1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include <algorithm> 45 #include <numeric> 46 #include <utility> 47 #include <vector> 48 #include "llvm/Analysis/Loads.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/BuildLibCalls.h" 56 57 using namespace llvm; 58 59 namespace { 60 61 #define DEBUG_TYPE "mergeicmps" 62 63 // Returns true if the instruction is a simple load or a simple store 64 static bool isSimpleLoadOrStore(const Instruction *I) { 65 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 66 return LI->isSimple(); 67 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 68 return SI->isSimple(); 69 return false; 70 } 71 72 // A BCE atom "Binary Compare Expression Atom" represents an integer load 73 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 74 // at the top. 75 struct BCEAtom { 76 BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} 77 78 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 79 80 bool operator<(const BCEAtom &O) const { 81 assert(Base() && "invalid atom"); 82 assert(O.Base() && "invalid atom"); 83 // Just ordering by (Base(), Offset) is sufficient. However because this 84 // means that the ordering will depend on the addresses of the base 85 // values, which are not reproducible from run to run. To guarantee 86 // stability, we use the names of the values if they exist; we sort by: 87 // (Base.getName(), Base(), Offset). 88 const int NameCmp = Base()->getName().compare(O.Base()->getName()); 89 if (NameCmp == 0) { 90 if (Base() == O.Base()) { 91 return Offset.slt(O.Offset); 92 } 93 return Base() < O.Base(); 94 } 95 return NameCmp < 0; 96 } 97 98 GetElementPtrInst *GEP; 99 LoadInst *LoadI; 100 APInt Offset; 101 }; 102 103 // If this value is a load from a constant offset w.r.t. a base address, and 104 // there are no other users of the load or address, returns the base address and 105 // the offset. 106 BCEAtom visitICmpLoadOperand(Value *const Val) { 107 BCEAtom Result; 108 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 109 LLVM_DEBUG(dbgs() << "load\n"); 110 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 111 LLVM_DEBUG(dbgs() << "used outside of block\n"); 112 return {}; 113 } 114 // Do not optimize atomic loads to non-atomic memcmp 115 if (!LoadI->isSimple()) { 116 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 117 return {}; 118 } 119 Value *const Addr = LoadI->getOperand(0); 120 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 121 LLVM_DEBUG(dbgs() << "GEP\n"); 122 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 123 LLVM_DEBUG(dbgs() << "used outside of block\n"); 124 return {}; 125 } 126 const auto &DL = GEP->getModule()->getDataLayout(); 127 if (!isDereferenceablePointer(GEP, DL)) { 128 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 129 // We need to make sure that we can do comparison in any order, so we 130 // require memory to be unconditionnally dereferencable. 131 return {}; 132 } 133 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 134 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 135 Result.GEP = GEP; 136 Result.LoadI = LoadI; 137 } 138 } 139 } 140 return Result; 141 } 142 143 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the 144 // example at the top. 145 // The block might do extra work besides the atom comparison, in which case 146 // doesOtherWork() returns true. Under some conditions, the block can be 147 // split into the atom comparison part and the "other work" part 148 // (see canSplit()). 149 // Note: the terminology is misleading: the comparison is symmetric, so there 150 // is no real {l/r}hs. What we want though is to have the same base on the 151 // left (resp. right), so that we can detect consecutive loads. To ensure this 152 // we put the smallest atom on the left. 153 class BCECmpBlock { 154 public: 155 BCECmpBlock() {} 156 157 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 158 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 159 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 160 } 161 162 bool IsValid() const { 163 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 164 } 165 166 // Assert the block is consistent: If valid, it should also have 167 // non-null members besides Lhs_ and Rhs_. 168 void AssertConsistent() const { 169 if (IsValid()) { 170 assert(BB); 171 assert(CmpI); 172 assert(BranchI); 173 } 174 } 175 176 const BCEAtom &Lhs() const { return Lhs_; } 177 const BCEAtom &Rhs() const { return Rhs_; } 178 int SizeBits() const { return SizeBits_; } 179 180 // Returns true if the block does other works besides comparison. 181 bool doesOtherWork() const; 182 183 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 184 // instructions in the block. 