialize the gep and casts. This is a workaround for the
2252       // deficiency in the findBasePointer algorithm.
2253       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2254         continue;
2255       // Now that the phi nodes are proved to be the same, assert that
2256       // findBasePointer's newly generated AlternateRootPhi is present in the
2257       // liveset of the call.
2258       assert(Info.LiveSet.count(AlternateRootPhi));
2259     }
2260     // Compute cost of this chain
2261     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2262     // TODO: We can also account for cases when we will be able to remove some
2263     //       of the rematerialized values by later optimization passes. I.e if
2264     //       we rematerialized several intersecting chains. Or if original values
2265     //       don't have any uses besides this statepoint.
2266 
2267     // For invokes we need to rematerialize each chain twice - for normal and
2268     // for unwind basic blocks. Model this by multiplying cost by two.
2269     if (isa<InvokeInst>(Call)) {
2270       Cost *= 2;
2271     }
2272     // If it's too expensive - skip it
2273     if (Cost >= RematerializationThreshold)
2274       continue;
2275 
2276     // Remove value from the live set
2277     LiveValuesToBeDeleted.push_back(LiveValue);
2278 
2279     // Clone instructions and record them inside "Info" structure
2280 
2281     // Walk backwards to visit top-most instructions first
2282     std::reverse(ChainToBase.begin(), ChainToBase.end());
2283 
2284     // Utility function which clones all instructions from "ChainToBase"
2285     // and inserts them before "InsertBefore". Returns rematerialized value
2286     // which should be used after statepoint.
2287     auto rematerializeChain = [&ChainToBase](
2288         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2289       Instruction *LastClonedValue = nullptr;
2290       Instruction *LastValue = nullptr;
2291       for (Instruction *Instr: ChainToBase) {
2292         // Only GEP's and casts are supported as we need to be careful to not
2293         // introduce any new uses of pointers not in the liveset.
2294         // Note that it's fine to introduce new uses of pointers which were
2295         // otherwise not used after this statepoint.
2296         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2297 
2298         Instruction *ClonedValue = Instr->clone();
2299         ClonedValue->insertBefore(InsertBefore);
2300         ClonedValue->setName(Instr->getName() + ".remat");
2301 
2302         // If it is not first instruction in the chain then it uses previously
2303         // cloned value. We should update it to use cloned value.
2304         if (LastClonedValue) {
2305           assert(LastValue);
2306           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2307 #ifndef NDEBUG
2308           for (auto OpValue : ClonedValue->operand_values()) {
2309             // Assert that cloned instruction does not use any instructions from
2310             // this chain other than LastClonedValue
2311             assert(!is_contained(ChainToBase, OpValue) &&
2312                    "incorrect use in rematerialization chain");
2313             // Assert that the cloned instruction does not use the RootOfChain
2314             // or the AlternateLiveBase.
2315             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2316           }
2317 #endif
2318         } else {
2319           // For the first instruction, replace the use of unrelocated base i.e.
2320           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2321           // live set. They have been proved to be the same PHI nodes.  Note
2322           // that the *only* use of the RootOfChain in the ChainToBase list is
2323           // the first Value in the list.
2324           if (RootOfChain != AlternateLiveBase)
2325             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2326         }
2327 
2328         LastClonedValue = ClonedValue;
2329         LastValue = Instr;
2330       }
2331       assert(LastClonedValue);
2332       return LastClonedValue;
2333     };
2334 
2335     // Different cases for calls and invokes. For invokes we need to clone
2336     // instructions both on normal and unwind path.
