xref: /llvm-project/llvm/lib/Transforms/Scalar/Reassociate.cpp (revision 3bcccb6af685c3132a9ee578b9e11b2503c35a5c)
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 static cl::opt<bool>
75     UseCSELocalOpt(DEBUG_TYPE "-use-cse-local",
76                    cl::desc("Only reorder expressions within a basic block "
77                             "when exposing CSE opportunities"),
78                    cl::init(true), cl::Hidden);
79 
80 #ifndef NDEBUG
81 /// Print out the expression identified in the Ops list.
82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
83   Module *M = I->getModule();
84   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
85        << *Ops[0].Op->getType() << '\t';
86   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
87     dbgs() << "[ ";
88     Ops[i].Op->printAsOperand(dbgs(), false, M);
89     dbgs() << ", #" << Ops[i].Rank << "] ";
90   }
91 }
92 #endif
93 
94 /// Utility class representing a non-constant Xor-operand. We classify
95 /// non-constant Xor-Operands into two categories:
96 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
97 ///  C2)
98 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
99 ///          constant.
100 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
101 ///          operand as "E | 0"
102 class llvm::reassociate::XorOpnd {
103 public:
104   XorOpnd(Value *V);
105 
106   bool isInvalid() const { return SymbolicPart == nullptr; }
107   bool isOrExpr() const { return isOr; }
108   Value *getValue() const { return OrigVal; }
109   Value *getSymbolicPart() const { return SymbolicPart; }
110   unsigned getSymbolicRank() const { return SymbolicRank; }
111   const APInt &getConstPart() const { return ConstPart; }
112 
113   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
114   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
115 
116 private:
117   Value *OrigVal;
118   Value *SymbolicPart;
119   APInt ConstPart;
120   unsigned SymbolicRank;
121   bool isOr;
122 };
123 
124 XorOpnd::XorOpnd(Value *V) {
125   assert(!isa<ConstantInt>(V) && "No ConstantInt");
126   OrigVal = V;
127   Instruction *I = dyn_cast<Instruction>(V);
128   SymbolicRank = 0;
129 
130   if (I && (I->getOpcode() == Instruction::Or ||
131             I->getOpcode() == Instruction::And)) {
132     Value *V0 = I->getOperand(0);
133     Value *V1 = I->getOperand(1);
134     const APInt *C;
135     if (match(V0, m_APInt(C)))
136       std::swap(V0, V1);
137 
138     if (match(V1, m_APInt(C))) {
139       ConstPart = *C;
140       SymbolicPart = V0;
141       isOr = (I->getOpcode() == Instruction::Or);
142       return;
143     }
144   }
145 
146   // view the operand as "V | 0"
147   SymbolicPart = V;
148   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
149   isOr = true;
150 }
151 
152 /// Return true if I is an instruction with the FastMathFlags that are needed
153 /// for general reassociation set.  This is not the same as testing
154 /// Instruction::isAssociative() because it includes operations like fsub.
155 /// (This routine is only intended to be called for floating-point operations.)
156 static bool hasFPAssociativeFlags(Instruction *I) {
157   assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
158   return I->hasAllowReassoc() && I->hasNoSignedZeros();
159 }
160 
161 /// Return true if V is an instruction of the specified opcode and if it
162 /// only has one use.
163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164   auto *BO = dyn_cast<BinaryOperator>(V);
165   if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
166     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
167       return BO;
168   return nullptr;
169 }
170 
171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
172                                         unsigned Opcode2) {
173   auto *BO = dyn_cast<BinaryOperator>(V);
174   if (BO && BO->hasOneUse() &&
175       (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
176     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
177       return BO;
178   return nullptr;
179 }
180 
181 void ReassociatePass::BuildRankMap(Function &F,
182                                    ReversePostOrderTraversal<Function*> &RPOT) {
183   unsigned Rank = 2;
184 
185   // Assign distinct ranks to function arguments.
186   for (auto &Arg : F.args()) {
187     ValueRankMap[&Arg] = ++Rank;
188     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
189                       << "\n");
190   }
191 
192   // Traverse basic blocks in ReversePostOrder.
193   for (BasicBlock *BB : RPOT) {
194     unsigned BBRank = RankMap[BB] = ++Rank << 16;
195 
196     // Walk the basic block, adding precomputed ranks for any instructions that
197     // we cannot move.  This ensures that the ranks for these instructions are
198     // all different in the block.
199     for (Instruction &I : *BB)
200       if (mayHaveNonDefUseDependency(I))
201         ValueRankMap[&I] = ++BBRank;
202   }
203 }
204 
205 unsigned ReassociatePass::getRank(Value *V) {
206   Instruction *I = dyn_cast<Instruction>(V);
207   if (!I) {
208     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
209     return 0;  // Otherwise it's a global or constant, rank 0.
210   }
211 
212   if (unsigned Rank = ValueRankMap[I])
213     return Rank;    // Rank already known?
214 
215   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
216   // we can reassociate expressions for code motion!  Since we do not recurse
217   // for PHI nodes, we cannot have infinite recursion here, because there
218   // cannot be loops in the value graph that do not go through PHI nodes.
219   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
220   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
221     Rank = std::max(Rank, getRank(I->getOperand(i)));
222 
223   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
224   // assures us that X and ~X will have the same rank.
225   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
226       !match(I, m_FNeg(m_Value())))
227     ++Rank;
228 
229   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
230                     << "\n");
231 
232   return ValueRankMap[I] = Rank;
233 }
234 
235 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
236 void ReassociatePass::canonicalizeOperands(Instruction *I) {
237   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
238   assert(I->isCommutative() && "Expected commutative operator.");
239 
240   Value *LHS = I->getOperand(0);
241   Value *RHS = I->getOperand(1);
242   if (LHS == RHS || isa<Constant>(RHS))
243     return;
244   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
245     cast<BinaryOperator>(I)->swapOperands();
246 }
247 
248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
249                                  BasicBlock::iterator InsertBefore,
250                                  Value *FlagsOp) {
251   if (S1->getType()->isIntOrIntVectorTy())
252     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
253   else {
254     BinaryOperator *Res =
255         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
256     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
257     return Res;
258   }
259 }
260 
261 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
262                                  BasicBlock::iterator InsertBefore,
263                                  Value *FlagsOp) {
264   if (S1->getType()->isIntOrIntVectorTy())
265     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
266   else {
267     BinaryOperator *Res =
268       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
269     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
270     return Res;
271   }
272 }
273 
274 static Instruction *CreateNeg(Value *S1, const Twine &Name,
275                               BasicBlock::iterator InsertBefore,
276                               Value *FlagsOp) {
277   if (S1->getType()->isIntOrIntVectorTy())
278     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
279 
280   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
281     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
282 
283   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
284 }
285 
286 /// Replace 0-X with X*-1.
287 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
288   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
289          "Expected a Negate!");
290   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
291   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
292   Type *Ty = Neg->getType();
293   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
294     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
295 
296   BinaryOperator *Res =
297       CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg->getIterator(), Neg);
298   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
299   Res->takeName(Neg);
300   Neg->replaceAllUsesWith(Res);
301   Res->setDebugLoc(Neg->getDebugLoc());
302   return Res;
303 }
304 
305 using RepeatedValue = std::pair<Value*, APInt>;
306 
307 /// Given an associative binary expression, return the leaf
308 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
309 /// original expression is the same as
310 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
311 /// op
312 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
313 /// op
314 ///   ...
315 /// op
316 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
317 ///
318 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
319 ///
320 /// This routine may modify the function, in which case it returns 'true'.  The
321 /// changes it makes may well be destructive, changing the value computed by 'I'
322 /// to something completely different.  Thus if the routine returns 'true' then
323 /// you MUST either replace I with a new expression computed from the Ops array,
324 /// or use RewriteExprTree to put the values back in.
325 ///
326 /// A leaf node is either not a binary operation of the same kind as the root
327 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
328 /// opcode), or is the same kind of binary operator but has a use which either
329 /// does not belong to the expression, or does belong to the expression but is
330 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
331 /// of the expression, while for non-leaf nodes (except for the root 'I') every
332 /// use is a non-leaf node of the expression.
333 ///
334 /// For example:
335 ///           expression graph        node names
336 ///
337 ///                     +        |        I
338 ///                    / \       |
339 ///                   +   +      |      A,  B
340 ///                  / \ / \     |
341 ///                 *   +   *    |    C,  D,  E
342 ///                / \ / \ / \   |
343 ///                   +   *      |      F,  G
344 ///
345 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
346 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
347 ///
348 /// The expression is maximal: if some instruction is a binary operator of the
349 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
350 /// then the instruction also belongs to the expression, is not a leaf node of
351 /// it, and its operands also belong to the expression (but may be leaf nodes).
352 ///
353 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
354 /// order to ensure that every non-root node in the expression has *exactly one*
355 /// use by a non-leaf node of the expression.  This destruction means that the
356 /// caller MUST either replace 'I' with a new expression or use something like
357 /// RewriteExprTree to put the values back in if the routine indicates that it
358 /// made a change by returning 'true'.
359 ///
360 /// In the above example either the right operand of A or the left operand of B
361 /// will be replaced by undef.  If it is B's operand then this gives:
362 ///
363 ///                     +        |        I
364 ///                    / \       |
365 ///                   +   +      |      A,  B - operand of B replaced with undef
366 ///                  / \   \     |
367 ///                 *   +   *    |    C,  D,  E
368 ///                / \ / \ / \   |
369 ///                   +   *      |      F,  G
370 ///
371 /// Note that such undef operands can only be reached by passing through 'I'.
372 /// For example, if you visit operands recursively starting from a leaf node
373 /// then you will never see such an undef operand unless you get back to 'I',
374 /// which requires passing through a phi node.
375 ///
376 /// Note that this routine may also mutate binary operators of the wrong type
377 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
378 /// of the expression) if it can turn them into binary operators of the right
379 /// type and thus make the expression bigger.
380 static bool LinearizeExprTree(Instruction *I,
381                               SmallVectorImpl<RepeatedValue> &Ops,
382                               ReassociatePass::OrderedSet &ToRedo,
383                               reassociate::OverflowTracking &Flags) {
384   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
385          "Expected a UnaryOperator or BinaryOperator!");
386   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
387   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
388   unsigned Opcode = I->getOpcode();
389   assert(I->isAssociative() && I->isCommutative() &&
390          "Expected an associative and commutative operation!");
391 
392   // Visit all operands of the expression, keeping track of their weight (the
393   // number of paths from the expression root to the operand, or if you like
394   // the number of times that operand occurs in the linearized expression).
395   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
396   // while A has weight two.
397 
398   // Worklist of non-leaf nodes (their operands are in the expression too) along
399   // with their weights, representing a certain number of paths to the operator.
400   // If an operator occurs in the worklist multiple times then we found multiple
401   // ways to get to it.
