xref: /llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision f16bff1261a92169992c6edf6bc6b38d1c815c8d)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Support/Allocator.h"
97 #include "llvm/Support/ArrayRecycler.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/CommandLine.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/DebugCounter.h"
102 #include "llvm/Support/ErrorHandling.h"
103 #include "llvm/Support/PointerLikeTypeTraits.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Scalar/GVNExpression.h"
106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstdint>
113 #include <iterator>
114 #include <map>
115 #include <memory>
116 #include <set>
117 #include <string>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 using namespace llvm::GVNExpression;
124 using namespace llvm::VNCoercion;
125 using namespace llvm::PatternMatch;
126 
127 #define DEBUG_TYPE "newgvn"
128 
129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations,
134           "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138           "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations,
142           "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
144               "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146               "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow.  This flag lets us keep it working while we work on this
149 // issue.
150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151                                            cl::init(false), cl::Hidden);
152 
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155                                     cl::Hidden);
156 
157 //===----------------------------------------------------------------------===//
158 //                                GVN Pass
159 //===----------------------------------------------------------------------===//
160 
161 // Anchor methods.
162 namespace llvm {
163 namespace GVNExpression {
164 
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
172 
173 } // end namespace GVNExpression
174 } // end namespace llvm
175 
176 namespace {
177 
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
184 // instructions,
185 // not generic values (arguments, etc).
186 struct TarjanSCC {
187   TarjanSCC() : Components(1) {}
188 
189   void Start(const Instruction *Start) {
190     if (Root.lookup(Start) == 0)
191       FindSCC(Start);
192   }
193 
194   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195     unsigned ComponentID = ValueToComponent.lookup(V);
196 
197     assert(ComponentID > 0 &&
198            "Asking for a component for a value we never processed");
199     return Components[ComponentID];
200   }
201 
202 private:
203   void FindSCC(const Instruction *I) {
204     Root[I] = ++DFSNum;
205     // Store the DFS Number we had before it possibly gets incremented.
206     unsigned int OurDFS = DFSNum;
207     for (const auto &Op : I->operands()) {
208       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209         if (Root.lookup(Op) == 0)
210           FindSCC(InstOp);
211         if (!InComponent.count(Op))
212           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
213       }
214     }
215     // See if we really were the root of a component, by seeing if we still have
216     // our DFSNumber.  If we do, we are the root of the component, and we have
217     // completed a component. If we do not, we are not the root of a component,
218     // and belong on the component stack.
219     if (Root.lookup(I) == OurDFS) {
220       unsigned ComponentID = Components.size();
221       Components.resize(Components.size() + 1);
222       auto &Component = Components.back();
223       Component.insert(I);
224       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225       InComponent.insert(I);
226       ValueToComponent[I] = ComponentID;
227       // Pop a component off the stack and label it.
228       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229         auto *Member = Stack.back();
230         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231         Component.insert(Member);
232         InComponent.insert(Member);
233         ValueToComponent[Member] = ComponentID;
234         Stack.pop_back();
235       }
236     } else {
237       // Part of a component, push to stack
238       Stack.push_back(I);
239     }
240   }
241 
242   unsigned int DFSNum = 1;
243   SmallPtrSet<const Value *, 8> InComponent;
244   DenseMap<const Value *, unsigned int> Root;
245   SmallVector<const Value *, 8> Stack;
246 
247   // Store the components as vector of ptr sets, because we need the topo order
248   // of SCC's, but not individual member order
249   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
250 
251   DenseMap<const Value *, unsigned> ValueToComponent;
252 };
253 
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
260 //
261 // For any Value in the Member set, it is valid to replace any dominated member
262 // with that Value.
263 //
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization).  To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value.  Otherwise, the
269 // leader is the member of the value set with the smallest DFS number.  Each
270 // congruence class also has a defining expression, though the expression may be
271 // null.  If it exists, it can be used for forward propagation and reassociation
272 // of values.
273 
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something.  Unfortunately, this does not work
278 // easily.  The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression.  This
281 // leads to wasted propagation, and in some cases, missed optimization.  For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class.  This in turn will move at one
284 // of the memorydefs to a new memory congruence class.  Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number).  So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency.  While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass {
293 public:
294   using MemberType = Value;
295   using MemberSet = SmallPtrSet<MemberType *, 4>;
296   using MemoryMemberType = MemoryPhi;
297   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298 
299   explicit CongruenceClass(unsigned ID) : ID(ID) {}
300   CongruenceClass(unsigned ID, std::pair<Value *, unsigned int> Leader,
301                   const Expression *E)
302       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
303 
304   unsigned getID() const { return ID; }
305 
306   // True if this class has no members left.  This is mainly used for assertion
307   // purposes, and for skipping empty classes.
308   bool isDead() const {
309     // If it's both dead from a value perspective, and dead from a memory
310     // perspective, it's really dead.
311     return empty() && memory_empty();
312   }
313 
314   // Leader functions
315   Value *getLeader() const { return RepLeader.first; }
316   void setLeader(std::pair<Value *, unsigned int> Leader) {
317     RepLeader = Leader;
318   }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   bool addPossibleLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < RepLeader.second) {
325       NextLeader = RepLeader;
326       RepLeader = LeaderPair;
327       return true;
328     } else if (LeaderPair.second < NextLeader.second) {
329       NextLeader = LeaderPair;
330     }
331     return false;
332   }
333 
334   Value *getStoredValue() const { return RepStoredValue; }
335   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
336   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
337   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
338 
339   // Forward propagation info
340   const Expression *getDefiningExpr() const { return DefiningExpr; }
341 
342   // Value member set
343   bool empty() const { return Members.empty(); }
344   unsigned size() const { return Members.size(); }
345   MemberSet::const_iterator begin() const { return Members.begin(); }
346   MemberSet::const_iterator end() const { return Members.end(); }
347   void insert(MemberType *M) { Members.insert(M); }
348   void erase(MemberType *M) { Members.erase(M); }
349   void swap(MemberSet &Other) { Members.swap(Other); }
350 
351   // Memory member set
352   bool memory_empty() const { return MemoryMembers.empty(); }
353   unsigned memory_size() const { return MemoryMembers.size(); }
354   MemoryMemberSet::const_iterator memory_begin() const {
355     return MemoryMembers.begin();
356   }
357   MemoryMemberSet::const_iterator memory_end() const {
358     return MemoryMembers.end();
359   }
360   iterator_range<MemoryMemberSet::const_iterator> memory() const {
361     return make_range(memory_begin(), memory_end());
362   }
363 
364   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
365   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
366 
367   // Store count
368   unsigned getStoreCount() const { return StoreCount; }
369   void incStoreCount() { ++StoreCount; }
370   void decStoreCount() {
371     assert(StoreCount != 0 && "Store count went negative");
372     --StoreCount;
373   }
374 
375   // True if this class has no memory members.
376   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
377 
378   // Return true if two congruence classes are equivalent to each other. This
379   // means that every field but the ID number and the dead field are equivalent.
380   bool isEquivalentTo(const CongruenceClass *Other) const {
381     if (!Other)
382       return false;
383     if (this == Other)
384       return true;
385 
386     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
387         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
388                  Other->RepMemoryAccess))
389       return false;
390     if (DefiningExpr != Other->DefiningExpr)
391       if (!DefiningExpr || !Other->DefiningExpr ||
392           *DefiningExpr != *Other->DefiningExpr)
393         return false;
394 
395     if (Members.size() != Other->Members.size())
396       return false;
397 
398     return llvm::set_is_subset(Members, Other->Members);
399   }
400 
401 private:
402   unsigned ID;
403 
404   // Representative leader and its corresponding RPO number.
405   // The leader must have the lowest RPO number.
406   std::pair<Value *, unsigned int> RepLeader = {nullptr, ~0U};
407 
408   // The most dominating leader after our current leader (given by the RPO
409   // number), because the member set is not sorted and is expensive to keep
410   // sorted all the time.
411   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
412 
413   // If this is represented by a store, the value of the store.
414   Value *RepStoredValue = nullptr;
415 
416   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
417   // access.
418   const MemoryAccess *RepMemoryAccess = nullptr;
419 
420   // Defining Expression.
421   const Expression *DefiningExpr = nullptr;
422 
423   // Actual members of this class.
424   MemberSet Members;
425 
426   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
427   // MemoryUses have real instructions representing them, so we only need to
428   // track MemoryPhis here.
429   MemoryMemberSet MemoryMembers;
430 
431   // Number of stores in this congruence class.
432   // This is used so we can detect store equivalence changes properly.
433   int StoreCount = 0;
434 };
435 
436 } // end anonymous namespace
437 
438 namespace llvm {
439 
440 struct ExactEqualsExpression {
441   const Expression &E;
442 
443   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
444 
445   hash_code getComputedHash() const { return E.getComputedHash(); }
446 
447   bool operator==(const Expression &Other) const {
448     return E.exactlyEquals(Other);
449   }
450 };
451 
452 template <> struct DenseMapInfo<const Expression *> {
453   static const Expression *getEmptyKey() {
454     auto Val = static_cast<uintptr_t>(-1);
455     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
456     return reinterpret_cast<const Expression *>(Val);
457   }
458 
459   static const Expression *getTombstoneKey() {
460     auto Val = static_cast<uintptr_t>(~1U);
461     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
462     return reinterpret_cast<const Expression *>(Val);
463   }
464 
465   static unsigned getHashValue(const Expression *E) {
466     return E->getComputedHash();
467   }
468 
469   static unsigned getHashValue(const ExactEqualsExpression &E) {
470     return E.getComputedHash();
471   }
472 
473   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
474     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
475       return false;
476     return LHS == *RHS;
477   }
478 
479   static bool isEqual(const Expression *LHS, const Expression *RHS) {
480     if (LHS == RHS)
481       return true;
482     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
483         LHS == getEmptyKey() || RHS == getEmptyKey())
484       return false;
485     // Compare hashes before equality.  This is *not* what the hashtable does,
486     // since it is computing it modulo the number of buckets, whereas we are
487     // using the full hash keyspace.  Since the hashes are precomputed, this
488     // check is *much* faster than equality.
489     if (LHS->getComputedHash() != RHS->getComputedHash())
490       return false;
491     return *LHS == *RHS;
492   }
493 };
494 
495 } // end namespace llvm
496 
497 namespace {
498 
499 class NewGVN {
500   Function &F;
501   DominatorTree *DT = nullptr;
502   const TargetLibraryInfo *TLI = nullptr;
503   AliasAnalysis *AA = nullptr;
504   MemorySSA *MSSA = nullptr;
505   MemorySSAWalker *MSSAWalker = nullptr;
506   AssumptionCache *AC = nullptr;
507   const DataLayout &DL;
508   std::unique_ptr<PredicateInfo> PredInfo;
509 
510   // These are the only two things the create* functions should have
511   // side-effects on due to allocating memory.
512   mutable BumpPtrAllocator ExpressionAllocator;
513   mutable ArrayRecycler<Value *> ArgRecycler;
514   mutable TarjanSCC SCCFinder;
515   const SimplifyQuery SQ;
516 
517   // Number of function arguments, used by ranking
518   unsigned int NumFuncArgs = 0;
519 
520   // RPOOrdering of basic blocks
521   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
522 
523   // Congruence class info.
524 
525   // This class is called INITIAL in the paper. It is the class everything
526   // startsout in, and represents any value. Being an optimistic analysis,
527   // anything in the TOP class has the value TOP, which is indeterminate and
528   // equivalent to everything.
529   CongruenceClass *TOPClass = nullptr;
530   std::vector<CongruenceClass *> CongruenceClasses;
531   unsigned NextCongruenceNum = 0;
532 
533   // Value Mappings.
534   DenseMap<Value *, CongruenceClass *> ValueToClass;
535   DenseMap<Value *, const Expression *> ValueToExpression;
536 
537   // Value PHI handling, used to make equivalence between phi(op, op) and
538   // op(phi, phi).
539   // These mappings just store various data that would normally be part of the
540   // IR.
541   SmallPtrSet<const Instruction *, 8> PHINodeUses;
542 
543   // The cached results, in general, are only valid for the specific block where
544   // they were computed. The unsigned part of the key is a unique block
545   // identifier
546   DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps;
547   unsigned CacheIdx;
548 
549   // Map a temporary instruction we created to a parent block.
550   DenseMap<const Value *, BasicBlock *> TempToBlock;
551 
552   // Map between the already in-program instructions and the temporary phis we
553   // created that they are known equivalent to.
554   DenseMap<const Value *, PHINode *> RealToTemp;
555 
556   // In order to know when we should re-process instructions that have
557   // phi-of-ops, we track the set of expressions that they needed as
558   // leaders. When we discover new leaders for those expressions, we process the
559   // associated phi-of-op instructions again in case they have changed.  The
560   // other way they may change is if they had leaders, and those leaders
561   // disappear.  However, at the point they have leaders, there are uses of the
562   // relevant operands in the created phi node, and so they will get reprocessed
563   // through the normal user marking we perform.
564   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
565   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
566       ExpressionToPhiOfOps;
567 
568   // Map from temporary operation to MemoryAccess.
569   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
570 
571   // Set of all temporary instructions we created.
572   // Note: This will include instructions that were just created during value
573   // numbering.  The way to test if something is using them is to check
574   // RealToTemp.
575   DenseSet<Instruction *> AllTempInstructions;
576 
577   // This is the set of instructions to revisit on a reachability change.  At
578   // the end of the main iteration loop it will contain at least all the phi of
579   // ops instructions that will be changed to phis, as well as regular phis.
580   // During the iteration loop, it may contain other things, such as phi of ops
581   // instructions that used edge reachability to reach a result, and so need to
582   // be revisited when the edge changes, independent of whether the phi they
583   // depended on changes.
584   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
585 
586   // Mapping from predicate info we used to the instructions we used it with.
587   // In order to correctly ensure propagation, we must keep track of what
588   // comparisons we used, so that when the values of the comparisons change, we
589   // propagate the information to the places we used the comparison.
590   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
591       PredicateToUsers;
592 
593   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
594   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
595   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
596       MemoryToUsers;
597 
598   // A table storing which memorydefs/phis represent a memory state provably
599   // equivalent to another memory state.
600   // We could use the congruence class machinery, but the MemoryAccess's are
601   // abstract memory states, so they can only ever be equivalent to each other,
602   // and not to constants, etc.
603   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
604 
605   // We could, if we wanted, build MemoryPhiExpressions and
606   // MemoryVariableExpressions, etc, and value number them the same way we value
607   // number phi expressions.  For the moment, this seems like overkill.  They
608   // can only exist in one of three states: they can be TOP (equal to
609   // everything), Equivalent to something else, or unique.  Because we do not
610   // create expressions for them, we need to simulate leader change not just
611   // when they change class, but when they change state.  Note: We can do the
612   // same thing for phis, and avoid having phi expressions if we wanted, We
613   // should eventually unify in one direction or the other, so this is a little
614   // bit of an experiment in which turns out easier to maintain.
615   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
616   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
617 
618   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
619   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
620 
621   // Expression to class mapping.
622   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
623   ExpressionClassMap ExpressionToClass;
624 
625   // We have a single expression that represents currently DeadExpressions.
626   // For dead expressions we can prove will stay dead, we mark them with
627   // DFS number zero.  However, it's possible in the case of phi nodes
628   // for us to assume/prove all arguments are dead during fixpointing.
629   // We use DeadExpression for that case.
630   DeadExpression *SingletonDeadExpression = nullptr;
631 
632   // Which values have changed as a result of leader changes.
633   SmallPtrSet<Value *, 8> LeaderChanges;
634 
635   // Reachability info.
636   using BlockEdge = BasicBlockEdge;
637   DenseSet<BlockEdge> ReachableEdges;
638   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
639 
640   // This is a bitvector because, on larger functions, we may have
641   // thousands of touched instructions at once (entire blocks,
642   // instructions with hundreds of uses, etc).  Even with optimization
643   // for when we mark whole blocks as touched, when this was a
644   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
645   // the time in GVN just managing this list.  The bitvector, on the
646   // other hand, efficiently supports test/set/clear of both
647   // individual and ranges, as well as "find next element" This
648   // enables us to use it as a worklist with essentially 0 cost.
649   BitVector TouchedInstructions;
650 
651   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
652   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
653 
654 #ifndef NDEBUG
655   // Debugging for how many times each block and instruction got processed.
656   DenseMap<const Value *, unsigned> ProcessedCount;
657 #endif
658 
659   // DFS info.
660   // This contains a mapping from Instructions to DFS numbers.
661   // The numbering starts at 1. An instruction with DFS number zero
662   // means that the instruction is dead.
663   DenseMap<const Value *, unsigned> InstrDFS;
664 
665   // This contains the mapping DFS numbers to instructions.
666   SmallVector<Value *, 32> DFSToInstr;
667 
668   // Deletion info.
669   SmallPtrSet<Instruction *, 8> InstructionsToErase;
670 
671 public:
672   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
673          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
674          const DataLayout &DL)
675       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
676         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
677         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
678            /*CanUseUndef=*/false) {}
679 
680   bool runGVN();
681 
682 private:
683   /// Helper struct return a Expression with an optional extra dependency.
684   struct ExprResult {
685     const Expression *Expr;
686     Value *ExtraDep;
687     const PredicateBase *PredDep;
688 
689     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
690                const PredicateBase *PredDep = nullptr)
691         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
692     ExprResult(const ExprResult &) = delete;
693     ExprResult(ExprResult &&Other)
694         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
695       Other.Expr = nullptr;
696       Other.ExtraDep = nullptr;
697       Other.PredDep = nullptr;
698     }
699     ExprResult &operator=(const ExprResult &Other) = delete;
700     ExprResult &operator=(ExprResult &&Other) = delete;
701 
702     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
703 
704     operator bool() const { return Expr; }
705 
706     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
707     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
708       return {Expr, ExtraDep, nullptr};
709     }
710     static ExprResult some(const Expression *Expr,
711                            const PredicateBase *PredDep) {
712       return {Expr, nullptr, PredDep};
713     }
714     static ExprResult some(const Expression *Expr, Value *ExtraDep,
715                            const PredicateBase *PredDep) {
716       return {Expr, ExtraDep, PredDep};
717     }
718   };
719 
720   // Expression handling.
721   ExprResult createExpression(Instruction *) const;
722   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
723                                            Instruction *) const;
724 
725   // Our canonical form for phi arguments is a pair of incoming value, incoming
726   // basic block.