2337     if (isa<CallInst>(Call)) {
2338       Instruction *InsertBefore = Call->getNextNode();
2339       assert(InsertBefore);
2340       Instruction *RematerializedValue = rematerializeChain(
2341           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2342       Info.RematerializedValues[RematerializedValue] = LiveValue;
2343     } else {
2344       auto *Invoke = cast<InvokeInst>(Call);
2345 
2346       Instruction *NormalInsertBefore =
2347           &*Invoke->getNormalDest()->getFirstInsertionPt();
2348       Instruction *UnwindInsertBefore =
2349           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2350 
2351       Instruction *NormalRematerializedValue = rematerializeChain(
2352           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2353       Instruction *UnwindRematerializedValue = rematerializeChain(
2354           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2355 
2356       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2357       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2358     }
2359   }
2360 
2361   // Remove rematerializaed values from the live set
2362   for (auto LiveValue: LiveValuesToBeDeleted) {
2363     Info.LiveSet.remove(LiveValue);
2364   }
2365 }
2366 
2367 static bool insertParsePoints(Function &F, DominatorTree &DT,
2368                               TargetTransformInfo &TTI,
2369                               SmallVectorImpl<CallBase *> &ToUpdate) {
2370 #ifndef NDEBUG
2371   // sanity check the input
2372   std::set<CallBase *> Uniqued;
2373   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2374   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2375 
2376   for (CallBase *Call : ToUpdate)
2377     assert(Call->getFunction() == &F);
2378 #endif
2379 
2380   // When inserting gc.relocates for invokes, we need to be able to insert at
2381   // the top of the successor blocks.  See the comment on
2382   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2383   // may restructure the CFG.
2384   for (CallBase *Call : ToUpdate) {
2385     auto *II = dyn_cast<InvokeInst>(Call);
2386     if (!II)
2387       continue;
2388     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2389     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2390   }
2391 
2392   // A list of dummy calls added to the IR to keep various values obviously
2393   // live in the IR.  We'll remove all of these when done.
2394   SmallVector<CallInst *, 64> Holders;
2395 
2396   // Insert a dummy call with all of the deopt operands we'll need for the
2397   // actual safepoint insertion as arguments.  This ensures reference operands
2398   // in the deopt argument list are considered live through the safepoint (and
2399   // thus makes sure they get relocated.)
2400   for (CallBase *Call : ToUpdate) {
2401     SmallVector<Value *, 64> DeoptValues;
2402 
2403     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2404       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2405              "support for FCA unimplemented");
2406       if (isHandledGCPointerType(Arg->getType()))
2407         DeoptValues.push_back(Arg);
2408     }
2409 
2410     insertUseHolderAfter(Call, DeoptValues, Holders);
2411   }
2412 
2413   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2414 
2415   // A) Identify all gc pointers which are statically live at the given call
2416   // site.
2417   findLiveReferences(F, DT, ToUpdate, Records);
2418 
2419   // B) Find the base pointers for each live pointer
2420   /* scope for caching */ {
2421     // Cache the 'defining value' relation used in the computation and
2422     // insertion of base phis and selects.  This ensures that we don't insert
2423     // large numbers of duplicate base_phis.
2424     DefiningValueMapTy DVCache;
2425 
2426     for (size_t i = 0; i < Records.size(); i++) {
2427       PartiallyConstructedSafepointRecord &info = Records[i];
2428       findBasePointers(DT, DVCache, ToUpdate[i], info);
2429     }
2430   } // end of cache scope
2431 
2432   // The base phi insertion logic (for any safepoint) may have inserted new
2433   // instructions which are now live at some safepoint.  The simplest such
2434   // example is:
2435   // loop:
2436   //   phi a  <-- will be a new base_phi here
2437   //   safepoint 1 <-- that needs to be live here
2438   //   gep a + 1
2439   //   safepoint 2
2440   //   br loop
2441   // We insert some dummy calls after each safepoint to definitely hold live
2442   // the base pointers which were identified for that safepoint.  We'll then
2443   // ask liveness for _every_ base inserted to see what is now live.  Then we
2444   // remove the dummy calls.
2445   Holders.reserve(Holders.size() + Records.size());
2446   for (size_t i = 0; i < Records.size(); i++) {
2447     PartiallyConstructedSafepointRecord &Info = Records[i];
2448 
2449     SmallVector<Value *, 128> Bases;
2450     for (auto Pair : Info.PointerToBase)
2451       Bases.push_back(Pair.second);
2452 
2453     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2454   }
2455 
2456   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2457   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2458   // not the key issue.
