1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns chains of integer comparisons into memcmp (the memcmp is 11 // later typically inlined as a chain of efficient hardware comparisons). This 12 // typically benefits c++ member or nonmember operator==(). 13 // 14 // The basic idea is to replace a larger chain of integer comparisons loaded 15 // from contiguous memory locations into a smaller chain of such integer 16 // comparisons. Benefits are double: 17 // - There are less jumps, and therefore less opportunities for mispredictions 18 // and I-cache misses. 19 // - Code size is smaller, both because jumps are removed and because the 20 // encoding of a 2*n byte compare is smaller than that of two n-byte 21 // compares. 22 23 //===----------------------------------------------------------------------===// 24 25 #include <algorithm> 26 #include <numeric> 27 #include <utility> 28 #include <vector> 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 40 namespace { 41 42 #define DEBUG_TYPE "mergeicmps" 43 44 // A BCE atom. 45 struct BCEAtom { 46 BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} 47 48 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 49 50 bool operator<(const BCEAtom &O) const { 51 assert(Base() && "invalid atom"); 52 assert(O.Base() && "invalid atom"); 53 // Just ordering by (Base(), Offset) is sufficient. However because this 54 // means that the ordering will depend on the addresses of the base 55 // values, which are not reproducible from run to run. To guarantee 56 // stability, we use the names of the values if they exist; we sort by: 57 // (Base.getName(), Base(), Offset). 58 const int NameCmp = Base()->getName().compare(O.Base()->getName()); 59 if (NameCmp == 0) { 60 if (Base() == O.Base()) { 61 return Offset.slt(O.Offset); 62 } 63 return Base() < O.Base(); 64 } 65 return NameCmp < 0; 66 } 67 68 GetElementPtrInst *GEP; 69 LoadInst *LoadI; 70 APInt Offset; 71 }; 72 73 // If this value is a load from a constant offset w.r.t. a base address, and 74 // there are no othe rusers of the load or address, returns the base address and 75 // the offset. 76 BCEAtom visitICmpLoadOperand(Value *const Val) { 77 BCEAtom Result; 78 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 79 DEBUG(dbgs() << "load\n"); 80 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 81 DEBUG(dbgs() << "used outside of block\n"); 82 return {}; 83 } 84 if (LoadI->isVolatile()) { 85 DEBUG(dbgs() << "volatile\n"); 86 return {}; 87 } 88 Value *const Addr = LoadI->getOperand(0); 89 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 90 DEBUG(dbgs() << "GEP\n"); 91 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 92 DEBUG(dbgs() << "used outside of block\n"); 93 return {}; 94 } 95 const auto &DL = GEP->getModule()->getDataLayout(); 96 if (!isDereferenceablePointer(GEP, DL)) { 97 DEBUG(dbgs() << "not dereferenceable\n"); 98 // We need to make sure that we can do comparison in any order, so we 99 // require memory to be unconditionnally dereferencable. 100 return {}; 101 } 102 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 103 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 104 Result.GEP = GEP; 105 Result.LoadI = LoadI; 106 } 107 } 108 } 109 return Result; 110 } 111 112 // A basic block with a comparison between two BCE atoms. 113 // Note: the terminology is misleading: the comparison is symmetric, so there 114 // is no real {l/r}hs. What we want though is to have the same base on the 115 // left (resp. right), so that we can detect consecutive loads. To ensure this 116 // we put the smallest atom on the left. 117 class BCECmpBlock { 118 public: 119 BCECmpBlock() {} 120 121 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 122 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 123 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 124 } 125 126 bool IsValid() const { 127 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 128 } 129 130 // Assert the block is consistent: If valid, it should also have 131 // non-null members besides Lhs_ and Rhs_. 132 void AssertConsistent() const { 133 if (IsValid()) { 134 assert(BB); 135 assert(CmpI); 136 assert(BranchI); 137 } 138 } 139 140 const BCEAtom &Lhs() const { return Lhs_; } 141 const BCEAtom &Rhs() const { return Rhs_; } 142 int SizeBits() const { return SizeBits_; } 143 144 // Returns true if the block does other works besides comparison. 145 bool doesOtherWork() const; 146 147 // The basic block where this comparison happens. 