xref: /llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision c85da8bd9a9dc3773fa23c572524e98ad429057d)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns chains of integer comparisons into memcmp (the memcmp is
11 // later typically inlined as a chain of efficient hardware comparisons). This
12 // typically benefits c++ member or nonmember operator==().
13 //
14 // The basic idea is to replace a larger chain of integer comparisons loaded
15 // from contiguous memory locations into a smaller chain of such integer
16 // comparisons. Benefits are double:
17 //  - There are less jumps, and therefore less opportunities for mispredictions
18 //    and I-cache misses.
19 //  - Code size is smaller, both because jumps are removed and because the
20 //    encoding of a 2*n byte compare is smaller than that of two n-byte
21 //    compares.
22 
23 //===----------------------------------------------------------------------===//
24 
25 #include <algorithm>
26 #include <numeric>
27 #include <utility>
28 #include <vector>
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 
40 namespace {
41 
42 #define DEBUG_TYPE "mergeicmps"
43 
44 // A BCE atom.
45 struct BCEAtom {
46   BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
47 
48   const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
49 
50   bool operator<(const BCEAtom &O) const {
51     assert(Base() && "invalid atom");
52     assert(O.Base() && "invalid atom");
53     // Just ordering by (Base(), Offset) is sufficient. However because this
54     // means that the ordering will depend on the addresses of the base
55     // values, which are not reproducible from run to run. To guarantee
56     // stability, we use the names of the values if they exist; we sort by:
57     // (Base.getName(), Base(), Offset).
58     const int NameCmp = Base()->getName().compare(O.Base()->getName());
59     if (NameCmp == 0) {
60       if (Base() == O.Base()) {
61         return Offset.slt(O.Offset);
62       }
63       return Base() < O.Base();
64     }
65     return NameCmp < 0;
66   }
67 
68   GetElementPtrInst *GEP;
69   LoadInst *LoadI;
70   APInt Offset;
71 };
72 
73 // If this value is a load from a constant offset w.r.t. a base address, and
74 // there are no other users of the load or address, returns the base address and
75 // the offset.
76 BCEAtom visitICmpLoadOperand(Value *const Val) {
77   BCEAtom Result;
78   if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
79     LLVM_DEBUG(dbgs() << "load\n");
80     if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
81       LLVM_DEBUG(dbgs() << "used outside of block\n");
82       return {};
83     }
84     // Do not optimize atomic loads to non-atomic memcmp
85     if (!LoadI->isSimple()) {
86       LLVM_DEBUG(dbgs() << "volatile or atomic\n");
87       return {};
88     }
89     Value *const Addr = LoadI->getOperand(0);
90     if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
91       LLVM_DEBUG(dbgs() << "GEP\n");
92       if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
93         LLVM_DEBUG(dbgs() << "used outside of block\n");
94         return {};
95       }
96       const auto &DL = GEP->getModule()->getDataLayout();
97       if (!isDereferenceablePointer(GEP, DL)) {
98         LLVM_DEBUG(dbgs() << "not dereferenceable\n");
99         // We need to make sure that we can do comparison in any order, so we
100         // require memory to be unconditionnally dereferencable.
101         return {};
102       }
103       Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
104       if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
105         Result.GEP = GEP;
106         Result.LoadI = LoadI;
107       }
108     }
109   }
110   return Result;
111 }
112 
113 // A basic block with a comparison between two BCE atoms.
114 // The block might do extra work besides the atom comparison, in which case
115 // doesOtherWork() returns true. Under some conditions, the block can be
116 // split into the atom comparison part and the "other work" part
117 // (see canSplit()).
118 // Note: the terminology is misleading: the comparison is symmetric, so there
119 // is no real {l/r}hs. What we want though is to have the same base on the
120 // left (resp. right), so that we can detect consecutive loads. To ensure this
121 // we put the smallest atom on the left.
122 class BCECmpBlock {
123  public:
124   BCECmpBlock() {}
125 
126   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
127       : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
128     if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
129   }
130 
131   bool IsValid() const {
132     return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
133   }
134 
135   // Assert the block is consistent: If valid, it should also have
136   // non-null members besides Lhs_ and Rhs_.
137   void AssertConsistent() const {
138     if (IsValid()) {
139       assert(BB);
140       assert(CmpI);
141       assert(BranchI);
142     }
143   }
144 
145   const BCEAtom &Lhs() const { return Lhs_; }
146   const BCEAtom &Rhs() const { return Rhs_; }
147   int SizeBits() const { return SizeBits_; }
148 
149   // Returns true if the block does other works besides comparison.