185 bool canSplit(AliasAnalysis *AA) const; 186 187 // Return true if this all the relevant instructions in the BCE-cmp-block can 188 // be sunk below this instruction. By doing this, we know we can separate the 189 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 190 // block. 191 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &, 192 AliasAnalysis *AA) const; 193 194 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 195 // instructions. Split the old block and move all non-BCE-cmp-insts into the 196 // new parent block. 197 void split(BasicBlock *NewParent, AliasAnalysis *AA) const; 198 199 // The basic block where this comparison happens. 200 BasicBlock *BB = nullptr; 201 // The ICMP for this comparison. 202 ICmpInst *CmpI = nullptr; 203 // The terminating branch. 204 BranchInst *BranchI = nullptr; 205 // The block requires splitting. 206 bool RequireSplit = false; 207 208 private: 209 BCEAtom Lhs_; 210 BCEAtom Rhs_; 211 int SizeBits_ = 0; 212 }; 213 214 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 215 DenseSet<Instruction *> &BlockInsts, 216 AliasAnalysis *AA) const { 217 // If this instruction has side effects and its in middle of the BCE cmp block 218 // instructions, then bail for now. 219 if (Inst->mayHaveSideEffects()) { 220 // Bail if this is not a simple load or store 221 if (!isSimpleLoadOrStore(Inst)) 222 return false; 223 // Disallow stores that might alias the BCE operands 224 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); 225 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); 226 if (isModSet(AA->getModRefInfo(Inst, LLoc)) || 227 isModSet(AA->getModRefInfo(Inst, RLoc))) 228 return false; 229 } 230 // Make sure this instruction does not use any of the BCE cmp block 231 // instructions as operand. 232 for (auto BI : BlockInsts) { 233 if (is_contained(Inst->operands(), BI)) 234 return false; 235 } 236 return true; 237 } 238 239 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const { 240 DenseSet<Instruction *> BlockInsts( 241 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 242 llvm::SmallVector<Instruction *, 4> OtherInsts; 243 for (Instruction &Inst : *BB) { 244 if (BlockInsts.count(&Inst)) 245 continue; 246 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && 247 "Split unsplittable block"); 248 // This is a non-BCE-cmp-block instruction. And it can be separated 249 // from the BCE-cmp-block instruction. 250 OtherInsts.push_back(&Inst); 251 } 252 253 // Do the actual spliting. 254 for (Instruction *Inst : reverse(OtherInsts)) { 255 Inst->moveBefore(&*NewParent->begin()); 256 } 257 } 258 259 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const { 260 DenseSet<Instruction *> BlockInsts( 261 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 262 for (Instruction &Inst : *BB) { 263 if (!BlockInsts.count(&Inst)) { 264 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) 265 return false; 266 } 267 } 268 return true; 269 } 270 271 bool BCECmpBlock::doesOtherWork() const { 272 AssertConsistent(); 273 // All the instructions we care about in the BCE cmp block. 274 DenseSet<Instruction *> BlockInsts( 275 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 276 // TODO(courbet): Can we allow some other things ? This is very conservative. 277 // We might be able to get away with anything does not have any side 278 // effects outside of the basic block. 279 // Note: The GEPs and/or loads are not necessarily in the same block. 280 for (const Instruction &Inst : *BB) { 281 if (!BlockInsts.count(&Inst)) 282 return true; 283 } 284 return false; 285 } 286 287 // Visit the given comparison. If this is a comparison between two valid 288 // BCE atoms, returns the comparison. 289 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 290 const ICmpInst::Predicate ExpectedPredicate) { 291 // The comparison can only be used once: 292 // - For intermediate blocks, as a branch condition. 293 // - For the final block, as an incoming value for the Phi. 294 // If there are any other uses of the comparison, we cannot merge it with 295 // other comparisons as we would create an orphan use of the value. 296 if (!CmpI->hasOneUse()) { 297 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 298 return {}; 299 } 300 if (CmpI->getPredicate() == ExpectedPredicate) { 301 LLVM_DEBUG(dbgs() << "cmp " 302 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 303 << "\n"); 304 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 305 if (!Lhs.Base()) return {}; 306 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 307 if (!Rhs.Base()) return {}; 308 const auto &DL = CmpI->getModule()->getDataLayout(); 309 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 310 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); 311 } 312 return {}; 313 } 314 315 // Visit the given comparison block. If this is a comparison between two valid 316 // BCE atoms, returns the comparison. 