402   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
403   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
404   bool Changed = false;
405 
406   // Leaves of the expression are values that either aren't the right kind of
407   // operation (eg: a constant, or a multiply in an add tree), or are, but have
408   // some uses that are not inside the expression.  For example, in I = X + X,
409   // X = A + B, the value X has two uses (by I) that are in the expression.  If
410   // X has any other uses, for example in a return instruction, then we consider
411   // X to be a leaf, and won't analyze it further.  When we first visit a value,
412   // if it has more than one use then at first we conservatively consider it to
413   // be a leaf.  Later, as the expression is explored, we may discover some more
414   // uses of the value from inside the expression.  If all uses turn out to be
415   // from within the expression (and the value is a binary operator of the right
416   // kind) then the value is no longer considered to be a leaf, and its operands
417   // are explored.
418 
419   // Leaves - Keeps track of the set of putative leaves as well as the number of
420   // paths to each leaf seen so far.
421   using LeafMap = DenseMap<Value *, APInt>;
422   LeafMap Leaves; // Leaf -> Total weight so far.
423   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
424   const DataLayout DL = I->getModule()->getDataLayout();
425 
426 #ifndef NDEBUG
427   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
428 #endif
429   while (!Worklist.empty()) {
430     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
431     I = P.first; // We examine the operands of this binary operator.
432 
433     if (isa<OverflowingBinaryOperator>(I)) {
434       Flags.HasNUW &= I->hasNoUnsignedWrap();
435       Flags.HasNSW &= I->hasNoSignedWrap();
436     }
437 
438     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
439       Value *Op = I->getOperand(OpIdx);
440       APInt Weight = P.second; // Number of paths to this operand.
441       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
442       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
443 
444       // If this is a binary operation of the right kind with only one use then
445       // add its operands to the expression.
446       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
447         assert(Visited.insert(Op).second && "Not first visit!");
448         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
449         Worklist.push_back(std::make_pair(BO, Weight));
450         continue;
451       }
452 
453       // Appears to be a leaf.  Is the operand already in the set of leaves?
454       LeafMap::iterator It = Leaves.find(Op);
455       if (It == Leaves.end()) {
456         // Not in the leaf map.  Must be the first time we saw this operand.
457         assert(Visited.insert(Op).second && "Not first visit!");
458         if (!Op->hasOneUse()) {
459           // This value has uses not accounted for by the expression, so it is
460           // not safe to modify.  Mark it as being a leaf.
461           LLVM_DEBUG(dbgs()
462                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
463           LeafOrder.push_back(Op);
464           Leaves[Op] = Weight;
465           continue;
466         }
467         // No uses outside the expression, try morphing it.
468       } else {
469         // Already in the leaf map.
470         assert(It != Leaves.end() && Visited.count(Op) &&
471                "In leaf map but not visited!");
472 
473         // Update the number of paths to the leaf.
474         It->second += Weight;
475 
476         // If we still have uses that are not accounted for by the expression
477         // then it is not safe to modify the value.
478         if (!Op->hasOneUse())
479           continue;
480 
481         // No uses outside the expression, try morphing it.
482         Weight = It->second;
483         Leaves.erase(It); // Since the value may be morphed below.
484       }
485 
486       // At this point we have a value which, first of all, is not a binary
487       // expression of the right kind, and secondly, is only used inside the
488       // expression.  This means that it can safely be modified.  See if we
489       // can usefully morph it into an expression of the right kind.
490       assert((!isa<Instruction>(Op) ||
491               cast<Instruction>(Op)->getOpcode() != Opcode
492               || (isa<FPMathOperator>(Op) &&
493                   !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
494              "Should have been handled above!");
495       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
496 
497       // If this is a multiply expression, turn any internal negations into
498       // multiplies by -1 so they can be reassociated.  Add any users of the
499       // newly created multiplication by -1 to the redo list, so any
500       // reassociation opportunities that are exposed will be reassociated
501       // further.
502       Instruction *Neg;
503       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
504            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
505            match(Op, m_Instruction(Neg))) {
506         LLVM_DEBUG(dbgs()
507                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
508         Instruction *Mul = LowerNegateToMultiply(Neg);
509         LLVM_DEBUG(dbgs() << *Mul << '\n');
510         Worklist.push_back(std::make_pair(Mul, Weight));
511         for (User *U : Mul->users()) {
512           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
513             ToRedo.insert(UserBO);
514         }
515         ToRedo.insert(Neg);
516         Changed = true;
517         continue;
518       }
519 
520       // Failed to morph into an expression of the right type.  This really is
521       // a leaf.
522       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
523       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
524       LeafOrder.push_back(Op);
525       Leaves[Op] = Weight;
526     }
527   }
528 
529   // The leaves, repeated according to their weights, represent the linearized
530   // form of the expression.
531   for (Value *V : LeafOrder) {
532     LeafMap::iterator It = Leaves.find(V);
533     if (It == Leaves.end())
534       // Node initially thought to be a leaf wasn't.
535       continue;
536     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
537     APInt Weight = It->second;
538     if (Weight.isMinValue())
539       // Leaf already output or weight reduction eliminated it.
540       continue;
541     // Ensure the leaf is only output once.
542     It->second = 0;
543     Ops.push_back(std::make_pair(V, Weight));
544     if (Opcode == Instruction::Add && Flags.AllKnownNonNegative && Flags.HasNSW)
545       Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL));
546   }
547 
548   // For nilpotent operations or addition there may be no operands, for example
549   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
550   // in both cases the weight reduces to 0 causing the value to be skipped.
551   if (Ops.empty()) {
552     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
553     assert(Identity && "Associative operation without identity!");
554     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
555   }
556 
557   return Changed;
558 }
559 
560 /// Now that the operands for this expression tree are
561 /// linearized and optimized, emit them in-order.
562 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
563                                       SmallVectorImpl<ValueEntry> &Ops,
564                                       OverflowTracking Flags) {
565   assert(Ops.size() > 1 && "Single values should be used directly!");
566 
567   // Since our optimizations should never increase the number of operations, the
568   // new expression can usually be written reusing the existing binary operators
569   // from the original expression tree, without creating any new instructions,
570   // though the rewritten expression may have a completely different topology.
571   // We take care to not change anything if the new expression will be the same
572   // as the original.  If more than trivial changes (like commuting operands)
573   // were made then we are obliged to clear out any optional subclass data like
574   // nsw flags.
575 
576   /// NodesToRewrite - Nodes from the original expression available for writing
577   /// the new expression into.
578   SmallVector<BinaryOperator*, 8> NodesToRewrite;
579   unsigned Opcode = I->getOpcode();
580   BinaryOperator *Op = I;
581 
582   /// NotRewritable - The operands being written will be the leaves of the new
583   /// expression and must not be used as inner nodes (via NodesToRewrite) by
584   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
585   /// (if they were they would have been incorporated into the expression and so
586   /// would not be leaves), so most of the time there is no danger of this.  But
587   /// in rare cases a leaf may become reassociable if an optimization kills uses
588   /// of it, or it may momentarily become reassociable during rewriting (below)
589   /// due it being removed as an operand of one of its uses.  Ensure that misuse
590   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
591   /// leaves and refusing to reuse any of them as inner nodes.
592   SmallPtrSet<Value*, 8> NotRewritable;
593   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
594     NotRewritable.insert(Ops[i].Op);
595 
596   // ExpressionChangedStart - Non-null if the rewritten expression differs from
597   // the original in some non-trivial way, requiring the clearing of optional
598   // flags. Flags are cleared from the operator in ExpressionChangedStart up to
599   // ExpressionChangedEnd inclusive.
600   BinaryOperator *ExpressionChangedStart = nullptr,
601                  *ExpressionChangedEnd = nullptr;
602   for (unsigned i = 0; ; ++i) {
603     // The last operation (which comes earliest in the IR) is special as both
604     // operands will come from Ops, rather than just one with the other being
605     // a subexpression.
606     if (i+2 == Ops.size()) {
607       Value *NewLHS = Ops[i].Op;
608       Value *NewRHS = Ops[i+1].Op;
609       Value *OldLHS = Op->getOperand(0);
610       Value *OldRHS = Op->getOperand(1);
611 
612       if (NewLHS == OldLHS && NewRHS == OldRHS)
613         // Nothing changed, leave it alone.
614         break;
615 
616       if (NewLHS == OldRHS && NewRHS == OldLHS) {
617         // The order of the operands was reversed.  Swap them.
618         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
619         Op->swapOperands();
620         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
621         MadeChange = true;
622         ++NumChanged;
623         break;
624       }
625 
626       // The new operation differs non-trivially from the original. Overwrite
627       // the old operands with the new ones.
628       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
629       if (NewLHS != OldLHS) {
630         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
631         if (BO && !NotRewritable.count(BO))
632           NodesToRewrite.push_back(BO);
633         Op->setOperand(0, NewLHS);
634       }
635       if (NewRHS != OldRHS) {
636         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
637         if (BO && !NotRewritable.count(BO))
638           NodesToRewrite.push_back(BO);
639         Op->setOperand(1, NewRHS);
640       }
641       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
642 
643       ExpressionChangedStart = Op;
644       if (!ExpressionChangedEnd)
645         ExpressionChangedEnd = Op;
646       MadeChange = true;
647       ++NumChanged;
648 
649       break;
650     }
651 
652     // Not the last operation.  The left-hand side will be a sub-expression
653     // while the right-hand side will be the current element of Ops.
654     Value *NewRHS = Ops[i].Op;
655     if (NewRHS != Op->getOperand(1)) {
656       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
657       if (NewRHS == Op->getOperand(0)) {
658         // The new right-hand side was already present as the left operand.  If
659         // we are lucky then swapping the operands will sort out both of them.
660         Op->swapOperands();
661       } else {
662         // Overwrite with the new right-hand side.
663         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
664         if (BO && !NotRewritable.count(BO))
665           NodesToRewrite.push_back(BO);
666         Op->setOperand(1, NewRHS);
667         ExpressionChangedStart = Op;
668         if (!ExpressionChangedEnd)
669           ExpressionChangedEnd = Op;
670       }
671       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
672       MadeChange = true;
673       ++NumChanged;
674     }
675 
676     // Now deal with the left-hand side.  If this is already an operation node
677     // from the original expression then just rewrite the rest of the expression
678     // into it.
679     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
680     if (BO && !NotRewritable.count(BO)) {
681       Op = BO;
682       continue;
683     }
684 
685     // Otherwise, grab a spare node from the original expression and use that as
686     // the left-hand side.  If there are no nodes left then the optimizers made
687     // an expression with more nodes than the original!  This usually means that
688     // they did something stupid but it might mean that the problem was just too
689     // hard (finding the mimimal number of multiplications needed to realize a
690     // multiplication expression is NP-complete).  Whatever the reason, smart or
691     // stupid, create a new node if there are none left.
692     BinaryOperator *NewOp;
693     if (NodesToRewrite.empty()) {
694       Constant *Undef = UndefValue::get(I->getType());
695       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), Undef,
696                                      Undef, "", I->getIterator());
697       if (isa<FPMathOperator>(NewOp))
698         NewOp->setFastMathFlags(I->getFastMathFlags());
699     } else {
700       NewOp = NodesToRewrite.pop_back_val();
701     }
702 
703     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
704     Op->setOperand(0, NewOp);
705     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
706     ExpressionChangedStart = Op;
707     if (!ExpressionChangedEnd)
708       ExpressionChangedEnd = Op;
709     MadeChange = true;
710     ++NumChanged;
711     Op = NewOp;
712   }
713 
714   // If the expression changed non-trivially then clear out all subclass data
715   // starting from the operator specified in ExpressionChanged, and compactify
716   // the operators to just before the expression root to guarantee that the
717   // expression tree is dominated by all of Ops.