727   using ValPair = std::pair<Value *, BasicBlock *>;
728 
729   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
730                                      BasicBlock *, bool &HasBackEdge,
731                                      bool &OriginalOpsConstant) const;
732   const DeadExpression *createDeadExpression() const;
733   const VariableExpression *createVariableExpression(Value *) const;
734   const ConstantExpression *createConstantExpression(Constant *) const;
735   const Expression *createVariableOrConstant(Value *V) const;
736   const UnknownExpression *createUnknownExpression(Instruction *) const;
737   const StoreExpression *createStoreExpression(StoreInst *,
738                                                const MemoryAccess *) const;
739   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
740                                        const MemoryAccess *) const;
741   const CallExpression *createCallExpression(CallInst *,
742                                              const MemoryAccess *) const;
743   const AggregateValueExpression *
744   createAggregateValueExpression(Instruction *) const;
745   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
746 
747   // Congruence class handling.
748   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
749     // Set RPO to 0 for values that are always available (constants and function
750     // args). These should always be made leader.
751     unsigned LeaderDFS = 0;
752 
753     // If Leader is not specified, either we have a memory class or the leader
754     // will be set later. Otherwise, if Leader is an Instruction, set LeaderDFS
755     // to its RPO number.
756     if (!Leader)
757       LeaderDFS = ~0;
758     else if (auto *I = dyn_cast<Instruction>(Leader))
759       LeaderDFS = InstrToDFSNum(I);
760     auto *result =
761         new CongruenceClass(NextCongruenceNum++, {Leader, LeaderDFS}, E);
762     CongruenceClasses.emplace_back(result);
763     return result;
764   }
765 
766   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
767     auto *CC = createCongruenceClass(nullptr, nullptr);
768     CC->setMemoryLeader(MA);
769     return CC;
770   }
771 
772   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
773     auto *CC = getMemoryClass(MA);
774     if (CC->getMemoryLeader() != MA)
775       CC = createMemoryClass(MA);
776     return CC;
777   }
778 
779   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
780     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
781     CClass->insert(Member);
782     ValueToClass[Member] = CClass;
783     return CClass;
784   }
785 
786   void initializeCongruenceClasses(Function &F);
787   const Expression *makePossiblePHIOfOps(Instruction *,
788                                          SmallPtrSetImpl<Value *> &);
789   Value *findLeaderForInst(Instruction *ValueOp,
790                            SmallPtrSetImpl<Value *> &Visited,
791                            MemoryAccess *MemAccess, Instruction *OrigInst,
792                            BasicBlock *PredBB);
793   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
794                            SmallPtrSetImpl<const Value *> &);
795   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
796   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
797 
798   // Value number an Instruction or MemoryPhi.
799   void valueNumberMemoryPhi(MemoryPhi *);
800   void valueNumberInstruction(Instruction *);
801 
802   // Symbolic evaluation.
803   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
804   ExprResult performSymbolicEvaluation(Instruction *,
805                                        SmallPtrSetImpl<Value *> &) const;
806   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
807                                                 Instruction *,
808                                                 MemoryAccess *) const;
809   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
810   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
811   ExprResult performSymbolicCallEvaluation(Instruction *) const;
812   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
813   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
814                                                  Instruction *I,
815                                                  BasicBlock *PHIBlock) const;
816   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
817   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
818   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
819 
820   // Congruence finding.
821   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
822   Value *lookupOperandLeader(Value *) const;
823   CongruenceClass *getClassForExpression(const Expression *E) const;
824   void performCongruenceFinding(Instruction *, const Expression *);
825   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
826                                      CongruenceClass *, CongruenceClass *);
827   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
828                                       CongruenceClass *, CongruenceClass *);
829   Value *getNextValueLeader(CongruenceClass *) const;
830   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
831   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
832   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
833   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
834   bool isMemoryAccessTOP(const MemoryAccess *) const;
835 
836   // Ranking
837   unsigned int getRank(const Value *) const;
838   bool shouldSwapOperands(const Value *, const Value *) const;
839   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
840                                       const IntrinsicInst *I) const;
841 
842   // Reachability handling.
843   void updateReachableEdge(BasicBlock *, BasicBlock *);
844   void processOutgoingEdges(Instruction *, BasicBlock *);
845   Value *findConditionEquivalence(Value *) const;
846 
847   // Elimination.
848   struct ValueDFS;
849   void convertClassToDFSOrdered(const CongruenceClass &,
850                                 SmallVectorImpl<ValueDFS> &,
851                                 DenseMap<const Value *, unsigned int> &,
852                                 SmallPtrSetImpl<Instruction *> &) const;
853   void convertClassToLoadsAndStores(const CongruenceClass &,
854                                     SmallVectorImpl<ValueDFS> &) const;
855 
856   bool eliminateInstructions(Function &);
857   void replaceInstruction(Instruction *, Value *);
858   void markInstructionForDeletion(Instruction *);
859   void deleteInstructionsInBlock(BasicBlock *);
860   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
861                             const BasicBlock *) const;
862 
863   // Various instruction touch utilities
864   template <typename Map, typename KeyType>
865   void touchAndErase(Map &, const KeyType &);
866   void markUsersTouched(Value *);
867   void markMemoryUsersTouched(const MemoryAccess *);
868   void markMemoryDefTouched(const MemoryAccess *);
869   void markPredicateUsersTouched(Instruction *);
870   void markValueLeaderChangeTouched(CongruenceClass *CC);
871   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
872   void markPhiOfOpsChanged(const Expression *E);
873   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
874   void addAdditionalUsers(Value *To, Value *User) const;
875   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
876 
877   // Main loop of value numbering
878   void iterateTouchedInstructions();
879 
880   // Utilities.
881   void cleanupTables();
882   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
883   void updateProcessedCount(const Value *V);
884   void verifyMemoryCongruency() const;
885   void verifyIterationSettled(Function &F);
886   void verifyStoreExpressions() const;
887   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
888                               const MemoryAccess *, const MemoryAccess *) const;
889   BasicBlock *getBlockForValue(Value *V) const;
890   void deleteExpression(const Expression *E) const;
891   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
892   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
893   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
894 
895   unsigned InstrToDFSNum(const Value *V) const {
896     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
897     return InstrDFS.lookup(V);
898   }
899 
900   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
901     return MemoryToDFSNum(MA);
902   }
903 
904   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
905 
906   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
907   // This deliberately takes a value so it can be used with Use's, which will
908   // auto-convert to Value's but not to MemoryAccess's.
909   unsigned MemoryToDFSNum(const Value *MA) const {
910     assert(isa<MemoryAccess>(MA) &&
911            "This should not be used with instructions");
912     return isa<MemoryUseOrDef>(MA)
913                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
914                : InstrDFS.lookup(MA);
915   }
916 
917   bool isCycleFree(const Instruction *) const;
918   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
919 
920   // Debug counter info.  When verifying, we have to reset the value numbering
921   // debug counter to the same state it started in to get the same results.
922   DebugCounter::CounterState StartingVNCounter;
923 };
924 
925 } // end anonymous namespace
926 
927 template <typename T>
928 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
929   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
930     return false;
931   return LHS.MemoryExpression::equals(RHS);
932 }
933 
934 bool LoadExpression::equals(const Expression &Other) const {
935   return equalsLoadStoreHelper(*this, Other);
936 }
937 
938 bool StoreExpression::equals(const Expression &Other) const {
939   if (!equalsLoadStoreHelper(*this, Other))
940     return false;
941   // Make sure that store vs store includes the value operand.
942   if (const auto *S = dyn_cast<StoreExpression>(&Other))
943     if (getStoredValue() != S->getStoredValue())
944       return false;
945   return true;
946 }
947 
948 // Determine if the edge From->To is a backedge
949 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
950   return From == To ||
951          RPOOrdering.lookup(DT->getNode(From)) >=
952              RPOOrdering.lookup(DT->getNode(To));
953 }
954 
955 #ifndef NDEBUG
956 static std::string getBlockName(const BasicBlock *B) {
957   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
958 }
959 #endif
960 
961 // Get a MemoryAccess for an instruction, fake or real.
962 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
963   auto *Result = MSSA->getMemoryAccess(I);
964   return Result ? Result : TempToMemory.lookup(I);
965 }
966 
967 // Get a MemoryPhi for a basic block. These are all real.
968 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
969   return MSSA->getMemoryAccess(BB);
970 }
971 
972 // Get the basic block from an instruction/memory value.
973 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
974   if (auto *I = dyn_cast<Instruction>(V)) {
975     auto *Parent = I->getParent();
976     if (Parent)
977       return Parent;
978     Parent = TempToBlock.lookup(V);
979     assert(Parent && "Every fake instruction should have a block");
980     return Parent;
981   }
982 
983   auto *MP = dyn_cast<MemoryPhi>(V);
984   assert(MP && "Should have been an instruction or a MemoryPhi");
985   return MP->getBlock();
986 }
987 
988 // Delete a definitely dead expression, so it can be reused by the expression
989 // allocator.  Some of these are not in creation functions, so we have to accept
990 // const versions.
991 void NewGVN::deleteExpression(const Expression *E) const {
992   assert(isa<BasicExpression>(E));
993   auto *BE = cast<BasicExpression>(E);
994   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
995   ExpressionAllocator.Deallocate(E);
996 }
997 
998 // If V is a predicateinfo copy, get the thing it is a copy of.
999 static Value *getCopyOf(const Value *V) {
1000   if (auto *II = dyn_cast<IntrinsicInst>(V))
1001     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1002       return II->getOperand(0);
1003   return nullptr;
1004 }
1005 
1006 // Return true if V is really PN, even accounting for predicateinfo copies.
1007 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
1008   return V == PN || getCopyOf(V) == PN;
1009 }
1010 
1011 static bool isCopyOfAPHI(const Value *V) {
1012   auto *CO = getCopyOf(V);
1013   return CO && isa<PHINode>(CO);
1014 }
1015 
1016 // Sort PHI Operands into a canonical order.  What we use here is an RPO
1017 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
1018 // blocks.
1019 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
1020   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1021     return BlockInstRange.lookup(P1.second).first <
1022            BlockInstRange.lookup(P2.second).first;
1023   });
1024 }
1025 
1026 // Return true if V is a value that will always be available (IE can
1027 // be placed anywhere) in the function.  We don't do globals here
1028 // because they are often worse to put in place.
1029 static bool alwaysAvailable(Value *V) {
1030   return isa<Constant>(V) || isa<Argument>(V);
1031 }
1032 
1033 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1034 // the original instruction we are creating a PHIExpression for (but may not be
1035 // a phi node). We require, as an invariant, that all the PHIOperands in the
1036 // same block are sorted the same way. sortPHIOps will sort them into a
1037 // canonical order.
1038 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1039                                            const Instruction *I,
1040                                            BasicBlock *PHIBlock,
1041                                            bool &HasBackedge,
1042                                            bool &OriginalOpsConstant) const {
1043   unsigned NumOps = PHIOperands.size();
1044   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1045 
1046   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1047   E->setType(PHIOperands.begin()->first->getType());
1048   E->setOpcode(Instruction::PHI);
1049 
1050   // Filter out unreachable phi operands.
1051   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1052     auto *BB = P.second;
1053     if (auto *PHIOp = dyn_cast<PHINode>(I))
1054       if (isCopyOfPHI(P.first, PHIOp))
1055         return false;
1056     if (!ReachableEdges.count({BB, PHIBlock}))
1057       return false;
1058     // Things in TOPClass are equivalent to everything.
1059     if (ValueToClass.lookup(P.first) == TOPClass)
1060       return false;
1061     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1062     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1063     return lookupOperandLeader(P.first) != I;
1064   });
1065   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1066                  [&](const ValPair &P) -> Value * {
1067                    return lookupOperandLeader(P.first);
1068                  });
1069   return E;
1070 }
1071 
1072 // Set basic expression info (Arguments, type, opcode) for Expression
1073 // E from Instruction I in block B.
1074 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1075   bool AllConstant = true;
1076   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1077     E->setType(GEP->getSourceElementType());
1078   else
1079     E->setType(I->getType());
1080   E->setOpcode(I->getOpcode());
1081   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1082 
1083   // Transform the operand array into an operand leader array, and keep track of
1084   // whether all members are constant.
1085   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1086     auto Operand = lookupOperandLeader(O);
1087     AllConstant = AllConstant && isa<Constant>(Operand);
1088     return Operand;
1089   });
1090 
1091   return AllConstant;
1092 }
1093 
1094 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1095                                                  Value *Arg1, Value *Arg2,
1096                                                  Instruction *I) const {
1097   auto *E = new (ExpressionAllocator) BasicExpression(2);
1098   // TODO: we need to remove context instruction after Value Tracking
1099   // can run without context instruction
1100   const SimplifyQuery Q = SQ.getWithInstruction(I);
1101 
1102   E->setType(T);
1103   E->setOpcode(Opcode);
1104   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1105   if (Instruction::isCommutative(Opcode)) {
1106     // Ensure that commutative instructions that only differ by a permutation
1107     // of their operands get the same value number by sorting the operand value
1108     // numbers.  Since all commutative instructions have two operands it is more
1109     // efficient to sort by hand rather than using, say, std::sort.
1110     if (shouldSwapOperands(Arg1, Arg2))
1111       std::swap(Arg1, Arg2);
1112   }
1113   E->op_push_back(lookupOperandLeader(Arg1));
1114   E->op_push_back(lookupOperandLeader(Arg2));
1115 
1116   Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1117   if (auto Simplified = checkExprResults(E, I, V)) {
1118     addAdditionalUsers(Simplified, I);
1119     return Simplified.Expr;
1120   }
1121   return E;
1122 }
1123 
1124 // Take a Value returned by simplification of Expression E/Instruction
1125 // I, and see if it resulted in a simpler expression. If so, return
1126 // that expression.
1127 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1128                                             Value *V) const {
1129   if (!V)
1130     return ExprResult::none();
1131 
1132   if (auto *C = dyn_cast<Constant>(V)) {
1133     if (I)
1134       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1135                         << " constant " << *C << "\n");
1136     NumGVNOpsSimplified++;
1137     assert(isa<BasicExpression>(E) &&
1138            "We should always have had a basic expression here");
1139     deleteExpression(E);
1140     return ExprResult::some(createConstantExpression(C));
1141   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1142     if (I)
1143       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1144                         << " variable " << *V << "\n");
1145     deleteExpression(E);
1146     return ExprResult::some(createVariableExpression(V));
1147   }
1148 
1149   CongruenceClass *CC = ValueToClass.lookup(V);
1150   if (CC) {
1151     if (CC->getLeader() && CC->getLeader() != I) {
1152       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1153     }
1154     if (CC->getDefiningExpr()) {
1155       if (I)
1156         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1157                           << " expression " << *CC->getDefiningExpr() << "\n");
1158       NumGVNOpsSimplified++;
1159       deleteExpression(E);
1160       return ExprResult::some(CC->getDefiningExpr(), V);
1161     }
1162   }
1163 
1164   return ExprResult::none();
1165 }
1166 
1167 // Create a value expression from the instruction I, replacing operands with
1168 // their leaders.
1169 
1170 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1171   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1172   // TODO: we need to remove context instruction after Value Tracking
1173   // can run without context instruction
1174   const SimplifyQuery Q = SQ.getWithInstruction(I);
1175 
1176   bool AllConstant = setBasicExpressionInfo(I, E);
1177 
1178   if (I->isCommutative()) {
1179     // Ensure that commutative instructions that only differ by a permutation
1180     // of their operands get the same value number by sorting the operand value
1181     // numbers.  Since all commutative instructions have two operands it is more
1182     // efficient to sort by hand rather than using, say, std::sort.
1183     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1184     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1185       E->swapOperands(0, 1);
1186   }
1187   // Perform simplification.
1188   if (auto *CI = dyn_cast<CmpInst>(I)) {
1189     // Sort the operand value numbers so x<y and y>x get the same value
1190     // number.
1191     CmpInst::Predicate Predicate = CI->getPredicate();
1192     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1193       E->swapOperands(0, 1);
1194       Predicate = CmpInst::getSwappedPredicate(Predicate);
1195     }
1196     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1197     // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1198     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1199            "Wrong types on cmp instruction");
1200     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1201             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1202     Value *V =
1203         simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1204     if (auto Simplified = checkExprResults(E, I, V))
1205       return Simplified;
1206   } else if (isa<SelectInst>(I)) {
1207     if (isa<Constant>(E->getOperand(0)) ||
1208         E->getOperand(1) == E->getOperand(2)) {
1209       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1210              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1211       Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1212                                     E->getOperand(2), Q);
1213       if (auto Simplified = checkExprResults(E, I, V))
1214         return Simplified;
1215     }
1216   } else if (I->isBinaryOp()) {
1217     Value *V =
1218         simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1219     if (auto Simplified = checkExprResults(E, I, V))
1220       return Simplified;
1221   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1222     Value *V =
1223         simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1224     if (auto Simplified = checkExprResults(E, I, V))
1225       return Simplified;
1226   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1227     Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1228                                ArrayRef(std::next(E->op_begin()), E->op_end()),
1229                                GEPI->getNoWrapFlags(), Q);
1230     if (auto Simplified = checkExprResults(E, I, V))
1231       return Simplified;
1232   } else if (AllConstant) {
1233     // We don't bother trying to simplify unless all of the operands
1234     // were constant.
1235     // TODO: There are a lot of Simplify*'s we could call here, if we
1236     // wanted to.  The original motivating case for this code was a
1237     // zext i1 false to i8, which we don't have an interface to
1238     // simplify (IE there is no SimplifyZExt).
1239 
1240     SmallVector<Constant *, 8> C;
1241     for (Value *Arg : E->operands())
1242       C.emplace_back(cast<Constant>(Arg));
1243 
1244     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1245       if (auto Simplified = checkExprResults(E, I, V))
1246         return Simplified;
1247   }
1248   return ExprResult::some(E);
1249 }
1250 
1251 const AggregateValueExpression *
1252 NewGVN::createAggregateValueExpression(Instruction *I) const {
1253   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1254     auto *E = new (ExpressionAllocator)
1255         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1256     setBasicExpressionInfo(I, E);
1257     E->allocateIntOperands(ExpressionAllocator);
1258     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1259     return E;
1260   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1261     auto *E = new (ExpressionAllocator)
1262         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1263     setBasicExpressionInfo(EI, E);
1264     E->allocateIntOperands(ExpressionAllocator);
1265     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1266     return E;
1267   }
1268   llvm_unreachable("Unhandled type of aggregate value operation");
1269 }
1270 
1271 const DeadExpression *NewGVN::createDeadExpression() const {
1272   // DeadExpression has no arguments and all DeadExpression's are the same,
1273   // so we only need one of them.
