xref: /llvm-project/llvm/lib/Transforms/Scalar/Reassociate.cpp (revision 35eef9f97f077a7cfa2beb9df857aa1713e4faa6)
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 static cl::opt<bool>
75     UseCSELocalOpt(DEBUG_TYPE "-use-cse-local",
76                    cl::desc("Only reorder expressions within a basic block "
77                             "when exposing CSE opportunities"),
78                    cl::init(true), cl::Hidden);
79 
80 #ifndef NDEBUG
81 /// Print out the expression identified in the Ops list.
82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
83   Module *M = I->getModule();
84   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
85        << *Ops[0].Op->getType() << '\t';
86   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
87     dbgs() << "[ ";
88     Ops[i].Op->printAsOperand(dbgs(), false, M);
89     dbgs() << ", #" << Ops[i].Rank << "] ";
90   }
91 }
92 #endif
93 
94 /// Utility class representing a non-constant Xor-operand. We classify
95 /// non-constant Xor-Operands into two categories:
96 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
97 ///  C2)
98 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
99 ///          constant.
100 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
101 ///          operand as "E | 0"
102 class llvm::reassociate::XorOpnd {
103 public:
104   XorOpnd(Value *V);
105 
106   bool isInvalid() const { return SymbolicPart == nullptr; }
107   bool isOrExpr() const { return isOr; }
108   Value *getValue() const { return OrigVal; }
109   Value *getSymbolicPart() const { return SymbolicPart; }
110   unsigned getSymbolicRank() const { return SymbolicRank; }
111   const APInt &getConstPart() const { return ConstPart; }
112 
113   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
114   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
115 
116 private:
117   Value *OrigVal;
118   Value *SymbolicPart;
119   APInt ConstPart;
120   unsigned SymbolicRank;
121   bool isOr;
122 };
123 
124 XorOpnd::XorOpnd(Value *V) {
125   assert(!isa<ConstantInt>(V) && "No ConstantInt");
126   OrigVal = V;
127   Instruction *I = dyn_cast<Instruction>(V);
128   SymbolicRank = 0;
129 
130   if (I && (I->getOpcode() == Instruction::Or ||
131             I->getOpcode() == Instruction::And)) {
132     Value *V0 = I->getOperand(0);
133     Value *V1 = I->getOperand(1);
134     const APInt *C;
135     if (match(V0, m_APInt(C)))
136       std::swap(V0, V1);
137 
138     if (match(V1, m_APInt(C))) {
139       ConstPart = *C;
140       SymbolicPart = V0;
141       isOr = (I->getOpcode() == Instruction::Or);
142       return;
143     }
144   }
145 
146   // view the operand as "V | 0"
147   SymbolicPart = V;
148   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
149   isOr = true;
150 }
151 
152 /// Return true if I is an instruction with the FastMathFlags that are needed
153 /// for general reassociation set.  This is not the same as testing
154 /// Instruction::isAssociative() because it includes operations like fsub.
155 /// (This routine is only intended to be called for floating-point operations.)
156 static bool hasFPAssociativeFlags(Instruction *I) {
157   assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
158   return I->hasAllowReassoc() && I->hasNoSignedZeros();
159 }
160 
161 /// Return true if V is an instruction of the specified opcode and if it
162 /// only has one use.
163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164   auto *BO = dyn_cast<BinaryOperator>(V);
165   if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
166     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
167       return BO;
168   return nullptr;
169 }
170 
171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
172                                         unsigned Opcode2) {
173   auto *BO = dyn_cast<BinaryOperator>(V);
174   if (BO && BO->hasOneUse() &&
175       (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
176     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
177       return BO;
178   return nullptr;
179 }
180 
181 void ReassociatePass::BuildRankMap(Function &F,
182                                    ReversePostOrderTraversal<Function*> &RPOT) {
183   unsigned Rank = 2;
184 
185   // Assign distinct ranks to function arguments.
186   for (auto &Arg : F.args()) {
187     ValueRankMap[&Arg] = ++Rank;
188     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
189                       << "\n");
190   }
191 
192   // Traverse basic blocks in ReversePostOrder.
193   for (BasicBlock *BB : RPOT) {
194     unsigned BBRank = RankMap[BB] = ++Rank << 16;
195 
196     // Walk the basic block, adding precomputed ranks for any instructions that
197     // we cannot move.  This ensures that the ranks for these instructions are
198     // all different in the block.
199     for (Instruction &I : *BB)
200       if (mayHaveNonDefUseDependency(I))
201         ValueRankMap[&I] = ++BBRank;
202   }
203 }
204 
205 unsigned ReassociatePass::getRank(Value *V) {
206   Instruction *I = dyn_cast<Instruction>(V);
207   if (!I) {
208     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
209     return 0;  // Otherwise it's a global or constant, rank 0.
210   }
211 
212   if (unsigned Rank = ValueRankMap[I])
213     return Rank;    // Rank already known?
214 
215   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
216   // we can reassociate expressions for code motion!  Since we do not recurse
217   // for PHI nodes, we cannot have infinite recursion here, because there
218   // cannot be loops in the value graph that do not go through PHI nodes.
219   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
220   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
221     Rank = std::max(Rank, getRank(I->getOperand(i)));
222 
223   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
224   // assures us that X and ~X will have the same rank.
225   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
226       !match(I, m_FNeg(m_Value())))
227     ++Rank;
228 
229   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
230                     << "\n");
231 
232   return ValueRankMap[I] = Rank;
233 }
234 
235 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
236 void ReassociatePass::canonicalizeOperands(Instruction *I) {
237   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
238   assert(I->isCommutative() && "Expected commutative operator.");
239 
240   Value *LHS = I->getOperand(0);
241   Value *RHS = I->getOperand(1);
242   if (LHS == RHS || isa<Constant>(RHS))
243     return;
244   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
245     cast<BinaryOperator>(I)->swapOperands();
246 }
247 
248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
249                                  BasicBlock::iterator InsertBefore,
250                                  Value *FlagsOp) {
251   if (S1->getType()->isIntOrIntVectorTy())
252     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
253   else {
254     BinaryOperator *Res =
255         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
256     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
257     return Res;
258   }
259 }
260 
261 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
262                                  BasicBlock::iterator InsertBefore,
263                                  Value *FlagsOp) {
264   if (S1->getType()->isIntOrIntVectorTy())
265     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
266   else {
267     BinaryOperator *Res =
268       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
269     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
270     return Res;
271   }
272 }
273 
274 static Instruction *CreateNeg(Value *S1, const Twine &Name,
275                               BasicBlock::iterator InsertBefore,
276                               Value *FlagsOp) {
277   if (S1->getType()->isIntOrIntVectorTy())
278     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
279 
280   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
281     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
282 
283   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
284 }
285 
286 /// Replace 0-X with X*-1.
287 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
288   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
289          "Expected a Negate!");
290   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
291   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
292   Type *Ty = Neg->getType();
293   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
294     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
295 
296   BinaryOperator *Res =
297       CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg->getIterator(), Neg);
298   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
299   Res->takeName(Neg);
300   Neg->replaceAllUsesWith(Res);
301   Res->setDebugLoc(Neg->getDebugLoc());
302   return Res;
303 }
304 
305 using RepeatedValue = std::pair<Value *, uint64_t>;
306 
307 /// Given an associative binary expression, return the leaf
308 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
309 /// original expression is the same as
310 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
311 /// op
312 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
313 /// op
314 ///   ...
315 /// op
316 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
317 ///
318 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
319 ///
320 /// This routine may modify the function, in which case it returns 'true'.  The
321 /// changes it makes may well be destructive, changing the value computed by 'I'
322 /// to something completely different.  Thus if the routine returns 'true' then
323 /// you MUST either replace I with a new expression computed from the Ops array,
324 /// or use RewriteExprTree to put the values back in.
325 ///
326 /// A leaf node is either not a binary operation of the same kind as the root
327 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
328 /// opcode), or is the same kind of binary operator but has a use which either
329 /// does not belong to the expression, or does belong to the expression but is
330 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
331 /// of the expression, while for non-leaf nodes (except for the root 'I') every
332 /// use is a non-leaf node of the expression.
333 ///
334 /// For example:
335 ///           expression graph        node names
336 ///
337 ///                     +        |        I
338 ///                    / \       |
339 ///                   +   +      |      A,  B
340 ///                  / \ / \     |
341 ///                 *   +   *    |    C,  D,  E
342 ///                / \ / \ / \   |
343 ///                   +   *      |      F,  G
344 ///
345 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
346 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
347 ///
348 /// The expression is maximal: if some instruction is a binary operator of the
349 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
350 /// then the instruction also belongs to the expression, is not a leaf node of
351 /// it, and its operands also belong to the expression (but may be leaf nodes).
352 ///
353 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
354 /// order to ensure that every non-root node in the expression has *exactly one*
355 /// use by a non-leaf node of the expression.  This destruction means that the
356 /// caller MUST either replace 'I' with a new expression or use something like
357 /// RewriteExprTree to put the values back in if the routine indicates that it
358 /// made a change by returning 'true'.
359 ///
360 /// In the above example either the right operand of A or the left operand of B
361 /// will be replaced by undef.  If it is B's operand then this gives:
362 ///
363 ///                     +        |        I
364 ///                    / \       |
365 ///                   +   +      |      A,  B - operand of B replaced with undef
366 ///                  / \   \     |
367 ///                 *   +   *    |    C,  D,  E
368 ///                / \ / \ / \   |
369 ///                   +   *      |      F,  G
370 ///
371 /// Note that such undef operands can only be reached by passing through 'I'.
372 /// For example, if you visit operands recursively starting from a leaf node
373 /// then you will never see such an undef operand unless you get back to 'I',
374 /// which requires passing through a phi node.
375 ///
376 /// Note that this routine may also mutate binary operators of the wrong type
377 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
378 /// of the expression) if it can turn them into binary operators of the right
379 /// type and thus make the expression bigger.
380 static bool LinearizeExprTree(Instruction *I,
381                               SmallVectorImpl<RepeatedValue> &Ops,
382                               ReassociatePass::OrderedSet &ToRedo,
383                               reassociate::OverflowTracking &Flags) {
384   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
385          "Expected a UnaryOperator or BinaryOperator!");
386   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
387   unsigned Opcode = I->getOpcode();
388   assert(I->isAssociative() && I->isCommutative() &&
389          "Expected an associative and commutative operation!");
390 
391   // Visit all operands of the expression, keeping track of their weight (the
392   // number of paths from the expression root to the operand, or if you like
393   // the number of times that operand occurs in the linearized expression).
394   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
395   // while A has weight two.
396 
397   // Worklist of non-leaf nodes (their operands are in the expression too) along
398   // with their weights, representing a certain number of paths to the operator.
399   // If an operator occurs in the worklist multiple times then we found multiple
400   // ways to get to it.