718   if (ExpressionChangedStart) {
719     bool ClearFlags = true;
720     do {
721       // Preserve flags.
722       if (ClearFlags) {
723         if (isa<FPMathOperator>(I)) {
724           FastMathFlags Flags = I->getFastMathFlags();
725           ExpressionChangedStart->clearSubclassOptionalData();
726           ExpressionChangedStart->setFastMathFlags(Flags);
727         } else {
728           ExpressionChangedStart->clearSubclassOptionalData();
729           // Note that it doesn't hold for mul if one of the operands is zero.
730           // TODO: We can preserve NUW flag if we prove that all mul operands
731           // are non-zero.
732           if (ExpressionChangedStart->getOpcode() == Instruction::Add) {
733             if (Flags.HasNUW)
734               ExpressionChangedStart->setHasNoUnsignedWrap();
735             if (Flags.HasNSW && (Flags.AllKnownNonNegative || Flags.HasNUW))
736               ExpressionChangedStart->setHasNoSignedWrap();
737           }
738         }
739       }
740 
741       if (ExpressionChangedStart == ExpressionChangedEnd)
742         ClearFlags = false;
743       if (ExpressionChangedStart == I)
744         break;
745 
746       // Discard any debug info related to the expressions that has changed (we
747       // can leave debug info related to the root and any operation that didn't
748       // change, since the result of the expression tree should be the same
749       // even after reassociation).
750       if (ClearFlags)
751         replaceDbgUsesWithUndef(ExpressionChangedStart);
752 
753       ExpressionChangedStart->moveBefore(I);
754       ExpressionChangedStart =
755           cast<BinaryOperator>(*ExpressionChangedStart->user_begin());
756     } while (true);
757   }
758 
759   // Throw away any left over nodes from the original expression.
760   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
761     RedoInsts.insert(NodesToRewrite[i]);
762 }
763 
764 /// Insert instructions before the instruction pointed to by BI,
765 /// that computes the negative version of the value specified.  The negative
766 /// version of the value is returned, and BI is left pointing at the instruction
767 /// that should be processed next by the reassociation pass.
768 /// Also add intermediate instructions to the redo list that are modified while
769 /// pushing the negates through adds.  These will be revisited to see if
770 /// additional opportunities have been exposed.
771 static Value *NegateValue(Value *V, Instruction *BI,
772                           ReassociatePass::OrderedSet &ToRedo) {
773   if (auto *C = dyn_cast<Constant>(V)) {
774     const DataLayout &DL = BI->getModule()->getDataLayout();
775     Constant *Res = C->getType()->isFPOrFPVectorTy()
776                         ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)
777                         : ConstantExpr::getNeg(C);
778     if (Res)
779       return Res;
780   }
781 
782   // We are trying to expose opportunity for reassociation.  One of the things
783   // that we want to do to achieve this is to push a negation as deep into an
784   // expression chain as possible, to expose the add instructions.  In practice,
785   // this means that we turn this:
786   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
787   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
788   // the constants.  We assume that instcombine will clean up the mess later if
789   // we introduce tons of unnecessary negation instructions.
790   //
791   if (BinaryOperator *I =
792           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
793     // Push the negates through the add.
794     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
795     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
796     if (I->getOpcode() == Instruction::Add) {
797       I->setHasNoUnsignedWrap(false);
798       I->setHasNoSignedWrap(false);
799     }
800 
801     // We must move the add instruction here, because the neg instructions do
802     // not dominate the old add instruction in general.  By moving it, we are
803     // assured that the neg instructions we just inserted dominate the
804     // instruction we are about to insert after them.
805     //
806     I->moveBefore(BI);
807     I->setName(I->getName()+".neg");
808 
809     // Add the intermediate negates to the redo list as processing them later
810     // could expose more reassociating opportunities.
811     ToRedo.insert(I);
812     return I;
813   }
814 
815   // Okay, we need to materialize a negated version of V with an instruction.
816   // Scan the use lists of V to see if we have one already.
817   for (User *U : V->users()) {
818     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
819       continue;
820 
821     // We found one!  Now we have to make sure that the definition dominates
822     // this use.  We do this by moving it to the entry block (if it is a
823     // non-instruction value) or right after the definition.  These negates will
824     // be zapped by reassociate later, so we don't need much finesse here.
825     Instruction *TheNeg = dyn_cast<Instruction>(U);
826 
827     // We can't safely propagate a vector zero constant with poison/undef lanes.
828     Constant *C;
829     if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) &&
830         C->containsUndefOrPoisonElement())
831       continue;
832 
833     // Verify that the negate is in this function, V might be a constant expr.
834     if (!TheNeg ||
835         TheNeg->getParent()->getParent() != BI->getParent()->getParent())
836       continue;
837 
838     BasicBlock::iterator InsertPt;
839     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
840       auto InsertPtOpt = InstInput->getInsertionPointAfterDef();
841       if (!InsertPtOpt)
842         continue;
843       InsertPt = *InsertPtOpt;
844     } else {
845       InsertPt = TheNeg->getFunction()
846                      ->getEntryBlock()
847                      .getFirstNonPHIOrDbg()
848                      ->getIterator();
849     }
850 
851     TheNeg->moveBefore(*InsertPt->getParent(), InsertPt);
852     if (TheNeg->getOpcode() == Instruction::Sub) {
853       TheNeg->setHasNoUnsignedWrap(false);
854       TheNeg->setHasNoSignedWrap(false);
855     } else {
856       TheNeg->andIRFlags(BI);
857     }
858     ToRedo.insert(TheNeg);
859     return TheNeg;
860   }
861 
862   // Insert a 'neg' instruction that subtracts the value from zero to get the
863   // negation.
864   Instruction *NewNeg =
865       CreateNeg(V, V->getName() + ".neg", BI->getIterator(), BI);
866   ToRedo.insert(NewNeg);
867   return NewNeg;
868 }
869 
870 // See if this `or` looks like an load widening reduction, i.e. that it
871 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
872 // ensure that the pattern is *really* a load widening reduction,
873 // we do not ensure that it can really be replaced with a widened load,
874 // only that it mostly looks like one.
875 static bool isLoadCombineCandidate(Instruction *Or) {
876   SmallVector<Instruction *, 8> Worklist;
877   SmallSet<Instruction *, 8> Visited;
878 
879   auto Enqueue = [&](Value *V) {
880     auto *I = dyn_cast<Instruction>(V);
881     // Each node of an `or` reduction must be an instruction,
882     if (!I)
883       return false; // Node is certainly not part of an `or` load reduction.
884     // Only process instructions we have never processed before.
885     if (Visited.insert(I).second)
886       Worklist.emplace_back(I);
887     return true; // Will need to look at parent nodes.
888   };
889 
890   if (!Enqueue(Or))
891     return false; // Not an `or` reduction pattern.
892 
893   while (!Worklist.empty()) {
894     auto *I = Worklist.pop_back_val();
895 
896     // Okay, which instruction is this node?
897     switch (I->getOpcode()) {
898     case Instruction::Or:
899       // Got an `or` node. That's fine, just recurse into it's operands.
900       for (Value *Op : I->operands())
901         if (!Enqueue(Op))
902           return false; // Not an `or` reduction pattern.
903       continue;
904 
905     case Instruction::Shl:
906     case Instruction::ZExt:
907       // `shl`/`zext` nodes are fine, just recurse into their base operand.
908       if (!Enqueue(I->getOperand(0)))
909         return false; // Not an `or` reduction pattern.
910       continue;
911 
912     case Instruction::Load:
913       // Perfect, `load` node means we've reached an edge of the graph.
914       continue;
915 
916     default:        // Unknown node.
917       return false; // Not an `or` reduction pattern.
918     }
919   }
920 
921   return true;
922 }
923 
924 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
925 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
926   // Don't bother to convert this up unless either the LHS is an associable add
927   // or subtract or mul or if this is only used by one of the above.
928   // This is only a compile-time improvement, it is not needed for correctness!
929   auto isInteresting = [](Value *V) {
930     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
931                     Instruction::Shl})
932       if (isReassociableOp(V, Op))
933         return true;
934     return false;
935   };
936 
937   if (any_of(Or->operands(), isInteresting))
938     return true;
939 
940   Value *VB = Or->user_back();
941   if (Or->hasOneUse() && isInteresting(VB))
942     return true;
943 
944   return false;
945 }
946 
947 /// If we have (X|Y), and iff X and Y have no common bits set,
948 /// transform this into (X+Y) to allow arithmetics reassociation.
949 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
950   // Convert an or into an add.
951   BinaryOperator *New = CreateAdd(Or->getOperand(0), Or->getOperand(1), "",
952                                   Or->getIterator(), Or);
953   New->setHasNoSignedWrap();
954   New->setHasNoUnsignedWrap();
955   New->takeName(Or);
956 
957   // Everyone now refers to the add instruction.
958   Or->replaceAllUsesWith(New);
959   New->setDebugLoc(Or->getDebugLoc());
960 
961   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
962   return New;
963 }
964 
965 /// Return true if we should break up this subtract of X-Y into (X + -Y).
966 static bool ShouldBreakUpSubtract(Instruction *Sub) {
967   // If this is a negation, we can't split it up!
968   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
969     return false;
970 
971   // Don't breakup X - undef.
972   if (isa<UndefValue>(Sub->getOperand(1)))
973     return false;
974 
975   // Don't bother to break this up unless either the LHS is an associable add or
976   // subtract or if this is only used by one.
977   Value *V0 = Sub->getOperand(0);
978   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
979       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
980     return true;
981   Value *V1 = Sub->getOperand(1);
982   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
983       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
984     return true;
985   Value *VB = Sub->user_back();
986   if (Sub->hasOneUse() &&
987       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
988        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
989     return true;
990 
991   return false;
992 }
993 
994 /// If we have (X-Y), and if either X is an add, or if this is only used by an
995 /// add, transform this into (X+(0-Y)) to promote better reassociation.
996 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
997                                        ReassociatePass::OrderedSet &ToRedo) {
998   // Convert a subtract into an add and a neg instruction. This allows sub
999   // instructions to be commuted with other add instructions.
1000   //
1001   // Calculate the negative value of Operand 1 of the sub instruction,
1002   // and set it as the RHS of the add instruction we just made.
1003   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1004   BinaryOperator *New =
1005       CreateAdd(Sub->getOperand(0), NegVal, "", Sub->getIterator(), Sub);
1006   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1007   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1008   New->takeName(Sub);
1009 
1010   // Everyone now refers to the add instruction.