1274   return SingletonDeadExpression;
1275 }
1276 
1277 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1278   auto *E = new (ExpressionAllocator) VariableExpression(V);
1279   E->setOpcode(V->getValueID());
1280   return E;
1281 }
1282 
1283 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1284   if (auto *C = dyn_cast<Constant>(V))
1285     return createConstantExpression(C);
1286   return createVariableExpression(V);
1287 }
1288 
1289 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1290   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1291   E->setOpcode(C->getValueID());
1292   return E;
1293 }
1294 
1295 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1296   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1297   E->setOpcode(I->getOpcode());
1298   return E;
1299 }
1300 
1301 const CallExpression *
1302 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1303   // FIXME: Add operand bundles for calls.
1304   auto *E =
1305       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1306   setBasicExpressionInfo(CI, E);
1307   if (CI->isCommutative()) {
1308     // Ensure that commutative intrinsics that only differ by a permutation
1309     // of their operands get the same value number by sorting the operand value
1310     // numbers.
1311     assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!");
1312     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1313       E->swapOperands(0, 1);
1314   }
1315   return E;
1316 }
1317 
1318 // Return true if some equivalent of instruction Inst dominates instruction U.
1319 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1320                                      const Instruction *U) const {
1321   auto *CC = ValueToClass.lookup(Inst);
1322    // This must be an instruction because we are only called from phi nodes
1323   // in the case that the value it needs to check against is an instruction.
1324 
1325   // The most likely candidates for dominance are the leader and the next leader.
1326   // The leader or nextleader will dominate in all cases where there is an
1327   // equivalent that is higher up in the dom tree.
1328   // We can't *only* check them, however, because the
1329   // dominator tree could have an infinite number of non-dominating siblings
1330   // with instructions that are in the right congruence class.
1331   //       A
1332   // B C D E F G
1333   // |
1334   // H
1335   // Instruction U could be in H,  with equivalents in every other sibling.
1336   // Depending on the rpo order picked, the leader could be the equivalent in
1337   // any of these siblings.
1338   if (!CC)
1339     return false;
1340   if (alwaysAvailable(CC->getLeader()))
1341     return true;
1342   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1343     return true;
1344   if (CC->getNextLeader().first &&
1345       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1346     return true;
1347   return llvm::any_of(*CC, [&](const Value *Member) {
1348     return Member != CC->getLeader() &&
1349            DT->dominates(cast<Instruction>(Member), U);
1350   });
1351 }
1352 
1353 // See if we have a congruence class and leader for this operand, and if so,
1354 // return it. Otherwise, return the operand itself.
1355 Value *NewGVN::lookupOperandLeader(Value *V) const {
1356   CongruenceClass *CC = ValueToClass.lookup(V);
1357   if (CC) {
1358     // Everything in TOP is represented by poison, as it can be any value.
1359     // We do have to make sure we get the type right though, so we can't set the
1360     // RepLeader to poison.
1361     if (CC == TOPClass)
1362       return PoisonValue::get(V->getType());
1363     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1364   }
1365 
1366   return V;
1367 }
1368 
1369 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1370   auto *CC = getMemoryClass(MA);
1371   assert(CC->getMemoryLeader() &&
1372          "Every MemoryAccess should be mapped to a congruence class with a "
1373          "representative memory access");
1374   return CC->getMemoryLeader();
1375 }
1376 
1377 // Return true if the MemoryAccess is really equivalent to everything. This is
1378 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1379 // state of all MemoryAccesses.
1380 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1381   return getMemoryClass(MA) == TOPClass;
1382 }
1383 
1384 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1385                                              LoadInst *LI,
1386                                              const MemoryAccess *MA) const {
1387   auto *E =
1388       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1389   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1390   E->setType(LoadType);
1391 
1392   // Give store and loads same opcode so they value number together.
1393   E->setOpcode(0);
1394   E->op_push_back(PointerOp);
1395 
1396   // TODO: Value number heap versions. We may be able to discover
1397   // things alias analysis can't on it's own (IE that a store and a
1398   // load have the same value, and thus, it isn't clobbering the load).
1399   return E;
1400 }
1401 
1402 const StoreExpression *
1403 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1404   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1405   auto *E = new (ExpressionAllocator)
1406       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1407   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1408   E->setType(SI->getValueOperand()->getType());
1409 
1410   // Give store and loads same opcode so they value number together.
1411   E->setOpcode(0);
1412   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1413 
1414   // TODO: Value number heap versions. We may be able to discover
1415   // things alias analysis can't on it's own (IE that a store and a
1416   // load have the same value, and thus, it isn't clobbering the load).
1417   return E;
1418 }
1419 
1420 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1421   // Unlike loads, we never try to eliminate stores, so we do not check if they
1422   // are simple and avoid value numbering them.
1423   auto *SI = cast<StoreInst>(I);
1424   auto *StoreAccess = getMemoryAccess(SI);
1425   // Get the expression, if any, for the RHS of the MemoryDef.
1426   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1427   if (EnableStoreRefinement)
1428     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1429   // If we bypassed the use-def chains, make sure we add a use.
1430   StoreRHS = lookupMemoryLeader(StoreRHS);
1431   if (StoreRHS != StoreAccess->getDefiningAccess())
1432     addMemoryUsers(StoreRHS, StoreAccess);
1433   // If we are defined by ourselves, use the live on entry def.
1434   if (StoreRHS == StoreAccess)
1435     StoreRHS = MSSA->getLiveOnEntryDef();
1436 
1437   if (SI->isSimple()) {
1438     // See if we are defined by a previous store expression, it already has a
1439     // value, and it's the same value as our current store. FIXME: Right now, we
1440     // only do this for simple stores, we should expand to cover memcpys, etc.
1441     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1442     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1443     // We really want to check whether the expression we matched was a store. No
1444     // easy way to do that. However, we can check that the class we found has a
1445     // store, which, assuming the value numbering state is not corrupt, is
1446     // sufficient, because we must also be equivalent to that store's expression
1447     // for it to be in the same class as the load.
1448     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1449       return LastStore;
1450     // Also check if our value operand is defined by a load of the same memory
1451     // location, and the memory state is the same as it was then (otherwise, it
1452     // could have been overwritten later. See test32 in
1453     // transforms/DeadStoreElimination/simple.ll).
1454     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1455       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1456            LastStore->getOperand(0)) &&
1457           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1458            StoreRHS))
1459         return LastStore;
1460     deleteExpression(LastStore);
1461   }
1462 
1463   // If the store is not equivalent to anything, value number it as a store that
1464   // produces a unique memory state (instead of using it's MemoryUse, we use
1465   // it's MemoryDef).
1466   return createStoreExpression(SI, StoreAccess);
1467 }
1468 
1469 // See if we can extract the value of a loaded pointer from a load, a store, or
1470 // a memory instruction.
1471 const Expression *
1472 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1473                                     LoadInst *LI, Instruction *DepInst,
1474                                     MemoryAccess *DefiningAccess) const {
1475   assert((!LI || LI->isSimple()) && "Not a simple load");
1476   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1477     // Can't forward from non-atomic to atomic without violating memory model.
1478     // Also don't need to coerce if they are the same type, we will just
1479     // propagate.
1480     if (LI->isAtomic() > DepSI->isAtomic() ||
1481         LoadType == DepSI->getValueOperand()->getType())
1482       return nullptr;
1483     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1484     if (Offset >= 0) {
1485       if (auto *C = dyn_cast<Constant>(
1486               lookupOperandLeader(DepSI->getValueOperand()))) {
1487         if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) {
1488           LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1489                             << " to constant " << *Res << "\n");
1490           return createConstantExpression(Res);
1491         }
1492       }
1493     }
1494   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1495     // Can't forward from non-atomic to atomic without violating memory model.
1496     if (LI->isAtomic() > DepLI->isAtomic())
1497       return nullptr;
1498     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1499     if (Offset >= 0) {
1500       // We can coerce a constant load into a load.
1501       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1502         if (auto *PossibleConstant =
1503                 getConstantValueForLoad(C, Offset, LoadType, DL)) {
1504           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1505                             << " to constant " << *PossibleConstant << "\n");
1506           return createConstantExpression(PossibleConstant);
1507         }
1508     }
1509   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1510     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1511     if (Offset >= 0) {
1512       if (auto *PossibleConstant =
1513               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1514         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1515                           << " to constant " << *PossibleConstant << "\n");
1516         return createConstantExpression(PossibleConstant);
1517       }
1518     }
1519   }
1520 
1521   // All of the below are only true if the loaded pointer is produced
1522   // by the dependent instruction.
1523   if (LoadPtr != lookupOperandLeader(DepInst) &&
1524       !AA->isMustAlias(LoadPtr, DepInst))
1525     return nullptr;
1526   // If this load really doesn't depend on anything, then we must be loading an
1527   // undef value.  This can happen when loading for a fresh allocation with no
1528   // intervening stores, for example.  Note that this is only true in the case
1529   // that the result of the allocation is pointer equal to the load ptr.
1530   if (isa<AllocaInst>(DepInst)) {
1531     return createConstantExpression(UndefValue::get(LoadType));
1532   }
1533   // If this load occurs either right after a lifetime begin,
1534   // then the loaded value is undefined.
1535   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1536     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1537       return createConstantExpression(UndefValue::get(LoadType));
1538   } else if (auto *InitVal =
1539                  getInitialValueOfAllocation(DepInst, TLI, LoadType))
1540       return createConstantExpression(InitVal);
1541 
1542   return nullptr;
1543 }
1544 
1545 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1546   auto *LI = cast<LoadInst>(I);
1547 
1548   // We can eliminate in favor of non-simple loads, but we won't be able to
1549   // eliminate the loads themselves.
1550   if (!LI->isSimple())
1551     return nullptr;
1552 
1553   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1554   // Load of undef is UB.
1555   if (isa<UndefValue>(LoadAddressLeader))
1556     return createConstantExpression(PoisonValue::get(LI->getType()));
1557   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1558   MemoryAccess *DefiningAccess =
1559       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1560 
1561   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1562     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1563       Instruction *DefiningInst = MD->getMemoryInst();
1564       // If the defining instruction is not reachable, replace with poison.
1565       if (!ReachableBlocks.count(DefiningInst->getParent()))
1566         return createConstantExpression(PoisonValue::get(LI->getType()));
1567       // This will handle stores and memory insts.  We only do if it the
1568       // defining access has a different type, or it is a pointer produced by
1569       // certain memory operations that cause the memory to have a fixed value
1570       // (IE things like calloc).
1571       if (const auto *CoercionResult =
1572               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1573                                           DefiningInst, DefiningAccess))
1574         return CoercionResult;
1575     }
1576   }
1577 
1578   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1579                                         DefiningAccess);
1580   // If our MemoryLeader is not our defining access, add a use to the
1581   // MemoryLeader, so that we get reprocessed when it changes.
1582   if (LE->getMemoryLeader() != DefiningAccess)
1583     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1584   return LE;
1585 }
1586 
1587 NewGVN::ExprResult
1588 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1589   auto *PI = PredInfo->getPredicateInfoFor(I);
1590   if (!PI)
1591     return ExprResult::none();
1592 
1593   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1594 
1595   const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1596   if (!Constraint)
1597     return ExprResult::none();
1598 
1599   CmpInst::Predicate Predicate = Constraint->Predicate;
1600   Value *CmpOp0 = I->getOperand(0);
1601   Value *CmpOp1 = Constraint->OtherOp;
1602 
1603   Value *FirstOp = lookupOperandLeader(CmpOp0);
1604   Value *SecondOp = lookupOperandLeader(CmpOp1);
1605   Value *AdditionallyUsedValue = CmpOp0;
1606 
1607   // Sort the ops.
1608   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1609     std::swap(FirstOp, SecondOp);
1610     Predicate = CmpInst::getSwappedPredicate(Predicate);
1611     AdditionallyUsedValue = CmpOp1;
1612   }
1613 
1614   if (Predicate == CmpInst::ICMP_EQ)
1615     return ExprResult::some(createVariableOrConstant(FirstOp),
1616                             AdditionallyUsedValue, PI);
1617 
1618   // Handle the special case of floating point.
1619   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1620       !cast<ConstantFP>(FirstOp)->isZero())
1621     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1622                             AdditionallyUsedValue, PI);
1623 
1624   return ExprResult::none();
1625 }
1626 
1627 // Evaluate read only and pure calls, and create an expression result.
1628 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1629   auto *CI = cast<CallInst>(I);
1630   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1631     // Intrinsics with the returned attribute are copies of arguments.
1632     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1633       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1634         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1635           return Res;
1636       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1637     }
1638   }
1639 
1640   // FIXME: Currently the calls which may access the thread id may
1641   // be considered as not accessing the memory. But this is
1642   // problematic for coroutines, since coroutines may resume in a
1643   // different thread. So we disable the optimization here for the
1644   // correctness. However, it may block many other correct
1645   // optimizations. Revert this one when we detect the memory
1646   // accessing kind more precisely.
1647   if (CI->getFunction()->isPresplitCoroutine())
1648     return ExprResult::none();
1649 
1650   // Do not combine convergent calls since they implicitly depend on the set of
1651   // threads that is currently executing, and they might be in different basic
1652   // blocks.
1653   if (CI->isConvergent())
1654     return ExprResult::none();
1655 
1656   if (AA->doesNotAccessMemory(CI)) {
1657     return ExprResult::some(
1658         createCallExpression(CI, TOPClass->getMemoryLeader()));
1659   } else if (AA->onlyReadsMemory(CI)) {
1660     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1661       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1662       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1663     } else // MSSA determined that CI does not access memory.
1664       return ExprResult::some(
1665           createCallExpression(CI, TOPClass->getMemoryLeader()));
1666   }
1667   return ExprResult::none();
1668 }
1669 
1670 // Retrieve the memory class for a given MemoryAccess.
1671 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1672   auto *Result = MemoryAccessToClass.lookup(MA);
1673   assert(Result && "Should have found memory class");
1674   return Result;
1675 }
1676 
1677 // Update the MemoryAccess equivalence table to say that From is equal to To,
1678 // and return true if this is different from what already existed in the table.
1679 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1680                             CongruenceClass *NewClass) {
1681   assert(NewClass &&
1682          "Every MemoryAccess should be getting mapped to a non-null class");
1683   LLVM_DEBUG(dbgs() << "Setting " << *From);
1684   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1685   LLVM_DEBUG(dbgs() << NewClass->getID()
1686                     << " with current MemoryAccess leader ");
1687   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1688 
1689   auto LookupResult = MemoryAccessToClass.find(From);
1690   bool Changed = false;
1691   // If it's already in the table, see if the value changed.
1692   if (LookupResult != MemoryAccessToClass.end()) {
1693     auto *OldClass = LookupResult->second;
1694     if (OldClass != NewClass) {
1695       // If this is a phi, we have to handle memory member updates.
1696       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1697         OldClass->memory_erase(MP);
1698         NewClass->memory_insert(MP);
1699         // This may have killed the class if it had no non-memory members
1700         if (OldClass->getMemoryLeader() == From) {
1701           if (OldClass->definesNoMemory()) {
1702             OldClass->setMemoryLeader(nullptr);
1703           } else {
1704             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1705             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1706                               << OldClass->getID() << " to "
1707                               << *OldClass->getMemoryLeader()
1708                               << " due to removal of a memory member " << *From
1709                               << "\n");
1710             markMemoryLeaderChangeTouched(OldClass);
1711           }
1712         }
1713       }
1714       // It wasn't equivalent before, and now it is.
1715       LookupResult->second = NewClass;
1716       Changed = true;
1717     }
1718   }
1719 
1720   return Changed;
1721 }
1722 
1723 // Determine if a instruction is cycle-free.  That means the values in the
1724 // instruction don't depend on any expressions that can change value as a result
1725 // of the instruction.  For example, a non-cycle free instruction would be v =
1726 // phi(0, v+1).
1727 bool NewGVN::isCycleFree(const Instruction *I) const {
1728   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1729   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1730   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1731   // other members are all phi nodes (as they do not compute anything, they are
1732   // copies).
1733   auto ICS = InstCycleState.lookup(I);
1734   if (ICS == ICS_Unknown) {
1735     SCCFinder.Start(I);
1736     auto &SCC = SCCFinder.getComponentFor(I);
1737     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1738     if (SCC.size() == 1)
1739       InstCycleState.insert({I, ICS_CycleFree});
1740     else {
1741       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1742         return isa<PHINode>(V) || isCopyOfAPHI(V);
1743       });
1744       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1745       for (const auto *Member : SCC)
1746         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1747           InstCycleState.insert({MemberPhi, ICS});
1748     }
1749   }
1750   if (ICS == ICS_Cycle)
1751     return false;
1752   return true;
1753 }
1754 
1755 // Evaluate PHI nodes symbolically and create an expression result.
1756 const Expression *
1757 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1758                                      Instruction *I,
1759                                      BasicBlock *PHIBlock) const {
1760   // True if one of the incoming phi edges is a backedge.
1761   bool HasBackedge = false;
1762   // All constant tracks the state of whether all the *original* phi operands
1763   // This is really shorthand for "this phi cannot cycle due to forward
1764   // change in value of the phi is guaranteed not to later change the value of
1765   // the phi. IE it can't be v = phi(undef, v+1)
1766   bool OriginalOpsConstant = true;
1767   auto *E = cast<PHIExpression>(createPHIExpression(
1768       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1769   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1770   // See if all arguments are the same.
1771   // We track if any were undef because they need special handling.
1772   bool HasUndef = false, HasPoison = false;
1773   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1774     if (isa<PoisonValue>(Arg)) {
1775       HasPoison = true;
1776       return false;
1777     }
1778     if (isa<UndefValue>(Arg)) {
1779       HasUndef = true;
1780       return false;
1781     }
1782     return true;
1783   });
1784   // If we are left with no operands, it's dead.
1785   if (Filtered.empty()) {
1786     // If it has undef or poison at this point, it means there are no-non-undef
1787     // arguments, and thus, the value of the phi node must be undef.