401   SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight)
402   Worklist.push_back(std::make_pair(I, 1));
403   bool Changed = false;
404 
405   // Leaves of the expression are values that either aren't the right kind of
406   // operation (eg: a constant, or a multiply in an add tree), or are, but have
407   // some uses that are not inside the expression.  For example, in I = X + X,
408   // X = A + B, the value X has two uses (by I) that are in the expression.  If
409   // X has any other uses, for example in a return instruction, then we consider
410   // X to be a leaf, and won't analyze it further.  When we first visit a value,
411   // if it has more than one use then at first we conservatively consider it to
412   // be a leaf.  Later, as the expression is explored, we may discover some more
413   // uses of the value from inside the expression.  If all uses turn out to be
414   // from within the expression (and the value is a binary operator of the right
415   // kind) then the value is no longer considered to be a leaf, and its operands
416   // are explored.
417 
418   // Leaves - Keeps track of the set of putative leaves as well as the number of
419   // paths to each leaf seen so far.
420   using LeafMap = DenseMap<Value *, uint64_t>;
421   LeafMap Leaves; // Leaf -> Total weight so far.
422   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
423   const DataLayout DL = I->getModule()->getDataLayout();
424 
425 #ifndef NDEBUG
426   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
427 #endif
428   while (!Worklist.empty()) {
429     // We examine the operands of this binary operator.
430     auto [I, Weight] = Worklist.pop_back_val();
431 
432     if (isa<OverflowingBinaryOperator>(I)) {
433       Flags.HasNUW &= I->hasNoUnsignedWrap();
434       Flags.HasNSW &= I->hasNoSignedWrap();
435     }
436 
437     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
438       Value *Op = I->getOperand(OpIdx);
439       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
440       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
441 
442       // If this is a binary operation of the right kind with only one use then
443       // add its operands to the expression.
444       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
445         assert(Visited.insert(Op).second && "Not first visit!");
446         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
447         Worklist.push_back(std::make_pair(BO, Weight));
448         continue;
449       }
450 
451       // Appears to be a leaf.  Is the operand already in the set of leaves?
452       LeafMap::iterator It = Leaves.find(Op);
453       if (It == Leaves.end()) {
454         // Not in the leaf map.  Must be the first time we saw this operand.
455         assert(Visited.insert(Op).second && "Not first visit!");
456         if (!Op->hasOneUse()) {
457           // This value has uses not accounted for by the expression, so it is
458           // not safe to modify.  Mark it as being a leaf.
459           LLVM_DEBUG(dbgs()
460                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
461           LeafOrder.push_back(Op);
462           Leaves[Op] = Weight;
463           continue;
464         }
465         // No uses outside the expression, try morphing it.
466       } else {
467         // Already in the leaf map.
468         assert(It != Leaves.end() && Visited.count(Op) &&
469                "In leaf map but not visited!");
470 
471         // Update the number of paths to the leaf.
472         It->second += Weight;
473         assert(It->second >= Weight && "Weight overflows");
474 
475         // If we still have uses that are not accounted for by the expression
476         // then it is not safe to modify the value.
477         if (!Op->hasOneUse())
478           continue;
479 
480         // No uses outside the expression, try morphing it.
481         Weight = It->second;
482         Leaves.erase(It); // Since the value may be morphed below.
483       }
484 
485       // At this point we have a value which, first of all, is not a binary
486       // expression of the right kind, and secondly, is only used inside the
487       // expression.  This means that it can safely be modified.  See if we
488       // can usefully morph it into an expression of the right kind.
489       assert((!isa<Instruction>(Op) ||
490               cast<Instruction>(Op)->getOpcode() != Opcode
491               || (isa<FPMathOperator>(Op) &&
492                   !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
493              "Should have been handled above!");
494       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
495 
496       // If this is a multiply expression, turn any internal negations into
497       // multiplies by -1 so they can be reassociated.  Add any users of the
498       // newly created multiplication by -1 to the redo list, so any
499       // reassociation opportunities that are exposed will be reassociated
500       // further.
501       Instruction *Neg;
502       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
503            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
504            match(Op, m_Instruction(Neg))) {
505         LLVM_DEBUG(dbgs()
506                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
507         Instruction *Mul = LowerNegateToMultiply(Neg);
508         LLVM_DEBUG(dbgs() << *Mul << '\n');
509         Worklist.push_back(std::make_pair(Mul, Weight));
510         for (User *U : Mul->users()) {
511           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
512             ToRedo.insert(UserBO);
513         }
514         ToRedo.insert(Neg);
515         Changed = true;
516         continue;
517       }
518 
519       // Failed to morph into an expression of the right type.  This really is
520       // a leaf.
521       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
522       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
523       LeafOrder.push_back(Op);
524       Leaves[Op] = Weight;
525     }
526   }
527 
528   // The leaves, repeated according to their weights, represent the linearized
529   // form of the expression.
530   for (Value *V : LeafOrder) {
531     LeafMap::iterator It = Leaves.find(V);
532     if (It == Leaves.end())
533       // Node initially thought to be a leaf wasn't.
534       continue;
535     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
536     uint64_t Weight = It->second;
537     // Ensure the leaf is only output once.
538     It->second = 0;
539     Ops.push_back(std::make_pair(V, Weight));
540     if (Opcode == Instruction::Add && Flags.AllKnownNonNegative && Flags.HasNSW)
541       Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL));
542   }
543 
544   // For nilpotent operations or addition there may be no operands, for example
545   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
546   // in both cases the weight reduces to 0 causing the value to be skipped.
547   if (Ops.empty()) {
548     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
549     assert(Identity && "Associative operation without identity!");
550     Ops.emplace_back(Identity, 1);
551   }
552 
553   return Changed;
554 }
555 
556 /// Now that the operands for this expression tree are
557 /// linearized and optimized, emit them in-order.
558 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
559                                       SmallVectorImpl<ValueEntry> &Ops,
560                                       OverflowTracking Flags) {
561   assert(Ops.size() > 1 && "Single values should be used directly!");
562 
563   // Since our optimizations should never increase the number of operations, the
564   // new expression can usually be written reusing the existing binary operators
565   // from the original expression tree, without creating any new instructions,
566   // though the rewritten expression may have a completely different topology.
567   // We take care to not change anything if the new expression will be the same
568   // as the original.  If more than trivial changes (like commuting operands)
569   // were made then we are obliged to clear out any optional subclass data like
570   // nsw flags.
571 
572   /// NodesToRewrite - Nodes from the original expression available for writing
573   /// the new expression into.
574   SmallVector<BinaryOperator*, 8> NodesToRewrite;
575   unsigned Opcode = I->getOpcode();
576   BinaryOperator *Op = I;
577 
578   /// NotRewritable - The operands being written will be the leaves of the new
579   /// expression and must not be used as inner nodes (via NodesToRewrite) by
580   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
581   /// (if they were they would have been incorporated into the expression and so
582   /// would not be leaves), so most of the time there is no danger of this.  But
583   /// in rare cases a leaf may become reassociable if an optimization kills uses
584   /// of it, or it may momentarily become reassociable during rewriting (below)
585   /// due it being removed as an operand of one of its uses.  Ensure that misuse
586   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
587   /// leaves and refusing to reuse any of them as inner nodes.
588   SmallPtrSet<Value*, 8> NotRewritable;
589   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
590     NotRewritable.insert(Ops[i].Op);
591 
592   // ExpressionChangedStart - Non-null if the rewritten expression differs from
593   // the original in some non-trivial way, requiring the clearing of optional
594   // flags. Flags are cleared from the operator in ExpressionChangedStart up to
595   // ExpressionChangedEnd inclusive.
596   BinaryOperator *ExpressionChangedStart = nullptr,
597                  *ExpressionChangedEnd = nullptr;
598   for (unsigned i = 0; ; ++i) {
599     // The last operation (which comes earliest in the IR) is special as both
600     // operands will come from Ops, rather than just one with the other being
601     // a subexpression.
602     if (i+2 == Ops.size()) {
603       Value *NewLHS = Ops[i].Op;
604       Value *NewRHS = Ops[i+1].Op;
605       Value *OldLHS = Op->getOperand(0);
606       Value *OldRHS = Op->getOperand(1);
607 
608       if (NewLHS == OldLHS && NewRHS == OldRHS)
609         // Nothing changed, leave it alone.
610         break;
611 
612       if (NewLHS == OldRHS && NewRHS == OldLHS) {
613         // The order of the operands was reversed.  Swap them.
614         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
615         Op->swapOperands();
616         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
617         MadeChange = true;
618         ++NumChanged;
619         break;
620       }
621 
622       // The new operation differs non-trivially from the original. Overwrite
623       // the old operands with the new ones.
624       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
625       if (NewLHS != OldLHS) {
626         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
627         if (BO && !NotRewritable.count(BO))
628           NodesToRewrite.push_back(BO);
629         Op->setOperand(0, NewLHS);
630       }
631       if (NewRHS != OldRHS) {
632         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
633         if (BO && !NotRewritable.count(BO))
634           NodesToRewrite.push_back(BO);
635         Op->setOperand(1, NewRHS);
636       }
637       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
638 
639       ExpressionChangedStart = Op;
640       if (!ExpressionChangedEnd)
641         ExpressionChangedEnd = Op;
642       MadeChange = true;
643       ++NumChanged;
644 
645       break;
646     }
647 
648     // Not the last operation.  The left-hand side will be a sub-expression
649     // while the right-hand side will be the current element of Ops.
650     Value *NewRHS = Ops[i].Op;
651     if (NewRHS != Op->getOperand(1)) {
652       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
653       if (NewRHS == Op->getOperand(0)) {
654         // The new right-hand side was already present as the left operand.  If
655         // we are lucky then swapping the operands will sort out both of them.
656         Op->swapOperands();
657       } else {
658         // Overwrite with the new right-hand side.
659         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
660         if (BO && !NotRewritable.count(BO))
661           NodesToRewrite.push_back(BO);
662         Op->setOperand(1, NewRHS);
663         ExpressionChangedStart = Op;
664         if (!ExpressionChangedEnd)
665           ExpressionChangedEnd = Op;
666       }
667       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
668       MadeChange = true;
669       ++NumChanged;
670     }
671 
672     // Now deal with the left-hand side.  If this is already an operation node
673     // from the original expression then just rewrite the rest of the expression
674     // into it.
675     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
676     if (BO && !NotRewritable.count(BO)) {
677       Op = BO;
678       continue;
679     }
680 
681     // Otherwise, grab a spare node from the original expression and use that as
682     // the left-hand side.  If there are no nodes left then the optimizers made
683     // an expression with more nodes than the original!  This usually means that
684     // they did something stupid but it might mean that the problem was just too
685     // hard (finding the mimimal number of multiplications needed to realize a
686     // multiplication expression is NP-complete).  Whatever the reason, smart or
687     // stupid, create a new node if there are none left.
688     BinaryOperator *NewOp;
689     if (NodesToRewrite.empty()) {
690       Constant *Poison = PoisonValue::get(I->getType());
691       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), Poison,
692                                      Poison, "", I->getIterator());
693       if (isa<FPMathOperator>(NewOp))
694         NewOp->setFastMathFlags(I->getFastMathFlags());
695     } else {
696       NewOp = NodesToRewrite.pop_back_val();
697     }
698 
699     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
700     Op->setOperand(0, NewOp);
701     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
702     ExpressionChangedStart = Op;
703     if (!ExpressionChangedEnd)
704       ExpressionChangedEnd = Op;
705     MadeChange = true;
706     ++NumChanged;
707     Op = NewOp;
708   }
709 
710   // If the expression changed non-trivially then clear out all subclass data
711   // starting from the operator specified in ExpressionChanged, and compactify
712   // the operators to just before the expression root to guarantee that the
713   // expression tree is dominated by all of Ops.