1011   Sub->replaceAllUsesWith(New);
1012   New->setDebugLoc(Sub->getDebugLoc());
1013 
1014   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1015   return New;
1016 }
1017 
1018 /// If this is a shift of a reassociable multiply or is used by one, change
1019 /// this into a multiply by a constant to assist with further reassociation.
1020 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1021   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1022   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1023   MulCst = ConstantExpr::getShl(MulCst, SA);
1024 
1025   BinaryOperator *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
1026                                                   "", Shl->getIterator());
1027   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1028   Mul->takeName(Shl);
1029 
1030   // Everyone now refers to the mul instruction.
1031   Shl->replaceAllUsesWith(Mul);
1032   Mul->setDebugLoc(Shl->getDebugLoc());
1033 
1034   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1035   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1036   // handling.  It can be preserved as long as we're not left shifting by
1037   // bitwidth - 1.
1038   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1039   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1040   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1041   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1042     Mul->setHasNoSignedWrap(true);
1043   Mul->setHasNoUnsignedWrap(NUW);
1044   return Mul;
1045 }
1046 
1047 /// Scan backwards and forwards among values with the same rank as element i
1048 /// to see if X exists.  If X does not exist, return i.  This is useful when
1049 /// scanning for 'x' when we see '-x' because they both get the same rank.
1050 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1051                                   unsigned i, Value *X) {
1052   unsigned XRank = Ops[i].Rank;
1053   unsigned e = Ops.size();
1054   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1055     if (Ops[j].Op == X)
1056       return j;
1057     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1058       if (Instruction *I2 = dyn_cast<Instruction>(X))
1059         if (I1->isIdenticalTo(I2))
1060           return j;
1061   }
1062   // Scan backwards.
1063   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1064     if (Ops[j].Op == X)
1065       return j;
1066     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1067       if (Instruction *I2 = dyn_cast<Instruction>(X))
1068         if (I1->isIdenticalTo(I2))
1069           return j;
1070   }
1071   return i;
1072 }
1073 
1074 /// Emit a tree of add instructions, summing Ops together
1075 /// and returning the result.  Insert the tree before I.
1076 static Value *EmitAddTreeOfValues(BasicBlock::iterator It,
1077                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1078   if (Ops.size() == 1) return Ops.back();
1079 
1080   Value *V1 = Ops.pop_back_val();
1081   Value *V2 = EmitAddTreeOfValues(It, Ops);
1082   return CreateAdd(V2, V1, "reass.add", It, &*It);
1083 }
1084 
1085 /// If V is an expression tree that is a multiplication sequence,
1086 /// and if this sequence contains a multiply by Factor,
1087 /// remove Factor from the tree and return the new tree.
1088 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1089   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1090   if (!BO)
1091     return nullptr;
1092 
1093   SmallVector<RepeatedValue, 8> Tree;
1094   OverflowTracking Flags;
1095   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, Flags);
1096   SmallVector<ValueEntry, 8> Factors;
1097   Factors.reserve(Tree.size());
1098   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1099     RepeatedValue E = Tree[i];
1100     Factors.append(E.second.getZExtValue(),
1101                    ValueEntry(getRank(E.first), E.first));
1102   }
1103 
1104   bool FoundFactor = false;
1105   bool NeedsNegate = false;
1106   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1107     if (Factors[i].Op == Factor) {
1108       FoundFactor = true;
1109       Factors.erase(Factors.begin()+i);
1110       break;
1111     }
1112 
1113     // If this is a negative version of this factor, remove it.
1114     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1115       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1116         if (FC1->getValue() == -FC2->getValue()) {
1117           FoundFactor = NeedsNegate = true;
1118           Factors.erase(Factors.begin()+i);
1119           break;
1120         }
1121     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1122       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1123         const APFloat &F1 = FC1->getValueAPF();
1124         APFloat F2(FC2->getValueAPF());
1125         F2.changeSign();
1126         if (F1 == F2) {
1127           FoundFactor = NeedsNegate = true;
1128           Factors.erase(Factors.begin() + i);
1129           break;
1130         }
1131       }
1132     }
1133   }
1134 
1135   if (!FoundFactor) {
1136     // Make sure to restore the operands to the expression tree.
1137     RewriteExprTree(BO, Factors, Flags);
1138     return nullptr;
1139   }
1140 
1141   BasicBlock::iterator InsertPt = ++BO->getIterator();
1142 
1143   // If this was just a single multiply, remove the multiply and return the only
1144   // remaining operand.
1145   if (Factors.size() == 1) {
1146     RedoInsts.insert(BO);
1147     V = Factors[0].Op;
1148   } else {
1149     RewriteExprTree(BO, Factors, Flags);
1150     V = BO;
1151   }
1152 
1153   if (NeedsNegate)
1154     V = CreateNeg(V, "neg", InsertPt, BO);
1155 
1156   return V;
1157 }
1158 
1159 /// If V is a single-use multiply, recursively add its operands as factors,
1160 /// otherwise add V to the list of factors.
1161 ///
1162 /// Ops is the top-level list of add operands we're trying to factor.
1163 static void FindSingleUseMultiplyFactors(Value *V,
1164                                          SmallVectorImpl<Value*> &Factors) {
1165   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1166   if (!BO) {
1167     Factors.push_back(V);
1168     return;
1169   }
1170 
1171   // Otherwise, add the LHS and RHS to the list of factors.
1172   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1173   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1174 }
1175 
1176 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1177 /// This optimizes based on identities.  If it can be reduced to a single Value,
1178 /// it is returned, otherwise the Ops list is mutated as necessary.
1179 static Value *OptimizeAndOrXor(unsigned Opcode,
1180                                SmallVectorImpl<ValueEntry> &Ops) {
1181   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1182   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1183   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1184     // First, check for X and ~X in the operand list.
1185     assert(i < Ops.size());
1186     Value *X;
1187     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1188       unsigned FoundX = FindInOperandList(Ops, i, X);
1189       if (FoundX != i) {
1190         if (Opcode == Instruction::And)   // ...&X&~X = 0
1191           return Constant::getNullValue(X->getType());
1192 
1193         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1194           return Constant::getAllOnesValue(X->getType());
1195       }
1196     }
1197 
1198     // Next, check for duplicate pairs of values, which we assume are next to
1199     // each other, due to our sorting criteria.
1200     assert(i < Ops.size());
1201     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1202       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1203         // Drop duplicate values for And and Or.
1204         Ops.erase(Ops.begin()+i);
1205         --i; --e;
1206         ++NumAnnihil;
1207         continue;
1208       }
1209 
1210       // Drop pairs of values for Xor.
1211       assert(Opcode == Instruction::Xor);
1212       if (e == 2)
1213         return Constant::getNullValue(Ops[0].Op->getType());
1214 
1215       // Y ^ X^X -> Y
1216       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1217       i -= 1; e -= 2;
1218       ++NumAnnihil;
1219     }
1220   }
1221   return nullptr;
1222 }
1223 
1224 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1225 /// instruction with the given two operands, and return the resulting
1226 /// instruction. There are two special cases: 1) if the constant operand is 0,
1227 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1228 /// be returned.
1229 static Value *createAndInstr(BasicBlock::iterator InsertBefore, Value *Opnd,
1230                              const APInt &ConstOpnd) {
1231   if (ConstOpnd.isZero())
1232     return nullptr;
1233 
1234   if (ConstOpnd.isAllOnes())
1235     return Opnd;
1236 
1237   Instruction *I = BinaryOperator::CreateAnd(
1238       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1239       InsertBefore);
1240   I->setDebugLoc(InsertBefore->getDebugLoc());
1241   return I;
1242 }
1243 
1244 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1245 // into "R ^ C", where C would be 0, and R is a symbolic value.
1246 //
1247 // If it was successful, true is returned, and the "R" and "C" is returned
1248 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1249 // and both "Res" and "ConstOpnd" remain unchanged.
1250 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1251                                      APInt &ConstOpnd, Value *&Res) {
1252   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1253   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1254   //                       = (x & ~c1) ^ (c1 ^ c2)
1255   // It is useful only when c1 == c2.
1256   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1257     return false;
1258 
1259   if (!Opnd1->getValue()->hasOneUse())
1260     return false;
1261 
1262   const APInt &C1 = Opnd1->getConstPart();
1263   if (C1 != ConstOpnd)
1264     return false;
1265 
1266   Value *X = Opnd1->getSymbolicPart();
1267   Res = createAndInstr(It, X, ~C1);
1268   // ConstOpnd was C2, now C1 ^ C2.
1269   ConstOpnd ^= C1;
1270 
1271   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1272     RedoInsts.insert(T);
1273   return true;
1274 }
1275 
1276 // Helper function of OptimizeXor(). It tries to simplify
1277 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1278 // symbolic value.
1279 //
1280 // If it was successful, true is returned, and the "R" and "C" is returned
1281 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1282 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1283 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1284 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1285                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1286                                      Value *&Res) {
1287   Value *X = Opnd1->getSymbolicPart();
1288   if (X != Opnd2->getSymbolicPart())
1289     return false;
1290 
1291   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1292   int DeadInstNum = 1;
1293   if (Opnd1->getValue()->hasOneUse())
1294     DeadInstNum++;
1295   if (Opnd2->getValue()->hasOneUse())
1296     DeadInstNum++;
1297 
1298   // Xor-Rule 2:
1299   //  (x | c1) ^ (x & c2)
1300   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1301   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1302   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1303   //
1304   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1305     if (Opnd2->isOrExpr())
1306       std::swap(Opnd1, Opnd2);
1307 
1308     const APInt &C1 = Opnd1->getConstPart();
1309     const APInt &C2 = Opnd2->getConstPart();
1310     APInt C3((~C1) ^ C2);
1311 
1312     // Do not increase code size!
1313     if (!C3.isZero() && !C3.isAllOnes()) {
1314       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1315       if (NewInstNum > DeadInstNum)
1316         return false;
1317     }
1318 
1319     Res = createAndInstr(It, X, C3);
1320     ConstOpnd ^= C1;
1321   } else if (Opnd1->isOrExpr()) {
1322     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1323     //
1324     const APInt &C1 = Opnd1->getConstPart();
1325     const APInt &C2 = Opnd2->getConstPart();
1326     APInt C3 = C1 ^ C2;
1327 
1328     // Do not increase code size
1329     if (!C3.isZero() && !C3.isAllOnes()) {
1330       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1331       if (NewInstNum > DeadInstNum)
1332         return false;
1333     }
1334 
1335     Res = createAndInstr(It, X, C3);
1336     ConstOpnd ^= C3;
1337   } else {
1338     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1339     //
1340     const APInt &C1 = Opnd1->getConstPart();
1341     const APInt &C2 = Opnd2->getConstPart();
1342     APInt C3 = C1 ^ C2;
1343     Res = createAndInstr(It, X, C3);
1344   }
1345 
1346   // Put the original operands in the Redo list; hope they will be deleted
1347   // as dead code.
1348   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1349     RedoInsts.insert(T);
1350   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1351     RedoInsts.insert(T);
1352 
1353   return true;
1354 }
1355 
1356 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1357 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1358 /// necessary.