317 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 318 const BasicBlock *const PhiBlock) { 319 if (Block->empty()) return {}; 320 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 321 if (!BranchI) return {}; 322 LLVM_DEBUG(dbgs() << "branch\n"); 323 if (BranchI->isUnconditional()) { 324 // In this case, we expect an incoming value which is the result of the 325 // comparison. This is the last link in the chain of comparisons (note 326 // that this does not mean that this is the last incoming value, blocks 327 // can be reordered). 328 auto *const CmpI = dyn_cast<ICmpInst>(Val); 329 if (!CmpI) return {}; 330 LLVM_DEBUG(dbgs() << "icmp\n"); 331 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 332 Result.CmpI = CmpI; 333 Result.BranchI = BranchI; 334 return Result; 335 } else { 336 // In this case, we expect a constant incoming value (the comparison is 337 // chained). 338 const auto *const Const = dyn_cast<ConstantInt>(Val); 339 LLVM_DEBUG(dbgs() << "const\n"); 340 if (!Const->isZero()) return {}; 341 LLVM_DEBUG(dbgs() << "false\n"); 342 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 343 if (!CmpI) return {}; 344 LLVM_DEBUG(dbgs() << "icmp\n"); 345 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 346 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 347 auto Result = visitICmp( 348 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 349 Result.CmpI = CmpI; 350 Result.BranchI = BranchI; 351 return Result; 352 } 353 return {}; 354 } 355 356 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 357 BCECmpBlock &Comparison) { 358 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 359 << "': Found cmp of " << Comparison.SizeBits() 360 << " bits between " << Comparison.Lhs().Base() << " + " 361 << Comparison.Lhs().Offset << " and " 362 << Comparison.Rhs().Base() << " + " 363 << Comparison.Rhs().Offset << "\n"); 364 LLVM_DEBUG(dbgs() << "\n"); 365 Comparisons.push_back(Comparison); 366 } 367 368 // A chain of comparisons. 369 class BCECmpChain { 370 public: 371 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 372 AliasAnalysis *AA); 373 374 int size() const { return Comparisons_.size(); } 375 376 #ifdef MERGEICMPS_DOT_ON 377 void dump() const; 378 #endif // MERGEICMPS_DOT_ON 379 380 bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA); 381 382 private: 383 static bool IsContiguous(const BCECmpBlock &First, 384 const BCECmpBlock &Second) { 385 return First.Lhs().Base() == Second.Lhs().Base() && 386 First.Rhs().Base() == Second.Rhs().Base() && 387 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 388 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 389 } 390 391 // Merges the given comparison blocks into one memcmp block and update 392 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 393 // null, the merged block will link to the phi block. 394 void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 395 BasicBlock *const NextBBInChain, PHINode &Phi, 396 const TargetLibraryInfo *const TLI, AliasAnalysis *AA); 397 398 PHINode &Phi_; 399 std::vector<BCECmpBlock> Comparisons_; 400 // The original entry block (before sorting); 401 BasicBlock *EntryBlock_; 402 }; 403 404 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 405 AliasAnalysis *AA) 406 : Phi_(Phi) { 407 assert(!Blocks.empty() && "a chain should have at least one block"); 408 // Now look inside blocks to check for BCE comparisons. 409 std::vector<BCECmpBlock> Comparisons; 410 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { 411 BasicBlock *const Block = Blocks[BlockIdx]; 412 assert(Block && "invalid block"); 413 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 414 Block, Phi.getParent()); 415 Comparison.BB = Block; 416 if (!Comparison.IsValid()) { 417 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 418 return; 419 } 420 if (Comparison.doesOtherWork()) { 421 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() 422 << "' does extra work besides compare\n"); 423 if (Comparisons.empty()) { 424 // This is the initial block in the chain, in case this block does other 425 // work, we can try to split the block and move the irrelevant 426 // instructions to the predecessor. 