714   if (ExpressionChangedStart) {
715     bool ClearFlags = true;
716     do {
717       // Preserve flags.
718       if (ClearFlags) {
719         if (isa<FPMathOperator>(I)) {
720           FastMathFlags Flags = I->getFastMathFlags();
721           ExpressionChangedStart->clearSubclassOptionalData();
722           ExpressionChangedStart->setFastMathFlags(Flags);
723         } else {
724           ExpressionChangedStart->clearSubclassOptionalData();
725           // Note that it doesn't hold for mul if one of the operands is zero.
726           // TODO: We can preserve NUW flag if we prove that all mul operands
727           // are non-zero.
728           if (ExpressionChangedStart->getOpcode() == Instruction::Add) {
729             if (Flags.HasNUW)
730               ExpressionChangedStart->setHasNoUnsignedWrap();
731             if (Flags.HasNSW && (Flags.AllKnownNonNegative || Flags.HasNUW))
732               ExpressionChangedStart->setHasNoSignedWrap();
733           }
734         }
735       }
736 
737       if (ExpressionChangedStart == ExpressionChangedEnd)
738         ClearFlags = false;
739       if (ExpressionChangedStart == I)
740         break;
741 
742       // Discard any debug info related to the expressions that has changed (we
743       // can leave debug info related to the root and any operation that didn't
744       // change, since the result of the expression tree should be the same
745       // even after reassociation).
746       if (ClearFlags)
747         replaceDbgUsesWithUndef(ExpressionChangedStart);
748 
749       ExpressionChangedStart->moveBefore(I);
750       ExpressionChangedStart =
751           cast<BinaryOperator>(*ExpressionChangedStart->user_begin());
752     } while (true);
753   }
754 
755   // Throw away any left over nodes from the original expression.
756   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
757     RedoInsts.insert(NodesToRewrite[i]);
758 }
759 
760 /// Insert instructions before the instruction pointed to by BI,
761 /// that computes the negative version of the value specified.  The negative
762 /// version of the value is returned, and BI is left pointing at the instruction
763 /// that should be processed next by the reassociation pass.
764 /// Also add intermediate instructions to the redo list that are modified while
765 /// pushing the negates through adds.  These will be revisited to see if
766 /// additional opportunities have been exposed.
767 static Value *NegateValue(Value *V, Instruction *BI,
768                           ReassociatePass::OrderedSet &ToRedo) {
769   if (auto *C = dyn_cast<Constant>(V)) {
770     const DataLayout &DL = BI->getModule()->getDataLayout();
771     Constant *Res = C->getType()->isFPOrFPVectorTy()
772                         ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)
773                         : ConstantExpr::getNeg(C);
774     if (Res)
775       return Res;
776   }
777 
778   // We are trying to expose opportunity for reassociation.  One of the things
779   // that we want to do to achieve this is to push a negation as deep into an
780   // expression chain as possible, to expose the add instructions.  In practice,
781   // this means that we turn this:
782   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
783   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
784   // the constants.  We assume that instcombine will clean up the mess later if
785   // we introduce tons of unnecessary negation instructions.
786   //
787   if (BinaryOperator *I =
788           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
789     // Push the negates through the add.
790     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
791     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
792     if (I->getOpcode() == Instruction::Add) {
793       I->setHasNoUnsignedWrap(false);
794       I->setHasNoSignedWrap(false);
795     }
796 
797     // We must move the add instruction here, because the neg instructions do
798     // not dominate the old add instruction in general.  By moving it, we are
799     // assured that the neg instructions we just inserted dominate the
800     // instruction we are about to insert after them.
801     //
802     I->moveBefore(BI);
803     I->setName(I->getName()+".neg");
804 
805     // Add the intermediate negates to the redo list as processing them later
806     // could expose more reassociating opportunities.
807     ToRedo.insert(I);
808     return I;
809   }
810 
811   // Okay, we need to materialize a negated version of V with an instruction.
812   // Scan the use lists of V to see if we have one already.
813   for (User *U : V->users()) {
814     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
815       continue;
816 
817     // We found one!  Now we have to make sure that the definition dominates
818     // this use.  We do this by moving it to the entry block (if it is a
819     // non-instruction value) or right after the definition.  These negates will
820     // be zapped by reassociate later, so we don't need much finesse here.
821     Instruction *TheNeg = dyn_cast<Instruction>(U);
822 
823     // We can't safely propagate a vector zero constant with poison/undef lanes.
824     Constant *C;
825     if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) &&
826         C->containsUndefOrPoisonElement())
827       continue;
828 
829     // Verify that the negate is in this function, V might be a constant expr.
830     if (!TheNeg ||
831         TheNeg->getParent()->getParent() != BI->getParent()->getParent())
832       continue;
833 
834     BasicBlock::iterator InsertPt;
835     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
836       auto InsertPtOpt = InstInput->getInsertionPointAfterDef();
837       if (!InsertPtOpt)
838         continue;
839       InsertPt = *InsertPtOpt;
840     } else {
841       InsertPt = TheNeg->getFunction()
842                      ->getEntryBlock()
843                      .getFirstNonPHIOrDbg()
844                      ->getIterator();
845     }
846 
847     // Check that if TheNeg is moved out of its parent block, we drop its
848     // debug location to avoid extra coverage.
849     // See test dropping_debugloc_the_neg.ll for a detailed example.
850     if (TheNeg->getParent() != InsertPt->getParent())
851       TheNeg->dropLocation();
852     TheNeg->moveBefore(*InsertPt->getParent(), InsertPt);
853 
854     if (TheNeg->getOpcode() == Instruction::Sub) {
855       TheNeg->setHasNoUnsignedWrap(false);
856       TheNeg->setHasNoSignedWrap(false);
857     } else {
858       TheNeg->andIRFlags(BI);
859     }
860     ToRedo.insert(TheNeg);
861     return TheNeg;
862   }
863 
864   // Insert a 'neg' instruction that subtracts the value from zero to get the
865   // negation.
866   Instruction *NewNeg =
867       CreateNeg(V, V->getName() + ".neg", BI->getIterator(), BI);
868   ToRedo.insert(NewNeg);
869   return NewNeg;
870 }
871 
872 // See if this `or` looks like an load widening reduction, i.e. that it
873 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
874 // ensure that the pattern is *really* a load widening reduction,
875 // we do not ensure that it can really be replaced with a widened load,
876 // only that it mostly looks like one.
877 static bool isLoadCombineCandidate(Instruction *Or) {
878   SmallVector<Instruction *, 8> Worklist;
879   SmallSet<Instruction *, 8> Visited;
880 
881   auto Enqueue = [&](Value *V) {
882     auto *I = dyn_cast<Instruction>(V);
883     // Each node of an `or` reduction must be an instruction,
884     if (!I)
885       return false; // Node is certainly not part of an `or` load reduction.
886     // Only process instructions we have never processed before.
887     if (Visited.insert(I).second)
888       Worklist.emplace_back(I);
889     return true; // Will need to look at parent nodes.
890   };
891 
892   if (!Enqueue(Or))
893     return false; // Not an `or` reduction pattern.
894 
895   while (!Worklist.empty()) {
896     auto *I = Worklist.pop_back_val();
897 
898     // Okay, which instruction is this node?
899     switch (I->getOpcode()) {
900     case Instruction::Or:
901       // Got an `or` node. That's fine, just recurse into it's operands.
902       for (Value *Op : I->operands())
903         if (!Enqueue(Op))
904           return false; // Not an `or` reduction pattern.
905       continue;
906 
907     case Instruction::Shl:
908     case Instruction::ZExt:
909       // `shl`/`zext` nodes are fine, just recurse into their base operand.
910       if (!Enqueue(I->getOperand(0)))
911         return false; // Not an `or` reduction pattern.
912       continue;
913 
914     case Instruction::Load:
915       // Perfect, `load` node means we've reached an edge of the graph.
916       continue;
917 
918     default:        // Unknown node.
919       return false; // Not an `or` reduction pattern.
920     }
921   }
922 
923   return true;
924 }
925 
926 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
927 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
928   // Don't bother to convert this up unless either the LHS is an associable add
929   // or subtract or mul or if this is only used by one of the above.
930   // This is only a compile-time improvement, it is not needed for correctness!
931   auto isInteresting = [](Value *V) {
932     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
933                     Instruction::Shl})
934       if (isReassociableOp(V, Op))
935         return true;
936     return false;
937   };
938 
939   if (any_of(Or->operands(), isInteresting))
940     return true;
941 
942   Value *VB = Or->user_back();
943   if (Or->hasOneUse() && isInteresting(VB))
944     return true;
945 
946   return false;
947 }
948 
949 /// If we have (X|Y), and iff X and Y have no common bits set,
950 /// transform this into (X+Y) to allow arithmetics reassociation.
951 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
952   // Convert an or into an add.
953   BinaryOperator *New = CreateAdd(Or->getOperand(0), Or->getOperand(1), "",
954                                   Or->getIterator(), Or);
955   New->setHasNoSignedWrap();
956   New->setHasNoUnsignedWrap();
957   New->takeName(Or);
958 
959   // Everyone now refers to the add instruction.
960   Or->replaceAllUsesWith(New);
961   New->setDebugLoc(Or->getDebugLoc());
962 
963   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
964   return New;
965 }
966 
967 /// Return true if we should break up this subtract of X-Y into (X + -Y).
968 static bool ShouldBreakUpSubtract(Instruction *Sub) {
969   // If this is a negation, we can't split it up!
970   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
971     return false;
972 
973   // Don't breakup X - undef.
974   if (isa<UndefValue>(Sub->getOperand(1)))
975     return false;
976 
977   // Don't bother to break this up unless either the LHS is an associable add or
978   // subtract or if this is only used by one.
979   Value *V0 = Sub->getOperand(0);
980   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
981       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
982     return true;
983   Value *V1 = Sub->getOperand(1);
984   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
985       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
986     return true;
987   Value *VB = Sub->user_back();
988   if (Sub->hasOneUse() &&
989       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
990        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
991     return true;
992 
993   return false;
994 }
995 
996 /// If we have (X-Y), and if either X is an add, or if this is only used by an
997 /// add, transform this into (X+(0-Y)) to promote better reassociation.
998 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
999                                        ReassociatePass::OrderedSet &ToRedo) {
1000   // Convert a subtract into an add and a neg instruction. This allows sub
1001   // instructions to be commuted with other add instructions.
1002   //
1003   // Calculate the negative value of Operand 1 of the sub instruction,
1004   // and set it as the RHS of the add instruction we just made.
1005   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1006   BinaryOperator *New =
1007       CreateAdd(Sub->getOperand(0), NegVal, "", Sub->getIterator(), Sub);
1008   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1009   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1010   New->takeName(Sub);
1011 
1012   // Everyone now refers to the add instruction.