2459   recomputeLiveInValues(F, DT, ToUpdate, Records);
2460 
2461   if (PrintBasePointers) {
2462     for (auto &Info : Records) {
2463       errs() << "Base Pairs: (w/Relocation)\n";
2464       for (auto Pair : Info.PointerToBase) {
2465         errs() << " derived ";
2466         Pair.first->printAsOperand(errs(), false);
2467         errs() << " base ";
2468         Pair.second->printAsOperand(errs(), false);
2469         errs() << "\n";
2470       }
2471     }
2472   }
2473 
2474   // It is possible that non-constant live variables have a constant base.  For
2475   // example, a GEP with a variable offset from a global.  In this case we can
2476   // remove it from the liveset.  We already don't add constants to the liveset
2477   // because we assume they won't move at runtime and the GC doesn't need to be
2478   // informed about them.  The same reasoning applies if the base is constant.
2479   // Note that the relocation placement code relies on this filtering for
2480   // correctness as it expects the base to be in the liveset, which isn't true
2481   // if the base is constant.
2482   for (auto &Info : Records)
2483     for (auto &BasePair : Info.PointerToBase)
2484       if (isa<Constant>(BasePair.second))
2485         Info.LiveSet.remove(BasePair.first);
2486 
2487   for (CallInst *CI : Holders)
2488     CI->eraseFromParent();
2489 
2490   Holders.clear();
2491 
2492   // In order to reduce live set of statepoint we might choose to rematerialize
2493   // some values instead of relocating them. This is purely an optimization and
2494   // does not influence correctness.
2495   for (size_t i = 0; i < Records.size(); i++)
2496     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2497 
2498   // We need this to safely RAUW and delete call or invoke return values that
2499   // may themselves be live over a statepoint.  For details, please see usage in
2500   // makeStatepointExplicitImpl.
2501   std::vector<DeferredReplacement> Replacements;
2502 
2503   // Now run through and replace the existing statepoints with new ones with
2504   // the live variables listed.  We do not yet update uses of the values being
2505   // relocated. We have references to live variables that need to
2506   // survive to the last iteration of this loop.  (By construction, the
2507   // previous statepoint can not be a live variable, thus we can and remove
2508   // the old statepoint calls as we go.)
2509   for (size_t i = 0; i < Records.size(); i++)
2510     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2511 
2512   ToUpdate.clear(); // prevent accident use of invalid calls.
2513 
2514   for (auto &PR : Replacements)
2515     PR.doReplacement();
2516 
2517   Replacements.clear();
2518 
2519   for (auto &Info : Records) {
2520     // These live sets may contain state Value pointers, since we replaced calls
2521     // with operand bundles with calls wrapped in gc.statepoint, and some of
2522     // those calls may have been def'ing live gc pointers.  Clear these out to
2523     // avoid accidentally using them.
2524     //
2525     // TODO: We should create a separate data structure that does not contain
2526     // these live sets, and migrate to using that data structure from this point
2527     // onward.
2528     Info.LiveSet.clear();
2529     Info.PointerToBase.clear();
2530   }
2531 
2532   // Do all the fixups of the original live variables to their relocated selves
2533   SmallVector<Value *, 128> Live;
2534   for (size_t i = 0; i < Records.size(); i++) {
2535     PartiallyConstructedSafepointRecord &Info = Records[i];
2536 
2537     // We can't simply save the live set from the original insertion.  One of
2538     // the live values might be the result of a call which needs a safepoint.
2539     // That Value* no longer exists and we need to use the new gc_result.
2540     // Thankfully, the live set is embedded in the statepoint (and updated), so
2541     // we just grab that.