1788     if (HasUndef) {
1789       LLVM_DEBUG(
1790           dbgs() << "PHI Node " << *I
1791                  << " has no non-undef arguments, valuing it as undef\n");
1792       return createConstantExpression(UndefValue::get(I->getType()));
1793     }
1794     if (HasPoison) {
1795       LLVM_DEBUG(
1796           dbgs() << "PHI Node " << *I
1797                  << " has no non-poison arguments, valuing it as poison\n");
1798       return createConstantExpression(PoisonValue::get(I->getType()));
1799     }
1800 
1801     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1802     deleteExpression(E);
1803     return createDeadExpression();
1804   }
1805   Value *AllSameValue = *(Filtered.begin());
1806   ++Filtered.begin();
1807   // Can't use std::equal here, sadly, because filter.begin moves.
1808   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1809     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1810     // in the worst case).
1811     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1812       return E;
1813 
1814     // In LLVM's non-standard representation of phi nodes, it's possible to have
1815     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1816     // on the original phi node), especially in weird CFG's where some arguments
1817     // are unreachable, or uninitialized along certain paths.  This can cause
1818     // infinite loops during evaluation. We work around this by not trying to
1819     // really evaluate them independently, but instead using a variable
1820     // expression to say if one is equivalent to the other.
1821     // We also special case undef/poison, so that if we have an undef, we can't
1822     // use the common value unless it dominates the phi block.
1823     if (HasPoison || HasUndef) {
1824       // If we have undef and at least one other value, this is really a
1825       // multivalued phi, and we need to know if it's cycle free in order to
1826       // evaluate whether we can ignore the undef.  The other parts of this are
1827       // just shortcuts.  If there is no backedge, or all operands are
1828       // constants, it also must be cycle free.
1829       if (HasBackedge && !OriginalOpsConstant &&
1830           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1831         return E;
1832 
1833       // Only have to check for instructions
1834       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1835         if (!someEquivalentDominates(AllSameInst, I))
1836           return E;
1837     }
1838     // Can't simplify to something that comes later in the iteration.
1839     // Otherwise, when and if it changes congruence class, we will never catch
1840     // up. We will always be a class behind it.
1841     if (isa<Instruction>(AllSameValue) &&
1842         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1843       return E;
1844     NumGVNPhisAllSame++;
1845     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1846                       << "\n");
1847     deleteExpression(E);
1848     return createVariableOrConstant(AllSameValue);
1849   }
1850   return E;
1851 }
1852 
1853 const Expression *
1854 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1855   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1856     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1857     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1858       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1859       // a semantically equivalent expression instead of an extract value
1860       // expression.
1861       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1862                                     WO->getLHS(), WO->getRHS(), I);
1863   }
1864 
1865   return createAggregateValueExpression(I);
1866 }
1867 
1868 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1869   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1870 
1871   auto *CI = cast<CmpInst>(I);
1872   // See if our operands are equal to those of a previous predicate, and if so,
1873   // if it implies true or false.
1874   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1875   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1876   auto OurPredicate = CI->getPredicate();
1877   if (shouldSwapOperands(Op0, Op1)) {
1878     std::swap(Op0, Op1);
1879     OurPredicate = CI->getSwappedPredicate();
1880   }
1881 
1882   // Avoid processing the same info twice.
1883   const PredicateBase *LastPredInfo = nullptr;
1884   // See if we know something about the comparison itself, like it is the target
1885   // of an assume.
1886   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1887   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1888     return ExprResult::some(
1889         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1890 
1891   if (Op0 == Op1) {
1892     // This condition does not depend on predicates, no need to add users
1893     if (CI->isTrueWhenEqual())
1894       return ExprResult::some(
1895           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1896     else if (CI->isFalseWhenEqual())
1897       return ExprResult::some(
1898           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1899   }
1900 
1901   // NOTE: Because we are comparing both operands here and below, and using
1902   // previous comparisons, we rely on fact that predicateinfo knows to mark
1903   // comparisons that use renamed operands as users of the earlier comparisons.
1904   // It is *not* enough to just mark predicateinfo renamed operands as users of
1905   // the earlier comparisons, because the *other* operand may have changed in a
1906   // previous iteration.
1907   // Example:
1908   // icmp slt %a, %b
1909   // %b.0 = ssa.copy(%b)
1910   // false branch:
1911   // icmp slt %c, %b.0
1912 
1913   // %c and %a may start out equal, and thus, the code below will say the second
1914   // %icmp is false.  c may become equal to something else, and in that case the
1915   // %second icmp *must* be reexamined, but would not if only the renamed
1916   // %operands are considered users of the icmp.
1917 
1918   // *Currently* we only check one level of comparisons back, and only mark one
1919   // level back as touched when changes happen.  If you modify this code to look
1920   // back farther through comparisons, you *must* mark the appropriate
1921   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1922   // we know something just from the operands themselves
1923 
1924   // See if our operands have predicate info, so that we may be able to derive
1925   // something from a previous comparison.
1926   for (const auto &Op : CI->operands()) {
1927     auto *PI = PredInfo->getPredicateInfoFor(Op);
1928     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1929       if (PI == LastPredInfo)
1930         continue;
1931       LastPredInfo = PI;
1932       // In phi of ops cases, we may have predicate info that we are evaluating
1933       // in a different context.
1934       if (!DT->dominates(PBranch->To, I->getParent()))
1935         continue;
1936       // TODO: Along the false edge, we may know more things too, like
1937       // icmp of
1938       // same operands is false.
1939       // TODO: We only handle actual comparison conditions below, not
1940       // and/or.
1941       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1942       if (!BranchCond)
1943         continue;
1944       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1945       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1946       auto BranchPredicate = BranchCond->getPredicate();
1947       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1948         std::swap(BranchOp0, BranchOp1);
1949         BranchPredicate = BranchCond->getSwappedPredicate();
1950       }
1951       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1952         if (PBranch->TrueEdge) {
1953           // If we know the previous predicate is true and we are in the true
1954           // edge then we may be implied true or false.
1955           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1956                                                   OurPredicate)) {
1957             return ExprResult::some(
1958                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1959                 PI);
1960           }
1961 
1962           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1963                                                    OurPredicate)) {
1964             return ExprResult::some(
1965                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1966                 PI);
1967           }
1968         } else {
1969           // Just handle the ne and eq cases, where if we have the same
1970           // operands, we may know something.
1971           if (BranchPredicate == OurPredicate) {
1972             // Same predicate, same ops,we know it was false, so this is false.
1973             return ExprResult::some(
1974                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1975                 PI);
1976           } else if (BranchPredicate ==
1977                      CmpInst::getInversePredicate(OurPredicate)) {
1978             // Inverse predicate, we know the other was false, so this is true.
1979             return ExprResult::some(
1980                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1981                 PI);
1982           }
1983         }
1984       }
1985     }
1986   }
1987   // Create expression will take care of simplifyCmpInst
1988   return createExpression(I);
1989 }
1990 
1991 // Substitute and symbolize the instruction before value numbering.
1992 NewGVN::ExprResult
1993 NewGVN::performSymbolicEvaluation(Instruction *I,
1994                                   SmallPtrSetImpl<Value *> &Visited) const {
1995 
1996   const Expression *E = nullptr;
1997   // TODO: memory intrinsics.
1998   // TODO: Some day, we should do the forward propagation and reassociation
1999   // parts of the algorithm.
2000   switch (I->getOpcode()) {
2001   case Instruction::ExtractValue:
2002   case Instruction::InsertValue:
2003     E = performSymbolicAggrValueEvaluation(I);
2004     break;
2005   case Instruction::PHI: {
2006     SmallVector<ValPair, 3> Ops;
2007     auto *PN = cast<PHINode>(I);
2008     for (unsigned i = 0; i < PN->getNumOperands(); ++i)
2009       Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
2010     // Sort to ensure the invariant createPHIExpression requires is met.
2011     sortPHIOps(Ops);
2012     E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2013   } break;
2014   case Instruction::Call:
2015     return performSymbolicCallEvaluation(I);
2016     break;
2017   case Instruction::Store:
2018     E = performSymbolicStoreEvaluation(I);
2019     break;
2020   case Instruction::Load:
2021     E = performSymbolicLoadEvaluation(I);
2022     break;
2023   case Instruction::BitCast:
2024   case Instruction::AddrSpaceCast:
2025   case Instruction::Freeze:
2026     return createExpression(I);
2027     break;
2028   case Instruction::ICmp:
2029   case Instruction::FCmp:
2030     return performSymbolicCmpEvaluation(I);
2031     break;
2032   case Instruction::FNeg:
2033   case Instruction::Add:
2034   case Instruction::FAdd:
2035   case Instruction::Sub:
2036   case Instruction::FSub:
2037   case Instruction::Mul:
2038   case Instruction::FMul:
2039   case Instruction::UDiv:
2040   case Instruction::SDiv:
2041   case Instruction::FDiv:
2042   case Instruction::URem:
2043   case Instruction::SRem:
2044   case Instruction::FRem:
2045   case Instruction::Shl:
2046   case Instruction::LShr:
2047   case Instruction::AShr:
2048   case Instruction::And:
2049   case Instruction::Or:
2050   case Instruction::Xor:
2051   case Instruction::Trunc:
2052   case Instruction::ZExt:
2053   case Instruction::SExt:
2054   case Instruction::FPToUI:
2055   case Instruction::FPToSI:
2056   case Instruction::UIToFP:
2057   case Instruction::SIToFP:
2058   case Instruction::FPTrunc:
2059   case Instruction::FPExt:
2060   case Instruction::PtrToInt:
2061   case Instruction::IntToPtr:
2062   case Instruction::Select:
2063   case Instruction::ExtractElement:
2064   case Instruction::InsertElement:
2065   case Instruction::GetElementPtr:
2066     return createExpression(I);
2067     break;
2068   case Instruction::ShuffleVector:
2069     // FIXME: Add support for shufflevector to createExpression.
2070     return ExprResult::none();
2071   default:
2072     return ExprResult::none();
2073   }
2074   return ExprResult::some(E);
2075 }
2076 
2077 // Look up a container of values/instructions in a map, and touch all the
2078 // instructions in the container.  Then erase value from the map.
2079 template <typename Map, typename KeyType>
2080 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2081   const auto Result = M.find_as(Key);
2082   if (Result != M.end()) {
2083     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2084       TouchedInstructions.set(InstrToDFSNum(Mapped));
2085     M.erase(Result);
2086   }
2087 }
2088 
2089 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2090   assert(User && To != User);
2091   if (isa<Instruction>(To))
2092     AdditionalUsers[To].insert(User);
2093 }
2094 
2095 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2096   if (Res.ExtraDep && Res.ExtraDep != User)
2097     addAdditionalUsers(Res.ExtraDep, User);
2098   Res.ExtraDep = nullptr;
2099 
2100   if (Res.PredDep) {
2101     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2102       PredicateToUsers[PBranch->Condition].insert(User);
2103     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2104       PredicateToUsers[PAssume->Condition].insert(User);
2105   }
2106   Res.PredDep = nullptr;
2107 }
2108 
2109 void NewGVN::markUsersTouched(Value *V) {
2110   // Now mark the users as touched.
2111   for (auto *User : V->users()) {
2112     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2113     TouchedInstructions.set(InstrToDFSNum(User));
2114   }
2115   touchAndErase(AdditionalUsers, V);
2116 }
2117 
2118 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2119   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2120   MemoryToUsers[To].insert(U);
2121 }
2122 
2123 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2124   TouchedInstructions.set(MemoryToDFSNum(MA));
2125 }
2126 
2127 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2128   if (isa<MemoryUse>(MA))
2129     return;
2130   for (const auto *U : MA->users())
2131     TouchedInstructions.set(MemoryToDFSNum(U));
2132   touchAndErase(MemoryToUsers, MA);
2133 }
2134 
2135 // Touch all the predicates that depend on this instruction.
2136 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2137   touchAndErase(PredicateToUsers, I);
2138 }
2139 
2140 // Mark users affected by a memory leader change.
2141 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2142   for (const auto *M : CC->memory())
2143     markMemoryDefTouched(M);
2144 }
2145 
2146 // Touch the instructions that need to be updated after a congruence class has a
2147 // leader change, and mark changed values.
2148 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2149   for (auto *M : *CC) {
2150     if (auto *I = dyn_cast<Instruction>(M))
2151       TouchedInstructions.set(InstrToDFSNum(I));
2152     LeaderChanges.insert(M);
2153   }
2154 }
2155 
2156 // Give a range of things that have instruction DFS numbers, this will return
2157 // the member of the range with the smallest dfs number.
2158 template <class T, class Range>
2159 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2160   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2161   for (const auto X : R) {
2162     auto DFSNum = InstrToDFSNum(X);
2163     if (DFSNum < MinDFS.second)
2164       MinDFS = {X, DFSNum};
2165   }
2166   return MinDFS.first;
2167 }
2168 
2169 // This function returns the MemoryAccess that should be the next leader of
2170 // congruence class CC, under the assumption that the current leader is going to
2171 // disappear.
2172 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2173   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2174   // do for regular leaders.
2175   // Make sure there will be a leader to find.
2176   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2177   if (CC->getStoreCount() > 0) {
2178     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2179       return getMemoryAccess(NL);
2180     // Find the store with the minimum DFS number.
2181     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2182         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2183     return getMemoryAccess(cast<StoreInst>(V));
2184   }
2185   assert(CC->getStoreCount() == 0);
2186 
2187   // Given our assertion, hitting this part must mean
2188   // !OldClass->memory_empty()
2189   if (CC->memory_size() == 1)
2190     return *CC->memory_begin();
2191   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2192 }
2193 
2194 // This function returns the next value leader of a congruence class, under the
2195 // assumption that the current leader is going away.  This should end up being
2196 // the next most dominating member.
2197 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2198   // We don't need to sort members if there is only 1, and we don't care about
2199   // sorting the TOP class because everything either gets out of it or is
2200   // unreachable.
2201 
2202   if (CC->size() == 1 || CC == TOPClass) {
2203     return *(CC->begin());
2204   } else if (CC->getNextLeader().first) {
2205     ++NumGVNAvoidedSortedLeaderChanges;
2206     return CC->getNextLeader().first;
2207   } else {
2208     ++NumGVNSortedLeaderChanges;
2209     // NOTE: If this ends up to slow, we can maintain a dual structure for
2210     // member testing/insertion, or keep things mostly sorted, and sort only
2211     // here, or use SparseBitVector or ....
2212     return getMinDFSOfRange<Value>(*CC);
2213   }
2214 }
2215 
2216 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2217 // the memory members, etc for the move.
2218 //
2219 // The invariants of this function are:
2220 //
2221 // - I must be moving to NewClass from OldClass
2222 // - The StoreCount of OldClass and NewClass is expected to have been updated
2223 //   for I already if it is a store.
2224 // - The OldClass memory leader has not been updated yet if I was the leader.
2225 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2226                                             MemoryAccess *InstMA,
2227                                             CongruenceClass *OldClass,
2228                                             CongruenceClass *NewClass) {
2229   // If the leader is I, and we had a representative MemoryAccess, it should
2230   // be the MemoryAccess of OldClass.
2231   assert((!InstMA || !OldClass->getMemoryLeader() ||
2232           OldClass->getLeader() != I ||
2233           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2234               MemoryAccessToClass.lookup(InstMA)) &&
2235          "Representative MemoryAccess mismatch");
2236   // First, see what happens to the new class
2237   if (!NewClass->getMemoryLeader()) {
2238     // Should be a new class, or a store becoming a leader of a new class.
2239     assert(NewClass->size() == 1 ||
2240            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2241     NewClass->setMemoryLeader(InstMA);
2242     // Mark it touched if we didn't just create a singleton
2243     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2244                       << NewClass->getID()
2245                       << " due to new memory instruction becoming leader\n");
2246     markMemoryLeaderChangeTouched(NewClass);
2247   }
2248   setMemoryClass(InstMA, NewClass);
2249   // Now, fixup the old class if necessary
2250   if (OldClass->getMemoryLeader() == InstMA) {
2251     if (!OldClass->definesNoMemory()) {
2252       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2253       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2254                         << OldClass->getID() << " to "
2255                         << *OldClass->getMemoryLeader()
2256                         << " due to removal of old leader " << *InstMA << "\n");
2257       markMemoryLeaderChangeTouched(OldClass);
2258     } else
2259       OldClass->setMemoryLeader(nullptr);
2260   }
2261 }
2262 
2263 // Move a value, currently in OldClass, to be part of NewClass
2264 // Update OldClass and NewClass for the move (including changing leaders, etc).
2265 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2266                                            CongruenceClass *OldClass,
2267                                            CongruenceClass *NewClass) {
2268   if (I == OldClass->getNextLeader().first)
2269     OldClass->resetNextLeader();
2270 
2271   OldClass->erase(I);
2272   NewClass->insert(I);
2273 
2274   // Ensure that the leader has the lowest RPO. If the leader changed notify all
2275   // members of the class.
2276   if (NewClass->getLeader() != I &&
2277       NewClass->addPossibleLeader({I, InstrToDFSNum(I)})) {
2278     markValueLeaderChangeTouched(NewClass);
2279   }
2280 
2281   // Handle our special casing of stores.
2282   if (auto *SI = dyn_cast<StoreInst>(I)) {
2283     OldClass->decStoreCount();
2284     // Okay, so when do we want to make a store a leader of a class?
2285     // If we have a store defined by an earlier load, we want the earlier load
2286     // to lead the class.
2287     // If we have a store defined by something else, we want the store to lead
2288     // the class so everything else gets the "something else" as a value.
2289     // If we have a store as the single member of the class, we want the store
2290     // as the leader
2291     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2292       // If it's a store expression we are using, it means we are not equivalent
2293       // to something earlier.
2294       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2295         NewClass->setStoredValue(SE->getStoredValue());
2296         markValueLeaderChangeTouched(NewClass);
2297         // Shift the new class leader to be the store
2298         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2299                           << NewClass->getID() << " from "
2300                           << *NewClass->getLeader() << " to  " << *SI
2301                           << " because store joined class\n");
2302         // If we changed the leader, we have to mark it changed because we don't
2303         // know what it will do to symbolic evaluation.
2304         NewClass->setLeader({SI, InstrToDFSNum(SI)});
2305       }
2306       // We rely on the code below handling the MemoryAccess change.
2307     }
2308     NewClass->incStoreCount();
2309   }
2310   // True if there is no memory instructions left in a class that had memory
2311   // instructions before.