1013   Sub->replaceAllUsesWith(New);
1014   New->setDebugLoc(Sub->getDebugLoc());
1015 
1016   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1017   return New;
1018 }
1019 
1020 /// If this is a shift of a reassociable multiply or is used by one, change
1021 /// this into a multiply by a constant to assist with further reassociation.
1022 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1023   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1024   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1025   MulCst = ConstantFoldBinaryInstruction(Instruction::Shl, MulCst, SA);
1026   assert(MulCst && "Constant folding of immediate constants failed");
1027 
1028   BinaryOperator *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
1029                                                   "", Shl->getIterator());
1030   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1031   Mul->takeName(Shl);
1032 
1033   // Everyone now refers to the mul instruction.
1034   Shl->replaceAllUsesWith(Mul);
1035   Mul->setDebugLoc(Shl->getDebugLoc());
1036 
1037   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1038   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1039   // handling.  It can be preserved as long as we're not left shifting by
1040   // bitwidth - 1.
1041   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1042   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1043   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1044   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1045     Mul->setHasNoSignedWrap(true);
1046   Mul->setHasNoUnsignedWrap(NUW);
1047   return Mul;
1048 }
1049 
1050 /// Scan backwards and forwards among values with the same rank as element i
1051 /// to see if X exists.  If X does not exist, return i.  This is useful when
1052 /// scanning for 'x' when we see '-x' because they both get the same rank.
1053 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1054                                   unsigned i, Value *X) {
1055   unsigned XRank = Ops[i].Rank;
1056   unsigned e = Ops.size();
1057   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1058     if (Ops[j].Op == X)
1059       return j;
1060     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1061       if (Instruction *I2 = dyn_cast<Instruction>(X))
1062         if (I1->isIdenticalTo(I2))
1063           return j;
1064   }
1065   // Scan backwards.
1066   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1067     if (Ops[j].Op == X)
1068       return j;
1069     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1070       if (Instruction *I2 = dyn_cast<Instruction>(X))
1071         if (I1->isIdenticalTo(I2))
1072           return j;
1073   }
1074   return i;
1075 }
1076 
1077 /// Emit a tree of add instructions, summing Ops together
1078 /// and returning the result.  Insert the tree before I.
1079 static Value *EmitAddTreeOfValues(BasicBlock::iterator It,
1080                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1081   if (Ops.size() == 1) return Ops.back();
1082 
1083   Value *V1 = Ops.pop_back_val();
1084   Value *V2 = EmitAddTreeOfValues(It, Ops);
1085   return CreateAdd(V2, V1, "reass.add", It, &*It);
1086 }
1087 
1088 /// If V is an expression tree that is a multiplication sequence,
1089 /// and if this sequence contains a multiply by Factor,
1090 /// remove Factor from the tree and return the new tree.
1091 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1092   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1093   if (!BO)
1094     return nullptr;
1095 
1096   SmallVector<RepeatedValue, 8> Tree;
1097   OverflowTracking Flags;
1098   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, Flags);
1099   SmallVector<ValueEntry, 8> Factors;
1100   Factors.reserve(Tree.size());
1101   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1102     RepeatedValue E = Tree[i];
1103     Factors.append(E.second, ValueEntry(getRank(E.first), E.first));
1104   }
1105 
1106   bool FoundFactor = false;
1107   bool NeedsNegate = false;
1108   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1109     if (Factors[i].Op == Factor) {
1110       FoundFactor = true;
1111       Factors.erase(Factors.begin()+i);
1112       break;
1113     }
1114 
1115     // If this is a negative version of this factor, remove it.
1116     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1117       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1118         if (FC1->getValue() == -FC2->getValue()) {
1119           FoundFactor = NeedsNegate = true;
1120           Factors.erase(Factors.begin()+i);
1121           break;
1122         }
1123     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1124       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1125         const APFloat &F1 = FC1->getValueAPF();
1126         APFloat F2(FC2->getValueAPF());
1127         F2.changeSign();
1128         if (F1 == F2) {
1129           FoundFactor = NeedsNegate = true;
1130           Factors.erase(Factors.begin() + i);
1131           break;
1132         }
1133       }
1134     }
1135   }
1136 
1137   if (!FoundFactor) {
1138     // Make sure to restore the operands to the expression tree.
1139     RewriteExprTree(BO, Factors, Flags);
1140     return nullptr;
1141   }
1142 
1143   BasicBlock::iterator InsertPt = ++BO->getIterator();
1144 
1145   // If this was just a single multiply, remove the multiply and return the only
1146   // remaining operand.
1147   if (Factors.size() == 1) {
1148     RedoInsts.insert(BO);
1149     V = Factors[0].Op;
1150   } else {
1151     RewriteExprTree(BO, Factors, Flags);
1152     V = BO;
1153   }
1154 
1155   if (NeedsNegate)
1156     V = CreateNeg(V, "neg", InsertPt, BO);
1157 
1158   return V;
1159 }
1160 
1161 /// If V is a single-use multiply, recursively add its operands as factors,
1162 /// otherwise add V to the list of factors.
1163 ///
1164 /// Ops is the top-level list of add operands we're trying to factor.
1165 static void FindSingleUseMultiplyFactors(Value *V,
1166                                          SmallVectorImpl<Value*> &Factors) {
1167   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1168   if (!BO) {
1169     Factors.push_back(V);
1170     return;
1171   }
1172 
1173   // Otherwise, add the LHS and RHS to the list of factors.
1174   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1175   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1176 }
1177 
1178 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1179 /// This optimizes based on identities.  If it can be reduced to a single Value,
1180 /// it is returned, otherwise the Ops list is mutated as necessary.
1181 static Value *OptimizeAndOrXor(unsigned Opcode,
1182                                SmallVectorImpl<ValueEntry> &Ops) {
1183   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1184   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1185   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1186     // First, check for X and ~X in the operand list.
1187     assert(i < Ops.size());
1188     Value *X;
1189     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1190       unsigned FoundX = FindInOperandList(Ops, i, X);
1191       if (FoundX != i) {
1192         if (Opcode == Instruction::And)   // ...&X&~X = 0
1193           return Constant::getNullValue(X->getType());
1194 
1195         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1196           return Constant::getAllOnesValue(X->getType());
1197       }
1198     }
1199 
1200     // Next, check for duplicate pairs of values, which we assume are next to
1201     // each other, due to our sorting criteria.
1202     assert(i < Ops.size());
1203     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1204       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1205         // Drop duplicate values for And and Or.
1206         Ops.erase(Ops.begin()+i);
1207         --i; --e;
1208         ++NumAnnihil;
1209         continue;
1210       }
1211 
1212       // Drop pairs of values for Xor.
1213       assert(Opcode == Instruction::Xor);
1214       if (e == 2)
1215         return Constant::getNullValue(Ops[0].Op->getType());
1216 
1217       // Y ^ X^X -> Y
1218       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1219       i -= 1; e -= 2;
1220       ++NumAnnihil;
1221     }
1222   }
1223   return nullptr;
1224 }
1225 
1226 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1227 /// instruction with the given two operands, and return the resulting
1228 /// instruction. There are two special cases: 1) if the constant operand is 0,
1229 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1230 /// be returned.
1231 static Value *createAndInstr(BasicBlock::iterator InsertBefore, Value *Opnd,
1232                              const APInt &ConstOpnd) {
1233   if (ConstOpnd.isZero())
1234     return nullptr;
1235 
1236   if (ConstOpnd.isAllOnes())
1237     return Opnd;
1238 
1239   Instruction *I = BinaryOperator::CreateAnd(
1240       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1241       InsertBefore);
1242   I->setDebugLoc(InsertBefore->getDebugLoc());
1243   return I;
1244 }
1245 
1246 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1247 // into "R ^ C", where C would be 0, and R is a symbolic value.
1248 //
1249 // If it was successful, true is returned, and the "R" and "C" is returned
1250 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1251 // and both "Res" and "ConstOpnd" remain unchanged.
1252 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1253                                      APInt &ConstOpnd, Value *&Res) {
1254   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1255   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1256   //                       = (x & ~c1) ^ (c1 ^ c2)
1257   // It is useful only when c1 == c2.
1258   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1259     return false;
1260 
1261   if (!Opnd1->getValue()->hasOneUse())
1262     return false;
1263 
1264   const APInt &C1 = Opnd1->getConstPart();
1265   if (C1 != ConstOpnd)
1266     return false;
1267 
1268   Value *X = Opnd1->getSymbolicPart();
1269   Res = createAndInstr(It, X, ~C1);
1270   // ConstOpnd was C2, now C1 ^ C2.
1271   ConstOpnd ^= C1;
1272 
1273   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1274     RedoInsts.insert(T);
1275   return true;
1276 }
1277 
1278 // Helper function of OptimizeXor(). It tries to simplify
1279 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1280 // symbolic value.
1281 //
1282 // If it was successful, true is returned, and the "R" and "C" is returned
1283 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1284 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1285 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1286 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1287                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1288                                      Value *&Res) {
1289   Value *X = Opnd1->getSymbolicPart();
1290   if (X != Opnd2->getSymbolicPart())
1291     return false;
1292 
1293   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1294   int DeadInstNum = 1;
1295   if (Opnd1->getValue()->hasOneUse())
1296     DeadInstNum++;
1297   if (Opnd2->getValue()->hasOneUse())
1298     DeadInstNum++;
1299 
1300   // Xor-Rule 2:
1301   //  (x | c1) ^ (x & c2)
1302   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1303   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1304   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1305   //
1306   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1307     if (Opnd2->isOrExpr())
1308       std::swap(Opnd1, Opnd2);
1309 
1310     const APInt &C1 = Opnd1->getConstPart();
1311     const APInt &C2 = Opnd2->getConstPart();
1312     APInt C3((~C1) ^ C2);
1313 
1314     // Do not increase code size!
1315     if (!C3.isZero() && !C3.isAllOnes()) {
1316       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1317       if (NewInstNum > DeadInstNum)
1318         return false;
1319     }
1320 
1321     Res = createAndInstr(It, X, C3);
1322     ConstOpnd ^= C1;
1323   } else if (Opnd1->isOrExpr()) {
1324     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1325     //
1326     const APInt &C1 = Opnd1->getConstPart();
1327     const APInt &C2 = Opnd2->getConstPart();
1328     APInt C3 = C1 ^ C2;
1329 
1330     // Do not increase code size
1331     if (!C3.isZero() && !C3.isAllOnes()) {
1332       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1333       if (NewInstNum > DeadInstNum)
1334         return false;
1335     }
1336 
1337     Res = createAndInstr(It, X, C3);
1338     ConstOpnd ^= C3;
1339   } else {
1340     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1341     //
1342     const APInt &C1 = Opnd1->getConstPart();
1343     const APInt &C2 = Opnd2->getConstPart();
1344     APInt C3 = C1 ^ C2;
1345     Res = createAndInstr(It, X, C3);
1346   }
1347 
1348   // Put the original operands in the Redo list; hope they will be deleted
1349   // as dead code.
1350   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1351     RedoInsts.insert(T);
1352   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1353     RedoInsts.insert(T);
1354 
1355   return true;
1356 }
1357 
1358 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1359 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1360 /// necessary.