2542     llvm::append_range(Live, Info.StatepointToken->gc_args());
2543 #ifndef NDEBUG
2544     // Do some basic sanity checks on our liveness results before performing
2545     // relocation.  Relocation can and will turn mistakes in liveness results
2546     // into non-sensical code which is must harder to debug.
2547     // TODO: It would be nice to test consistency as well
2548     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2549            "statepoint must be reachable or liveness is meaningless");
2550     for (Value *V : Info.StatepointToken->gc_args()) {
2551       if (!isa<Instruction>(V))
2552         // Non-instruction values trivial dominate all possible uses
2553         continue;
2554       auto *LiveInst = cast<Instruction>(V);
2555       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2556              "unreachable values should never be live");
2557       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2558              "basic SSA liveness expectation violated by liveness analysis");
2559     }
2560 #endif
2561   }
2562   unique_unsorted(Live);
2563 
2564 #ifndef NDEBUG
2565   // sanity check
2566   for (auto *Ptr : Live)
2567     assert(isHandledGCPointerType(Ptr->getType()) &&
2568            "must be a gc pointer type");
2569 #endif
2570 
2571   relocationViaAlloca(F, DT, Live, Records);
2572   return !Records.empty();
2573 }
2574 
2575 // Handles both return values and arguments for Functions and calls.
2576 template <typename AttrHolder>
2577 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2578                                       unsigned Index) {
2579   AttrBuilder R;
2580   if (AH.getDereferenceableBytes(Index))
2581     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2582                                   AH.getDereferenceableBytes(Index)));
2583   if (AH.getDereferenceableOrNullBytes(Index))
2584     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2585                                   AH.getDereferenceableOrNullBytes(Index)));
2586   for (auto Attr : {Attribute::NoAlias, Attribute::NoFree})
2587     if (AH.getAttributes().hasAttribute(Index, Attr))
2588       R.addAttribute(Attr);
2589 
2590   if (!R.empty())
2591     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2592 }
2593 
2594 static void stripNonValidAttributesFromPrototype(Function &F) {
2595   LLVMContext &Ctx = F.getContext();
2596 
2597   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2598   // of certain attributes for correctness, but we may have also inferred
2599   // additional ones in the abstract machine model which need stripped.  This
2600   // assumes that the attributes defined in Intrinsic.td are conservatively
2601   // correct for both physical and abstract model.
2602   if (Intrinsic::ID id = F.getIntrinsicID()) {
2603     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2604     return;
2605   }
2606 
2607   for (Argument &A : F.args())
2608     if (isa<PointerType>(A.getType()))
2609       RemoveNonValidAttrAtIndex(Ctx, F,
2610                                 A.getArgNo() + AttributeList::FirstArgIndex);
2611 
2612   if (isa<PointerType>(F.getReturnType()))
2613     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2614 
2615   for (auto Attr : {Attribute::NoSync, Attribute::NoFree})
2616     F.removeFnAttr(Attr);
2617 }
2618 
2619 /// Certain metadata on instructions are invalid after running RS4GC.
2620 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2621 /// optimize functions. We drop such metadata on the instruction.
2622 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2623   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2624     return;
2625   // These are the attributes that are still valid on loads and stores after
2626   // RS4GC.
2627   // The metadata implying dereferenceability and noalias are (conservatively)
2628   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2629   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2630   // touch the entire heap including noalias objects. Note: The reasoning is
2631   // same as stripping the dereferenceability and noalias attributes that are
2632   // analogous to the metadata counterparts.
2633   // We also drop the invariant.load metadata on the load because that metadata
2634   // implies the address operand to the load points to memory that is never
2635   // changed once it became dereferenceable. This is no longer true after RS4GC.
2636   // Similar reasoning applies to invariant.group metadata, which applies to
2637   // loads within a group.