427 // 428 // If this is not the initial block in the chain, splitting it wont 429 // work. 430 // 431 // As once split, there will still be instructions before the BCE cmp 432 // instructions that do other work in program order, i.e. within the 433 // chain before sorting. Unless we can abort the chain at this point 434 // and start anew. 435 // 436 // NOTE: we only handle block with single predecessor for now. 437 if (Comparison.canSplit(AA)) { 438 LLVM_DEBUG(dbgs() 439 << "Split initial block '" << Comparison.BB->getName() 440 << "' that does extra work besides compare\n"); 441 Comparison.RequireSplit = true; 442 enqueueBlock(Comparisons, Comparison); 443 } else { 444 LLVM_DEBUG(dbgs() 445 << "ignoring initial block '" << Comparison.BB->getName() 446 << "' that does extra work besides compare\n"); 447 } 448 continue; 449 } 450 // TODO(courbet): Right now we abort the whole chain. We could be 451 // merging only the blocks that don't do other work and resume the 452 // chain from there. For example: 453 // if (a[0] == b[0]) { // bb1 454 // if (a[1] == b[1]) { // bb2 455 // some_value = 3; //bb3 456 // if (a[2] == b[2]) { //bb3 457 // do a ton of stuff //bb4 458 // } 459 // } 460 // } 461 // 462 // This is: 463 // 464 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 465 // \ \ \ \ 466 // ne ne ne \ 467 // \ \ \ v 468 // +------------+-----------+----------> bb_phi 469 // 470 // We can only merge the first two comparisons, because bb3* does 471 // "other work" (setting some_value to 3). 472 // We could still merge bb1 and bb2 though. 473 return; 474 } 475 enqueueBlock(Comparisons, Comparison); 476 } 477 478 // It is possible we have no suitable comparison to merge. 479 if (Comparisons.empty()) { 480 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 481 return; 482 } 483 EntryBlock_ = Comparisons[0].BB; 484 Comparisons_ = std::move(Comparisons); 485 #ifdef MERGEICMPS_DOT_ON 486 errs() << "BEFORE REORDERING:\n\n"; 487 dump(); 488 #endif // MERGEICMPS_DOT_ON 489 // Reorder blocks by LHS. We can do that without changing the 490 // semantics because we are only accessing dereferencable memory. 491 llvm::sort(Comparisons_, [](const BCECmpBlock &a, const BCECmpBlock &b) { 492 return a.Lhs() < b.Lhs(); 493 }); 494 #ifdef MERGEICMPS_DOT_ON 495 errs() << "AFTER REORDERING:\n\n"; 496 dump(); 497 #endif // MERGEICMPS_DOT_ON 498 } 499 500 #ifdef MERGEICMPS_DOT_ON 501 void BCECmpChain::dump() const { 502 errs() << "digraph dag {\n"; 503 errs() << " graph [bgcolor=transparent];\n"; 504 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 505 errs() << " edge [color=black];\n"; 506 for (size_t I = 0; I < Comparisons_.size(); ++I) { 507 const auto &Comparison = Comparisons_[I]; 508 errs() << " \"" << I << "\" [label=\"%" 509 << Comparison.Lhs().Base()->getName() << " + " 510 << Comparison.Lhs().Offset << " == %" 511 << Comparison.Rhs().Base()->getName() << " + " 512 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 513 << " bytes)\"];\n"; 514 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 515 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 516 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 517 } 518 errs() << " \"Phi\" [label=\"Phi\"];\n"; 519 errs() << "}\n\n"; 520 } 521 #endif // MERGEICMPS_DOT_ON 522 523 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI, 524 AliasAnalysis *AA) { 525 // First pass to check if there is at least one merge. If not, we don't do 526 // anything and we keep analysis passes intact. 527 { 528 bool AtLeastOneMerged = false; 529 for (size_t I = 1; I < Comparisons_.size(); ++I) { 530 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 531 AtLeastOneMerged = true; 532 break; 533 } 534 } 535 if (!AtLeastOneMerged) return false; 536 } 537 538 // Remove phi references to comparison blocks, they will be rebuilt as we 539 // merge the blocks. 540 for (const auto &Comparison : Comparisons_) { 541 Phi_.removeIncomingValue(Comparison.BB, false); 542 } 543 544 // If entry block is part of the chain, we need to make the first block 545 // of the chain the new entry block of the function. 546 BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock(); 547 for (size_t I = 1; I < Comparisons_.size(); ++I) { 548 if (Entry == Comparisons_[I].BB) { 549 BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "", 550 Entry->getParent(), Entry); 551 BranchInst::Create(Entry, NEntryBB); 552 break; 553 } 554 } 555 556 // Point the predecessors of the chain to the first comparison block (which is 557 // the new entry point) and update the entry block of the chain. 558 if (EntryBlock_ != Comparisons_[0].BB) { 559 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 560 EntryBlock_ = Comparisons_[0].BB; 561 } 562 563 // Effectively merge blocks. 564 int NumMerged = 1; 565 for (size_t I = 1; I < Comparisons_.size(); ++I) { 566 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 567 ++NumMerged; 568 } else { 569 // Merge all previous comparisons and start a new merge block. 570 mergeComparisons( 571 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 572 Comparisons_[I].BB, Phi_, TLI, AA); 573 NumMerged = 1; 574 } 575 } 576 mergeComparisons(makeArrayRef(Comparisons_) 577 .slice(Comparisons_.size() - NumMerged, NumMerged), 578 nullptr, Phi_, TLI, AA); 579 580 return true; 581 } 582 583 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 584 BasicBlock *const NextBBInChain, 585 PHINode &Phi, 586 const TargetLibraryInfo *const TLI, 587 AliasAnalysis *AA) { 588 assert(!Comparisons.empty()); 589 const auto &FirstComparison = *Comparisons.begin(); 590 BasicBlock *const BB = FirstComparison.BB; 591 LLVMContext &Context = BB->getContext(); 592 593 if (Comparisons.size() >= 2) { 594 // If there is one block that requires splitting, we do it now, i.e. 595 // just before we know we will collapse the chain. The instructions 596 // can be executed before any of the instructions in the chain. 