2312 
2313   // If it's not a memory use, set the MemoryAccess equivalence
2314   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2315   if (InstMA)
2316     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2317   ValueToClass[I] = NewClass;
2318   // See if we destroyed the class or need to swap leaders.
2319   if (OldClass->empty() && OldClass != TOPClass) {
2320     if (OldClass->getDefiningExpr()) {
2321       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2322                         << " from table\n");
2323       // We erase it as an exact expression to make sure we don't just erase an
2324       // equivalent one.
2325       auto Iter = ExpressionToClass.find_as(
2326           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2327       if (Iter != ExpressionToClass.end())
2328         ExpressionToClass.erase(Iter);
2329 #ifdef EXPENSIVE_CHECKS
2330       assert(
2331           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2332           "We erased the expression we just inserted, which should not happen");
2333 #endif
2334     }
2335   } else if (OldClass->getLeader() == I) {
2336     // When the leader changes, the value numbering of
2337     // everything may change due to symbolization changes, so we need to
2338     // reprocess.
2339     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2340                       << OldClass->getID() << "\n");
2341     ++NumGVNLeaderChanges;
2342     // Destroy the stored value if there are no more stores to represent it.
2343     // Note that this is basically clean up for the expression removal that
2344     // happens below.  If we remove stores from a class, we may leave it as a
2345     // class of equivalent memory phis.
2346     if (OldClass->getStoreCount() == 0) {
2347       if (OldClass->getStoredValue())
2348         OldClass->setStoredValue(nullptr);
2349     }
2350     OldClass->setLeader({getNextValueLeader(OldClass),
2351                          InstrToDFSNum(getNextValueLeader(OldClass))});
2352     OldClass->resetNextLeader();
2353     markValueLeaderChangeTouched(OldClass);
2354   }
2355 }
2356 
2357 // For a given expression, mark the phi of ops instructions that could have
2358 // changed as a result.
2359 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2360   touchAndErase(ExpressionToPhiOfOps, E);
2361 }
2362 
2363 // Perform congruence finding on a given value numbering expression.
2364 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2365   // This is guaranteed to return something, since it will at least find
2366   // TOP.
2367 
2368   CongruenceClass *IClass = ValueToClass.lookup(I);
2369   assert(IClass && "Should have found a IClass");
2370   // Dead classes should have been eliminated from the mapping.
2371   assert(!IClass->isDead() && "Found a dead class");
2372 
2373   CongruenceClass *EClass = nullptr;
2374   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2375     EClass = ValueToClass.lookup(VE->getVariableValue());
2376   } else if (isa<DeadExpression>(E)) {
2377     EClass = TOPClass;
2378   }
2379   if (!EClass) {
2380     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2381 
2382     // If it's not in the value table, create a new congruence class.
2383     if (lookupResult.second) {
2384       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2385       auto place = lookupResult.first;
2386       place->second = NewClass;
2387 
2388       // Constants and variables should always be made the leader.
2389       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2390         NewClass->setLeader({CE->getConstantValue(), 0});
2391       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2392         StoreInst *SI = SE->getStoreInst();
2393         NewClass->setLeader({SI, InstrToDFSNum(SI)});
2394         NewClass->setStoredValue(SE->getStoredValue());
2395         // The RepMemoryAccess field will be filled in properly by the
2396         // moveValueToNewCongruenceClass call.
2397       } else {
2398         NewClass->setLeader({I, InstrToDFSNum(I)});
2399       }
2400       assert(!isa<VariableExpression>(E) &&
2401              "VariableExpression should have been handled already");
2402 
2403       EClass = NewClass;
2404       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2405                         << " using expression " << *E << " at "
2406                         << NewClass->getID() << " and leader "
2407                         << *(NewClass->getLeader()));
2408       if (NewClass->getStoredValue())
2409         LLVM_DEBUG(dbgs() << " and stored value "
2410                           << *(NewClass->getStoredValue()));
2411       LLVM_DEBUG(dbgs() << "\n");
2412     } else {
2413       EClass = lookupResult.first->second;
2414       if (isa<ConstantExpression>(E))
2415         assert((isa<Constant>(EClass->getLeader()) ||
2416                 (EClass->getStoredValue() &&
2417                  isa<Constant>(EClass->getStoredValue()))) &&
2418                "Any class with a constant expression should have a "
2419                "constant leader");
2420 
2421       assert(EClass && "Somehow don't have an eclass");
2422 
2423       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2424     }
2425   }
2426   bool ClassChanged = IClass != EClass;
2427   bool LeaderChanged = LeaderChanges.erase(I);
2428   if (ClassChanged || LeaderChanged) {
2429     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2430                       << *E << "\n");
2431     if (ClassChanged) {
2432       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2433       markPhiOfOpsChanged(E);
2434     }
2435 
2436     markUsersTouched(I);
2437     if (MemoryAccess *MA = getMemoryAccess(I))
2438       markMemoryUsersTouched(MA);
2439     if (auto *CI = dyn_cast<CmpInst>(I))
2440       markPredicateUsersTouched(CI);
2441   }
2442   // If we changed the class of the store, we want to ensure nothing finds the
2443   // old store expression.  In particular, loads do not compare against stored
2444   // value, so they will find old store expressions (and associated class
2445   // mappings) if we leave them in the table.
2446   if (ClassChanged && isa<StoreInst>(I)) {
2447     auto *OldE = ValueToExpression.lookup(I);
2448     // It could just be that the old class died. We don't want to erase it if we
2449     // just moved classes.
2450     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2451       // Erase this as an exact expression to ensure we don't erase expressions
2452       // equivalent to it.
2453       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2454       if (Iter != ExpressionToClass.end())
2455         ExpressionToClass.erase(Iter);
2456     }
2457   }
2458   ValueToExpression[I] = E;
2459 }
2460 
2461 // Process the fact that Edge (from, to) is reachable, including marking
2462 // any newly reachable blocks and instructions for processing.
2463 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2464   // Check if the Edge was reachable before.
2465   if (ReachableEdges.insert({From, To}).second) {
2466     // If this block wasn't reachable before, all instructions are touched.
2467     if (ReachableBlocks.insert(To).second) {
2468       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2469                         << " marked reachable\n");
2470       const auto &InstRange = BlockInstRange.lookup(To);
2471       TouchedInstructions.set(InstRange.first, InstRange.second);
2472     } else {
2473       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2474                         << " was reachable, but new edge {"
2475                         << getBlockName(From) << "," << getBlockName(To)
2476                         << "} to it found\n");
2477 
2478       // We've made an edge reachable to an existing block, which may
2479       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2480       // they are the only thing that depend on new edges. Anything using their
2481       // values will get propagated to if necessary.
2482       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2483         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2484 
2485       // FIXME: We should just add a union op on a Bitvector and
2486       // SparseBitVector.  We can do it word by word faster than we are doing it
2487       // here.
2488       for (auto InstNum : RevisitOnReachabilityChange[To])
2489         TouchedInstructions.set(InstNum);
2490     }
2491   }
2492 }
2493 
2494 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2495 // see if we know some constant value for it already.
2496 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2497   auto Result = lookupOperandLeader(Cond);
2498   return isa<Constant>(Result) ? Result : nullptr;
2499 }
2500 
2501 // Process the outgoing edges of a block for reachability.
2502 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2503   // Evaluate reachability of terminator instruction.
2504   Value *Cond;
2505   BasicBlock *TrueSucc, *FalseSucc;
2506   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2507     Value *CondEvaluated = findConditionEquivalence(Cond);
2508     if (!CondEvaluated) {
2509       if (auto *I = dyn_cast<Instruction>(Cond)) {
2510         SmallPtrSet<Value *, 4> Visited;
2511         auto Res = performSymbolicEvaluation(I, Visited);
2512         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2513           CondEvaluated = CE->getConstantValue();
2514           addAdditionalUsers(Res, I);
2515         } else {
2516           // Did not use simplification result, no need to add the extra
2517           // dependency.
2518           Res.ExtraDep = nullptr;
2519         }
2520       } else if (isa<ConstantInt>(Cond)) {
2521         CondEvaluated = Cond;
2522       }
2523     }
2524     ConstantInt *CI;
2525     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2526       if (CI->isOne()) {
2527         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2528                           << " evaluated to true\n");
2529         updateReachableEdge(B, TrueSucc);
2530       } else if (CI->isZero()) {
2531         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2532                           << " evaluated to false\n");
2533         updateReachableEdge(B, FalseSucc);
2534       }
2535     } else {
2536       updateReachableEdge(B, TrueSucc);
2537       updateReachableEdge(B, FalseSucc);
2538     }
2539   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2540     // For switches, propagate the case values into the case
2541     // destinations.
2542 
2543     Value *SwitchCond = SI->getCondition();
2544     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2545     // See if we were able to turn this switch statement into a constant.
2546     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2547       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2548       // We should be able to get case value for this.
2549       auto Case = *SI->findCaseValue(CondVal);
2550       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2551         // We proved the value is outside of the range of the case.
2552         // We can't do anything other than mark the default dest as reachable,
2553         // and go home.
2554         updateReachableEdge(B, SI->getDefaultDest());
2555         return;
2556       }
2557       // Now get where it goes and mark it reachable.
2558       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2559       updateReachableEdge(B, TargetBlock);
2560     } else {
2561       for (BasicBlock *TargetBlock : successors(SI->getParent()))
2562         updateReachableEdge(B, TargetBlock);
2563     }
2564   } else {
2565     // Otherwise this is either unconditional, or a type we have no
2566     // idea about. Just mark successors as reachable.
2567     for (BasicBlock *TargetBlock : successors(TI->getParent()))
2568       updateReachableEdge(B, TargetBlock);
2569 
2570     // This also may be a memory defining terminator, in which case, set it
2571     // equivalent only to itself.
2572     //
2573     auto *MA = getMemoryAccess(TI);
2574     if (MA && !isa<MemoryUse>(MA)) {
2575       auto *CC = ensureLeaderOfMemoryClass(MA);
2576       if (setMemoryClass(MA, CC))
2577         markMemoryUsersTouched(MA);
2578     }
2579   }
2580 }
2581 
2582 // Remove the PHI of Ops PHI for I
2583 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2584   InstrDFS.erase(PHITemp);
2585   // It's still a temp instruction. We keep it in the array so it gets erased.
2586   // However, it's no longer used by I, or in the block
2587   TempToBlock.erase(PHITemp);
2588   RealToTemp.erase(I);
2589   // We don't remove the users from the phi node uses. This wastes a little
2590   // time, but such is life.  We could use two sets to track which were there
2591   // are the start of NewGVN, and which were added, but right nowt he cost of
2592   // tracking is more than the cost of checking for more phi of ops.
2593 }
2594 
2595 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2596 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2597                          Instruction *ExistingValue) {
2598   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2599   AllTempInstructions.insert(Op);
2600   TempToBlock[Op] = BB;
2601   RealToTemp[ExistingValue] = Op;
2602   // Add all users to phi node use, as they are now uses of the phi of ops phis
2603   // and may themselves be phi of ops.
2604   for (auto *U : ExistingValue->users())
2605     if (auto *UI = dyn_cast<Instruction>(U))
2606       PHINodeUses.insert(UI);
2607 }
2608 
2609 static bool okayForPHIOfOps(const Instruction *I) {
2610   if (!EnablePhiOfOps)
2611     return false;
2612   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2613          isa<LoadInst>(I);
2614 }
2615 
2616 // Return true if this operand will be safe to use for phi of ops.
2617 //
2618 // The reason some operands are unsafe is that we are not trying to recursively
2619 // translate everything back through phi nodes.  We actually expect some lookups
2620 // of expressions to fail.  In particular, a lookup where the expression cannot
2621 // exist in the predecessor.  This is true even if the expression, as shown, can
2622 // be determined to be constant.
2623 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2624                                  SmallPtrSetImpl<const Value *> &Visited) {
2625   SmallVector<Value *, 4> Worklist;
2626   Worklist.push_back(V);
2627   while (!Worklist.empty()) {
2628     auto *I = Worklist.pop_back_val();
2629     if (!isa<Instruction>(I))
2630       continue;
2631 
2632     auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx});
2633     if (OISIt != OpSafeForPHIOfOps.end())
2634       return OISIt->second;
2635 
2636     // Keep walking until we either dominate the phi block, or hit a phi, or run
2637     // out of things to check.
2638     if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2639       OpSafeForPHIOfOps.insert({{I, CacheIdx}, true});
2640       continue;
2641     }
2642     // PHI in the same block.
2643     if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2644       OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2645       return false;
2646     }
2647 
2648     auto *OrigI = cast<Instruction>(I);
2649     // When we hit an instruction that reads memory (load, call, etc), we must
2650     // consider any store that may happen in the loop. For now, we assume the
2651     // worst: there is a store in the loop that alias with this read.
2652     // The case where the load is outside the loop is already covered by the
2653     // dominator check above.
2654     // TODO: relax this condition
2655     if (OrigI->mayReadFromMemory())
2656       return false;
2657 
2658     // Check the operands of the current instruction.
2659     for (auto *Op : OrigI->operand_values()) {
2660       if (!isa<Instruction>(Op))
2661         continue;
2662       // Stop now if we find an unsafe operand.
2663       auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx});
2664       if (OISIt != OpSafeForPHIOfOps.end()) {
2665         if (!OISIt->second) {
2666           OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2667           return false;
2668         }
2669         continue;
2670       }
2671       if (!Visited.insert(Op).second)
2672         continue;
2673       Worklist.push_back(cast<Instruction>(Op));
2674     }
2675   }
2676   OpSafeForPHIOfOps.insert({{V, CacheIdx}, true});
2677   return true;
2678 }
2679 
2680 // Try to find a leader for instruction TransInst, which is a phi translated
2681 // version of something in our original program.  Visited is used to ensure we
2682 // don't infinite loop during translations of cycles.  OrigInst is the
2683 // instruction in the original program, and PredBB is the predecessor we
2684 // translated it through.
2685 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2686                                  SmallPtrSetImpl<Value *> &Visited,
2687                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2688                                  BasicBlock *PredBB) {
2689   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2690   // Make sure it's marked as a temporary instruction.
2691   AllTempInstructions.insert(TransInst);
2692   // and make sure anything that tries to add it's DFS number is
2693   // redirected to the instruction we are making a phi of ops
2694   // for.
2695   TempToBlock.insert({TransInst, PredBB});
2696   InstrDFS.insert({TransInst, IDFSNum});
2697 
2698   auto Res = performSymbolicEvaluation(TransInst, Visited);
2699   const Expression *E = Res.Expr;
2700   addAdditionalUsers(Res, OrigInst);
2701   InstrDFS.erase(TransInst);
2702   AllTempInstructions.erase(TransInst);
2703   TempToBlock.erase(TransInst);
2704   if (MemAccess)
2705     TempToMemory.erase(TransInst);
2706   if (!E)
2707     return nullptr;
2708   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2709   if (!FoundVal) {
2710     ExpressionToPhiOfOps[E].insert(OrigInst);
2711     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2712                       << " in block " << getBlockName(PredBB) << "\n");
2713     return nullptr;
2714   }
2715   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2716     FoundVal = SI->getValueOperand();
2717   return FoundVal;
2718 }
2719 
2720 // When we see an instruction that is an op of phis, generate the equivalent phi
2721 // of ops form.
2722 const Expression *
2723 NewGVN::makePossiblePHIOfOps(Instruction *I,
2724                              SmallPtrSetImpl<Value *> &Visited) {
2725   if (!okayForPHIOfOps(I))
2726     return nullptr;
2727 
2728   if (!Visited.insert(I).second)
2729     return nullptr;
2730   // For now, we require the instruction be cycle free because we don't
2731   // *always* create a phi of ops for instructions that could be done as phi
2732   // of ops, we only do it if we think it is useful.  If we did do it all the
2733   // time, we could remove the cycle free check.
2734   if (!isCycleFree(I))
2735     return nullptr;
2736 
2737   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2738   // TODO: We don't do phi translation on memory accesses because it's
2739   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2740   // which we don't have a good way of doing ATM.
2741   auto *MemAccess = getMemoryAccess(I);
2742   // If the memory operation is defined by a memory operation this block that
2743   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2744   // can't help, as it would still be killed by that memory operation.
2745   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2746       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2747     return nullptr;
2748 
2749   // Convert op of phis to phi of ops
2750   SmallPtrSet<const Value *, 10> VisitedOps;
2751   SmallVector<Value *, 4> Ops(I->operand_values());
2752   BasicBlock *SamePHIBlock = nullptr;
2753   PHINode *OpPHI = nullptr;
2754   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2755     return nullptr;
2756   for (auto *Op : Ops) {
2757     if (!isa<PHINode>(Op)) {
2758       auto *ValuePHI = RealToTemp.lookup(Op);
2759       if (!ValuePHI)
2760         continue;
2761       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2762       Op = ValuePHI;
2763     }
2764     OpPHI = cast<PHINode>(Op);
2765     if (!SamePHIBlock) {
2766       SamePHIBlock = getBlockForValue(OpPHI);
2767     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2768       LLVM_DEBUG(
2769           dbgs()
2770           << "PHIs for operands are not all in the same block, aborting\n");
2771       return nullptr;
2772     }
2773     // No point in doing this for one-operand phis.
2774     // Since all PHIs for operands must be in the same block, then they must
2775     // have the same number of operands so we can just abort.
2776     if (OpPHI->getNumOperands() == 1)
2777       return nullptr;
2778   }
2779 
2780   if (!OpPHI)
2781     return nullptr;
2782 
2783   SmallVector<ValPair, 4> PHIOps;
2784   SmallPtrSet<Value *, 4> Deps;
2785   auto *PHIBlock = getBlockForValue(OpPHI);
2786   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2787   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2788     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2789     Value *FoundVal = nullptr;
2790     SmallPtrSet<Value *, 4> CurrentDeps;
2791     // We could just skip unreachable edges entirely but it's tricky to do
2792     // with rewriting existing phi nodes.
2793     if (ReachableEdges.count({PredBB, PHIBlock})) {
2794       // Clone the instruction, create an expression from it that is
2795       // translated back into the predecessor, and see if we have a leader.
2796       Instruction *ValueOp = I->clone();
2797       // Emit the temporal instruction in the predecessor basic block where the
2798       // corresponding value is defined.
2799       ValueOp->insertBefore(PredBB->getTerminator());
2800       if (MemAccess)
2801         TempToMemory.insert({ValueOp, MemAccess});
2802       bool SafeForPHIOfOps = true;
2803       VisitedOps.clear();
2804       for (auto &Op : ValueOp->operands()) {
2805         auto *OrigOp = &*Op;
2806         // When these operand changes, it could change whether there is a
2807         // leader for us or not, so we have to add additional users.