2638   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2639                          LLVMContext::MD_range,
2640                          LLVMContext::MD_alias_scope,
2641                          LLVMContext::MD_nontemporal,
2642                          LLVMContext::MD_nonnull,
2643                          LLVMContext::MD_align,
2644                          LLVMContext::MD_type};
2645 
2646   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2647   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2648 }
2649 
2650 static void stripNonValidDataFromBody(Function &F) {
2651   if (F.empty())
2652     return;
2653 
2654   LLVMContext &Ctx = F.getContext();
2655   MDBuilder Builder(Ctx);
2656 
2657   // Set of invariantstart instructions that we need to remove.
2658   // Use this to avoid invalidating the instruction iterator.
2659   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2660 
2661   for (Instruction &I : instructions(F)) {
2662     // invariant.start on memory location implies that the referenced memory
2663     // location is constant and unchanging. This is no longer true after
2664     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2665     // which frees the entire heap and the presence of invariant.start allows
2666     // the optimizer to sink the load of a memory location past a statepoint,
2667     // which is incorrect.
2668     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2669       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2670         InvariantStartInstructions.push_back(II);
2671         continue;
2672       }
2673 
2674     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2675       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2676       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2677     }
2678 
2679     stripInvalidMetadataFromInstruction(I);
2680 
2681     if (auto *Call = dyn_cast<CallBase>(&I)) {
2682       for (int i = 0, e = Call->arg_size(); i != e; i++)
2683         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2684           RemoveNonValidAttrAtIndex(Ctx, *Call,
2685                                     i + AttributeList::FirstArgIndex);
2686       if (isa<PointerType>(Call->getType()))
2687         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2688     }
2689   }
2690 
2691   // Delete the invariant.start instructions and RAUW undef.
2692   for (auto *II : InvariantStartInstructions) {
2693     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2694     II->eraseFromParent();
2695   }
2696 }
2697 
2698 /// Returns true if this function should be rewritten by this pass.  The main
2699 /// point of this function is as an extension point for custom logic.
2700 static bool shouldRewriteStatepointsIn(Function &F) {
2701   // TODO: This should check the GCStrategy
2702   if (F.hasGC()) {
2703     const auto &FunctionGCName = F.getGC();
2704     const StringRef StatepointExampleName("statepoint-example");
2705     const StringRef CoreCLRName("coreclr");
2706     return (StatepointExampleName == FunctionGCName) ||
2707            (CoreCLRName == FunctionGCName);
2708   } else
2709     return false;
2710 }
2711 
2712 static void stripNonValidData(Module &M) {
2713 #ifndef NDEBUG
2714   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2715 #endif
2716 
2717   for (Function &F : M)
2718     stripNonValidAttributesFromPrototype(F);
2719 
2720   for (Function &F : M)
2721     stripNonValidDataFromBody(F);
2722 }
2723 
2724 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2725                                             TargetTransformInfo &TTI,
2726                                             const TargetLibraryInfo &TLI) {
2727   assert(!F.isDeclaration() && !F.empty() &&
2728          "need function body to rewrite statepoints in");
2729   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2730 
2731   auto NeedsRewrite = [&TLI](Instruction &I) {
2732     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2733       if (isa<GCStatepointInst>(Call))
2734         return false;
2735       if (callsGCLeafFunction(Call, TLI))
2736         return false;
2737 
2738       // Normally it's up to the frontend to make sure that non-leaf calls also
2739       // have proper deopt state if it is required. We make an exception for
2740       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2741       // these are non-leaf by default. They might be generated by the optimizer
2742       // which doesn't know how to produce a proper deopt state. So if we see a
2743       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2744       // copy and don't produce a statepoint.
2745       if (!AllowStatepointWithNoDeoptInfo &&
2746           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2747         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2748                "Don't expect any other calls here!");
2749         return false;
2750       }
2751       return true;
2752     }
2753     return false;
2754   };
2755 
2756   // Delete any unreachable statepoints so that we don't have unrewritten
2757   // statepoints surviving this pass.  This makes testing easier and the
2758   // resulting IR less confusing to human readers.
2759   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2760   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2761   // Flush the Dominator Tree.