1361 Value *ReassociatePass::OptimizeXor(Instruction *I,
1362                                     SmallVectorImpl<ValueEntry> &Ops) {
1363   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1364     return V;
1365 
1366   if (Ops.size() == 1)
1367     return nullptr;
1368 
1369   SmallVector<XorOpnd, 8> Opnds;
1370   SmallVector<XorOpnd*, 8> OpndPtrs;
1371   Type *Ty = Ops[0].Op->getType();
1372   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1373 
1374   // Step 1: Convert ValueEntry to XorOpnd
1375   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1376     Value *V = Ops[i].Op;
1377     const APInt *C;
1378     // TODO: Support non-splat vectors.
1379     if (match(V, m_APInt(C))) {
1380       ConstOpnd ^= *C;
1381     } else {
1382       XorOpnd O(V);
1383       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1384       Opnds.push_back(O);
1385     }
1386   }
1387 
1388   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1389   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1390   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1391   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1392   //  when new elements are added to the vector.
1393   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1394     OpndPtrs.push_back(&Opnds[i]);
1395 
1396   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1397   //  the same symbolic value cluster together. For instance, the input operand
1398   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1399   //  ("x | 123", "x & 789", "y & 456").
1400   //
1401   //  The purpose is twofold:
1402   //  1) Cluster together the operands sharing the same symbolic-value.
1403   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1404   //     could potentially shorten crital path, and expose more loop-invariants.
1405   //     Note that values' rank are basically defined in RPO order (FIXME).
1406   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1407   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1408   //     "z" in the order of X-Y-Z is better than any other orders.
1409   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1410     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1411   });
1412 
1413   // Step 3: Combine adjacent operands
1414   XorOpnd *PrevOpnd = nullptr;
1415   bool Changed = false;
1416   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1417     XorOpnd *CurrOpnd = OpndPtrs[i];
1418     // The combined value
1419     Value *CV;
1420 
1421     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1422     if (!ConstOpnd.isZero() &&
1423         CombineXorOpnd(I->getIterator(), CurrOpnd, ConstOpnd, CV)) {
1424       Changed = true;
1425       if (CV)
1426         *CurrOpnd = XorOpnd(CV);
1427       else {
1428         CurrOpnd->Invalidate();
1429         continue;
1430       }
1431     }
1432 
1433     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1434       PrevOpnd = CurrOpnd;
1435       continue;
1436     }
1437 
1438     // step 3.2: When previous and current operands share the same symbolic
1439     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1440     if (CombineXorOpnd(I->getIterator(), CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1441       // Remove previous operand
1442       PrevOpnd->Invalidate();
1443       if (CV) {
1444         *CurrOpnd = XorOpnd(CV);
1445         PrevOpnd = CurrOpnd;
1446       } else {
1447         CurrOpnd->Invalidate();
1448         PrevOpnd = nullptr;
1449       }
1450       Changed = true;
1451     }
1452   }
1453 
1454   // Step 4: Reassemble the Ops
1455   if (Changed) {
1456     Ops.clear();
1457     for (const XorOpnd &O : Opnds) {
1458       if (O.isInvalid())
1459         continue;
1460       ValueEntry VE(getRank(O.getValue()), O.getValue());
1461       Ops.push_back(VE);
1462     }
1463     if (!ConstOpnd.isZero()) {
1464       Value *C = ConstantInt::get(Ty, ConstOpnd);
1465       ValueEntry VE(getRank(C), C);
1466       Ops.push_back(VE);
1467     }
1468     unsigned Sz = Ops.size();
1469     if (Sz == 1)
1470       return Ops.back().Op;
1471     if (Sz == 0) {
1472       assert(ConstOpnd.isZero());
1473       return ConstantInt::get(Ty, ConstOpnd);
1474     }
1475   }
1476 
1477   return nullptr;
1478 }
1479 
1480 /// Optimize a series of operands to an 'add' instruction.  This
1481 /// optimizes based on identities.  If it can be reduced to a single Value, it
1482 /// is returned, otherwise the Ops list is mutated as necessary.
1483 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1484                                     SmallVectorImpl<ValueEntry> &Ops) {
1485   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1486   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1487   // scan for any
1488   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1489 
1490   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1491     Value *TheOp = Ops[i].Op;
1492     // Check to see if we've seen this operand before.  If so, we factor all
1493     // instances of the operand together.  Due to our sorting criteria, we know
1494     // that these need to be next to each other in the vector.
1495     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1496       // Rescan the list, remove all instances of this operand from the expr.
1497       unsigned NumFound = 0;
1498       do {
1499         Ops.erase(Ops.begin()+i);
1500         ++NumFound;
1501       } while (i != Ops.size() && Ops[i].Op == TheOp);
1502 
1503       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1504                         << '\n');
1505       ++NumFactor;
1506 
1507       // Insert a new multiply.
1508       Type *Ty = TheOp->getType();
1509       Constant *C = Ty->isIntOrIntVectorTy() ?
1510         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1511       Instruction *Mul = CreateMul(TheOp, C, "factor", I->getIterator(), I);
1512 
1513       // Now that we have inserted a multiply, optimize it. This allows us to
1514       // handle cases that require multiple factoring steps, such as this:
1515       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1516       RedoInsts.insert(Mul);
1517 
1518       // If every add operand was a duplicate, return the multiply.
1519       if (Ops.empty())
1520         return Mul;
1521 
1522       // Otherwise, we had some input that didn't have the dupe, such as
1523       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1524       // things being added by this operation.
1525       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1526 
1527       --i;
1528       e = Ops.size();
1529       continue;
1530     }
1531 
1532     // Check for X and -X or X and ~X in the operand list.
1533     Value *X;
1534     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1535         !match(TheOp, m_FNeg(m_Value(X))))
1536       continue;
1537 
1538     unsigned FoundX = FindInOperandList(Ops, i, X);
1539     if (FoundX == i)
1540       continue;
1541 
1542     // Remove X and -X from the operand list.
1543     if (Ops.size() == 2 &&
1544         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1545       return Constant::getNullValue(X->getType());
1546 
1547     // Remove X and ~X from the operand list.
1548     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1549       return Constant::getAllOnesValue(X->getType());
1550 
1551     Ops.erase(Ops.begin()+i);
1552     if (i < FoundX)
1553       --FoundX;
1554     else
1555       --i;   // Need to back up an extra one.
1556     Ops.erase(Ops.begin()+FoundX);
1557     ++NumAnnihil;
1558     --i;     // Revisit element.
1559     e -= 2;  // Removed two elements.
1560 
1561     // if X and ~X we append -1 to the operand list.
1562     if (match(TheOp, m_Not(m_Value()))) {
1563       Value *V = Constant::getAllOnesValue(X->getType());
1564       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1565       e += 1;
1566     }
1567   }
1568 
1569   // Scan the operand list, checking to see if there are any common factors
1570   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1571   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1572   // To efficiently find this, we count the number of times a factor occurs
1573   // for any ADD operands that are MULs.
1574   DenseMap<Value*, unsigned> FactorOccurrences;
1575 
1576   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1577   // where they are actually the same multiply.
1578   unsigned MaxOcc = 0;
1579   Value *MaxOccVal = nullptr;
1580   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1581     BinaryOperator *BOp =
1582         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1583     if (!BOp)
1584       continue;
1585 
1586     // Compute all of the factors of this added value.
1587     SmallVector<Value*, 8> Factors;
1588     FindSingleUseMultiplyFactors(BOp, Factors);
1589     assert(Factors.size() > 1 && "Bad linearize!");
1590 
1591     // Add one to FactorOccurrences for each unique factor in this op.
1592     SmallPtrSet<Value*, 8> Duplicates;
1593     for (Value *Factor : Factors) {
1594       if (!Duplicates.insert(Factor).second)
1595         continue;
1596 
1597       unsigned Occ = ++FactorOccurrences[Factor];
1598       if (Occ > MaxOcc) {
1599         MaxOcc = Occ;
1600         MaxOccVal = Factor;
1601       }
1602 
1603       // If Factor is a negative constant, add the negated value as a factor
1604       // because we can percolate the negate out.  Watch for minint, which
1605       // cannot be positivified.
1606       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1607         if (CI->isNegative() && !CI->isMinValue(true)) {
1608           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1609           if (!Duplicates.insert(Factor).second)
1610             continue;
1611           unsigned Occ = ++FactorOccurrences[Factor];
1612           if (Occ > MaxOcc) {
1613             MaxOcc = Occ;
1614             MaxOccVal = Factor;
1615           }
1616         }
1617       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1618         if (CF->isNegative()) {
1619           APFloat F(CF->getValueAPF());
1620           F.changeSign();
1621           Factor = ConstantFP::get(CF->getContext(), F);
1622           if (!Duplicates.insert(Factor).second)
1623             continue;
1624           unsigned Occ = ++FactorOccurrences[Factor];
1625           if (Occ > MaxOcc) {
1626             MaxOcc = Occ;
1627             MaxOccVal = Factor;
1628           }
1629         }
1630       }
1631     }
1632   }
1633 
1634   // If any factor occurred more than one time, we can pull it out.
1635   if (MaxOcc > 1) {
1636     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1637                       << '\n');
1638     ++NumFactor;
1639 
1640     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1641     // this, we could otherwise run into situations where removing a factor
1642     // from an expression will drop a use of maxocc, and this can cause
1643     // RemoveFactorFromExpression on successive values to behave differently.
1644     Instruction *DummyInst =
1645         I->getType()->isIntOrIntVectorTy()
1646             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1647             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1648 
1649     SmallVector<WeakTrackingVH, 4> NewMulOps;
1650     for (unsigned i = 0; i != Ops.size(); ++i) {
1651       // Only try to remove factors from expressions we're allowed to.
1652       BinaryOperator *BOp =
1653           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1654       if (!BOp)
1655         continue;
1656 
1657       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1658         // The factorized operand may occur several times.  Convert them all in
1659         // one fell swoop.
1660         for (unsigned j = Ops.size(); j != i;) {
1661           --j;
1662           if (Ops[j].Op == Ops[i].Op) {
1663             NewMulOps.push_back(V);
1664             Ops.erase(Ops.begin()+j);
1665           }
1666         }
1667         --i;
1668       }
1669     }
1670 
1671     // No need for extra uses anymore.
1672     DummyInst->deleteValue();
1673 
1674     unsigned NumAddedValues = NewMulOps.size();
1675     Value *V = EmitAddTreeOfValues(I->getIterator(), NewMulOps);
1676 
1677     // Now that we have inserted the add tree, optimize it. This allows us to
1678     // handle cases that require multiple factoring steps, such as this:
1679     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1680     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1681     (void)NumAddedValues;
1682     if (Instruction *VI = dyn_cast<Instruction>(V))
1683       RedoInsts.insert(VI);
1684 
1685     // Create the multiply.
1686     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I->getIterator(), I);
1687 
1688     // Rerun associate on the multiply in case the inner expression turned into
1689     // a multiply.  We want to make sure that we keep things in canonical form.
1690     RedoInsts.insert(V2);
1691 
1692     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1693     // entire result expression is just the multiply "A*(B+C)".