150   bool doesOtherWork() const;
151 
152   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
153   // instructions in the block.
154   bool canSplit() const;
155 
156   // Return true if this all the relevant instructions in the BCE-cmp-block can
157   // be sunk below this instruction. By doing this, we know we can separate the
158   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
159   // block.
160   bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &) const;
161 
162   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
163   // instructions. Split the old block and move all non-BCE-cmp-insts into the
164   // new parent block.
165   void split(BasicBlock *NewParent) const;
166 
167   // The basic block where this comparison happens.
168   BasicBlock *BB = nullptr;
169   // The ICMP for this comparison.
170   ICmpInst *CmpI = nullptr;
171   // The terminating branch.
172   BranchInst *BranchI = nullptr;
173   // The block requires splitting.
174   bool RequireSplit = false;
175 
176 private:
177   BCEAtom Lhs_;
178   BCEAtom Rhs_;
179   int SizeBits_ = 0;
180 };
181 
182 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
183                                     DenseSet<Instruction *> &BlockInsts) const {
184   // If this instruction has side effects and its in middle of the BCE cmp block
185   // instructions, then bail for now.
186   // TODO: use alias analysis to tell whether there is real interference.
187   if (Inst->mayHaveSideEffects())
188     return false;
189   // Make sure this instruction does not use any of the BCE cmp block
190   // instructions as operand.
191   for (auto BI : BlockInsts) {
192     if (is_contained(Inst->operands(), BI))
193       return false;
194   }
195   return true;
196 }
197 
198 void BCECmpBlock::split(BasicBlock *NewParent) const {
199   DenseSet<Instruction *> BlockInsts(
200       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
201   llvm::SmallVector<Instruction *, 4> OtherInsts;
202   for (Instruction &Inst : *BB) {
203     if (BlockInsts.count(&Inst))
204       continue;
205     assert(canSinkBCECmpInst(&Inst, BlockInsts) && "Split unsplittable block");
206     // This is a non-BCE-cmp-block instruction. And it can be separated
207     // from the BCE-cmp-block instruction.
208     OtherInsts.push_back(&Inst);
209   }
210 
211   // Do the actual spliting.
212   for (Instruction *Inst : reverse(OtherInsts)) {
213     Inst->moveBefore(&*NewParent->begin());
214   }
215 }
216 
217 bool BCECmpBlock::canSplit() const {
218   DenseSet<Instruction *> BlockInsts(
219       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
220   for (Instruction &Inst : *BB) {
221     if (!BlockInsts.count(&Inst)) {
222       if (!canSinkBCECmpInst(&Inst, BlockInsts))
223         return false;
224     }
225   }
226   return true;
227 }
228 
229 bool BCECmpBlock::doesOtherWork() const {
230   AssertConsistent();
231   // All the instructions we care about in the BCE cmp block.
232   DenseSet<Instruction *> BlockInsts(
233       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
234   // TODO(courbet): Can we allow some other things ? This is very conservative.
235   // We might be able to get away with anything does not have any side
236   // effects outside of the basic block.
237   // Note: The GEPs and/or loads are not necessarily in the same block.
238   for (const Instruction &Inst : *BB) {
239     if (!BlockInsts.count(&Inst))
240       return true;
241   }
242   return false;
243 }
244 
245 // Visit the given comparison. If this is a comparison between two valid
246 // BCE atoms, returns the comparison.
247 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
248                       const ICmpInst::Predicate ExpectedPredicate) {
249   // The comparison can only be used once:
250   //  - For intermediate blocks, as a branch condition.
251   //  - For the final block, as an incoming value for the Phi.
252   // If there are any other uses of the comparison, we cannot merge it with
253   // other comparisons as we would create an orphan use of the value.
254   if (!CmpI->hasOneUse()) {
255     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
256     return {};
257   }
258   if (CmpI->getPredicate() == ExpectedPredicate) {
259     LLVM_DEBUG(dbgs() << "cmp "
260                       << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
261                       << "\n");
262     auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
263     if (!Lhs.Base()) return {};
264     auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
265     if (!Rhs.Base()) return {};
266     return BCECmpBlock(std::move(Lhs), std::move(Rhs),
267                        CmpI->getOperand(0)->getType()->getScalarSizeInBits());
268   }
269   return {};
270 }
271 
272 // Visit the given comparison block. If this is a comparison between two valid
273 // BCE atoms, returns the comparison.