148 BasicBlock *BB = nullptr; 149 // The ICMP for this comparison. 150 ICmpInst *CmpI = nullptr; 151 // The terminating branch. 152 BranchInst *BranchI = nullptr; 153 154 private: 155 BCEAtom Lhs_; 156 BCEAtom Rhs_; 157 int SizeBits_ = 0; 158 }; 159 160 bool BCECmpBlock::doesOtherWork() const { 161 AssertConsistent(); 162 // TODO(courbet): Can we allow some other things ? This is very conservative. 163 // We might be able to get away with anything does does not have any side 164 // effects outside of the basic block. 165 // Note: The GEPs and/or loads are not necessarily in the same block. 166 for (const Instruction &Inst : *BB) { 167 if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) { 168 if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true; 169 } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) { 170 if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true; 171 } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) { 172 if (C != CmpI) return true; 173 } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) { 174 if (Br != BranchI) return true; 175 } else { 176 return true; 177 } 178 } 179 return false; 180 } 181 182 // Visit the given comparison. If this is a comparison between two valid 183 // BCE atoms, returns the comparison. 184 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 185 const ICmpInst::Predicate ExpectedPredicate) { 186 if (CmpI->getPredicate() == ExpectedPredicate) { 187 DEBUG(dbgs() << "cmp " 188 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 189 << "\n"); 190 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 191 if (!Lhs.Base()) return {}; 192 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 193 if (!Rhs.Base()) return {}; 194 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 195 CmpI->getOperand(0)->getType()->getScalarSizeInBits()); 196 } 197 return {}; 198 } 199 200 // Visit the given comparison block. If this is a comparison between two valid 201 // BCE atoms, returns the comparison. 202 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 203 const BasicBlock *const PhiBlock) { 204 if (Block->empty()) return {}; 205 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 206 if (!BranchI) return {}; 207 DEBUG(dbgs() << "branch\n"); 208 if (BranchI->isUnconditional()) { 209 // In this case, we expect an incoming value which is the result of the 210 // comparison. This is the last link in the chain of comparisons (note 211 // that this does not mean that this is the last incoming value, blocks 212 // can be reordered). 213 auto *const CmpI = dyn_cast<ICmpInst>(Val); 214 if (!CmpI) return {}; 215 DEBUG(dbgs() << "icmp\n"); 216 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 217 Result.CmpI = CmpI; 218 Result.BranchI = BranchI; 219 return Result; 220 } else { 221 // In this case, we expect a constant incoming value (the comparison is 222 // chained). 223 const auto *const Const = dyn_cast<ConstantInt>(Val); 224 DEBUG(dbgs() << "const\n"); 225 if (!Const->isZero()) return {}; 226 DEBUG(dbgs() << "false\n"); 227 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 228 if (!CmpI) return {}; 229 DEBUG(dbgs() << "icmp\n"); 230 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 231 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 232 auto Result = visitICmp( 233 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 234 Result.CmpI = CmpI; 235 Result.BranchI = BranchI; 236 return Result; 237 } 238 return {}; 239 } 240 241 // A chain of comparisons. 242 class BCECmpChain { 243 public: 244 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); 245 246 int size() const { return Comparisons_.size(); } 247 248 #ifdef MERGEICMPS_DOT_ON 249 void dump() const; 250 #endif // MERGEICMPS_DOT_ON 251 252 bool simplify(const TargetLibraryInfo *const TLI); 253 254 private: 255 static bool IsContiguous(const BCECmpBlock &First, 256 const BCECmpBlock &Second) { 257 return First.Lhs().Base() == Second.Lhs().Base() && 258 First.Rhs().Base() == Second.Rhs().Base() && 259 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 260 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 261 } 262 263 // Merges the given comparison blocks into one memcmp block and update 264 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 265 // null, the merged block will link to the phi block. 