2762   DTU.getDomTree();
2763 
2764   // Gather all the statepoints which need rewritten.  Be careful to only
2765   // consider those in reachable code since we need to ask dominance queries
2766   // when rewriting.  We'll delete the unreachable ones in a moment.
2767   SmallVector<CallBase *, 64> ParsePointNeeded;
2768   for (Instruction &I : instructions(F)) {
2769     // TODO: only the ones with the flag set!
2770     if (NeedsRewrite(I)) {
2771       // NOTE removeUnreachableBlocks() is stronger than
2772       // DominatorTree::isReachableFromEntry(). In other words
2773       // removeUnreachableBlocks can remove some blocks for which
2774       // isReachableFromEntry() returns true.
2775       assert(DT.isReachableFromEntry(I.getParent()) &&
2776             "no unreachable blocks expected");
2777       ParsePointNeeded.push_back(cast<CallBase>(&I));
2778     }
2779   }
2780 
2781   // Return early if no work to do.
2782   if (ParsePointNeeded.empty())
2783     return MadeChange;
2784 
2785   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2786   // These are created by LCSSA.  They have the effect of increasing the size
2787   // of liveness sets for no good reason.  It may be harder to do this post
2788   // insertion since relocations and base phis can confuse things.
2789   for (BasicBlock &BB : F)
2790     if (BB.getUniquePredecessor())
2791       MadeChange |= FoldSingleEntryPHINodes(&BB);
2792 
2793   // Before we start introducing relocations, we want to tweak the IR a bit to
2794   // avoid unfortunate code generation effects.  The main example is that we
2795   // want to try to make sure the comparison feeding a branch is after any
2796   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2797   // values feeding a branch after relocation.  This is semantically correct,
2798   // but results in extra register pressure since both the pre-relocation and
2799   // post-relocation copies must be available in registers.  For code without
2800   // relocations this is handled elsewhere, but teaching the scheduler to
2801   // reverse the transform we're about to do would be slightly complex.
2802   // Note: This may extend the live range of the inputs to the icmp and thus
2803   // increase the liveset of any statepoint we move over.  This is profitable
2804   // as long as all statepoints are in rare blocks.  If we had in-register
2805   // lowering for live values this would be a much safer transform.
2806   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2807     if (auto *BI = dyn_cast<BranchInst>(TI))
2808       if (BI->isConditional())
2809         return dyn_cast<Instruction>(BI->getCondition());
2810     // TODO: Extend this to handle switches
2811     return nullptr;
2812   };
2813   for (BasicBlock &BB : F) {
2814     Instruction *TI = BB.getTerminator();
2815     if (auto *Cond = getConditionInst(TI))
2816       // TODO: Handle more than just ICmps here.  We should be able to move
2817       // most instructions without side effects or memory access.
2818       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2819         MadeChange = true;
2820         Cond->moveBefore(TI);
2821       }
2822   }
2823 
2824   // Nasty workaround - The base computation code in the main algorithm doesn't
2825   // consider the fact that a GEP can be used to convert a scalar to a vector.
2826   // The right fix for this is to integrate GEPs into the base rewriting
2827   // algorithm properly, this is just a short term workaround to prevent
2828   // crashes by canonicalizing such GEPs into fully vector GEPs.
2829   for (Instruction &I : instructions(F)) {
2830     if (!isa<GetElementPtrInst>(I))
2831       continue;
2832 
2833     unsigned VF = 0;
2834     for (unsigned i = 0; i < I.getNumOperands(); i++)
2835       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2836         assert(VF == 0 ||
2837                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2838         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2839       }
2840 
2841     // It's the vector to scalar traversal through the pointer operand which
2842     // confuses base pointer rewriting, so limit ourselves to that case.
2843     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2844       IRBuilder<> B(&I);
2845       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2846       I.setOperand(0, Splat);
2847       MadeChange = true;
2848     }
2849   }
2850 
2851   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2852   return MadeChange;
2853 }
2854 
2855 // liveness computation via standard dataflow
2856 // -------------------------------------------------------------------
2857 
2858 // TODO: Consider using bitvectors for liveness, the set of potentially
2859 // interesting values should be small and easy to pre-compute.