1694     if (Ops.empty())
1695       return V2;
1696 
1697     // Otherwise, we had some input that didn't have the factor, such as
1698     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1699     // things being added by this operation.
1700     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1701   }
1702 
1703   return nullptr;
1704 }
1705 
1706 /// Build up a vector of value/power pairs factoring a product.
1707 ///
1708 /// Given a series of multiplication operands, build a vector of factors and
1709 /// the powers each is raised to when forming the final product. Sort them in
1710 /// the order of descending power.
1711 ///
1712 ///      (x*x)          -> [(x, 2)]
1713 ///     ((x*x)*x)       -> [(x, 3)]
1714 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1715 ///
1716 /// \returns Whether any factors have a power greater than one.
1717 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1718                                    SmallVectorImpl<Factor> &Factors) {
1719   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1720   // Compute the sum of powers of simplifiable factors.
1721   unsigned FactorPowerSum = 0;
1722   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1723     Value *Op = Ops[Idx-1].Op;
1724 
1725     // Count the number of occurrences of this value.
1726     unsigned Count = 1;
1727     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1728       ++Count;
1729     // Track for simplification all factors which occur 2 or more times.
1730     if (Count > 1)
1731       FactorPowerSum += Count;
1732   }
1733 
1734   // We can only simplify factors if the sum of the powers of our simplifiable
1735   // factors is 4 or higher. When that is the case, we will *always* have
1736   // a simplification. This is an important invariant to prevent cyclicly
1737   // trying to simplify already minimal formations.
1738   if (FactorPowerSum < 4)
1739     return false;
1740 
1741   // Now gather the simplifiable factors, removing them from Ops.
1742   FactorPowerSum = 0;
1743   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1744     Value *Op = Ops[Idx-1].Op;
1745 
1746     // Count the number of occurrences of this value.
1747     unsigned Count = 1;
1748     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1749       ++Count;
1750     if (Count == 1)
1751       continue;
1752     // Move an even number of occurrences to Factors.
1753     Count &= ~1U;
1754     Idx -= Count;
1755     FactorPowerSum += Count;
1756     Factors.push_back(Factor(Op, Count));
1757     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1758   }
1759 
1760   // None of the adjustments above should have reduced the sum of factor powers
1761   // below our mininum of '4'.
1762   assert(FactorPowerSum >= 4);
1763 
1764   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1765     return LHS.Power > RHS.Power;
1766   });
1767   return true;
1768 }
1769 
1770 /// Build a tree of multiplies, computing the product of Ops.
1771 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1772                                 SmallVectorImpl<Value*> &Ops) {
1773   if (Ops.size() == 1)
1774     return Ops.back();
1775 
1776   Value *LHS = Ops.pop_back_val();
1777   do {
1778     if (LHS->getType()->isIntOrIntVectorTy())
1779       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1780     else
1781       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1782   } while (!Ops.empty());
1783 
1784   return LHS;
1785 }
1786 
1787 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1788 ///
1789 /// Given a vector of values raised to various powers, where no two values are
1790 /// equal and the powers are sorted in decreasing order, compute the minimal
1791 /// DAG of multiplies to compute the final product, and return that product
1792 /// value.
1793 Value *
1794 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1795                                          SmallVectorImpl<Factor> &Factors) {
1796   assert(Factors[0].Power);
1797   SmallVector<Value *, 4> OuterProduct;
1798   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1799        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1800     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1801       LastIdx = Idx;
1802       continue;
1803     }
1804 
1805     // We want to multiply across all the factors with the same power so that
1806     // we can raise them to that power as a single entity. Build a mini tree
1807     // for that.
1808     SmallVector<Value *, 4> InnerProduct;
1809     InnerProduct.push_back(Factors[LastIdx].Base);
1810     do {
1811       InnerProduct.push_back(Factors[Idx].Base);
1812       ++Idx;
1813     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1814 
1815     // Reset the base value of the first factor to the new expression tree.
1816     // We'll remove all the factors with the same power in a second pass.
1817     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1818     if (Instruction *MI = dyn_cast<Instruction>(M))
1819       RedoInsts.insert(MI);
1820 
1821     LastIdx = Idx;
1822   }
1823   // Unique factors with equal powers -- we've folded them into the first one's
1824   // base.
1825   Factors.erase(llvm::unique(Factors,
1826                              [](const Factor &LHS, const Factor &RHS) {
1827                                return LHS.Power == RHS.Power;
1828                              }),
1829                 Factors.end());
1830 
1831   // Iteratively collect the base of each factor with an add power into the
1832   // outer product, and halve each power in preparation for squaring the
1833   // expression.
1834   for (Factor &F : Factors) {
1835     if (F.Power & 1)
1836       OuterProduct.push_back(F.Base);
1837     F.Power >>= 1;
1838   }
1839   if (Factors[0].Power) {
1840     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1841     OuterProduct.push_back(SquareRoot);
1842     OuterProduct.push_back(SquareRoot);
1843   }
1844   if (OuterProduct.size() == 1)
1845     return OuterProduct.front();
1846 
1847   Value *V = buildMultiplyTree(Builder, OuterProduct);
1848   return V;
1849 }
1850 
1851 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1852                                     SmallVectorImpl<ValueEntry> &Ops) {
1853   // We can only optimize the multiplies when there is a chain of more than
1854   // three, such that a balanced tree might require fewer total multiplies.
1855   if (Ops.size() < 4)
1856     return nullptr;
1857 
1858   // Try to turn linear trees of multiplies without other uses of the
1859   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1860   // re-use.
1861   SmallVector<Factor, 4> Factors;
1862   if (!collectMultiplyFactors(Ops, Factors))
1863     return nullptr; // All distinct factors, so nothing left for us to do.
1864 
1865   IRBuilder<> Builder(I);
1866   // The reassociate transformation for FP operations is performed only
1867   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1868   // to the newly generated operations.
1869   if (auto FPI = dyn_cast<FPMathOperator>(I))
1870     Builder.setFastMathFlags(FPI->getFastMathFlags());
1871 
1872   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1873   if (Ops.empty())
1874     return V;
1875 
1876   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1877   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1878   return nullptr;
1879 }
1880 
1881 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1882                                            SmallVectorImpl<ValueEntry> &Ops) {
1883   // Now that we have the linearized expression tree, try to optimize it.
1884   // Start by folding any constants that we found.
1885   const DataLayout &DL = I->getModule()->getDataLayout();
1886   Constant *Cst = nullptr;
1887   unsigned Opcode = I->getOpcode();
1888   while (!Ops.empty()) {
1889     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1890       if (!Cst) {
1891         Ops.pop_back();
1892         Cst = C;
1893         continue;
1894       }
1895       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1896         Ops.pop_back();
1897         Cst = Res;
1898         continue;
1899       }
1900     }
1901     break;
1902   }
1903   // If there was nothing but constants then we are done.
1904   if (Ops.empty())
1905     return Cst;
1906 
1907   // Put the combined constant back at the end of the operand list, except if
1908   // there is no point.  For example, an add of 0 gets dropped here, while a
1909   // multiplication by zero turns the whole expression into zero.
1910   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1911     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1912       return Cst;
1913     Ops.push_back(ValueEntry(0, Cst));
1914   }
1915 
1916   if (Ops.size() == 1) return Ops[0].Op;
1917 
1918   // Handle destructive annihilation due to identities between elements in the
1919   // argument list here.
1920   unsigned NumOps = Ops.size();
1921   switch (Opcode) {
1922   default: break;
1923   case Instruction::And:
1924   case Instruction::Or:
1925     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1926       return Result;
1927     break;
1928 
1929   case Instruction::Xor:
1930     if (Value *Result = OptimizeXor(I, Ops))
1931       return Result;
1932     break;
1933 
1934   case Instruction::Add:
1935   case Instruction::FAdd:
1936     if (Value *Result = OptimizeAdd(I, Ops))
1937       return Result;
1938     break;
1939 
1940   case Instruction::Mul:
1941   case Instruction::FMul:
1942     if (Value *Result = OptimizeMul(I, Ops))
1943       return Result;
1944     break;
1945   }
1946 
1947   if (Ops.size() != NumOps)
1948     return OptimizeExpression(I, Ops);
1949   return nullptr;
1950 }
1951 
1952 // Remove dead instructions and if any operands are trivially dead add them to
1953 // Insts so they will be removed as well.
1954 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1955                                                 OrderedSet &Insts) {
1956   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1957   SmallVector<Value *, 4> Ops(I->operands());
1958   ValueRankMap.erase(I);
1959   Insts.remove(I);
1960   RedoInsts.remove(I);
1961   llvm::salvageDebugInfo(*I);
1962   I->eraseFromParent();
1963   for (auto *Op : Ops)
1964     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1965       if (OpInst->use_empty())
1966         Insts.insert(OpInst);
1967 }
1968 
1969 /// Zap the given instruction, adding interesting operands to the work list.
1970 void ReassociatePass::EraseInst(Instruction *I) {
1971   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1972   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1973 
1974   SmallVector<Value *, 8> Ops(I->operands());
1975   // Erase the dead instruction.
1976   ValueRankMap.erase(I);
1977   RedoInsts.remove(I);
1978   llvm::salvageDebugInfo(*I);
1979   I->eraseFromParent();
1980   // Optimize its operands.
1981   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1982   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1983     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1984       // If this is a node in an expression tree, climb to the expression root
1985       // and add that since that's where optimization actually happens.
1986       unsigned Opcode = Op->getOpcode();
1987       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1988              Visited.insert(Op).second)
1989         Op = Op->user_back();
1990 
1991       // The instruction we're going to push may be coming from a
1992       // dead block, and Reassociate skips the processing of unreachable
1993       // blocks because it's a waste of time and also because it can
1994       // lead to infinite loop due to LLVM's non-standard definition
1995       // of dominance.
1996       if (ValueRankMap.contains(Op))
1997         RedoInsts.insert(Op);
1998     }
1999 
2000   MadeChange = true;
2001 }
2002 
2003 /// Recursively analyze an expression to build a list of instructions that have
2004 /// negative floating-point constant operands. The caller can then transform
2005 /// the list to create positive constants for better reassociation and CSE.
2006 static void getNegatibleInsts(Value *V,
2007                               SmallVectorImpl<Instruction *> &Candidates) {
2008   // Handle only one-use instructions. Combining negations does not justify
2009   // replicating instructions.
2010   Instruction *I;
2011   if (!match(V, m_OneUse(m_Instruction(I))))
2012     return;
2013 
2014   // Handle expressions of multiplications and divisions.
2015   // TODO: This could look through floating-point casts.
2016   const APFloat *C;
2017   switch (I->getOpcode()) {
2018     case Instruction::FMul:
2019       // Not expecting non-canonical code here. Bail out and wait.
2020       if (match(I->getOperand(0), m_Constant()))
2021         break;
2022 
2023       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2024         Candidates.push_back(I);
2025         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2026       }
2027       getNegatibleInsts(I->getOperand(0), Candidates);
2028       getNegatibleInsts(I->getOperand(1), Candidates);
2029       break;
2030     case Instruction::FDiv:
2031       // Not expecting non-canonical code here. Bail out and wait.