597 auto C = std::find_if(Comparisons.begin(), Comparisons.end(), 598 [](const BCECmpBlock &B) { return B.RequireSplit; }); 599 if (C != Comparisons.end()) 600 C->split(EntryBlock_, AA); 601 602 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 603 const auto TotalSize = 604 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 605 [](int Size, const BCECmpBlock &C) { 606 return Size + C.SizeBits(); 607 }) / 608 8; 609 610 // Incoming edges do not need to be updated, and both GEPs are already 611 // computing the right address, we just need to: 612 // - replace the two loads and the icmp with the memcmp 613 // - update the branch 614 // - update the incoming values in the phi. 615 FirstComparison.BranchI->eraseFromParent(); 616 FirstComparison.CmpI->eraseFromParent(); 617 FirstComparison.Lhs().LoadI->eraseFromParent(); 618 FirstComparison.Rhs().LoadI->eraseFromParent(); 619 620 IRBuilder<> Builder(BB); 621 const auto &DL = Phi.getModule()->getDataLayout(); 622 Value *const MemCmpCall = emitMemCmp( 623 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, 624 ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 625 Builder, DL, TLI); 626 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 627 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 628 629 // Add a branch to the next basic block in the chain. 630 if (NextBBInChain) { 631 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 632 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 633 } else { 634 Builder.CreateBr(Phi.getParent()); 635 Phi.addIncoming(MemCmpIsZero, BB); 636 } 637 638 // Delete merged blocks. 639 for (size_t I = 1; I < Comparisons.size(); ++I) { 640 BasicBlock *CBB = Comparisons[I].BB; 641 CBB->replaceAllUsesWith(BB); 642 CBB->eraseFromParent(); 643 } 644 } else { 645 assert(Comparisons.size() == 1); 646 // There are no blocks to merge, but we still need to update the branches. 647 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 648 if (NextBBInChain) { 649 if (FirstComparison.BranchI->isConditional()) { 650 LLVM_DEBUG(dbgs() << "conditional -> conditional\n"); 651 // Just update the "true" target, the "false" target should already be 652 // the phi block. 653 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 654 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 655 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 656 } else { 657 LLVM_DEBUG(dbgs() << "unconditional -> conditional\n"); 658 // Replace the unconditional branch by a conditional one. 659 FirstComparison.BranchI->eraseFromParent(); 660 IRBuilder<> Builder(BB); 661 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 662 Phi.getParent()); 663 Phi.addIncoming(FirstComparison.CmpI, BB); 664 } 665 } else { 666 if (FirstComparison.BranchI->isConditional()) { 667 LLVM_DEBUG(dbgs() << "conditional -> unconditional\n"); 668 // Replace the conditional branch by an unconditional one. 669 FirstComparison.BranchI->eraseFromParent(); 670 IRBuilder<> Builder(BB); 671 Builder.CreateBr(Phi.getParent()); 672 Phi.addIncoming(FirstComparison.CmpI, BB); 673 } else { 674 LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n"); 675 Phi.addIncoming(FirstComparison.CmpI, BB); 676 } 677 } 678 } 679 } 680 681 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 682 BasicBlock *const LastBlock, 683 int NumBlocks) { 684 // Walk up from the last block to find other blocks. 685 std::vector<BasicBlock *> Blocks(NumBlocks); 686 assert(LastBlock && "invalid last block"); 687 BasicBlock *CurBlock = LastBlock; 688 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 689 if (CurBlock->hasAddressTaken()) { 690 // Somebody is jumping to the block through an address, all bets are 691 // off. 692 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 693 << " has its address taken\n"); 694 return {}; 695 } 696 Blocks[BlockIndex] = CurBlock; 697 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 698 if (!SinglePredecessor) { 699 // The block has two or more predecessors. 