274 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
275                           const BasicBlock *const PhiBlock) {
276   if (Block->empty()) return {};
277   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
278   if (!BranchI) return {};
279   LLVM_DEBUG(dbgs() << "branch\n");
280   if (BranchI->isUnconditional()) {
281     // In this case, we expect an incoming value which is the result of the
282     // comparison. This is the last link in the chain of comparisons (note
283     // that this does not mean that this is the last incoming value, blocks
284     // can be reordered).
285     auto *const CmpI = dyn_cast<ICmpInst>(Val);
286     if (!CmpI) return {};
287     LLVM_DEBUG(dbgs() << "icmp\n");
288     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
289     Result.CmpI = CmpI;
290     Result.BranchI = BranchI;
291     return Result;
292   } else {
293     // In this case, we expect a constant incoming value (the comparison is
294     // chained).
295     const auto *const Const = dyn_cast<ConstantInt>(Val);
296     LLVM_DEBUG(dbgs() << "const\n");
297     if (!Const->isZero()) return {};
298     LLVM_DEBUG(dbgs() << "false\n");
299     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
300     if (!CmpI) return {};
301     LLVM_DEBUG(dbgs() << "icmp\n");
302     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
303     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
304     auto Result = visitICmp(
305         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
306     Result.CmpI = CmpI;
307     Result.BranchI = BranchI;
308     return Result;
309   }
310   return {};
311 }
312 
313 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
314                                 BCECmpBlock &Comparison) {
315   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
316                     << "': Found cmp of " << Comparison.SizeBits()
317                     << " bits between " << Comparison.Lhs().Base() << " + "
318                     << Comparison.Lhs().Offset << " and "
319                     << Comparison.Rhs().Base() << " + "
320                     << Comparison.Rhs().Offset << "\n");
321   LLVM_DEBUG(dbgs() << "\n");
322   Comparisons.push_back(Comparison);
323 }
324 
325 // A chain of comparisons.
326 class BCECmpChain {
327  public:
328   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi);
329 
330   int size() const { return Comparisons_.size(); }
331 
332 #ifdef MERGEICMPS_DOT_ON
333   void dump() const;
334 #endif  // MERGEICMPS_DOT_ON
335 
336   bool simplify(const TargetLibraryInfo *const TLI);
337 
338  private:
339   static bool IsContiguous(const BCECmpBlock &First,
340                            const BCECmpBlock &Second) {
341     return First.Lhs().Base() == Second.Lhs().Base() &&
342            First.Rhs().Base() == Second.Rhs().Base() &&
343            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
344            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
345   }
346 
347   // Merges the given comparison blocks into one memcmp block and update
348   // branches. Comparisons are assumed to be continguous. If NextBBInChain is
349   // null, the merged block will link to the phi block.
350   void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
351                         BasicBlock *const NextBBInChain, PHINode &Phi,
352                         const TargetLibraryInfo *const TLI);
353 
354   PHINode &Phi_;
355   std::vector<BCECmpBlock> Comparisons_;
356   // The original entry block (before sorting);
357   BasicBlock *EntryBlock_;
358 };
359 
360 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi)
361     : Phi_(Phi) {
362   assert(!Blocks.empty() && "a chain should have at least one block");
363   // Now look inside blocks to check for BCE comparisons.
364   std::vector<BCECmpBlock> Comparisons;
365   for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
366     BasicBlock *const Block = Blocks[BlockIdx];
367     assert(Block && "invalid block");
368     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
369                                            Block, Phi.getParent());
370     Comparison.BB = Block;
371     if (!Comparison.IsValid()) {
372       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
373       return;
374     }
375     if (Comparison.doesOtherWork()) {
376       LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
377                         << "' does extra work besides compare\n");
378       if (Comparisons.empty()) {
379         // This is the initial block in the chain, in case this block does other
380         // work, we can try to split the block and move the irrelevant
381         // instructions to the predecessor.
382         //
383         // If this is not the initial block in the chain, splitting it wont
384         // work.
385         //
386         // As once split, there will still be instructions before the BCE cmp
387         // instructions that do other work in program order, i.e. within the
388         // chain before sorting. Unless we can abort the chain at this point
389         // and start anew.
390         //
391         // NOTE: we only handle block with single predecessor for now.