2808         if (isa<PHINode>(Op)) {
2809           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2810           if (Op != OrigOp && Op != I)
2811             CurrentDeps.insert(Op);
2812         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2813           if (getBlockForValue(ValuePHI) == PHIBlock)
2814             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2815         }
2816         // If we phi-translated the op, it must be safe.
2817         SafeForPHIOfOps =
2818             SafeForPHIOfOps &&
2819             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2820       }
2821       // FIXME: For those things that are not safe we could generate
2822       // expressions all the way down, and see if this comes out to a
2823       // constant.  For anything where that is true, and unsafe, we should
2824       // have made a phi-of-ops (or value numbered it equivalent to something)
2825       // for the pieces already.
2826       FoundVal = !SafeForPHIOfOps ? nullptr
2827                                   : findLeaderForInst(ValueOp, Visited,
2828                                                       MemAccess, I, PredBB);
2829       ValueOp->eraseFromParent();
2830       if (!FoundVal) {
2831         // We failed to find a leader for the current ValueOp, but this might
2832         // change in case of the translated operands change.
2833         if (SafeForPHIOfOps)
2834           for (auto *Dep : CurrentDeps)
2835             addAdditionalUsers(Dep, I);
2836 
2837         return nullptr;
2838       }
2839       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2840     } else {
2841       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2842                         << getBlockName(PredBB)
2843                         << " because the block is unreachable\n");
2844       FoundVal = PoisonValue::get(I->getType());
2845       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2846     }
2847 
2848     PHIOps.push_back({FoundVal, PredBB});
2849     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2850                       << getBlockName(PredBB) << "\n");
2851   }
2852   for (auto *Dep : Deps)
2853     addAdditionalUsers(Dep, I);
2854   sortPHIOps(PHIOps);
2855   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2856   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2857     LLVM_DEBUG(
2858         dbgs()
2859         << "Not creating real PHI of ops because it simplified to existing "
2860            "value or constant\n");
2861     // We have leaders for all operands, but do not create a real PHI node with
2862     // those leaders as operands, so the link between the operands and the
2863     // PHI-of-ops is not materialized in the IR. If any of those leaders
2864     // changes, the PHI-of-op may change also, so we need to add the operands as
2865     // additional users.
2866     for (auto &O : PHIOps)
2867       addAdditionalUsers(O.first, I);
2868 
2869     return E;
2870   }
2871   auto *ValuePHI = RealToTemp.lookup(I);
2872   bool NewPHI = false;
2873   if (!ValuePHI) {
2874     ValuePHI =
2875         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2876     addPhiOfOps(ValuePHI, PHIBlock, I);
2877     NewPHI = true;
2878     NumGVNPHIOfOpsCreated++;
2879   }
2880   if (NewPHI) {
2881     for (auto PHIOp : PHIOps)
2882       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2883   } else {
2884     TempToBlock[ValuePHI] = PHIBlock;
2885     unsigned int i = 0;
2886     for (auto PHIOp : PHIOps) {
2887       ValuePHI->setIncomingValue(i, PHIOp.first);
2888       ValuePHI->setIncomingBlock(i, PHIOp.second);
2889       ++i;
2890     }
2891   }
2892   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2893   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2894                     << "\n");
2895 
2896   return E;
2897 }
2898 
2899 // The algorithm initially places the values of the routine in the TOP
2900 // congruence class. The leader of TOP is the undetermined value `poison`.
2901 // When the algorithm has finished, values still in TOP are unreachable.
2902 void NewGVN::initializeCongruenceClasses(Function &F) {
2903   NextCongruenceNum = 0;
2904 
2905   // Note that even though we use the live on entry def as a representative
2906   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2907   // have no real equivalent to poison for MemoryAccesses, and so we really
2908   // should be checking whether the MemoryAccess is top if we want to know if it
2909   // is equivalent to everything.  Otherwise, what this really signifies is that
2910   // the access "it reaches all the way back to the beginning of the function"
2911 
2912   // Initialize all other instructions to be in TOP class.
2913   TOPClass = createCongruenceClass(nullptr, nullptr);
2914   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2915   //  The live on entry def gets put into it's own class
2916   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2917       createMemoryClass(MSSA->getLiveOnEntryDef());
2918 
2919   for (auto *DTN : nodes(DT)) {
2920     BasicBlock *BB = DTN->getBlock();
2921     // All MemoryAccesses are equivalent to live on entry to start. They must
2922     // be initialized to something so that initial changes are noticed. For
2923     // the maximal answer, we initialize them all to be the same as
2924     // liveOnEntry.
2925     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2926     if (MemoryBlockDefs)
2927       for (const auto &Def : *MemoryBlockDefs) {
2928         MemoryAccessToClass[&Def] = TOPClass;
2929         auto *MD = dyn_cast<MemoryDef>(&Def);
2930         // Insert the memory phis into the member list.
2931         if (!MD) {
2932           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2933           TOPClass->memory_insert(MP);
2934           MemoryPhiState.insert({MP, MPS_TOP});
2935         }
2936 
2937         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2938           TOPClass->incStoreCount();
2939       }
2940 
2941     // FIXME: This is trying to discover which instructions are uses of phi
2942     // nodes.  We should move this into one of the myriad of places that walk
2943     // all the operands already.
2944     for (auto &I : *BB) {
2945       if (isa<PHINode>(&I))
2946         for (auto *U : I.users())
2947           if (auto *UInst = dyn_cast<Instruction>(U))
2948             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2949               PHINodeUses.insert(UInst);
2950       // Don't insert void terminators into the class. We don't value number
2951       // them, and they just end up sitting in TOP.
2952       if (I.isTerminator() && I.getType()->isVoidTy())
2953         continue;
2954       TOPClass->insert(&I);
2955       ValueToClass[&I] = TOPClass;
2956     }
2957   }
2958 
2959   // Initialize arguments to be in their own unique congruence classes
2960   for (auto &FA : F.args())
2961     createSingletonCongruenceClass(&FA);
2962 }
2963 
2964 void NewGVN::cleanupTables() {
2965   for (CongruenceClass *&CC : CongruenceClasses) {
2966     LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2967                       << CC->size() << " members\n");
2968     // Make sure we delete the congruence class (probably worth switching to
2969     // a unique_ptr at some point.
2970     delete CC;
2971     CC = nullptr;
2972   }
2973 
2974   // Destroy the value expressions
2975   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2976                                          AllTempInstructions.end());
2977   AllTempInstructions.clear();
2978 
2979   // We have to drop all references for everything first, so there are no uses
2980   // left as we delete them.
2981   for (auto *I : TempInst) {
2982     I->dropAllReferences();
2983   }
2984 
2985   while (!TempInst.empty()) {
2986     auto *I = TempInst.pop_back_val();
2987     I->deleteValue();
2988   }
2989 
2990   ValueToClass.clear();
2991   ArgRecycler.clear(ExpressionAllocator);
2992   ExpressionAllocator.Reset();
2993   CongruenceClasses.clear();
2994   ExpressionToClass.clear();
2995   ValueToExpression.clear();
2996   RealToTemp.clear();
2997   AdditionalUsers.clear();
2998   ExpressionToPhiOfOps.clear();
2999   TempToBlock.clear();
3000   TempToMemory.clear();
3001   PHINodeUses.clear();
3002   OpSafeForPHIOfOps.clear();
3003   ReachableBlocks.clear();
3004   ReachableEdges.clear();
3005 #ifndef NDEBUG
3006   ProcessedCount.clear();
3007 #endif
3008   InstrDFS.clear();
3009   InstructionsToErase.clear();
3010   DFSToInstr.clear();
3011   BlockInstRange.clear();
3012   TouchedInstructions.clear();
3013   MemoryAccessToClass.clear();
3014   PredicateToUsers.clear();
3015   MemoryToUsers.clear();
3016   RevisitOnReachabilityChange.clear();
3017   IntrinsicInstPred.clear();
3018 }
3019 
3020 // Assign local DFS number mapping to instructions, and leave space for Value
3021 // PHI's.
3022 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3023                                                        unsigned Start) {
3024   unsigned End = Start;
3025   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3026     InstrDFS[MemPhi] = End++;
3027     DFSToInstr.emplace_back(MemPhi);
3028   }
3029 
3030   // Then the real block goes next.
3031   for (auto &I : *B) {
3032     // There's no need to call isInstructionTriviallyDead more than once on
3033     // an instruction. Therefore, once we know that an instruction is dead
3034     // we change its DFS number so that it doesn't get value numbered.
3035     if (isInstructionTriviallyDead(&I, TLI)) {
3036       InstrDFS[&I] = 0;
3037       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3038       markInstructionForDeletion(&I);
3039       continue;
3040     }
3041     if (isa<PHINode>(&I))
3042       RevisitOnReachabilityChange[B].set(End);
3043     InstrDFS[&I] = End++;
3044     DFSToInstr.emplace_back(&I);
3045   }
3046 
3047   // All of the range functions taken half-open ranges (open on the end side).
3048   // So we do not subtract one from count, because at this point it is one
3049   // greater than the last instruction.
3050   return std::make_pair(Start, End);
3051 }
3052 
3053 void NewGVN::updateProcessedCount(const Value *V) {
3054 #ifndef NDEBUG
3055   if (ProcessedCount.count(V) == 0) {
3056     ProcessedCount.insert({V, 1});
3057   } else {
3058     ++ProcessedCount[V];
3059     assert(ProcessedCount[V] < 100 &&
3060            "Seem to have processed the same Value a lot");
3061   }
3062 #endif
3063 }
3064 
3065 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3066 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3067   // If all the arguments are the same, the MemoryPhi has the same value as the
3068   // argument.  Filter out unreachable blocks and self phis from our operands.
3069   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3070   // self-phi checking.
3071   const BasicBlock *PHIBlock = MP->getBlock();
3072   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3073     return cast<MemoryAccess>(U) != MP &&
3074            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3075            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3076   });
3077   // If all that is left is nothing, our memoryphi is poison. We keep it as
3078   // InitialClass.  Note: The only case this should happen is if we have at
3079   // least one self-argument.
3080   if (Filtered.begin() == Filtered.end()) {
3081     if (setMemoryClass(MP, TOPClass))
3082       markMemoryUsersTouched(MP);
3083     return;
3084   }
3085 
3086   // Transform the remaining operands into operand leaders.
3087   // FIXME: mapped_iterator should have a range version.
3088   auto LookupFunc = [&](const Use &U) {
3089     return lookupMemoryLeader(cast<MemoryAccess>(U));
3090   };
3091   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3092   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3093 
3094   // and now check if all the elements are equal.
3095   // Sadly, we can't use std::equals since these are random access iterators.
3096   const auto *AllSameValue = *MappedBegin;
3097   ++MappedBegin;
3098   bool AllEqual = std::all_of(
3099       MappedBegin, MappedEnd,
3100       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3101 
3102   if (AllEqual)
3103     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3104                       << "\n");
3105   else
3106     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3107   // If it's equal to something, it's in that class. Otherwise, it has to be in
3108   // a class where it is the leader (other things may be equivalent to it, but
3109   // it needs to start off in its own class, which means it must have been the
3110   // leader, and it can't have stopped being the leader because it was never
3111   // removed).
3112   CongruenceClass *CC =
3113       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3114   auto OldState = MemoryPhiState.lookup(MP);
3115   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3116   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3117   MemoryPhiState[MP] = NewState;
3118   if (setMemoryClass(MP, CC) || OldState != NewState)
3119     markMemoryUsersTouched(MP);
3120 }
3121 
3122 // Value number a single instruction, symbolically evaluating, performing
3123 // congruence finding, and updating mappings.
3124 void NewGVN::valueNumberInstruction(Instruction *I) {
3125   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3126   if (!I->isTerminator()) {
3127     const Expression *Symbolized = nullptr;
3128     SmallPtrSet<Value *, 2> Visited;
3129     if (DebugCounter::shouldExecute(VNCounter)) {
3130       auto Res = performSymbolicEvaluation(I, Visited);
3131       Symbolized = Res.Expr;
3132       addAdditionalUsers(Res, I);
3133 
3134       // Make a phi of ops if necessary
3135       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3136           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3137         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3138         // If we created a phi of ops, use it.
3139         // If we couldn't create one, make sure we don't leave one lying around
3140         if (PHIE) {
3141           Symbolized = PHIE;
3142         } else if (auto *Op = RealToTemp.lookup(I)) {
3143           removePhiOfOps(I, Op);
3144         }
3145       }
3146     } else {
3147       // Mark the instruction as unused so we don't value number it again.
3148       InstrDFS[I] = 0;
3149     }
3150     // If we couldn't come up with a symbolic expression, use the unknown
3151     // expression
3152     if (Symbolized == nullptr)
3153       Symbolized = createUnknownExpression(I);
3154     performCongruenceFinding(I, Symbolized);
3155   } else {
3156     // Handle terminators that return values. All of them produce values we
3157     // don't currently understand.  We don't place non-value producing
3158     // terminators in a class.
3159     if (!I->getType()->isVoidTy()) {
3160       auto *Symbolized = createUnknownExpression(I);
3161       performCongruenceFinding(I, Symbolized);
3162     }
3163     processOutgoingEdges(I, I->getParent());
3164   }
3165 }
3166 
3167 // Check if there is a path, using single or equal argument phi nodes, from
3168 // First to Second.
3169 bool NewGVN::singleReachablePHIPath(
3170     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3171     const MemoryAccess *Second) const {
3172   if (First == Second)
3173     return true;
3174   if (MSSA->isLiveOnEntryDef(First))
3175     return false;
3176 
3177   // This is not perfect, but as we're just verifying here, we can live with
3178   // the loss of precision. The real solution would be that of doing strongly
3179   // connected component finding in this routine, and it's probably not worth
3180   // the complexity for the time being. So, we just keep a set of visited
3181   // MemoryAccess and return true when we hit a cycle.
3182   if (!Visited.insert(First).second)
3183     return true;
3184 
3185   const auto *EndDef = First;
3186   for (const auto *ChainDef : optimized_def_chain(First)) {
3187     if (ChainDef == Second)
3188       return true;
3189     if (MSSA->isLiveOnEntryDef(ChainDef))
3190       return false;
3191     EndDef = ChainDef;
3192   }
3193   auto *MP = cast<MemoryPhi>(EndDef);
3194   auto ReachableOperandPred = [&](const Use &U) {
3195     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3196   };
3197   auto FilteredPhiArgs =
3198       make_filter_range(MP->operands(), ReachableOperandPred);
3199   SmallVector<const Value *, 32> OperandList;
3200   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3201   bool Okay = all_equal(OperandList);
3202   if (Okay)
3203     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3204                                   Second);
3205   return false;
3206 }
3207 
3208 // Verify the that the memory equivalence table makes sense relative to the
3209 // congruence classes.  Note that this checking is not perfect, and is currently
3210 // subject to very rare false negatives. It is only useful for
3211 // testing/debugging.
3212 void NewGVN::verifyMemoryCongruency() const {
3213 #ifndef NDEBUG
3214   // Verify that the memory table equivalence and memory member set match
3215   for (const auto *CC : CongruenceClasses) {
3216     if (CC == TOPClass || CC->isDead())
3217       continue;
3218     if (CC->getStoreCount() != 0) {
3219       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3220              "Any class with a store as a leader should have a "
3221              "representative stored value");
3222       assert(CC->getMemoryLeader() &&
3223              "Any congruence class with a store should have a "
3224              "representative access");
3225     }
3226 
3227     if (CC->getMemoryLeader())
3228       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3229              "Representative MemoryAccess does not appear to be reverse "
3230              "mapped properly");
3231     for (const auto *M : CC->memory())
3232       assert(MemoryAccessToClass.lookup(M) == CC &&
3233              "Memory member does not appear to be reverse mapped properly");
3234   }
3235 
3236   // Anything equivalent in the MemoryAccess table should be in the same
3237   // congruence class.
3238 
3239   // Filter out the unreachable and trivially dead entries, because they may
3240   // never have been updated if the instructions were not processed.
3241   auto ReachableAccessPred =
3242       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3243         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3244         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3245             MemoryToDFSNum(Pair.first) == 0)
3246           return false;
3247         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3248           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3249 
3250         // We could have phi nodes which operands are all trivially dead,
3251         // so we don't process them.
3252         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3253           for (const auto &U : MemPHI->incoming_values()) {
3254             if (auto *I = dyn_cast<Instruction>(&*U)) {
3255               if (!isInstructionTriviallyDead(I))
3256                 return true;
3257             }
3258           }
3259           return false;
3260         }
3261 
3262         return true;
3263       };
3264 
3265   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3266   for (auto KV : Filtered) {
3267     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3268       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3269       if (FirstMUD && SecondMUD) {
3270         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3271         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3272                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3273                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3274                "The instructions for these memory operations should have "
3275                "been in the same congruence class or reachable through"
3276                "a single argument phi");
3277       }
3278     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3279       // We can only sanely verify that MemoryDefs in the operand list all have
3280       // the same class.
3281       auto ReachableOperandPred = [&](const Use &U) {
3282         return ReachableEdges.count(
3283                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3284                isa<MemoryDef>(U);
3285       };
3286       // All arguments should in the same class, ignoring unreachable arguments
3287       auto FilteredPhiArgs =
3288           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3289       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3290       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3291                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3292                        const MemoryDef *MD = cast<MemoryDef>(U);
3293                        return ValueToClass.lookup(MD->getMemoryInst());
3294                      });
3295       assert(all_equal(PhiOpClasses) &&
3296              "All MemoryPhi arguments should be in the same class");
3297     }
3298   }
3299 #endif
3300 }
3301 
3302 // Verify that the sparse propagation we did actually found the maximal fixpoint
3303 // We do this by storing the value to class mapping, touching all instructions,
3304 // and redoing the iteration to see if anything changed.
3305 void NewGVN::verifyIterationSettled(Function &F) {
3306 #ifndef NDEBUG
3307   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3308   if (DebugCounter::isCounterSet(VNCounter))
3309     DebugCounter::setCounterState(VNCounter, StartingVNCounter);
3310 
3311   // Note that we have to store the actual classes, as we may change existing
3312   // classes during iteration.  This is because our memory iteration propagation
3313   // is not perfect, and so may waste a little work.  But it should generate
3314   // exactly the same congruence classes we have now, with different IDs.