2860 
2861 /// Compute the live-in set for the location rbegin starting from
2862 /// the live-out set of the basic block
2863 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2864                                 BasicBlock::reverse_iterator End,
2865                                 SetVector<Value *> &LiveTmp) {
2866   for (auto &I : make_range(Begin, End)) {
2867     // KILL/Def - Remove this definition from LiveIn
2868     LiveTmp.remove(&I);
2869 
2870     // Don't consider *uses* in PHI nodes, we handle their contribution to
2871     // predecessor blocks when we seed the LiveOut sets
2872     if (isa<PHINode>(I))
2873       continue;
2874 
2875     // USE - Add to the LiveIn set for this instruction
2876     for (Value *V : I.operands()) {
2877       assert(!isUnhandledGCPointerType(V->getType()) &&
2878              "support for FCA unimplemented");
2879       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2880         // The choice to exclude all things constant here is slightly subtle.
2881         // There are two independent reasons:
2882         // - We assume that things which are constant (from LLVM's definition)
2883         // do not move at runtime.  For example, the address of a global
2884         // variable is fixed, even though it's contents may not be.
2885         // - Second, we can't disallow arbitrary inttoptr constants even
2886         // if the language frontend does.  Optimization passes are free to
2887         // locally exploit facts without respect to global reachability.  This
2888         // can create sections of code which are dynamically unreachable and
2889         // contain just about anything.  (see constants.ll in tests)
2890         LiveTmp.insert(V);
2891       }
2892     }
2893   }
2894 }
2895 
2896 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2897   for (BasicBlock *Succ : successors(BB)) {
2898     for (auto &I : *Succ) {
2899       PHINode *PN = dyn_cast<PHINode>(&I);
2900       if (!PN)
2901         break;
2902 
2903       Value *V = PN->getIncomingValueForBlock(BB);
2904       assert(!isUnhandledGCPointerType(V->getType()) &&
2905              "support for FCA unimplemented");
2906       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2907         LiveTmp.insert(V);
2908     }
2909   }
2910 }
2911 
2912 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2913   SetVector<Value *> KillSet;
2914   for (Instruction &I : *BB)
2915     if (isHandledGCPointerType(I.getType()))
2916       KillSet.insert(&I);
2917   return KillSet;
2918 }
2919 
2920 #ifndef NDEBUG
2921 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2922 /// sanity check for the liveness computation.
2923 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2924                           Instruction *TI, bool TermOkay = false) {
2925   for (Value *V : Live) {
2926     if (auto *I = dyn_cast<Instruction>(V)) {
2927       // The terminator can be a member of the LiveOut set.  LLVM's definition
2928       // of instruction dominance states that V does not dominate itself.  As
2929       // such, we need to special case this to allow it.
2930       if (TermOkay && TI == I)
2931         continue;
2932       assert(DT.dominates(I, TI) &&
2933              "basic SSA liveness expectation violated by liveness analysis");
2934     }
2935   }
2936 }
2937 
2938 /// Check that all the liveness sets used during the computation of liveness
2939 /// obey basic SSA properties.  This is useful for finding cases where we miss
2940 /// a def.
2941 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2942                           BasicBlock &BB) {
2943   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2944   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2945   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2946 }
2947 #endif
2948 
2949 static void computeLiveInValues(DominatorTree &DT, Function &F,
2950                                 GCPtrLivenessData &Data) {
2951   SmallSetVector<BasicBlock *, 32> Worklist;
2952 
2953   // Seed the liveness for each individual block
2954   for (BasicBlock &BB : F) {
2955     Data.KillSet[&BB] = computeKillSet(&BB);
2956     Data.LiveSet[&BB].clear();
2957     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2958 
2959 #ifndef NDEBUG
2960     for (Value *Kill : Data.KillSet[&BB])
2961       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2962 #endif
2963 
2964     Data.LiveOut[&BB] = SetVector<Value *>();
2965     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2966     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2967     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2968     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2969     if (!Data.LiveIn[&BB].empty())
2970       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2971   }
2972 
2973   // Propagate that liveness until stable
2974   while (!Worklist.empty()) {
2975     BasicBlock *BB = Worklist.pop_back_val();
2976 
2977     // Compute our new liveout set, then exit early if it hasn't changed despite
2978     // the contribution of our successor.