1359 Value *ReassociatePass::OptimizeXor(Instruction *I,
1360                                     SmallVectorImpl<ValueEntry> &Ops) {
1361   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1362     return V;
1363 
1364   if (Ops.size() == 1)
1365     return nullptr;
1366 
1367   SmallVector<XorOpnd, 8> Opnds;
1368   SmallVector<XorOpnd*, 8> OpndPtrs;
1369   Type *Ty = Ops[0].Op->getType();
1370   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1371 
1372   // Step 1: Convert ValueEntry to XorOpnd
1373   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1374     Value *V = Ops[i].Op;
1375     const APInt *C;
1376     // TODO: Support non-splat vectors.
1377     if (match(V, m_APInt(C))) {
1378       ConstOpnd ^= *C;
1379     } else {
1380       XorOpnd O(V);
1381       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1382       Opnds.push_back(O);
1383     }
1384   }
1385 
1386   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1387   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1388   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1389   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1390   //  when new elements are added to the vector.
1391   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1392     OpndPtrs.push_back(&Opnds[i]);
1393 
1394   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1395   //  the same symbolic value cluster together. For instance, the input operand
1396   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1397   //  ("x | 123", "x & 789", "y & 456").
1398   //
1399   //  The purpose is twofold:
1400   //  1) Cluster together the operands sharing the same symbolic-value.
1401   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1402   //     could potentially shorten crital path, and expose more loop-invariants.
1403   //     Note that values' rank are basically defined in RPO order (FIXME).
1404   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1405   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1406   //     "z" in the order of X-Y-Z is better than any other orders.
1407   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1408     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1409   });
1410 
1411   // Step 3: Combine adjacent operands
1412   XorOpnd *PrevOpnd = nullptr;
1413   bool Changed = false;
1414   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1415     XorOpnd *CurrOpnd = OpndPtrs[i];
1416     // The combined value
1417     Value *CV;
1418 
1419     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1420     if (!ConstOpnd.isZero() &&
1421         CombineXorOpnd(I->getIterator(), CurrOpnd, ConstOpnd, CV)) {
1422       Changed = true;
1423       if (CV)
1424         *CurrOpnd = XorOpnd(CV);
1425       else {
1426         CurrOpnd->Invalidate();
1427         continue;
1428       }
1429     }
1430 
1431     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1432       PrevOpnd = CurrOpnd;
1433       continue;
1434     }
1435 
1436     // step 3.2: When previous and current operands share the same symbolic
1437     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1438     if (CombineXorOpnd(I->getIterator(), CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1439       // Remove previous operand
1440       PrevOpnd->Invalidate();
1441       if (CV) {
1442         *CurrOpnd = XorOpnd(CV);
1443         PrevOpnd = CurrOpnd;
1444       } else {
1445         CurrOpnd->Invalidate();
1446         PrevOpnd = nullptr;
1447       }
1448       Changed = true;
1449     }
1450   }
1451 
1452   // Step 4: Reassemble the Ops
1453   if (Changed) {
1454     Ops.clear();
1455     for (const XorOpnd &O : Opnds) {
1456       if (O.isInvalid())
1457         continue;
1458       ValueEntry VE(getRank(O.getValue()), O.getValue());
1459       Ops.push_back(VE);
1460     }
1461     if (!ConstOpnd.isZero()) {
1462       Value *C = ConstantInt::get(Ty, ConstOpnd);
1463       ValueEntry VE(getRank(C), C);
1464       Ops.push_back(VE);
1465     }
1466     unsigned Sz = Ops.size();
1467     if (Sz == 1)
1468       return Ops.back().Op;
1469     if (Sz == 0) {
1470       assert(ConstOpnd.isZero());
1471       return ConstantInt::get(Ty, ConstOpnd);
1472     }
1473   }
1474 
1475   return nullptr;
1476 }
1477 
1478 /// Optimize a series of operands to an 'add' instruction.  This
1479 /// optimizes based on identities.  If it can be reduced to a single Value, it
1480 /// is returned, otherwise the Ops list is mutated as necessary.
1481 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1482                                     SmallVectorImpl<ValueEntry> &Ops) {
1483   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1484   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1485   // scan for any
1486   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1487 
1488   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1489     Value *TheOp = Ops[i].Op;
1490     // Check to see if we've seen this operand before.  If so, we factor all
1491     // instances of the operand together.  Due to our sorting criteria, we know
1492     // that these need to be next to each other in the vector.
1493     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1494       // Rescan the list, remove all instances of this operand from the expr.
1495       unsigned NumFound = 0;
1496       do {
1497         Ops.erase(Ops.begin()+i);
1498         ++NumFound;
1499       } while (i != Ops.size() && Ops[i].Op == TheOp);
1500 
1501       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1502                         << '\n');
1503       ++NumFactor;
1504 
1505       // Insert a new multiply.
1506       Type *Ty = TheOp->getType();
1507       Constant *C = Ty->isIntOrIntVectorTy() ?
1508         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1509       Instruction *Mul = CreateMul(TheOp, C, "factor", I->getIterator(), I);
1510 
1511       // Now that we have inserted a multiply, optimize it. This allows us to
1512       // handle cases that require multiple factoring steps, such as this:
1513       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1514       RedoInsts.insert(Mul);
1515 
1516       // If every add operand was a duplicate, return the multiply.
1517       if (Ops.empty())
1518         return Mul;
1519 
1520       // Otherwise, we had some input that didn't have the dupe, such as
1521       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1522       // things being added by this operation.
1523       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1524 
1525       --i;
1526       e = Ops.size();
1527       continue;
1528     }
1529 
1530     // Check for X and -X or X and ~X in the operand list.
1531     Value *X;
1532     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1533         !match(TheOp, m_FNeg(m_Value(X))))
1534       continue;
1535 
1536     unsigned FoundX = FindInOperandList(Ops, i, X);
1537     if (FoundX == i)
1538       continue;
1539 
1540     // Remove X and -X from the operand list.
1541     if (Ops.size() == 2 &&
1542         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1543       return Constant::getNullValue(X->getType());
1544 
1545     // Remove X and ~X from the operand list.
1546     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1547       return Constant::getAllOnesValue(X->getType());
1548 
1549     Ops.erase(Ops.begin()+i);
1550     if (i < FoundX)
1551       --FoundX;
1552     else
1553       --i;   // Need to back up an extra one.
1554     Ops.erase(Ops.begin()+FoundX);
1555     ++NumAnnihil;
1556     --i;     // Revisit element.
1557     e -= 2;  // Removed two elements.
1558 
1559     // if X and ~X we append -1 to the operand list.
1560     if (match(TheOp, m_Not(m_Value()))) {
1561       Value *V = Constant::getAllOnesValue(X->getType());
1562       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1563       e += 1;
1564     }
1565   }
1566 
1567   // Scan the operand list, checking to see if there are any common factors
1568   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1569   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1570   // To efficiently find this, we count the number of times a factor occurs
1571   // for any ADD operands that are MULs.
1572   DenseMap<Value*, unsigned> FactorOccurrences;
1573 
1574   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1575   // where they are actually the same multiply.
1576   unsigned MaxOcc = 0;
1577   Value *MaxOccVal = nullptr;
1578   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1579     BinaryOperator *BOp =
1580         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1581     if (!BOp)
1582       continue;
1583 
1584     // Compute all of the factors of this added value.
1585     SmallVector<Value*, 8> Factors;
1586     FindSingleUseMultiplyFactors(BOp, Factors);
1587     assert(Factors.size() > 1 && "Bad linearize!");
1588 
1589     // Add one to FactorOccurrences for each unique factor in this op.
1590     SmallPtrSet<Value*, 8> Duplicates;
1591     for (Value *Factor : Factors) {
1592       if (!Duplicates.insert(Factor).second)
1593         continue;
1594 
1595       unsigned Occ = ++FactorOccurrences[Factor];
1596       if (Occ > MaxOcc) {
1597         MaxOcc = Occ;
1598         MaxOccVal = Factor;
1599       }
1600 
1601       // If Factor is a negative constant, add the negated value as a factor
1602       // because we can percolate the negate out.  Watch for minint, which
1603       // cannot be positivified.
1604       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1605         if (CI->isNegative() && !CI->isMinValue(true)) {
1606           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1607           if (!Duplicates.insert(Factor).second)
1608             continue;
1609           unsigned Occ = ++FactorOccurrences[Factor];
1610           if (Occ > MaxOcc) {
1611             MaxOcc = Occ;
1612             MaxOccVal = Factor;
1613           }
1614         }
1615       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1616         if (CF->isNegative()) {
1617           APFloat F(CF->getValueAPF());
1618           F.changeSign();
1619           Factor = ConstantFP::get(CF->getContext(), F);
1620           if (!Duplicates.insert(Factor).second)
1621             continue;
1622           unsigned Occ = ++FactorOccurrences[Factor];
1623           if (Occ > MaxOcc) {
1624             MaxOcc = Occ;
1625             MaxOccVal = Factor;
1626           }
1627         }
1628       }
1629     }
1630   }
1631 
1632   // If any factor occurred more than one time, we can pull it out.
1633   if (MaxOcc > 1) {
1634     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1635                       << '\n');
1636     ++NumFactor;
1637 
1638     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1639     // this, we could otherwise run into situations where removing a factor
1640     // from an expression will drop a use of maxocc, and this can cause
1641     // RemoveFactorFromExpression on successive values to behave differently.
1642     Instruction *DummyInst =
1643         I->getType()->isIntOrIntVectorTy()
1644             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1645             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1646 
1647     SmallVector<WeakTrackingVH, 4> NewMulOps;
1648     for (unsigned i = 0; i != Ops.size(); ++i) {
1649       // Only try to remove factors from expressions we're allowed to.
1650       BinaryOperator *BOp =
1651           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1652       if (!BOp)
1653         continue;
1654 
1655       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1656         // The factorized operand may occur several times.  Convert them all in
1657         // one fell swoop.
1658         for (unsigned j = Ops.size(); j != i;) {
1659           --j;
1660           if (Ops[j].Op == Ops[i].Op) {
1661             NewMulOps.push_back(V);
1662             Ops.erase(Ops.begin()+j);
1663           }
1664         }
1665         --i;
1666       }
1667     }
1668 
1669     // No need for extra uses anymore.
1670     DummyInst->deleteValue();
1671 
1672     unsigned NumAddedValues = NewMulOps.size();
1673     Value *V = EmitAddTreeOfValues(I->getIterator(), NewMulOps);
1674 
1675     // Now that we have inserted the add tree, optimize it. This allows us to
1676     // handle cases that require multiple factoring steps, such as this:
1677     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1678     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1679     (void)NumAddedValues;
1680     if (Instruction *VI = dyn_cast<Instruction>(V))
1681       RedoInsts.insert(VI);
1682 
1683     // Create the multiply.
1684     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I->getIterator(), I);
1685 
1686     // Rerun associate on the multiply in case the inner expression turned into
1687     // a multiply.  We want to make sure that we keep things in canonical form.
1688     RedoInsts.insert(V2);
1689 
1690     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1691     // entire result expression is just the multiply "A*(B+C)".