266 static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 267 BasicBlock *const NextBBInChain, PHINode &Phi, 268 const TargetLibraryInfo *const TLI); 269 270 PHINode &Phi_; 271 std::vector<BCECmpBlock> Comparisons_; 272 // The original entry block (before sorting); 273 BasicBlock *EntryBlock_; 274 }; 275 276 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) 277 : Phi_(Phi) { 278 // Now look inside blocks to check for BCE comparisons. 279 std::vector<BCECmpBlock> Comparisons; 280 for (BasicBlock *Block : Blocks) { 281 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 282 Block, Phi.getParent()); 283 Comparison.BB = Block; 284 if (!Comparison.IsValid()) { 285 DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n"); 286 return; 287 } 288 if (Comparison.doesOtherWork()) { 289 DEBUG(dbgs() << "block does extra work besides compare\n"); 290 if (Comparisons.empty()) { // First block. 291 // TODO(courbet): The first block can do other things, and we should 292 // split them apart in a separate block before the comparison chain. 293 // Right now we just discard it and make the chain shorter. 294 DEBUG(dbgs() 295 << "ignoring first block that does extra work besides compare\n"); 296 continue; 297 } 298 // TODO(courbet): Right now we abort the whole chain. We could be 299 // merging only the blocks that don't do other work and resume the 300 // chain from there. For example: 301 // if (a[0] == b[0]) { // bb1 302 // if (a[1] == b[1]) { // bb2 303 // some_value = 3; //bb3 304 // if (a[2] == b[2]) { //bb3 305 // do a ton of stuff //bb4 306 // } 307 // } 308 // } 309 // 310 // This is: 311 // 312 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 313 // \ \ \ \ 314 // ne ne ne \ 315 // \ \ \ v 316 // +------------+-----------+----------> bb_phi 317 // 318 // We can only merge the first two comparisons, because bb3* does 319 // "other work" (setting some_value to 3). 320 // We could still merge bb1 and bb2 though. 321 return; 322 } 323 DEBUG(dbgs() << "*Found cmp of " << Comparison.SizeBits() 324 << " bits between " << Comparison.Lhs().Base() << " + " 325 << Comparison.Lhs().Offset << " and " 326 << Comparison.Rhs().Base() << " + " << Comparison.Rhs().Offset 327 << "\n"); 328 DEBUG(dbgs() << "\n"); 329 Comparisons.push_back(Comparison); 330 } 331 EntryBlock_ = Comparisons[0].BB; 332 Comparisons_ = std::move(Comparisons); 333 #ifdef MERGEICMPS_DOT_ON 334 errs() << "BEFORE REORDERING:\n\n"; 335 dump(); 336 #endif // MERGEICMPS_DOT_ON 337 // Reorder blocks by LHS. We can do that without changing the 338 // semantics because we are only accessing dereferencable memory. 339 std::sort(Comparisons_.begin(), Comparisons_.end(), 340 [](const BCECmpBlock &a, const BCECmpBlock &b) { 341 return a.Lhs() < b.Lhs(); 342 }); 343 #ifdef MERGEICMPS_DOT_ON 344 errs() << "AFTER REORDERING:\n\n"; 345 dump(); 346 #endif // MERGEICMPS_DOT_ON 347 } 348 349 #ifdef MERGEICMPS_DOT_ON 350 void BCECmpChain::dump() const { 351 errs() << "digraph dag {\n"; 352 errs() << " graph [bgcolor=transparent];\n"; 353 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 354 errs() << " edge [color=black];\n"; 355 for (size_t I = 0; I < Comparisons_.size(); ++I) { 356 const auto &Comparison = Comparisons_[I]; 357 errs() << " \"" << I << "\" [label=\"%" 358 << Comparison.Lhs().Base()->getName() << " + " 359 << Comparison.Lhs().Offset << " == %" 360 << Comparison.Rhs().Base()->getName() << " + " 361 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 362 << " bytes)\"];\n"; 363 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 364 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 365 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 366 } 367 errs() << " \"Phi\" [label=\"Phi\"];\n"; 368 errs() << "}\n\n"; 369 } 370 #endif // MERGEICMPS_DOT_ON 371 372 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { 373 // First pass to check if there is at least one merge. If not, we don't do 374 // anything and we keep analysis passes intact. 375 { 376 bool AtLeastOneMerged = false; 377 for (size_t I = 1; I < Comparisons_.size(); ++I) { 378 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 379 AtLeastOneMerged = true; 380 break; 381 } 382 } 383 if (!AtLeastOneMerged) return false; 384 } 385 386 // Remove phi references to comparison blocks, they will be rebuilt as we 387 // merge the blocks. 388 for (const auto &Comparison : Comparisons_) { 389 Phi_.removeIncomingValue(Comparison.BB, false); 390 } 391 392 // Point the predecessors of the chain to the first comparison block (which is 393 // the new entry point). 