2032       if (match(I->getOperand(0), m_Constant()) &&
2033           match(I->getOperand(1), m_Constant()))
2034         break;
2035 
2036       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2037           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2038         Candidates.push_back(I);
2039         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2040       }
2041       getNegatibleInsts(I->getOperand(0), Candidates);
2042       getNegatibleInsts(I->getOperand(1), Candidates);
2043       break;
2044     default:
2045       break;
2046   }
2047 }
2048 
2049 /// Given an fadd/fsub with an operand that is a one-use instruction
2050 /// (the fadd/fsub), try to change negative floating-point constants into
2051 /// positive constants to increase potential for reassociation and CSE.
2052 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2053                                                               Instruction *Op,
2054                                                               Value *OtherOp) {
2055   assert((I->getOpcode() == Instruction::FAdd ||
2056           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2057 
2058   // Collect instructions with negative FP constants from the subtree that ends
2059   // in Op.
2060   SmallVector<Instruction *, 4> Candidates;
2061   getNegatibleInsts(Op, Candidates);
2062   if (Candidates.empty())
2063     return nullptr;
2064 
2065   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2066   // resulting subtract will be broken up later.  This can get us into an
2067   // infinite loop during reassociation.
2068   bool IsFSub = I->getOpcode() == Instruction::FSub;
2069   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2070   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2071     return nullptr;
2072 
2073   for (Instruction *Negatible : Candidates) {
2074     const APFloat *C;
2075     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2076       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2077              "Expecting only 1 constant operand");
2078       assert(C->isNegative() && "Expected negative FP constant");
2079       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2080       MadeChange = true;
2081     }
2082     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2083       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2084              "Expecting only 1 constant operand");
2085       assert(C->isNegative() && "Expected negative FP constant");
2086       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2087       MadeChange = true;
2088     }
2089   }
2090   assert(MadeChange == true && "Negative constant candidate was not changed");
2091 
2092   // Negations cancelled out.
2093   if (Candidates.size() % 2 == 0)
2094     return I;
2095 
2096   // Negate the final operand in the expression by flipping the opcode of this
2097   // fadd/fsub.
2098   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2099   IRBuilder<> Builder(I);
2100   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2101                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2102   I->replaceAllUsesWith(NewInst);
2103   RedoInsts.insert(I);
2104   return dyn_cast<Instruction>(NewInst);
2105 }
2106 
2107 /// Canonicalize expressions that contain a negative floating-point constant
2108 /// of the following form:
2109 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2110 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2111 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2112 ///
2113 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2114 /// input instruction.
2115 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2116   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2117   Value *X;
2118   Instruction *Op;
2119   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2120     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2121       I = R;
2122   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2123     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2124       I = R;
2125   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2126     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2127       I = R;
2128   return I;
2129 }
2130 
2131 /// Inspect and optimize the given instruction. Note that erasing
2132 /// instructions is not allowed.
2133 void ReassociatePass::OptimizeInst(Instruction *I) {
2134   // Only consider operations that we understand.
2135   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2136     return;
2137 
2138   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2139     // If an operand of this shift is a reassociable multiply, or if the shift
2140     // is used by a reassociable multiply or add, turn into a multiply.
2141     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2142         (I->hasOneUse() &&
2143          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2144           isReassociableOp(I->user_back(), Instruction::Add)))) {
2145       Instruction *NI = ConvertShiftToMul(I);
2146       RedoInsts.insert(I);
2147       MadeChange = true;
2148       I = NI;
2149     }
2150 
2151   // Commute binary operators, to canonicalize the order of their operands.
2152   // This can potentially expose more CSE opportunities, and makes writing other
2153   // transformations simpler.
2154   if (I->isCommutative())
2155     canonicalizeOperands(I);
2156 
2157   // Canonicalize negative constants out of expressions.
2158   if (Instruction *Res = canonicalizeNegFPConstants(I))
2159     I = Res;
2160 
2161   // Don't optimize floating-point instructions unless they have the
2162   // appropriate FastMathFlags for reassociation enabled.
2163   if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2164     return;
2165 
2166   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2167   // original order of evaluation for short-circuited comparisons that
2168   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2169   // is not further optimized, it is likely to be transformed back to a
2170   // short-circuited form for code gen, and the source order may have been
2171   // optimized for the most likely conditions.
2172   if (I->getType()->isIntegerTy(1))
2173     return;
2174 
2175   // If this is a bitwise or instruction of operands
2176   // with no common bits set, convert it to X+Y.
2177   if (I->getOpcode() == Instruction::Or &&
2178       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2179       (cast<PossiblyDisjointInst>(I)->isDisjoint() ||
2180        haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2181                            SimplifyQuery(I->getModule()->getDataLayout(),
2182                                          /*DT=*/nullptr, /*AC=*/nullptr, I)))) {
2183     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2184     RedoInsts.insert(I);
2185     MadeChange = true;
2186     I = NI;
2187   }
2188 
2189   // If this is a subtract instruction which is not already in negate form,
2190   // see if we can convert it to X+-Y.
2191   if (I->getOpcode() == Instruction::Sub) {
2192     if (ShouldBreakUpSubtract(I)) {
2193       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2194       RedoInsts.insert(I);
2195       MadeChange = true;
2196       I = NI;
2197     } else if (match(I, m_Neg(m_Value()))) {
2198       // Otherwise, this is a negation.  See if the operand is a multiply tree
2199       // and if this is not an inner node of a multiply tree.
2200       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2201           (!I->hasOneUse() ||
2202            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2203         Instruction *NI = LowerNegateToMultiply(I);
2204         // If the negate was simplified, revisit the users to see if we can
2205         // reassociate further.
2206         for (User *U : NI->users()) {
2207           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2208             RedoInsts.insert(Tmp);
2209         }
2210         RedoInsts.insert(I);
2211         MadeChange = true;
2212         I = NI;
2213       }
2214     }
2215   } else if (I->getOpcode() == Instruction::FNeg ||
2216              I->getOpcode() == Instruction::FSub) {
2217     if (ShouldBreakUpSubtract(I)) {
2218       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2219       RedoInsts.insert(I);
2220       MadeChange = true;
2221       I = NI;
2222     } else if (match(I, m_FNeg(m_Value()))) {
2223       // Otherwise, this is a negation.  See if the operand is a multiply tree
2224       // and if this is not an inner node of a multiply tree.
2225       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2226                                            I->getOperand(0);
2227       if (isReassociableOp(Op, Instruction::FMul) &&
2228           (!I->hasOneUse() ||
2229            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2230         // If the negate was simplified, revisit the users to see if we can
2231         // reassociate further.
2232         Instruction *NI = LowerNegateToMultiply(I);
2233         for (User *U : NI->users()) {
2234           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2235             RedoInsts.insert(Tmp);
2236         }
2237         RedoInsts.insert(I);
2238         MadeChange = true;
2239         I = NI;
2240       }
2241     }
2242   }
2243 
2244   // If this instruction is an associative binary operator, process it.
2245   if (!I->isAssociative()) return;
2246   BinaryOperator *BO = cast<BinaryOperator>(I);
2247 
2248   // If this is an interior node of a reassociable tree, ignore it until we
2249   // get to the root of the tree, to avoid N^2 analysis.
2250   unsigned Opcode = BO->getOpcode();
2251   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2252     // During the initial run we will get to the root of the tree.
2253     // But if we get here while we are redoing instructions, there is no
2254     // guarantee that the root will be visited. So Redo later
2255     if (BO->user_back() != BO &&
2256         BO->getParent() == BO->user_back()->getParent())
2257       RedoInsts.insert(BO->user_back());
2258     return;
2259   }
2260 
2261   // If this is an add tree that is used by a sub instruction, ignore it
2262   // until we process the subtract.
2263   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2264       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2265     return;
2266   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2267       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2268     return;
2269 
2270   ReassociateExpression(BO);
2271 }
2272 
2273 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2274   // First, walk the expression tree, linearizing the tree, collecting the
2275   // operand information.
2276   SmallVector<RepeatedValue, 8> Tree;
2277   OverflowTracking Flags;
2278   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, Flags);
2279   SmallVector<ValueEntry, 8> Ops;
2280   Ops.reserve(Tree.size());
2281   for (const RepeatedValue &E : Tree)
2282     Ops.append(E.second, ValueEntry(getRank(E.first), E.first));
2283 
2284   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2285 
2286   // Now that we have linearized the tree to a list and have gathered all of
2287   // the operands and their ranks, sort the operands by their rank.  Use a
2288   // stable_sort so that values with equal ranks will have their relative
2289   // positions maintained (and so the compiler is deterministic).  Note that
2290   // this sorts so that the highest ranking values end up at the beginning of
2291   // the vector.
2292   llvm::stable_sort(Ops);
2293 
2294   // Now that we have the expression tree in a convenient
2295   // sorted form, optimize it globally if possible.
2296   if (Value *V = OptimizeExpression(I, Ops)) {
2297     if (V == I)
2298       // Self-referential expression in unreachable code.
2299       return;
2300     // This expression tree simplified to something that isn't a tree,
2301     // eliminate it.
2302     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2303     I->replaceAllUsesWith(V);
2304     if (Instruction *VI = dyn_cast<Instruction>(V))
2305       if (I->getDebugLoc())
2306         VI->setDebugLoc(I->getDebugLoc());
2307     RedoInsts.insert(I);
2308     ++NumAnnihil;
2309     return;
2310   }
2311 
2312   // We want to sink immediates as deeply as possible except in the case where
2313   // this is a multiply tree used only by an add, and the immediate is a -1.
2314   // In this case we reassociate to put the negation on the outside so that we
2315   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2316   if (I->hasOneUse()) {
2317     if (I->getOpcode() == Instruction::Mul &&
2318         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2319         isa<ConstantInt>(Ops.back().Op) &&
2320         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2321       ValueEntry Tmp = Ops.pop_back_val();
2322       Ops.insert(Ops.begin(), Tmp);
2323     } else if (I->getOpcode() == Instruction::FMul &&
2324                cast<Instruction>(I->user_back())->getOpcode() ==
2325                    Instruction::FAdd &&
2326                isa<ConstantFP>(Ops.back().Op) &&
2327                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2328       ValueEntry Tmp = Ops.pop_back_val();
2329       Ops.insert(Ops.begin(), Tmp);
2330     }
2331   }
2332 
2333   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2334 
2335   if (Ops.size() == 1) {
2336     if (Ops[0].Op == I)
2337       // Self-referential expression in unreachable code.
2338       return;
2339 
2340     // This expression tree simplified to something that isn't a tree,
2341     // eliminate it.
2342     I->replaceAllUsesWith(Ops[0].Op);
2343     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2344       OI->setDebugLoc(I->getDebugLoc());
2345     RedoInsts.insert(I);
2346     return;
2347   }
2348 
2349   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2350     // Find the pair with the highest count in the pairmap and move it to the
2351     // back of the list so that it can later be CSE'd.