1692     if (Ops.empty())
1693       return V2;
1694 
1695     // Otherwise, we had some input that didn't have the factor, such as
1696     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1697     // things being added by this operation.
1698     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1699   }
1700 
1701   return nullptr;
1702 }
1703 
1704 /// Build up a vector of value/power pairs factoring a product.
1705 ///
1706 /// Given a series of multiplication operands, build a vector of factors and
1707 /// the powers each is raised to when forming the final product. Sort them in
1708 /// the order of descending power.
1709 ///
1710 ///      (x*x)          -> [(x, 2)]
1711 ///     ((x*x)*x)       -> [(x, 3)]
1712 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1713 ///
1714 /// \returns Whether any factors have a power greater than one.
1715 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1716                                    SmallVectorImpl<Factor> &Factors) {
1717   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1718   // Compute the sum of powers of simplifiable factors.
1719   unsigned FactorPowerSum = 0;
1720   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1721     Value *Op = Ops[Idx-1].Op;
1722 
1723     // Count the number of occurrences of this value.
1724     unsigned Count = 1;
1725     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1726       ++Count;
1727     // Track for simplification all factors which occur 2 or more times.
1728     if (Count > 1)
1729       FactorPowerSum += Count;
1730   }
1731 
1732   // We can only simplify factors if the sum of the powers of our simplifiable
1733   // factors is 4 or higher. When that is the case, we will *always* have
1734   // a simplification. This is an important invariant to prevent cyclicly
1735   // trying to simplify already minimal formations.
1736   if (FactorPowerSum < 4)
1737     return false;
1738 
1739   // Now gather the simplifiable factors, removing them from Ops.
1740   FactorPowerSum = 0;
1741   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1742     Value *Op = Ops[Idx-1].Op;
1743 
1744     // Count the number of occurrences of this value.
1745     unsigned Count = 1;
1746     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1747       ++Count;
1748     if (Count == 1)
1749       continue;
1750     // Move an even number of occurrences to Factors.
1751     Count &= ~1U;
1752     Idx -= Count;
1753     FactorPowerSum += Count;
1754     Factors.push_back(Factor(Op, Count));
1755     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1756   }
1757 
1758   // None of the adjustments above should have reduced the sum of factor powers
1759   // below our mininum of '4'.
1760   assert(FactorPowerSum >= 4);
1761 
1762   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1763     return LHS.Power > RHS.Power;
1764   });
1765   return true;
1766 }
1767 
1768 /// Build a tree of multiplies, computing the product of Ops.
1769 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1770                                 SmallVectorImpl<Value*> &Ops) {
1771   if (Ops.size() == 1)
1772     return Ops.back();
1773 
1774   Value *LHS = Ops.pop_back_val();
1775   do {
1776     if (LHS->getType()->isIntOrIntVectorTy())
1777       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1778     else
1779       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1780   } while (!Ops.empty());
1781 
1782   return LHS;
1783 }
1784 
1785 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1786 ///
1787 /// Given a vector of values raised to various powers, where no two values are
1788 /// equal and the powers are sorted in decreasing order, compute the minimal
1789 /// DAG of multiplies to compute the final product, and return that product
1790 /// value.
1791 Value *
1792 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1793                                          SmallVectorImpl<Factor> &Factors) {
1794   assert(Factors[0].Power);
1795   SmallVector<Value *, 4> OuterProduct;
1796   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1797        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1798     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1799       LastIdx = Idx;
1800       continue;
1801     }
1802 
1803     // We want to multiply across all the factors with the same power so that
1804     // we can raise them to that power as a single entity. Build a mini tree
1805     // for that.
1806     SmallVector<Value *, 4> InnerProduct;
1807     InnerProduct.push_back(Factors[LastIdx].Base);
1808     do {
1809       InnerProduct.push_back(Factors[Idx].Base);
1810       ++Idx;
1811     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1812 
1813     // Reset the base value of the first factor to the new expression tree.
1814     // We'll remove all the factors with the same power in a second pass.
1815     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1816     if (Instruction *MI = dyn_cast<Instruction>(M))
1817       RedoInsts.insert(MI);
1818 
1819     LastIdx = Idx;
1820   }
1821   // Unique factors with equal powers -- we've folded them into the first one's
1822   // base.
1823   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1824                             [](const Factor &LHS, const Factor &RHS) {
1825                               return LHS.Power == RHS.Power;
1826                             }),
1827                 Factors.end());
1828 
1829   // Iteratively collect the base of each factor with an add power into the
1830   // outer product, and halve each power in preparation for squaring the
1831   // expression.
1832   for (Factor &F : Factors) {
1833     if (F.Power & 1)
1834       OuterProduct.push_back(F.Base);
1835     F.Power >>= 1;
1836   }
1837   if (Factors[0].Power) {
1838     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1839     OuterProduct.push_back(SquareRoot);
1840     OuterProduct.push_back(SquareRoot);
1841   }
1842   if (OuterProduct.size() == 1)
1843     return OuterProduct.front();
1844 
1845   Value *V = buildMultiplyTree(Builder, OuterProduct);
1846   return V;
1847 }
1848 
1849 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1850                                     SmallVectorImpl<ValueEntry> &Ops) {
1851   // We can only optimize the multiplies when there is a chain of more than
1852   // three, such that a balanced tree might require fewer total multiplies.
1853   if (Ops.size() < 4)
1854     return nullptr;
1855 
1856   // Try to turn linear trees of multiplies without other uses of the
1857   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1858   // re-use.
1859   SmallVector<Factor, 4> Factors;
1860   if (!collectMultiplyFactors(Ops, Factors))
1861     return nullptr; // All distinct factors, so nothing left for us to do.
1862 
1863   IRBuilder<> Builder(I);
1864   // The reassociate transformation for FP operations is performed only
1865   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1866   // to the newly generated operations.
1867   if (auto FPI = dyn_cast<FPMathOperator>(I))
1868     Builder.setFastMathFlags(FPI->getFastMathFlags());
1869 
1870   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1871   if (Ops.empty())
1872     return V;
1873 
1874   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1875   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1876   return nullptr;
1877 }
1878 
1879 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1880                                            SmallVectorImpl<ValueEntry> &Ops) {
1881   // Now that we have the linearized expression tree, try to optimize it.
1882   // Start by folding any constants that we found.
1883   const DataLayout &DL = I->getModule()->getDataLayout();
1884   Constant *Cst = nullptr;
1885   unsigned Opcode = I->getOpcode();
1886   while (!Ops.empty()) {
1887     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1888       if (!Cst) {
1889         Ops.pop_back();
1890         Cst = C;
1891         continue;
1892       }
1893       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1894         Ops.pop_back();
1895         Cst = Res;
1896         continue;
1897       }
1898     }
1899     break;
1900   }
1901   // If there was nothing but constants then we are done.
1902   if (Ops.empty())
1903     return Cst;
1904 
1905   // Put the combined constant back at the end of the operand list, except if
1906   // there is no point.  For example, an add of 0 gets dropped here, while a
1907   // multiplication by zero turns the whole expression into zero.
1908   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1909     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1910       return Cst;
1911     Ops.push_back(ValueEntry(0, Cst));
1912   }
1913 
1914   if (Ops.size() == 1) return Ops[0].Op;
1915 
1916   // Handle destructive annihilation due to identities between elements in the
1917   // argument list here.
1918   unsigned NumOps = Ops.size();
1919   switch (Opcode) {
1920   default: break;
1921   case Instruction::And:
1922   case Instruction::Or:
1923     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1924       return Result;
1925     break;
1926 
1927   case Instruction::Xor:
1928     if (Value *Result = OptimizeXor(I, Ops))
1929       return Result;
1930     break;
1931 
1932   case Instruction::Add:
1933   case Instruction::FAdd:
1934     if (Value *Result = OptimizeAdd(I, Ops))
1935       return Result;
1936     break;
1937 
1938   case Instruction::Mul:
1939   case Instruction::FMul:
1940     if (Value *Result = OptimizeMul(I, Ops))
1941       return Result;
1942     break;
1943   }
1944 
1945   if (Ops.size() != NumOps)
1946     return OptimizeExpression(I, Ops);
1947   return nullptr;
1948 }
1949 
1950 // Remove dead instructions and if any operands are trivially dead add them to
1951 // Insts so they will be removed as well.
1952 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1953                                                 OrderedSet &Insts) {
1954   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1955   SmallVector<Value *, 4> Ops(I->operands());
1956   ValueRankMap.erase(I);
1957   Insts.remove(I);
1958   RedoInsts.remove(I);
1959   llvm::salvageDebugInfo(*I);
1960   I->eraseFromParent();
1961   for (auto *Op : Ops)
1962     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1963       if (OpInst->use_empty())
1964         Insts.insert(OpInst);
1965 }
1966 
1967 /// Zap the given instruction, adding interesting operands to the work list.
1968 void ReassociatePass::EraseInst(Instruction *I) {
1969   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1970   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1971 
1972   SmallVector<Value *, 8> Ops(I->operands());
1973   // Erase the dead instruction.
1974   ValueRankMap.erase(I);
1975   RedoInsts.remove(I);
1976   llvm::salvageDebugInfo(*I);
1977   I->eraseFromParent();
1978   // Optimize its operands.
1979   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1980   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1981     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1982       // If this is a node in an expression tree, climb to the expression root
1983       // and add that since that's where optimization actually happens.
1984       unsigned Opcode = Op->getOpcode();
1985       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1986              Visited.insert(Op).second)
1987         Op = Op->user_back();
1988 
1989       // The instruction we're going to push may be coming from a
1990       // dead block, and Reassociate skips the processing of unreachable
1991       // blocks because it's a waste of time and also because it can
1992       // lead to infinite loop due to LLVM's non-standard definition
1993       // of dominance.
1994       if (ValueRankMap.contains(Op))
1995         RedoInsts.insert(Op);
1996     }
1997 
1998   MadeChange = true;
1999 }
2000 
2001 /// Recursively analyze an expression to build a list of instructions that have
2002 /// negative floating-point constant operands. The caller can then transform
2003 /// the list to create positive constants for better reassociation and CSE.
2004 static void getNegatibleInsts(Value *V,
2005                               SmallVectorImpl<Instruction *> &Candidates) {
2006   // Handle only one-use instructions. Combining negations does not justify
2007   // replicating instructions.
2008   Instruction *I;
2009   if (!match(V, m_OneUse(m_Instruction(I))))
2010     return;
2011 
2012   // Handle expressions of multiplications and divisions.
2013   // TODO: This could look through floating-point casts.
2014   const APFloat *C;
2015   switch (I->getOpcode()) {
2016     case Instruction::FMul:
2017       // Not expecting non-canonical code here. Bail out and wait.
2018       if (match(I->getOperand(0), m_Constant()))
2019         break;
2020 
2021       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2022         Candidates.push_back(I);
2023         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2024       }
2025       getNegatibleInsts(I->getOperand(0), Candidates);
2026       getNegatibleInsts(I->getOperand(1), Candidates);
2027       break;
2028     case Instruction::FDiv:
2029       // Not expecting non-canonical code here. Bail out and wait.