700 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 701 << " has two or more predecessors\n"); 702 return {}; 703 } 704 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 705 // The block does not link back to the phi. 706 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 707 << " does not link back to the phi\n"); 708 return {}; 709 } 710 CurBlock = SinglePredecessor; 711 } 712 Blocks[0] = CurBlock; 713 return Blocks; 714 } 715 716 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI, 717 AliasAnalysis *AA) { 718 LLVM_DEBUG(dbgs() << "processPhi()\n"); 719 if (Phi.getNumIncomingValues() <= 1) { 720 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 721 return false; 722 } 723 // We are looking for something that has the following structure: 724 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 725 // \ \ \ \ 726 // ne ne ne \ 727 // \ \ \ v 728 // +------------+-----------+----------> bb_phi 729 // 730 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 731 // It's the only block that contributes a non-constant value to the Phi. 732 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 733 // them being the phi block. 734 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 735 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 736 737 // The blocks are not necessarily ordered in the phi, so we start from the 738 // last block and reconstruct the order. 739 BasicBlock *LastBlock = nullptr; 740 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 741 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 742 if (LastBlock) { 743 // There are several non-constant values. 744 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 745 return false; 746 } 747 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 748 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 749 Phi.getIncomingBlock(I)) { 750 // Non-constant incoming value is not from a cmp instruction or not 751 // produced by the last block. We could end up processing the value 752 // producing block more than once. 753 // 754 // This is an uncommon case, so we bail. 755 LLVM_DEBUG( 756 dbgs() 757 << "skip: non-constant value not from cmp or not from last block.\n"); 758 return false; 759 } 760 LastBlock = Phi.getIncomingBlock(I); 761 } 762 if (!LastBlock) { 763 // There is no non-constant block. 764 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 765 return false; 766 } 767 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 768 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 769 return false; 770 } 771 772 const auto Blocks = 773 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 774 if (Blocks.empty()) return false; 775 BCECmpChain CmpChain(Blocks, Phi, AA); 776 777 if (CmpChain.size() < 2) { 778 LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); 779 return false; 780 } 781 782 return CmpChain.simplify(TLI, AA); 783 } 784 785 class MergeICmps : public FunctionPass { 786 public: 787 static char ID; 788 789 MergeICmps() : FunctionPass(ID) { 790 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 791 } 792 793 bool runOnFunction(Function &F) override { 794 if (skipFunction(F)) return false; 795 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 796 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 797 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 798 auto PA = runImpl(F, &TLI, &TTI, AA); 799 return !PA.areAllPreserved(); 800 } 801 802 private: 803 void getAnalysisUsage(AnalysisUsage &AU) const override { 804 AU.addRequired<TargetLibraryInfoWrapperPass>(); 805 AU.addRequired<TargetTransformInfoWrapperPass>(); 806 AU.addRequired<AAResultsWrapperPass>(); 807 } 808 809 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 810 const TargetTransformInfo *TTI, AliasAnalysis *AA); 811 }; 812 813 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 814 const TargetTransformInfo *TTI, 815 AliasAnalysis *AA) { 816 LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 817 818 // We only try merging comparisons if the target wants to expand memcmp later. 819 // The rationale is to avoid turning small chains into memcmp calls. 820 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); 821 822 // If we don't have memcmp avaiable we can't emit calls to it. 823 if (!TLI->has(LibFunc_memcmp)) 824 return PreservedAnalyses::all(); 825 826 bool MadeChange = false; 827 828 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 829 // A Phi operation is always first in a basic block. 830 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 831 MadeChange |= processPhi(*Phi, TLI, AA); 832 } 833 834 if (MadeChange) return PreservedAnalyses::none(); 835 return PreservedAnalyses::all(); 836 } 837 838 } // namespace 839 840 char MergeICmps::ID = 0; 841 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 842 "Merge contiguous icmps into a memcmp", false, false) 843 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 844 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 845 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 846 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 847 "Merge contiguous icmps into a memcmp", false, false) 848 849 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 850