3315   std::map<const Value *, CongruenceClass> BeforeIteration;
3316 
3317   for (auto &KV : ValueToClass) {
3318     if (auto *I = dyn_cast<Instruction>(KV.first))
3319       // Skip unused/dead instructions.
3320       if (InstrToDFSNum(I) == 0)
3321         continue;
3322     BeforeIteration.insert({KV.first, *KV.second});
3323   }
3324 
3325   TouchedInstructions.set();
3326   TouchedInstructions.reset(0);
3327   OpSafeForPHIOfOps.clear();
3328   CacheIdx = 0;
3329   iterateTouchedInstructions();
3330   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3331       EqualClasses;
3332   for (const auto &KV : ValueToClass) {
3333     if (auto *I = dyn_cast<Instruction>(KV.first))
3334       // Skip unused/dead instructions.
3335       if (InstrToDFSNum(I) == 0)
3336         continue;
3337     // We could sink these uses, but i think this adds a bit of clarity here as
3338     // to what we are comparing.
3339     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3340     auto *AfterCC = KV.second;
3341     // Note that the classes can't change at this point, so we memoize the set
3342     // that are equal.
3343     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3344       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3345              "Value number changed after main loop completed!");
3346       EqualClasses.insert({BeforeCC, AfterCC});
3347     }
3348   }
3349 #endif
3350 }
3351 
3352 // Verify that for each store expression in the expression to class mapping,
3353 // only the latest appears, and multiple ones do not appear.
3354 // Because loads do not use the stored value when doing equality with stores,
3355 // if we don't erase the old store expressions from the table, a load can find
3356 // a no-longer valid StoreExpression.
3357 void NewGVN::verifyStoreExpressions() const {
3358 #ifndef NDEBUG
3359   // This is the only use of this, and it's not worth defining a complicated
3360   // densemapinfo hash/equality function for it.
3361   std::set<
3362       std::pair<const Value *,
3363                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3364       StoreExpressionSet;
3365   for (const auto &KV : ExpressionToClass) {
3366     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3367       // Make sure a version that will conflict with loads is not already there
3368       auto Res = StoreExpressionSet.insert(
3369           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3370                                               SE->getStoredValue())});
3371       bool Okay = Res.second;
3372       // It's okay to have the same expression already in there if it is
3373       // identical in nature.
3374       // This can happen when the leader of the stored value changes over time.
3375       if (!Okay)
3376         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3377                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3378                 lookupOperandLeader(SE->getStoredValue()));
3379       assert(Okay && "Stored expression conflict exists in expression table");
3380       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3381       assert(ValueExpr && ValueExpr->equals(*SE) &&
3382              "StoreExpression in ExpressionToClass is not latest "
3383              "StoreExpression for value");
3384     }
3385   }
3386 #endif
3387 }
3388 
3389 // This is the main value numbering loop, it iterates over the initial touched
3390 // instruction set, propagating value numbers, marking things touched, etc,
3391 // until the set of touched instructions is completely empty.
3392 void NewGVN::iterateTouchedInstructions() {
3393   uint64_t Iterations = 0;
3394   // Figure out where touchedinstructions starts
3395   int FirstInstr = TouchedInstructions.find_first();
3396   // Nothing set, nothing to iterate, just return.
3397   if (FirstInstr == -1)
3398     return;
3399   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3400   while (TouchedInstructions.any()) {
3401     ++Iterations;
3402     // Walk through all the instructions in all the blocks in RPO.
3403     // TODO: As we hit a new block, we should push and pop equalities into a
3404     // table lookupOperandLeader can use, to catch things PredicateInfo
3405     // might miss, like edge-only equivalences.
3406     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3407 
3408       // This instruction was found to be dead. We don't bother looking
3409       // at it again.
3410       if (InstrNum == 0) {
3411         TouchedInstructions.reset(InstrNum);
3412         continue;
3413       }
3414 
3415       Value *V = InstrFromDFSNum(InstrNum);
3416       const BasicBlock *CurrBlock = getBlockForValue(V);
3417 
3418       // If we hit a new block, do reachability processing.
3419       if (CurrBlock != LastBlock) {
3420         LastBlock = CurrBlock;
3421         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3422         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3423 
3424         // If it's not reachable, erase any touched instructions and move on.
3425         if (!BlockReachable) {
3426           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3427           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3428                             << getBlockName(CurrBlock)
3429                             << " because it is unreachable\n");
3430           continue;
3431         }
3432         // Use the appropriate cache for "OpIsSafeForPHIOfOps".
3433         CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1;
3434         updateProcessedCount(CurrBlock);
3435       }
3436       // Reset after processing (because we may mark ourselves as touched when
3437       // we propagate equalities).
3438       TouchedInstructions.reset(InstrNum);
3439 
3440       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3441         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3442         valueNumberMemoryPhi(MP);
3443       } else if (auto *I = dyn_cast<Instruction>(V)) {
3444         valueNumberInstruction(I);
3445       } else {
3446         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3447       }
3448       updateProcessedCount(V);
3449     }
3450   }
3451   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3452 }
3453 
3454 // This is the main transformation entry point.
3455 bool NewGVN::runGVN() {
3456   if (DebugCounter::isCounterSet(VNCounter))
3457     StartingVNCounter = DebugCounter::getCounterState(VNCounter);
3458   bool Changed = false;
3459   NumFuncArgs = F.arg_size();
3460   MSSAWalker = MSSA->getWalker();
3461   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3462 
3463   // Count number of instructions for sizing of hash tables, and come
3464   // up with a global dfs numbering for instructions.
3465   unsigned ICount = 1;
3466   // Add an empty instruction to account for the fact that we start at 1
3467   DFSToInstr.emplace_back(nullptr);
3468   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3469   // same as dominator tree order, particularly with regard whether backedges
3470   // get visited first or second, given a block with multiple successors.
3471   // If we visit in the wrong order, we will end up performing N times as many
3472   // iterations.
3473   // The dominator tree does guarantee that, for a given dom tree node, it's
3474   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3475   // the siblings.
3476   ReversePostOrderTraversal<Function *> RPOT(&F);
3477   unsigned Counter = 0;
3478   for (auto &B : RPOT) {
3479     auto *Node = DT->getNode(B);
3480     assert(Node && "RPO and Dominator tree should have same reachability");
3481     RPOOrdering[Node] = ++Counter;
3482   }
3483   // Sort dominator tree children arrays into RPO.
3484   for (auto &B : RPOT) {
3485     auto *Node = DT->getNode(B);
3486     if (Node->getNumChildren() > 1)
3487       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3488         return RPOOrdering[A] < RPOOrdering[B];
3489       });
3490   }
3491 
3492   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3493   for (auto *DTN : depth_first(DT->getRootNode())) {
3494     BasicBlock *B = DTN->getBlock();
3495     const auto &BlockRange = assignDFSNumbers(B, ICount);
3496     BlockInstRange.insert({B, BlockRange});
3497     ICount += BlockRange.second - BlockRange.first;
3498   }
3499   initializeCongruenceClasses(F);
3500 
3501   TouchedInstructions.resize(ICount);
3502   // Ensure we don't end up resizing the expressionToClass map, as
3503   // that can be quite expensive. At most, we have one expression per
3504   // instruction.
3505   ExpressionToClass.reserve(ICount);
3506 
3507   // Initialize the touched instructions to include the entry block.
3508   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3509   TouchedInstructions.set(InstRange.first, InstRange.second);
3510   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3511                     << " marked reachable\n");
3512   ReachableBlocks.insert(&F.getEntryBlock());
3513   // Use index corresponding to entry block.
3514   CacheIdx = 0;
3515 
3516   iterateTouchedInstructions();
3517   verifyMemoryCongruency();
3518   verifyIterationSettled(F);
3519   verifyStoreExpressions();
3520 
3521   Changed |= eliminateInstructions(F);
3522 
3523   // Delete all instructions marked for deletion.
3524   for (Instruction *ToErase : InstructionsToErase) {
3525     if (!ToErase->use_empty())
3526       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3527 
3528     assert(ToErase->getParent() &&
3529            "BB containing ToErase deleted unexpectedly!");
3530     ToErase->eraseFromParent();
3531   }
3532   Changed |= !InstructionsToErase.empty();
3533 
3534   // Delete all unreachable blocks.
3535   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3536     return !ReachableBlocks.count(&BB);
3537   };
3538 
3539   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3540     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3541                       << " is unreachable\n");
3542     deleteInstructionsInBlock(&BB);
3543     Changed = true;
3544   }
3545 
3546   cleanupTables();
3547   return Changed;
3548 }
3549 
3550 struct NewGVN::ValueDFS {
3551   int DFSIn = 0;
3552   int DFSOut = 0;
3553   int LocalNum = 0;
3554 
3555   // Only one of Def and U will be set.
3556   // The bool in the Def tells us whether the Def is the stored value of a
3557   // store.
3558   PointerIntPair<Value *, 1, bool> Def;
3559   Use *U = nullptr;
3560 
3561   bool operator<(const ValueDFS &Other) const {
3562     // It's not enough that any given field be less than - we have sets
3563     // of fields that need to be evaluated together to give a proper ordering.
3564     // For example, if you have;
3565     // DFS (1, 3)
3566     // Val 0
3567     // DFS (1, 2)
3568     // Val 50
3569     // We want the second to be less than the first, but if we just go field
3570     // by field, we will get to Val 0 < Val 50 and say the first is less than
3571     // the second. We only want it to be less than if the DFS orders are equal.
3572     //
3573     // Each LLVM instruction only produces one value, and thus the lowest-level
3574     // differentiator that really matters for the stack (and what we use as a
3575     // replacement) is the local dfs number.
3576     // Everything else in the structure is instruction level, and only affects
3577     // the order in which we will replace operands of a given instruction.
3578     //
3579     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3580     // the order of replacement of uses does not matter.
3581     // IE given,
3582     //  a = 5
3583     //  b = a + a
3584     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3585     // localnum.
3586     // The .val will be the same as well.
3587     // The .u's will be different.
3588     // You will replace both, and it does not matter what order you replace them
3589     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3590     // operand 2).
3591     // Similarly for the case of same dfsin, dfsout, localnum, but different
3592     // .val's
3593     //  a = 5
3594     //  b  = 6
3595     //  c = a + b
3596     // in c, we will a valuedfs for a, and one for b,with everything the same
3597     // but .val  and .u.
3598     // It does not matter what order we replace these operands in.
3599     // You will always end up with the same IR, and this is guaranteed.
3600     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3601            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3602                     Other.U);
3603   }
3604 };
3605 
3606 // This function converts the set of members for a congruence class from values,
3607 // to sets of defs and uses with associated DFS info.  The total number of
3608 // reachable uses for each value is stored in UseCount, and instructions that
3609 // seem
3610 // dead (have no non-dead uses) are stored in ProbablyDead.
3611 void NewGVN::convertClassToDFSOrdered(
3612     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3613     DenseMap<const Value *, unsigned int> &UseCounts,
3614     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3615   for (auto *D : Dense) {
3616     // First add the value.
3617     BasicBlock *BB = getBlockForValue(D);
3618     // Constants are handled prior to ever calling this function, so
3619     // we should only be left with instructions as members.
3620     assert(BB && "Should have figured out a basic block for value");
3621     ValueDFS VDDef;
3622     DomTreeNode *DomNode = DT->getNode(BB);
3623     VDDef.DFSIn = DomNode->getDFSNumIn();
3624     VDDef.DFSOut = DomNode->getDFSNumOut();
3625     // If it's a store, use the leader of the value operand, if it's always
3626     // available, or the value operand.  TODO: We could do dominance checks to
3627     // find a dominating leader, but not worth it ATM.
3628     if (auto *SI = dyn_cast<StoreInst>(D)) {
3629       auto Leader = lookupOperandLeader(SI->getValueOperand());
3630       if (alwaysAvailable(Leader)) {
3631         VDDef.Def.setPointer(Leader);
3632       } else {
3633         VDDef.Def.setPointer(SI->getValueOperand());
3634         VDDef.Def.setInt(true);
3635       }
3636     } else {
3637       VDDef.Def.setPointer(D);
3638     }
3639     assert(isa<Instruction>(D) &&
3640            "The dense set member should always be an instruction");
3641     Instruction *Def = cast<Instruction>(D);
3642     VDDef.LocalNum = InstrToDFSNum(D);
3643     DFSOrderedSet.push_back(VDDef);
3644     // If there is a phi node equivalent, add it
3645     if (auto *PN = RealToTemp.lookup(Def)) {
3646       auto *PHIE =
3647           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3648       if (PHIE) {
3649         VDDef.Def.setInt(false);
3650         VDDef.Def.setPointer(PN);
3651         VDDef.LocalNum = 0;
3652         DFSOrderedSet.push_back(VDDef);
3653       }
3654     }
3655 
3656     unsigned int UseCount = 0;
3657     // Now add the uses.
3658     for (auto &U : Def->uses()) {
3659       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3660         // Don't try to replace into dead uses
3661         if (InstructionsToErase.count(I))
3662           continue;
3663         ValueDFS VDUse;
3664         // Put the phi node uses in the incoming block.
3665         BasicBlock *IBlock;
3666         if (auto *P = dyn_cast<PHINode>(I)) {
3667           IBlock = P->getIncomingBlock(U);
3668           // Make phi node users appear last in the incoming block
3669           // they are from.
3670           VDUse.LocalNum = InstrDFS.size() + 1;
3671         } else {
3672           IBlock = getBlockForValue(I);
3673           VDUse.LocalNum = InstrToDFSNum(I);
3674         }
3675 
3676         // Skip uses in unreachable blocks, as we're going
3677         // to delete them.
3678         if (!ReachableBlocks.contains(IBlock))
3679           continue;
3680 
3681         DomTreeNode *DomNode = DT->getNode(IBlock);
3682         VDUse.DFSIn = DomNode->getDFSNumIn();
3683         VDUse.DFSOut = DomNode->getDFSNumOut();
3684         VDUse.U = &U;
3685         ++UseCount;
3686         DFSOrderedSet.emplace_back(VDUse);
3687       }
3688     }
3689 
3690     // If there are no uses, it's probably dead (but it may have side-effects,
3691     // so not definitely dead. Otherwise, store the number of uses so we can
3692     // track if it becomes dead later).
3693     if (UseCount == 0)
3694       ProbablyDead.insert(Def);
3695     else
3696       UseCounts[Def] = UseCount;
3697   }
3698 }
3699 
3700 // This function converts the set of members for a congruence class from values,
3701 // to the set of defs for loads and stores, with associated DFS info.
3702 void NewGVN::convertClassToLoadsAndStores(
3703     const CongruenceClass &Dense,
3704     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3705   for (auto *D : Dense) {
3706     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3707       continue;
3708 
3709     BasicBlock *BB = getBlockForValue(D);
3710     ValueDFS VD;
3711     DomTreeNode *DomNode = DT->getNode(BB);
3712     VD.DFSIn = DomNode->getDFSNumIn();
3713     VD.DFSOut = DomNode->getDFSNumOut();
3714     VD.Def.setPointer(D);
3715 
3716     // If it's an instruction, use the real local dfs number.
3717     if (auto *I = dyn_cast<Instruction>(D))
3718       VD.LocalNum = InstrToDFSNum(I);
3719     else
3720       llvm_unreachable("Should have been an instruction");
3721 
3722     LoadsAndStores.emplace_back(VD);
3723   }
3724 }
3725 
3726 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3727   patchReplacementInstruction(I, Repl);
3728   I->replaceAllUsesWith(Repl);
3729 }
3730 
3731 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3732   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3733   ++NumGVNBlocksDeleted;
3734 
3735   // Delete the instructions backwards, as it has a reduced likelihood of having
3736   // to update as many def-use and use-def chains. Start after the terminator.
3737   auto StartPoint = BB->rbegin();
3738   ++StartPoint;
3739   // Note that we explicitly recalculate BB->rend() on each iteration,
3740   // as it may change when we remove the first instruction.
3741   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3742     Instruction &Inst = *I++;
3743     if (!Inst.use_empty())
3744       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3745     if (isa<LandingPadInst>(Inst))
3746       continue;
3747     salvageKnowledge(&Inst, AC);
3748 
3749     Inst.eraseFromParent();
3750     ++NumGVNInstrDeleted;
3751   }
3752   // Now insert something that simplifycfg will turn into an unreachable.
3753   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3754   new StoreInst(
3755       PoisonValue::get(Int8Ty),
3756       Constant::getNullValue(PointerType::getUnqual(BB->getContext())),
3757       BB->getTerminator()->getIterator());
3758 }
3759 
3760 void NewGVN::markInstructionForDeletion(Instruction *I) {
3761   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3762   InstructionsToErase.insert(I);
3763 }
3764 
3765 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3766   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3767   patchAndReplaceAllUsesWith(I, V);
3768   // We save the actual erasing to avoid invalidating memory
3769   // dependencies until we are done with everything.
3770   markInstructionForDeletion(I);
3771 }
3772 
3773 namespace {
3774 
3775 // This is a stack that contains both the value and dfs info of where
3776 // that value is valid.
3777 class ValueDFSStack {
3778 public:
3779   Value *back() const { return ValueStack.back(); }
3780   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3781 
3782   void push_back(Value *V, int DFSIn, int DFSOut) {
3783     ValueStack.emplace_back(V);
3784     DFSStack.emplace_back(DFSIn, DFSOut);
3785   }
3786 
3787   bool empty() const { return DFSStack.empty(); }
3788 
3789   bool isInScope(int DFSIn, int DFSOut) const {
3790     if (empty())
3791       return false;
3792     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3793   }
3794 
3795   void popUntilDFSScope(int DFSIn, int DFSOut) {
3796 
3797     // These two should always be in sync at this point.
3798     assert(ValueStack.size() == DFSStack.size() &&
3799            "Mismatch between ValueStack and DFSStack");
3800     while (
3801         !DFSStack.empty() &&
3802         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3803       DFSStack.pop_back();
3804       ValueStack.pop_back();
3805     }
3806   }
3807 
3808 private:
3809   SmallVector<Value *, 8> ValueStack;
3810   SmallVector<std::pair<int, int>, 8> DFSStack;
3811 };
3812 
3813 } // end anonymous namespace
3814 
3815 // Given an expression, get the congruence class for it.