2979     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2980     const auto OldLiveOutSize = LiveOut.size();
2981     for (BasicBlock *Succ : successors(BB)) {
2982       assert(Data.LiveIn.count(Succ));
2983       LiveOut.set_union(Data.LiveIn[Succ]);
2984     }
2985     // assert OutLiveOut is a subset of LiveOut
2986     if (OldLiveOutSize == LiveOut.size()) {
2987       // If the sets are the same size, then we didn't actually add anything
2988       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2989       // hasn't changed.
2990       continue;
2991     }
2992     Data.LiveOut[BB] = LiveOut;
2993 
2994     // Apply the effects of this basic block
2995     SetVector<Value *> LiveTmp = LiveOut;
2996     LiveTmp.set_union(Data.LiveSet[BB]);
2997     LiveTmp.set_subtract(Data.KillSet[BB]);
2998 
2999     assert(Data.LiveIn.count(BB));
3000     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3001     // assert: OldLiveIn is a subset of LiveTmp
3002     if (OldLiveIn.size() != LiveTmp.size()) {
3003       Data.LiveIn[BB] = LiveTmp;
3004       Worklist.insert(pred_begin(BB), pred_end(BB));
3005     }
3006   } // while (!Worklist.empty())
3007 
3008 #ifndef NDEBUG
3009   // Sanity check our output against SSA properties.  This helps catch any
3010   // missing kills during the above iteration.
3011   for (BasicBlock &BB : F)
3012     checkBasicSSA(DT, Data, BB);
3013 #endif
3014 }
3015 
3016 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3017                               StatepointLiveSetTy &Out) {
3018   BasicBlock *BB = Inst->getParent();
3019 
3020   // Note: The copy is intentional and required
3021   assert(Data.LiveOut.count(BB));
3022   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3023 
3024   // We want to handle the statepoint itself oddly.  It's
3025   // call result is not live (normal), nor are it's arguments
3026   // (unless they're used again later).  This adjustment is
3027   // specifically what we need to relocate
3028   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3029                       LiveOut);
3030   LiveOut.remove(Inst);
3031   Out.insert(LiveOut.begin(), LiveOut.end());
3032 }
3033 
3034 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3035                                   CallBase *Call,
3036                                   PartiallyConstructedSafepointRecord &Info) {
3037   StatepointLiveSetTy Updated;
3038   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3039 
3040   // We may have base pointers which are now live that weren't before.  We need
3041   // to update the PointerToBase structure to reflect this.
3042   for (auto V : Updated)
3043     Info.PointerToBase.insert({V, V});
3044 
3045 #ifndef NDEBUG
3046   for (auto V : Updated)
3047     assert(Info.PointerToBase.count(V) &&
3048            "Must be able to find base for live value!");
3049 #endif
3050 
3051   // Remove any stale base mappings - this can happen since our liveness is
3052   // more precise then the one inherent in the base pointer analysis.
3053   DenseSet<Value *> ToErase;
3054   for (auto KVPair : Info.PointerToBase)
3055     if (!Updated.count(KVPair.first))
3056       ToErase.insert(KVPair.first);
3057 
3058   for (auto *V : ToErase)
3059     Info.PointerToBase.erase(V);
3060 
3061 #ifndef NDEBUG
3062   for (auto KVPair : Info.PointerToBase)
3063     assert(Updated.count(KVPair.first) && "record for non-live value");
3064 #endif
3065 
3066   Info.LiveSet = Updated;
3067 }
3068