394 if (EntryBlock_ != Comparisons_[0].BB) 395 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 396 397 // Effectively merge blocks. 398 int NumMerged = 1; 399 for (size_t I = 1; I < Comparisons_.size(); ++I) { 400 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 401 ++NumMerged; 402 } else { 403 // Merge all previous comparisons and start a new merge block. 404 mergeComparisons( 405 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 406 Comparisons_[I].BB, Phi_, TLI); 407 NumMerged = 1; 408 } 409 } 410 mergeComparisons(makeArrayRef(Comparisons_) 411 .slice(Comparisons_.size() - NumMerged, NumMerged), 412 nullptr, Phi_, TLI); 413 414 return true; 415 } 416 417 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 418 BasicBlock *const NextBBInChain, 419 PHINode &Phi, 420 const TargetLibraryInfo *const TLI) { 421 assert(!Comparisons.empty()); 422 const auto &FirstComparison = *Comparisons.begin(); 423 BasicBlock *const BB = FirstComparison.BB; 424 LLVMContext &Context = BB->getContext(); 425 426 if (Comparisons.size() >= 2) { 427 DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 428 const auto TotalSize = 429 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 430 [](int Size, const BCECmpBlock &C) { 431 return Size + C.SizeBits(); 432 }) / 433 8; 434 435 // Incoming edges do not need to be updated, and both GEPs are already 436 // computing the right address, we just need to: 437 // - replace the two loads and the icmp with the memcmp 438 // - update the branch 439 // - update the incoming values in the phi. 440 FirstComparison.BranchI->eraseFromParent(); 441 FirstComparison.CmpI->eraseFromParent(); 442 FirstComparison.Lhs().LoadI->eraseFromParent(); 443 FirstComparison.Rhs().LoadI->eraseFromParent(); 444 445 IRBuilder<> Builder(BB); 446 const auto &DL = Phi.getModule()->getDataLayout(); 447 Value *const MemCmpCall = emitMemCmp( 448 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 449 Builder, DL, TLI); 450 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 451 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 452 453 // Add a branch to the next basic block in the chain. 454 if (NextBBInChain) { 455 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 456 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 457 } else { 458 Builder.CreateBr(Phi.getParent()); 459 Phi.addIncoming(MemCmpIsZero, BB); 460 } 461 462 // Delete merged blocks. 463 for (size_t I = 1; I < Comparisons.size(); ++I) { 464 BasicBlock *CBB = Comparisons[I].BB; 465 CBB->replaceAllUsesWith(BB); 466 CBB->eraseFromParent(); 467 } 468 } else { 469 assert(Comparisons.size() == 1); 470 // There are no blocks to merge, but we still need to update the branches. 471 DEBUG(dbgs() << "Only one comparison, updating branches\n"); 472 if (NextBBInChain) { 473 if (FirstComparison.BranchI->isConditional()) { 474 DEBUG(dbgs() << "conditional -> conditional\n"); 475 // Just update the "true" target, the "false" target should already be 476 // the phi block. 477 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 478 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 479 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 480 } else { 481 DEBUG(dbgs() << "unconditional -> conditional\n"); 482 // Replace the unconditional branch by a conditional one. 483 FirstComparison.BranchI->eraseFromParent(); 484 IRBuilder<> Builder(BB); 485 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 486 Phi.getParent()); 487 Phi.addIncoming(FirstComparison.CmpI, BB); 488 } 489 } else { 490 if (FirstComparison.BranchI->isConditional()) { 491 DEBUG(dbgs() << "conditional -> unconditional\n"); 492 // Replace the conditional branch by an unconditional one. 493 FirstComparison.BranchI->eraseFromParent(); 494 IRBuilder<> Builder(BB); 495 Builder.CreateBr(Phi.getParent()); 496 Phi.addIncoming(FirstComparison.CmpI, BB); 497 } else { 498 DEBUG(dbgs() << "unconditional -> unconditional\n"); 499 Phi.addIncoming(FirstComparison.CmpI, BB); 500 } 501 } 502 } 503 } 504 505 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 506 BasicBlock *const LastBlock, 507 int NumBlocks) { 508 // Walk up from the last block to find other blocks. 509 std::vector<BasicBlock *> Blocks(NumBlocks); 510 BasicBlock *CurBlock = LastBlock; 511 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 512 if (CurBlock->hasAddressTaken()) { 513 // Somebody is jumping to the block through an address, all bets are 514 // off. 515 DEBUG(dbgs() << "skip: block " << BlockIndex 516 << " has its address taken\n"); 517 return {}; 518 } 519 Blocks[BlockIndex] = CurBlock; 520 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 521 if (!SinglePredecessor) { 522 // The block has two or more predecessors. 