2352     // example:
2353     //   a*b*c*d*e
2354     // if c*e is the most "popular" pair, we can express this as
2355     //   (((c*e)*d)*b)*a
2356     unsigned Max = 1;
2357     unsigned BestRank = 0;
2358     std::pair<unsigned, unsigned> BestPair;
2359     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2360     unsigned LimitIdx = 0;
2361     // With the CSE-driven heuristic, we are about to slap two values at the
2362     // beginning of the expression whereas they could live very late in the CFG.
2363     // When using the CSE-local heuristic we avoid creating dependences from
2364     // completely unrelated part of the CFG by limiting the expression
2365     // reordering on the values that live in the first seen basic block.
2366     // The main idea is that we want to avoid forming expressions that would
2367     // become loop dependent.
2368     if (UseCSELocalOpt) {
2369       const BasicBlock *FirstSeenBB = nullptr;
2370       int StartIdx = Ops.size() - 1;
2371       // Skip the first value of the expression since we need at least two
2372       // values to materialize an expression. I.e., even if this value is
2373       // anchored in a different basic block, the actual first sub expression
2374       // will be anchored on the second value.
2375       for (int i = StartIdx - 1; i != -1; --i) {
2376         const Value *Val = Ops[i].Op;
2377         const auto *CurrLeafInstr = dyn_cast<Instruction>(Val);
2378         const BasicBlock *SeenBB = nullptr;
2379         if (!CurrLeafInstr) {
2380           // The value is free of any CFG dependencies.
2381           // Do as if it lives in the entry block.
2382           //
2383           // We do this to make sure all the values falling on this path are
2384           // seen through the same anchor point. The rationale is these values
2385           // can be combined together to from a sub expression free of any CFG
2386           // dependencies so we want them to stay together.
2387           // We could be cleverer and postpone the anchor down to the first
2388           // anchored value, but that's likely complicated to get right.
2389           // E.g., we wouldn't want to do that if that means being stuck in a
2390           // loop.
2391           //
2392           // For instance, we wouldn't want to change:
2393           // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ...
2394           // into
2395           // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ...
2396           // Because all the sub expressions with arg2..N would be stuck between
2397           // two loop dependent values.
2398           SeenBB = &I->getParent()->getParent()->getEntryBlock();
2399         } else {
2400           SeenBB = CurrLeafInstr->getParent();
2401         }
2402 
2403         if (!FirstSeenBB) {
2404           FirstSeenBB = SeenBB;
2405           continue;
2406         }
2407         if (FirstSeenBB != SeenBB) {
2408           // ith value is in a different basic block.
2409           // Rewind the index once to point to the last value on the same basic
2410           // block.
2411           LimitIdx = i + 1;
2412           LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between ["
2413                             << LimitIdx << ", " << StartIdx << "]\n");
2414           break;
2415         }
2416       }
2417     }
2418     for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) {
2419       // We must use int type to go below zero when LimitIdx is 0.
2420       for (int j = i - 1; j >= (int)LimitIdx; --j) {
2421         unsigned Score = 0;
2422         Value *Op0 = Ops[i].Op;
2423         Value *Op1 = Ops[j].Op;
2424         if (std::less<Value *>()(Op1, Op0))
2425           std::swap(Op0, Op1);
2426         auto it = PairMap[Idx].find({Op0, Op1});
2427         if (it != PairMap[Idx].end()) {
2428           // Functions like BreakUpSubtract() can erase the Values we're using
2429           // as keys and create new Values after we built the PairMap. There's a
2430           // small chance that the new nodes can have the same address as
2431           // something already in the table. We shouldn't accumulate the stored
2432           // score in that case as it refers to the wrong Value.
2433           if (it->second.isValid())
2434             Score += it->second.Score;
2435         }
2436 
2437         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2438 
2439         // By construction, the operands are sorted in reverse order of their
2440         // topological order.
2441         // So we tend to form (sub) expressions with values that are close to
2442         // each other.
2443         //
2444         // Now to expose more CSE opportunities we want to expose the pair of
2445         // operands that occur the most (as statically computed in
2446         // BuildPairMap.) as the first sub-expression.
2447         //
2448         // If two pairs occur as many times, we pick the one with the
2449         // lowest rank, meaning the one with both operands appearing first in
2450         // the topological order.
2451         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2452           BestPair = {j, i};
2453           Max = Score;
2454           BestRank = MaxRank;
2455         }
2456       }
2457     }
2458     if (Max > 1) {
2459       auto Op0 = Ops[BestPair.first];
2460       auto Op1 = Ops[BestPair.second];
2461       Ops.erase(&Ops[BestPair.second]);
2462       Ops.erase(&Ops[BestPair.first]);
2463       Ops.push_back(Op0);
2464       Ops.push_back(Op1);
2465     }
2466   }
2467   LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops);
2468              dbgs() << '\n');
2469   // Now that we ordered and optimized the expressions, splat them back into
2470   // the expression tree, removing any unneeded nodes.
2471   RewriteExprTree(I, Ops, Flags);
2472 }
2473 
2474 void
2475 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2476   // Make a "pairmap" of how often each operand pair occurs.
2477   for (BasicBlock *BI : RPOT) {
2478     for (Instruction &I : *BI) {
2479       if (!I.isAssociative() || !I.isBinaryOp())
2480         continue;
2481 
2482       // Ignore nodes that aren't at the root of trees.
2483       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2484         continue;
2485 
2486       // Collect all operands in a single reassociable expression.
2487       // Since Reassociate has already been run once, we can assume things
2488       // are already canonical according to Reassociation's regime.
2489       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2490       SmallVector<Value *, 8> Ops;
2491       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2492         Value *Op = Worklist.pop_back_val();
2493         Instruction *OpI = dyn_cast<Instruction>(Op);
2494         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2495           Ops.push_back(Op);
2496           continue;
2497         }
2498         // Be paranoid about self-referencing expressions in unreachable code.
2499         if (OpI->getOperand(0) != OpI)
2500           Worklist.push_back(OpI->getOperand(0));
2501         if (OpI->getOperand(1) != OpI)
2502           Worklist.push_back(OpI->getOperand(1));
2503       }
2504       // Skip extremely long expressions.
2505       if (Ops.size() > GlobalReassociateLimit)
2506         continue;
2507 
2508       // Add all pairwise combinations of operands to the pair map.
2509       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2510       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2511       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2512         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2513           // Canonicalize operand orderings.
2514           Value *Op0 = Ops[i];
2515           Value *Op1 = Ops[j];
2516           if (std::less<Value *>()(Op1, Op0))
2517             std::swap(Op0, Op1);
2518           if (!Visited.insert({Op0, Op1}).second)
2519             continue;
2520           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2521           if (!res.second) {
2522             // If either key value has been erased then we've got the same
2523             // address by coincidence. That can't happen here because nothing is
2524             // erasing values but it can happen by the time we're querying the
2525             // map.
2526             assert(res.first->second.isValid() && "WeakVH invalidated");
2527             ++res.first->second.Score;
2528           }
2529         }
2530       }
2531     }
2532   }
2533 }
2534 
2535 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2536   // Get the functions basic blocks in Reverse Post Order. This order is used by
2537   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2538   // blocks (it has been seen that the analysis in this pass could hang when
2539   // analysing dead basic blocks).
2540   ReversePostOrderTraversal<Function *> RPOT(&F);
2541 
2542   // Calculate the rank map for F.
2543   BuildRankMap(F, RPOT);
2544 
2545   // Build the pair map before running reassociate.
2546   // Technically this would be more accurate if we did it after one round
2547   // of reassociation, but in practice it doesn't seem to help much on
2548   // real-world code, so don't waste the compile time running reassociate
2549   // twice.
2550   // If a user wants, they could expicitly run reassociate twice in their
2551   // pass pipeline for further potential gains.
2552   // It might also be possible to update the pair map during runtime, but the
2553   // overhead of that may be large if there's many reassociable chains.
2554   BuildPairMap(RPOT);
2555 
2556   MadeChange = false;
2557 
2558   // Traverse the same blocks that were analysed by BuildRankMap.
2559   for (BasicBlock *BI : RPOT) {
2560     assert(RankMap.count(&*BI) && "BB should be ranked.");
2561     // Optimize every instruction in the basic block.
2562     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2563       if (isInstructionTriviallyDead(&*II)) {
2564         EraseInst(&*II++);
2565       } else {
2566         OptimizeInst(&*II);
2567         assert(II->getParent() == &*BI && "Moved to a different block!");
2568         ++II;
2569       }
2570 
2571     // Make a copy of all the instructions to be redone so we can remove dead
2572     // instructions.
2573     OrderedSet ToRedo(RedoInsts);
2574     // Iterate over all instructions to be reevaluated and remove trivially dead
2575     // instructions. If any operand of the trivially dead instruction becomes
2576     // dead mark it for deletion as well. Continue this process until all
2577     // trivially dead instructions have been removed.
2578     while (!ToRedo.empty()) {
2579       Instruction *I = ToRedo.pop_back_val();
2580       if (isInstructionTriviallyDead(I)) {
2581         RecursivelyEraseDeadInsts(I, ToRedo);
2582         MadeChange = true;
2583       }
2584     }
2585 
2586     // Now that we have removed dead instructions, we can reoptimize the
2587     // remaining instructions.
2588     while (!RedoInsts.empty()) {
2589       Instruction *I = RedoInsts.front();
2590       RedoInsts.erase(RedoInsts.begin());
2591       if (isInstructionTriviallyDead(I))
2592         EraseInst(I);
2593       else
2594         OptimizeInst(I);
2595     }
2596   }
2597 
2598   // We are done with the rank map and pair map.
2599   RankMap.clear();
2600   ValueRankMap.clear();
2601   for (auto &Entry : PairMap)
2602     Entry.clear();
2603 
2604   if (MadeChange) {
2605     PreservedAnalyses PA;
2606     PA.preserveSet<CFGAnalyses>();
2607     return PA;
2608   }
2609 
2610   return PreservedAnalyses::all();
2611 }
2612 
2613 namespace {
2614 
2615   class ReassociateLegacyPass : public FunctionPass {
2616     ReassociatePass Impl;
2617 
2618   public:
2619     static char ID; // Pass identification, replacement for typeid
2620 
2621     ReassociateLegacyPass() : FunctionPass(ID) {
2622       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2623     }
2624 
2625     bool runOnFunction(Function &F) override {
2626       if (skipFunction(F))
2627         return false;
2628 
2629       FunctionAnalysisManager DummyFAM;
2630       auto PA = Impl.run(F, DummyFAM);
2631       return !PA.areAllPreserved();
2632     }
2633 
2634     void getAnalysisUsage(AnalysisUsage &AU) const override {
2635       AU.setPreservesCFG();
2636       AU.addPreserved<AAResultsWrapperPass>();
2637       AU.addPreserved<BasicAAWrapperPass>();
2638       AU.addPreserved<GlobalsAAWrapperPass>();
2639     }
2640   };
2641 
2642 } // end anonymous namespace
2643 
2644 char ReassociateLegacyPass::ID = 0;
2645 
2646 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2647                 "Reassociate expressions", false, false)
2648 
2649 // Public interface to the Reassociate pass
2650 FunctionPass *llvm::createReassociatePass() {
2651   return new ReassociateLegacyPass();
2652 }
2653