3816 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3817   if (auto *VE = dyn_cast<VariableExpression>(E))
3818     return ValueToClass.lookup(VE->getVariableValue());
3819   else if (isa<DeadExpression>(E))
3820     return TOPClass;
3821   return ExpressionToClass.lookup(E);
3822 }
3823 
3824 // Given a value and a basic block we are trying to see if it is available in,
3825 // see if the value has a leader available in that block.
3826 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3827                                   const Instruction *OrigInst,
3828                                   const BasicBlock *BB) const {
3829   // It would already be constant if we could make it constant
3830   if (auto *CE = dyn_cast<ConstantExpression>(E))
3831     return CE->getConstantValue();
3832   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3833     auto *V = VE->getVariableValue();
3834     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3835       return VE->getVariableValue();
3836   }
3837 
3838   auto *CC = getClassForExpression(E);
3839   if (!CC)
3840     return nullptr;
3841   if (alwaysAvailable(CC->getLeader()))
3842     return CC->getLeader();
3843 
3844   for (auto *Member : *CC) {
3845     auto *MemberInst = dyn_cast<Instruction>(Member);
3846     if (MemberInst == OrigInst)
3847       continue;
3848     // Anything that isn't an instruction is always available.
3849     if (!MemberInst)
3850       return Member;
3851     if (DT->dominates(getBlockForValue(MemberInst), BB))
3852       return Member;
3853   }
3854   return nullptr;
3855 }
3856 
3857 // Return true iff V1 can be replaced with V2.
3858 static bool canBeReplacedBy(Value *V1, Value *V2) {
3859   if (auto *CB1 = dyn_cast<CallBase>(V1))
3860     if (auto *CB2 = dyn_cast<CallBase>(V2))
3861       return CB1->getAttributes()
3862           .intersectWith(CB2->getContext(), CB2->getAttributes())
3863           .has_value();
3864   return true;
3865 }
3866 
3867 bool NewGVN::eliminateInstructions(Function &F) {
3868   // This is a non-standard eliminator. The normal way to eliminate is
3869   // to walk the dominator tree in order, keeping track of available
3870   // values, and eliminating them.  However, this is mildly
3871   // pointless. It requires doing lookups on every instruction,
3872   // regardless of whether we will ever eliminate it.  For
3873   // instructions part of most singleton congruence classes, we know we
3874   // will never eliminate them.
3875 
3876   // Instead, this eliminator looks at the congruence classes directly, sorts
3877   // them into a DFS ordering of the dominator tree, and then we just
3878   // perform elimination straight on the sets by walking the congruence
3879   // class member uses in order, and eliminate the ones dominated by the
3880   // last member.   This is worst case O(E log E) where E = number of
3881   // instructions in a single congruence class.  In theory, this is all
3882   // instructions.   In practice, it is much faster, as most instructions are
3883   // either in singleton congruence classes or can't possibly be eliminated
3884   // anyway (if there are no overlapping DFS ranges in class).
3885   // When we find something not dominated, it becomes the new leader
3886   // for elimination purposes.
3887   // TODO: If we wanted to be faster, We could remove any members with no
3888   // overlapping ranges while sorting, as we will never eliminate anything
3889   // with those members, as they don't dominate anything else in our set.
3890 
3891   bool AnythingReplaced = false;
3892 
3893   // Since we are going to walk the domtree anyway, and we can't guarantee the
3894   // DFS numbers are updated, we compute some ourselves.
3895   DT->updateDFSNumbers();
3896 
3897   // Go through all of our phi nodes, and kill the arguments associated with
3898   // unreachable edges.
3899   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3900     for (auto &Operand : PHI->incoming_values())
3901       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3902         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3903                           << " for block "
3904                           << getBlockName(PHI->getIncomingBlock(Operand))
3905                           << " with poison due to it being unreachable\n");
3906         Operand.set(PoisonValue::get(PHI->getType()));
3907       }
3908   };
3909   // Replace unreachable phi arguments.
3910   // At this point, RevisitOnReachabilityChange only contains:
3911   //
3912   // 1. PHIs
3913   // 2. Temporaries that will convert to PHIs
3914   // 3. Operations that are affected by an unreachable edge but do not fit into
3915   // 1 or 2 (rare).
3916   // So it is a slight overshoot of what we want. We could make it exact by
3917   // using two SparseBitVectors per block.
3918   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3919   for (auto &KV : ReachableEdges)
3920     ReachablePredCount[KV.getEnd()]++;
3921   for (auto &BBPair : RevisitOnReachabilityChange) {
3922     for (auto InstNum : BBPair.second) {
3923       auto *Inst = InstrFromDFSNum(InstNum);
3924       auto *PHI = dyn_cast<PHINode>(Inst);
3925       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3926       if (!PHI)
3927         continue;
3928       auto *BB = BBPair.first;
3929       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3930         ReplaceUnreachablePHIArgs(PHI, BB);
3931     }
3932   }
3933 
3934   // Map to store the use counts
3935   DenseMap<const Value *, unsigned int> UseCounts;
3936   for (auto *CC : reverse(CongruenceClasses)) {
3937     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3938                       << "\n");
3939     // Track the equivalent store info so we can decide whether to try
3940     // dead store elimination.
3941     SmallVector<ValueDFS, 8> PossibleDeadStores;
3942     SmallPtrSet<Instruction *, 8> ProbablyDead;
3943     if (CC->isDead() || CC->empty())
3944       continue;
3945     // Everything still in the TOP class is unreachable or dead.
3946     if (CC == TOPClass) {
3947       for (auto *M : *CC) {
3948         auto *VTE = ValueToExpression.lookup(M);
3949         if (VTE && isa<DeadExpression>(VTE))
3950           markInstructionForDeletion(cast<Instruction>(M));
3951         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3952                 InstructionsToErase.count(cast<Instruction>(M))) &&
3953                "Everything in TOP should be unreachable or dead at this "
3954                "point");
3955       }
3956       continue;
3957     }
3958 
3959     assert(CC->getLeader() && "We should have had a leader");
3960     // If this is a leader that is always available, and it's a
3961     // constant or has no equivalences, just replace everything with
3962     // it. We then update the congruence class with whatever members
3963     // are left.
3964     Value *Leader =
3965         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3966     if (alwaysAvailable(Leader)) {
3967       CongruenceClass::MemberSet MembersLeft;
3968       for (auto *M : *CC) {
3969         Value *Member = M;
3970         // Void things have no uses we can replace.
3971         if (Member == Leader || !isa<Instruction>(Member) ||
3972             Member->getType()->isVoidTy()) {
3973           MembersLeft.insert(Member);
3974           continue;
3975         }
3976         if (!canBeReplacedBy(Member, Leader))
3977           continue;
3978 
3979         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3980                           << *Member << "\n");
3981         auto *I = cast<Instruction>(Member);
3982         assert(Leader != I && "About to accidentally remove our leader");
3983         replaceInstruction(I, Leader);
3984         AnythingReplaced = true;
3985       }
3986       CC->swap(MembersLeft);
3987     } else {
3988       // If this is a singleton, we can skip it.
3989       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3990         // This is a stack because equality replacement/etc may place
3991         // constants in the middle of the member list, and we want to use
3992         // those constant values in preference to the current leader, over
3993         // the scope of those constants.
3994         ValueDFSStack EliminationStack;
3995 
3996         // Convert the members to DFS ordered sets and then merge them.
3997         SmallVector<ValueDFS, 8> DFSOrderedSet;
3998         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3999 
4000         // Sort the whole thing.
4001         llvm::sort(DFSOrderedSet);
4002         for (auto &VD : DFSOrderedSet) {
4003           int MemberDFSIn = VD.DFSIn;
4004           int MemberDFSOut = VD.DFSOut;
4005           Value *Def = VD.Def.getPointer();
4006           bool FromStore = VD.Def.getInt();
4007           Use *U = VD.U;
4008           // We ignore void things because we can't get a value from them.
4009           if (Def && Def->getType()->isVoidTy())
4010             continue;
4011           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4012           if (DefInst && AllTempInstructions.count(DefInst)) {
4013             auto *PN = cast<PHINode>(DefInst);
4014 
4015             // If this is a value phi and that's the expression we used, insert
4016             // it into the program
4017             // remove from temp instruction list.
4018             AllTempInstructions.erase(PN);
4019             auto *DefBlock = getBlockForValue(Def);
4020             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4021                               << " into block "
4022                               << getBlockName(getBlockForValue(Def)) << "\n");
4023             PN->insertBefore(&DefBlock->front());
4024             Def = PN;
4025             NumGVNPHIOfOpsEliminations++;
4026           }
4027 
4028           if (EliminationStack.empty()) {
4029             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4030           } else {
4031             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4032                               << EliminationStack.dfs_back().first << ","
4033                               << EliminationStack.dfs_back().second << ")\n");
4034           }
4035 
4036           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4037                             << MemberDFSOut << ")\n");
4038           // First, we see if we are out of scope or empty.  If so,
4039           // and there equivalences, we try to replace the top of
4040           // stack with equivalences (if it's on the stack, it must
4041           // not have been eliminated yet).
4042           // Then we synchronize to our current scope, by
4043           // popping until we are back within a DFS scope that
4044           // dominates the current member.
4045           // Then, what happens depends on a few factors
4046           // If the stack is now empty, we need to push
4047           // If we have a constant or a local equivalence we want to
4048           // start using, we also push.
4049           // Otherwise, we walk along, processing members who are
4050           // dominated by this scope, and eliminate them.
4051           bool ShouldPush = Def && EliminationStack.empty();
4052           bool OutOfScope =
4053               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4054 
4055           if (OutOfScope || ShouldPush) {
4056             // Sync to our current scope.
4057             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4058             bool ShouldPush = Def && EliminationStack.empty();
4059             if (ShouldPush) {
4060               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4061             }
4062           }
4063 
4064           // Skip the Def's, we only want to eliminate on their uses.  But mark
4065           // dominated defs as dead.
4066           if (Def) {
4067             // For anything in this case, what and how we value number
4068             // guarantees that any side-effects that would have occurred (ie
4069             // throwing, etc) can be proven to either still occur (because it's
4070             // dominated by something that has the same side-effects), or never
4071             // occur.  Otherwise, we would not have been able to prove it value
4072             // equivalent to something else. For these things, we can just mark
4073             // it all dead.  Note that this is different from the "ProbablyDead"
4074             // set, which may not be dominated by anything, and thus, are only
4075             // easy to prove dead if they are also side-effect free. Note that
4076             // because stores are put in terms of the stored value, we skip
4077             // stored values here. If the stored value is really dead, it will
4078             // still be marked for deletion when we process it in its own class.
4079             auto *DefI = dyn_cast<Instruction>(Def);
4080             if (!EliminationStack.empty() && DefI && !FromStore) {
4081               Value *DominatingLeader = EliminationStack.back();
4082               if (DominatingLeader != Def) {
4083                 // Even if the instruction is removed, we still need to update
4084                 // flags/metadata due to downstreams users of the leader.
4085                 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>())) {
4086                   if (!canBeReplacedBy(DefI, DominatingLeader))
4087                     continue;
4088                   patchReplacementInstruction(DefI, DominatingLeader);
4089                 }
4090 
4091                 markInstructionForDeletion(DefI);
4092               }
4093             }
4094             continue;
4095           }
4096           // At this point, we know it is a Use we are trying to possibly
4097           // replace.
4098 
4099           assert(isa<Instruction>(U->get()) &&
4100                  "Current def should have been an instruction");
4101           assert(isa<Instruction>(U->getUser()) &&
4102                  "Current user should have been an instruction");
4103 
4104           // If the thing we are replacing into is already marked to be dead,
4105           // this use is dead.  Note that this is true regardless of whether
4106           // we have anything dominating the use or not.  We do this here
4107           // because we are already walking all the uses anyway.
4108           Instruction *InstUse = cast<Instruction>(U->getUser());
4109           if (InstructionsToErase.count(InstUse)) {
4110             auto &UseCount = UseCounts[U->get()];
4111             if (--UseCount == 0) {
4112               ProbablyDead.insert(cast<Instruction>(U->get()));
4113             }
4114           }
4115 
4116           // If we get to this point, and the stack is empty we must have a use
4117           // with nothing we can use to eliminate this use, so just skip it.
4118           if (EliminationStack.empty())
4119             continue;
4120 
4121           Value *DominatingLeader = EliminationStack.back();
4122 
4123           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4124           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4125           if (isSSACopy)
4126             DominatingLeader = II->getOperand(0);
4127 
4128           // Don't replace our existing users with ourselves.
4129           if (U->get() == DominatingLeader)
4130             continue;
4131 
4132           // If we replaced something in an instruction, handle the patching of
4133           // metadata.  Skip this if we are replacing predicateinfo with its
4134           // original operand, as we already know we can just drop it.
4135           auto *ReplacedInst = cast<Instruction>(U->get());
4136           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4137           if (!PI || DominatingLeader != PI->OriginalOp) {
4138             if (!canBeReplacedBy(ReplacedInst, DominatingLeader))
4139               continue;
4140             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4141           }
4142 
4143           LLVM_DEBUG(dbgs()
4144                      << "Found replacement " << *DominatingLeader << " for "
4145                      << *U->get() << " in " << *(U->getUser()) << "\n");
4146           U->set(DominatingLeader);
4147           // This is now a use of the dominating leader, which means if the
4148           // dominating leader was dead, it's now live!
4149           auto &LeaderUseCount = UseCounts[DominatingLeader];
4150           // It's about to be alive again.
4151           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4152             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4153           // For copy instructions, we use their operand as a leader,
4154           // which means we remove a user of the copy and it may become dead.
4155           if (isSSACopy) {
4156             auto It = UseCounts.find(II);
4157             if (It != UseCounts.end()) {
4158               unsigned &IIUseCount = It->second;
4159               if (--IIUseCount == 0)
4160                 ProbablyDead.insert(II);
4161             }
4162           }
4163           ++LeaderUseCount;
4164           AnythingReplaced = true;
4165         }
4166       }
4167     }
4168 
4169     // At this point, anything still in the ProbablyDead set is actually dead if
4170     // would be trivially dead.
4171     for (auto *I : ProbablyDead)
4172       if (wouldInstructionBeTriviallyDead(I))
4173         markInstructionForDeletion(I);
4174 
4175     // Cleanup the congruence class.
4176     CongruenceClass::MemberSet MembersLeft;
4177     for (auto *Member : *CC)
4178       if (!isa<Instruction>(Member) ||
4179           !InstructionsToErase.count(cast<Instruction>(Member)))
4180         MembersLeft.insert(Member);
4181     CC->swap(MembersLeft);
4182 
4183     // If we have possible dead stores to look at, try to eliminate them.
4184     if (CC->getStoreCount() > 0) {
4185       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4186       llvm::sort(PossibleDeadStores);
4187       ValueDFSStack EliminationStack;
4188       for (auto &VD : PossibleDeadStores) {
4189         int MemberDFSIn = VD.DFSIn;
4190         int MemberDFSOut = VD.DFSOut;
4191         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4192         if (EliminationStack.empty() ||
4193             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4194           // Sync to our current scope.
4195           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4196           if (EliminationStack.empty()) {
4197             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4198             continue;
4199           }
4200         }
4201         // We already did load elimination, so nothing to do here.
4202         if (isa<LoadInst>(Member))
4203           continue;
4204         assert(!EliminationStack.empty());
4205         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4206         (void)Leader;
4207         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4208         // Member is dominater by Leader, and thus dead
4209         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4210                           << " that is dominated by " << *Leader << "\n");
4211         markInstructionForDeletion(Member);
4212         CC->erase(Member);
4213         ++NumGVNDeadStores;
4214       }
4215     }
4216   }
4217   return AnythingReplaced;
4218 }
4219 
4220 // This function provides global ranking of operations so that we can place them
4221 // in a canonical order.  Note that rank alone is not necessarily enough for a
4222 // complete ordering, as constants all have the same rank.  However, generally,
4223 // we will simplify an operation with all constants so that it doesn't matter
4224 // what order they appear in.
4225 unsigned int NewGVN::getRank(const Value *V) const {
4226   // Prefer constants to undef to anything else
4227   // Undef is a constant, have to check it first.
4228   // Prefer poison to undef as it's less defined.
4229   // Prefer smaller constants to constantexprs
4230   // Note that the order here matters because of class inheritance
4231   if (isa<ConstantExpr>(V))
4232     return 3;
4233   if (isa<PoisonValue>(V))
4234     return 1;
4235   if (isa<UndefValue>(V))
4236     return 2;
4237   if (isa<Constant>(V))
4238     return 0;
4239   if (auto *A = dyn_cast<Argument>(V))
4240     return 4 + A->getArgNo();
4241 
4242   // Need to shift the instruction DFS by number of arguments + 5 to account for
4243   // the constant and argument ranking above.
4244   unsigned Result = InstrToDFSNum(V);
4245   if (Result > 0)
4246     return 5 + NumFuncArgs + Result;
4247   // Unreachable or something else, just return a really large number.
4248   return ~0;
4249 }
4250 
4251 // This is a function that says whether two commutative operations should
4252 // have their order swapped when canonicalizing.
4253 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4254   // Because we only care about a total ordering, and don't rewrite expressions
4255   // in this order, we order by rank, which will give a strict weak ordering to
4256   // everything but constants, and then we order by pointer address.
4257   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4258 }
4259 
4260 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4261                                             const IntrinsicInst *I) const {
4262   auto LookupResult = IntrinsicInstPred.find(I);
4263   if (shouldSwapOperands(A, B)) {
4264     if (LookupResult == IntrinsicInstPred.end())
4265       IntrinsicInstPred.insert({I, B});
4266     else
4267       LookupResult->second = B;
4268     return true;
4269   }
4270 
4271   if (LookupResult != IntrinsicInstPred.end()) {
4272     auto *SeenPredicate = LookupResult->second;
4273     if (SeenPredicate) {
4274       if (SeenPredicate == B)
4275         return true;
4276       else
4277         LookupResult->second = nullptr;
4278     }
4279   }
4280   return false;
4281 }
4282 
4283 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4284   // Apparently the order in which we get these results matter for
4285   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4286   // the same order here, just in case.
4287   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4288   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4289   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4290   auto &AA = AM.getResult<AAManager>(F);
4291   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4292   bool Changed =
4293       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout())
4294           .runGVN();
4295   if (!Changed)
4296     return PreservedAnalyses::all();
4297   PreservedAnalyses PA;
4298   PA.preserve<DominatorTreeAnalysis>();
4299   return PA;
4300 }
4301