523 DEBUG(dbgs() << "skip: block " << BlockIndex 524 << " has two or more predecessors\n"); 525 return {}; 526 } 527 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 528 // The block does not link back to the phi. 529 DEBUG(dbgs() << "skip: block " << BlockIndex 530 << " does not link back to the phi\n"); 531 return {}; 532 } 533 CurBlock = SinglePredecessor; 534 } 535 Blocks[0] = CurBlock; 536 return Blocks; 537 } 538 539 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { 540 DEBUG(dbgs() << "processPhi()\n"); 541 if (Phi.getNumIncomingValues() <= 1) { 542 DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 543 return false; 544 } 545 // We are looking for something that has the following structure: 546 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 547 // \ \ \ \ 548 // ne ne ne \ 549 // \ \ \ v 550 // +------------+-----------+----------> bb_phi 551 // 552 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 553 // It's the only block that contributes a non-constant value to the Phi. 554 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 555 // them being the phi block. 556 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 557 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 558 559 // The blocks are not necessarily ordered in the phi, so we start from the 560 // last block and reconstruct the order. 561 BasicBlock *LastBlock = nullptr; 562 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 563 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 564 if (LastBlock) { 565 // There are several non-constant values. 566 DEBUG(dbgs() << "skip: several non-constant values\n"); 567 return false; 568 } 569 LastBlock = Phi.getIncomingBlock(I); 570 } 571 if (!LastBlock) { 572 // There is no non-constant block. 573 DEBUG(dbgs() << "skip: no non-constant block\n"); 574 return false; 575 } 576 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 577 DEBUG(dbgs() << "skip: last block non-phi successor\n"); 578 return false; 579 } 580 581 const auto Blocks = 582 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 583 if (Blocks.empty()) return false; 584 BCECmpChain CmpChain(Blocks, Phi); 585 586 if (CmpChain.size() < 2) { 587 DEBUG(dbgs() << "skip: only one compare block\n"); 588 return false; 589 } 590 591 return CmpChain.simplify(TLI); 592 } 593 594 class MergeICmps : public FunctionPass { 595 public: 596 static char ID; 597 598 MergeICmps() : FunctionPass(ID) { 599 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 600 } 601 602 bool runOnFunction(Function &F) override { 603 if (skipFunction(F)) return false; 604 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 605 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 606 auto PA = runImpl(F, &TLI, &TTI); 607 return !PA.areAllPreserved(); 608 } 609 610 private: 611 void getAnalysisUsage(AnalysisUsage &AU) const override { 612 AU.addRequired<TargetLibraryInfoWrapperPass>(); 613 AU.addRequired<TargetTransformInfoWrapperPass>(); 614 } 615 616 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 617 const TargetTransformInfo *TTI); 618 }; 619 620 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 621 const TargetTransformInfo *TTI) { 622 DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 623 624 // We only try merging comparisons if the target wants to expand memcmp later. 625 // The rationale is to avoid turning small chains into memcmp calls. 626 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); 627 628 bool MadeChange = false; 629 630 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 631 // A Phi operation is always first in a basic block. 632 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 633 MadeChange |= processPhi(*Phi, TLI); 634 } 635 636 if (MadeChange) return PreservedAnalyses::none(); 637 return PreservedAnalyses::all(); 638 } 639 640 } // namespace 641 642 char MergeICmps::ID = 0; 643 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 644 "Merge contiguous icmps into a memcmp", false, false) 645 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 646 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 647 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 648 "Merge contiguous icmps into a memcmp", false, false) 649 650 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 651