2030       if (match(I->getOperand(0), m_Constant()) &&
2031           match(I->getOperand(1), m_Constant()))
2032         break;
2033 
2034       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2035           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2036         Candidates.push_back(I);
2037         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2038       }
2039       getNegatibleInsts(I->getOperand(0), Candidates);
2040       getNegatibleInsts(I->getOperand(1), Candidates);
2041       break;
2042     default:
2043       break;
2044   }
2045 }
2046 
2047 /// Given an fadd/fsub with an operand that is a one-use instruction
2048 /// (the fadd/fsub), try to change negative floating-point constants into
2049 /// positive constants to increase potential for reassociation and CSE.
2050 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2051                                                               Instruction *Op,
2052                                                               Value *OtherOp) {
2053   assert((I->getOpcode() == Instruction::FAdd ||
2054           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2055 
2056   // Collect instructions with negative FP constants from the subtree that ends
2057   // in Op.
2058   SmallVector<Instruction *, 4> Candidates;
2059   getNegatibleInsts(Op, Candidates);
2060   if (Candidates.empty())
2061     return nullptr;
2062 
2063   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2064   // resulting subtract will be broken up later.  This can get us into an
2065   // infinite loop during reassociation.
2066   bool IsFSub = I->getOpcode() == Instruction::FSub;
2067   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2068   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2069     return nullptr;
2070 
2071   for (Instruction *Negatible : Candidates) {
2072     const APFloat *C;
2073     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2074       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2075              "Expecting only 1 constant operand");
2076       assert(C->isNegative() && "Expected negative FP constant");
2077       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2078       MadeChange = true;
2079     }
2080     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2081       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2082              "Expecting only 1 constant operand");
2083       assert(C->isNegative() && "Expected negative FP constant");
2084       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2085       MadeChange = true;
2086     }
2087   }
2088   assert(MadeChange == true && "Negative constant candidate was not changed");
2089 
2090   // Negations cancelled out.
2091   if (Candidates.size() % 2 == 0)
2092     return I;
2093 
2094   // Negate the final operand in the expression by flipping the opcode of this
2095   // fadd/fsub.
2096   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2097   IRBuilder<> Builder(I);
2098   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2099                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2100   I->replaceAllUsesWith(NewInst);
2101   RedoInsts.insert(I);
2102   return dyn_cast<Instruction>(NewInst);
2103 }
2104 
2105 /// Canonicalize expressions that contain a negative floating-point constant
2106 /// of the following form:
2107 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2108 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2109 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2110 ///
2111 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2112 /// input instruction.
2113 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2114   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2115   Value *X;
2116   Instruction *Op;
2117   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2118     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2119       I = R;
2120   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2121     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2122       I = R;
2123   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2124     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2125       I = R;
2126   return I;
2127 }
2128 
2129 /// Inspect and optimize the given instruction. Note that erasing
2130 /// instructions is not allowed.
2131 void ReassociatePass::OptimizeInst(Instruction *I) {
2132   // Only consider operations that we understand.
2133   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2134     return;
2135 
2136   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2137     // If an operand of this shift is a reassociable multiply, or if the shift
2138     // is used by a reassociable multiply or add, turn into a multiply.
2139     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2140         (I->hasOneUse() &&
2141          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2142           isReassociableOp(I->user_back(), Instruction::Add)))) {
2143       Instruction *NI = ConvertShiftToMul(I);
2144       RedoInsts.insert(I);
2145       MadeChange = true;
2146       I = NI;
2147     }
2148 
2149   // Commute binary operators, to canonicalize the order of their operands.
2150   // This can potentially expose more CSE opportunities, and makes writing other
2151   // transformations simpler.
2152   if (I->isCommutative())
2153     canonicalizeOperands(I);
2154 
2155   // Canonicalize negative constants out of expressions.
2156   if (Instruction *Res = canonicalizeNegFPConstants(I))
2157     I = Res;
2158 
2159   // Don't optimize floating-point instructions unless they have the
2160   // appropriate FastMathFlags for reassociation enabled.
2161   if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2162     return;
2163 
2164   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2165   // original order of evaluation for short-circuited comparisons that
2166   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2167   // is not further optimized, it is likely to be transformed back to a
2168   // short-circuited form for code gen, and the source order may have been
2169   // optimized for the most likely conditions.
2170   if (I->getType()->isIntegerTy(1))
2171     return;
2172 
2173   // If this is a bitwise or instruction of operands
2174   // with no common bits set, convert it to X+Y.
2175   if (I->getOpcode() == Instruction::Or &&
2176       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2177       (cast<PossiblyDisjointInst>(I)->isDisjoint() ||
2178        haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2179                            SimplifyQuery(I->getModule()->getDataLayout(),
2180                                          /*DT=*/nullptr, /*AC=*/nullptr, I)))) {
2181     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2182     RedoInsts.insert(I);
2183     MadeChange = true;
2184     I = NI;
2185   }
2186 
2187   // If this is a subtract instruction which is not already in negate form,
2188   // see if we can convert it to X+-Y.
2189   if (I->getOpcode() == Instruction::Sub) {
2190     if (ShouldBreakUpSubtract(I)) {
2191       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2192       RedoInsts.insert(I);
2193       MadeChange = true;
2194       I = NI;
2195     } else if (match(I, m_Neg(m_Value()))) {
2196       // Otherwise, this is a negation.  See if the operand is a multiply tree
2197       // and if this is not an inner node of a multiply tree.
2198       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2199           (!I->hasOneUse() ||
2200            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2201         Instruction *NI = LowerNegateToMultiply(I);
2202         // If the negate was simplified, revisit the users to see if we can
2203         // reassociate further.
2204         for (User *U : NI->users()) {
2205           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2206             RedoInsts.insert(Tmp);
2207         }
2208         RedoInsts.insert(I);
2209         MadeChange = true;
2210         I = NI;
2211       }
2212     }
2213   } else if (I->getOpcode() == Instruction::FNeg ||
2214              I->getOpcode() == Instruction::FSub) {
2215     if (ShouldBreakUpSubtract(I)) {
2216       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2217       RedoInsts.insert(I);
2218       MadeChange = true;
2219       I = NI;
2220     } else if (match(I, m_FNeg(m_Value()))) {
2221       // Otherwise, this is a negation.  See if the operand is a multiply tree
2222       // and if this is not an inner node of a multiply tree.
2223       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2224                                            I->getOperand(0);
2225       if (isReassociableOp(Op, Instruction::FMul) &&
2226           (!I->hasOneUse() ||
2227            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2228         // If the negate was simplified, revisit the users to see if we can
2229         // reassociate further.
2230         Instruction *NI = LowerNegateToMultiply(I);
2231         for (User *U : NI->users()) {
2232           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2233             RedoInsts.insert(Tmp);
2234         }
2235         RedoInsts.insert(I);
2236         MadeChange = true;
2237         I = NI;
2238       }
2239     }
2240   }
2241 
2242   // If this instruction is an associative binary operator, process it.
2243   if (!I->isAssociative()) return;
2244   BinaryOperator *BO = cast<BinaryOperator>(I);
2245 
2246   // If this is an interior node of a reassociable tree, ignore it until we
2247   // get to the root of the tree, to avoid N^2 analysis.
2248   unsigned Opcode = BO->getOpcode();
2249   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2250     // During the initial run we will get to the root of the tree.
2251     // But if we get here while we are redoing instructions, there is no
2252     // guarantee that the root will be visited. So Redo later
2253     if (BO->user_back() != BO &&
2254         BO->getParent() == BO->user_back()->getParent())
2255       RedoInsts.insert(BO->user_back());
2256     return;
2257   }
2258 
2259   // If this is an add tree that is used by a sub instruction, ignore it
2260   // until we process the subtract.
2261   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2262       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2263     return;
2264   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2265       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2266     return;
2267 
2268   ReassociateExpression(BO);
2269 }
2270 
2271 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2272   // First, walk the expression tree, linearizing the tree, collecting the
2273   // operand information.
2274   SmallVector<RepeatedValue, 8> Tree;
2275   OverflowTracking Flags;
2276   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, Flags);
2277   SmallVector<ValueEntry, 8> Ops;
2278   Ops.reserve(Tree.size());
2279   for (const RepeatedValue &E : Tree)
2280     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2281 
2282   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2283 
2284   // Now that we have linearized the tree to a list and have gathered all of
2285   // the operands and their ranks, sort the operands by their rank.  Use a
2286   // stable_sort so that values with equal ranks will have their relative
2287   // positions maintained (and so the compiler is deterministic).  Note that
2288   // this sorts so that the highest ranking values end up at the beginning of
2289   // the vector.
2290   llvm::stable_sort(Ops);
2291 
2292   // Now that we have the expression tree in a convenient
2293   // sorted form, optimize it globally if possible.
2294   if (Value *V = OptimizeExpression(I, Ops)) {
2295     if (V == I)
2296       // Self-referential expression in unreachable code.
2297       return;
2298     // This expression tree simplified to something that isn't a tree,
2299     // eliminate it.
2300     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2301     I->replaceAllUsesWith(V);
2302     if (Instruction *VI = dyn_cast<Instruction>(V))
2303       if (I->getDebugLoc())
2304         VI->setDebugLoc(I->getDebugLoc());
2305     RedoInsts.insert(I);
2306     ++NumAnnihil;
2307     return;
2308   }
2309 
2310   // We want to sink immediates as deeply as possible except in the case where
2311   // this is a multiply tree used only by an add, and the immediate is a -1.
2312   // In this case we reassociate to put the negation on the outside so that we
2313   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2314   if (I->hasOneUse()) {
2315     if (I->getOpcode() == Instruction::Mul &&
2316         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2317         isa<ConstantInt>(Ops.back().Op) &&
2318         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2319       ValueEntry Tmp = Ops.pop_back_val();
2320       Ops.insert(Ops.begin(), Tmp);
2321     } else if (I->getOpcode() == Instruction::FMul &&
2322                cast<Instruction>(I->user_back())->getOpcode() ==
2323                    Instruction::FAdd &&
2324                isa<ConstantFP>(Ops.back().Op) &&
2325                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2326       ValueEntry Tmp = Ops.pop_back_val();
2327       Ops.insert(Ops.begin(), Tmp);
2328     }
2329   }
2330 
2331   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2332 
2333   if (Ops.size() == 1) {
2334     if (Ops[0].Op == I)
2335       // Self-referential expression in unreachable code.
2336       return;
2337 
2338     // This expression tree simplified to something that isn't a tree,
2339     // eliminate it.
2340     I->replaceAllUsesWith(Ops[0].Op);
2341     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2342       OI->setDebugLoc(I->getDebugLoc());
2343     RedoInsts.insert(I);
2344     return;
2345   }
2346 
2347   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2348     // Find the pair with the highest count in the pairmap and move it to the
2349     // back of the list so that it can later be CSE'd.
2350     // example:
2351     //   a*b*c*d*e
2352     // if c*e is the most "popular" pair, we can express this as
2353     //   (((c*e)*d)*b)*a
2354     unsigned Max = 1;
2355     unsigned BestRank = 0;
2356     std::pair<unsigned, unsigned> BestPair;
2357     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2358     unsigned LimitIdx = 0;
2359     // With the CSE-driven heuristic, we are about to slap two values at the
2360     // beginning of the expression whereas they could live very late in the CFG.
2361     // When using the CSE-local heuristic we avoid creating dependences from
2362     // completely unrelated part of the CFG by limiting the expression
2363     // reordering on the values that live in the first seen basic block.
2364     // The main idea is that we want to avoid forming expressions that would
2365     // become loop dependent.
2366     if (UseCSELocalOpt) {
2367       const BasicBlock *FirstSeenBB = nullptr;
2368       int StartIdx = Ops.size() - 1;
2369       // Skip the first value of the expression since we need at least two
2370       // values to materialize an expression. I.e., even if this value is
2371       // anchored in a different basic block, the actual first sub expression
2372       // will be anchored on the second value.
2373       for (int i = StartIdx - 1; i != -1; --i) {
2374         const Value *Val = Ops[i].Op;
2375         const auto *CurrLeafInstr = dyn_cast<Instruction>(Val);
2376         const BasicBlock *SeenBB = nullptr;
2377         if (!CurrLeafInstr) {
2378           // The value is free of any CFG dependencies.
2379           // Do as if it lives in the entry block.
2380           //
2381           // We do this to make sure all the values falling on this path are
2382           // seen through the same anchor point. The rationale is these values
2383           // can be combined together to from a sub expression free of any CFG
2384           // dependencies so we want them to stay together.
2385           // We could be cleverer and postpone the anchor down to the first
2386           // anchored value, but that's likely complicated to get right.
2387           // E.g., we wouldn't want to do that if that means being stuck in a
2388           // loop.
2389           //
2390           // For instance, we wouldn't want to change:
2391           // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ...
2392           // into
2393           // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ...
2394           // Because all the sub expressions with arg2..N would be stuck between
2395           // two loop dependent values.
2396           SeenBB = &I->getParent()->getParent()->getEntryBlock();
2397         } else {
2398           SeenBB = CurrLeafInstr->getParent();
2399         }
2400 
2401         if (!FirstSeenBB) {
2402           FirstSeenBB = SeenBB;
2403           continue;
2404         }
2405         if (FirstSeenBB != SeenBB) {
2406           // ith value is in a different basic block.
2407           // Rewind the index once to point to the last value on the same basic
2408           // block.
2409           LimitIdx = i + 1;
2410           LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between ["
2411                             << LimitIdx << ", " << StartIdx << "]\n");
2412           break;
2413         }
2414       }
2415     }
2416     for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) {
2417       // We must use int type to go below zero when LimitIdx is 0.
2418       for (int j = i - 1; j >= (int)LimitIdx; --j) {
2419         unsigned Score = 0;
2420         Value *Op0 = Ops[i].Op;
2421         Value *Op1 = Ops[j].Op;
2422         if (std::less<Value *>()(Op1, Op0))
2423           std::swap(Op0, Op1);
2424         auto it = PairMap[Idx].find({Op0, Op1});
2425         if (it != PairMap[Idx].end()) {
2426           // Functions like BreakUpSubtract() can erase the Values we're using
2427           // as keys and create new Values after we built the PairMap. There's a
2428           // small chance that the new nodes can have the same address as
2429           // something already in the table. We shouldn't accumulate the stored
2430           // score in that case as it refers to the wrong Value.
2431           if (it->second.isValid())
2432             Score += it->second.Score;
2433         }
2434 
2435         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2436 
2437         // By construction, the operands are sorted in reverse order of their
2438         // topological order.
2439         // So we tend to form (sub) expressions with values that are close to
2440         // each other.
2441         //
2442         // Now to expose more CSE opportunities we want to expose the pair of
2443         // operands that occur the most (as statically computed in
2444         // BuildPairMap.) as the first sub-expression.
2445         //
2446         // If two pairs occur as many times, we pick the one with the
2447         // lowest rank, meaning the one with both operands appearing first in
2448         // the topological order.
2449         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2450           BestPair = {j, i};
2451           Max = Score;
2452           BestRank = MaxRank;
2453         }
2454       }
2455     }
2456     if (Max > 1) {
2457       auto Op0 = Ops[BestPair.first];
2458       auto Op1 = Ops[BestPair.second];
2459       Ops.erase(&Ops[BestPair.second]);
2460       Ops.erase(&Ops[BestPair.first]);
2461       Ops.push_back(Op0);
2462       Ops.push_back(Op1);
2463     }
2464   }
2465   LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops);
2466              dbgs() << '\n');
2467   // Now that we ordered and optimized the expressions, splat them back into
2468   // the expression tree, removing any unneeded nodes.
2469   RewriteExprTree(I, Ops, Flags);
2470 }
2471 
2472 void
2473 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2474   // Make a "pairmap" of how often each operand pair occurs.
2475   for (BasicBlock *BI : RPOT) {
2476     for (Instruction &I : *BI) {
2477       if (!I.isAssociative() || !I.isBinaryOp())
2478         continue;
2479 
2480       // Ignore nodes that aren't at the root of trees.
2481       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2482         continue;
2483 
2484       // Collect all operands in a single reassociable expression.
2485       // Since Reassociate has already been run once, we can assume things
2486       // are already canonical according to Reassociation's regime.
2487       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2488       SmallVector<Value *, 8> Ops;
2489       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2490         Value *Op = Worklist.pop_back_val();
2491         Instruction *OpI = dyn_cast<Instruction>(Op);
2492         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2493           Ops.push_back(Op);
2494           continue;
2495         }
2496         // Be paranoid about self-referencing expressions in unreachable code.
2497         if (OpI->getOperand(0) != OpI)
2498           Worklist.push_back(OpI->getOperand(0));
2499         if (OpI->getOperand(1) != OpI)
2500           Worklist.push_back(OpI->getOperand(1));
2501       }
2502       // Skip extremely long expressions.
2503       if (Ops.size() > GlobalReassociateLimit)
2504         continue;
2505 
2506       // Add all pairwise combinations of operands to the pair map.
2507       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2508       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2509       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2510         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2511           // Canonicalize operand orderings.
2512           Value *Op0 = Ops[i];
2513           Value *Op1 = Ops[j];
2514           if (std::less<Value *>()(Op1, Op0))
2515             std::swap(Op0, Op1);
2516           if (!Visited.insert({Op0, Op1}).second)
2517             continue;
2518           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2519           if (!res.second) {
2520             // If either key value has been erased then we've got the same
2521             // address by coincidence. That can't happen here because nothing is
2522             // erasing values but it can happen by the time we're querying the
2523             // map.
2524             assert(res.first->second.isValid() && "WeakVH invalidated");
2525             ++res.first->second.Score;
2526           }
2527         }
2528       }
2529     }
2530   }
2531 }
2532 
2533 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2534   // Get the functions basic blocks in Reverse Post Order. This order is used by
2535   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2536   // blocks (it has been seen that the analysis in this pass could hang when
2537   // analysing dead basic blocks).
2538   ReversePostOrderTraversal<Function *> RPOT(&F);
2539 
2540   // Calculate the rank map for F.
2541   BuildRankMap(F, RPOT);
2542 
2543   // Build the pair map before running reassociate.
2544   // Technically this would be more accurate if we did it after one round
2545   // of reassociation, but in practice it doesn't seem to help much on
2546   // real-world code, so don't waste the compile time running reassociate
2547   // twice.
2548   // If a user wants, they could expicitly run reassociate twice in their
2549   // pass pipeline for further potential gains.
2550   // It might also be possible to update the pair map during runtime, but the
2551   // overhead of that may be large if there's many reassociable chains.
2552   BuildPairMap(RPOT);
2553 
2554   MadeChange = false;
2555 
2556   // Traverse the same blocks that were analysed by BuildRankMap.
2557   for (BasicBlock *BI : RPOT) {
2558     assert(RankMap.count(&*BI) && "BB should be ranked.");
2559     // Optimize every instruction in the basic block.
2560     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2561       if (isInstructionTriviallyDead(&*II)) {
2562         EraseInst(&*II++);
2563       } else {
2564         OptimizeInst(&*II);
2565         assert(II->getParent() == &*BI && "Moved to a different block!");
2566         ++II;
2567       }
2568 
2569     // Make a copy of all the instructions to be redone so we can remove dead
2570     // instructions.
2571     OrderedSet ToRedo(RedoInsts);
2572     // Iterate over all instructions to be reevaluated and remove trivially dead
2573     // instructions. If any operand of the trivially dead instruction becomes
2574     // dead mark it for deletion as well. Continue this process until all
2575     // trivially dead instructions have been removed.
2576     while (!ToRedo.empty()) {
2577       Instruction *I = ToRedo.pop_back_val();
2578       if (isInstructionTriviallyDead(I)) {
2579         RecursivelyEraseDeadInsts(I, ToRedo);
2580         MadeChange = true;
2581       }
2582     }
2583 
2584     // Now that we have removed dead instructions, we can reoptimize the
2585     // remaining instructions.
2586     while (!RedoInsts.empty()) {
2587       Instruction *I = RedoInsts.front();
2588       RedoInsts.erase(RedoInsts.begin());
2589       if (isInstructionTriviallyDead(I))
2590         EraseInst(I);
2591       else
2592         OptimizeInst(I);
2593     }
2594   }
2595 
2596   // We are done with the rank map and pair map.
2597   RankMap.clear();
2598   ValueRankMap.clear();
2599   for (auto &Entry : PairMap)
2600     Entry.clear();
2601 
2602   if (MadeChange) {
2603     PreservedAnalyses PA;
2604     PA.preserveSet<CFGAnalyses>();
2605     return PA;
2606   }
2607 
2608   return PreservedAnalyses::all();
2609 }
2610 
2611 namespace {
2612 
2613   class ReassociateLegacyPass : public FunctionPass {
2614     ReassociatePass Impl;
2615 
2616   public:
2617     static char ID; // Pass identification, replacement for typeid
2618 
2619     ReassociateLegacyPass() : FunctionPass(ID) {
2620       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2621     }
2622 
2623     bool runOnFunction(Function &F) override {
2624       if (skipFunction(F))
2625         return false;
2626 
2627       FunctionAnalysisManager DummyFAM;
2628       auto PA = Impl.run(F, DummyFAM);
2629       return !PA.areAllPreserved();
2630     }
2631 
2632     void getAnalysisUsage(AnalysisUsage &AU) const override {
2633       AU.setPreservesCFG();
2634       AU.addPreserved<AAResultsWrapperPass>();
2635       AU.addPreserved<BasicAAWrapperPass>();
2636       AU.addPreserved<GlobalsAAWrapperPass>();
2637     }
2638   };
2639 
2640 } // end anonymous namespace
2641 
2642 char ReassociateLegacyPass::ID = 0;
2643 
2644 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2645                 "Reassociate expressions", false, false)
2646 
2647 // Public interface to the Reassociate pass
2648 FunctionPass *llvm::createReassociatePass() {
2649   return new ReassociateLegacyPass();
2650 }
2651