392         if (Comparison.canSplit()) {
393           LLVM_DEBUG(dbgs()
394                      << "Split initial block '" << Comparison.BB->getName()
395                      << "' that does extra work besides compare\n");
396           Comparison.RequireSplit = true;
397           enqueueBlock(Comparisons, Comparison);
398         } else {
399           LLVM_DEBUG(dbgs()
400                      << "ignoring initial block '" << Comparison.BB->getName()
401                      << "' that does extra work besides compare\n");
402         }
403         continue;
404       }
405       // TODO(courbet): Right now we abort the whole chain. We could be
406       // merging only the blocks that don't do other work and resume the
407       // chain from there. For example:
408       //  if (a[0] == b[0]) {  // bb1
409       //    if (a[1] == b[1]) {  // bb2
410       //      some_value = 3; //bb3
411       //      if (a[2] == b[2]) { //bb3
412       //        do a ton of stuff  //bb4
413       //      }
414       //    }
415       //  }
416       //
417       // This is:
418       //
419       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
420       //  \            \           \               \
421       //   ne           ne          ne              \
422       //    \            \           \               v
423       //     +------------+-----------+----------> bb_phi
424       //
425       // We can only merge the first two comparisons, because bb3* does
426       // "other work" (setting some_value to 3).
427       // We could still merge bb1 and bb2 though.
428       return;
429     }
430     enqueueBlock(Comparisons, Comparison);
431   }
432 
433   // It is possible we have no suitable comparison to merge.
434   if (Comparisons.empty()) {
435     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
436     return;
437   }
438   EntryBlock_ = Comparisons[0].BB;
439   Comparisons_ = std::move(Comparisons);
440 #ifdef MERGEICMPS_DOT_ON
441   errs() << "BEFORE REORDERING:\n\n";
442   dump();
443 #endif  // MERGEICMPS_DOT_ON
444   // Reorder blocks by LHS. We can do that without changing the
445   // semantics because we are only accessing dereferencable memory.
446   llvm::sort(Comparisons_.begin(), Comparisons_.end(),
447              [](const BCECmpBlock &a, const BCECmpBlock &b) {
448                return a.Lhs() < b.Lhs();
449              });
450 #ifdef MERGEICMPS_DOT_ON
451   errs() << "AFTER REORDERING:\n\n";
452   dump();
453 #endif  // MERGEICMPS_DOT_ON
454 }
455 
456 #ifdef MERGEICMPS_DOT_ON
457 void BCECmpChain::dump() const {
458   errs() << "digraph dag {\n";
459   errs() << " graph [bgcolor=transparent];\n";
460   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
461   errs() << " edge [color=black];\n";
462   for (size_t I = 0; I < Comparisons_.size(); ++I) {
463     const auto &Comparison = Comparisons_[I];
464     errs() << " \"" << I << "\" [label=\"%"
465            << Comparison.Lhs().Base()->getName() << " + "
466            << Comparison.Lhs().Offset << " == %"
467            << Comparison.Rhs().Base()->getName() << " + "
468            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
469            << " bytes)\"];\n";
470     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
471     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
472     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
473   }
474   errs() << " \"Phi\" [label=\"Phi\"];\n";
475   errs() << "}\n\n";
476 }
477 #endif  // MERGEICMPS_DOT_ON
478 
479 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) {
480   // First pass to check if there is at least one merge. If not, we don't do
481   // anything and we keep analysis passes intact.
482   {
483     bool AtLeastOneMerged = false;
484     for (size_t I = 1; I < Comparisons_.size(); ++I) {
485       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
486         AtLeastOneMerged = true;
487         break;
488       }
489     }
490     if (!AtLeastOneMerged) return false;
491   }
492 
493   // Remove phi references to comparison blocks, they will be rebuilt as we
494   // merge the blocks.
495   for (const auto &Comparison : Comparisons_) {
496     Phi_.removeIncomingValue(Comparison.BB, false);
497   }
498 
499   // If entry block is part of the chain, we need to make the first block
500   // of the chain the new entry block of the function.
501   BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock();
502   for (size_t I = 1; I < Comparisons_.size(); ++I) {
503     if (Entry == Comparisons_[I].BB) {
504       BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "",
505                                                 Entry->getParent(), Entry);
506       BranchInst::Create(Entry, NEntryBB);
507       break;
508     }
509   }
510 
511   // Point the predecessors of the chain to the first comparison block (which is
512   // the new entry point) and update the entry block of the chain.
513   if (EntryBlock_ != Comparisons_[0].BB) {
514     EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
515     EntryBlock_ = Comparisons_[0].BB;
516   }
517 
518   // Effectively merge blocks.
519   int NumMerged = 1;
520   for (size_t I = 1; I < Comparisons_.size(); ++I) {
521     if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
522       ++NumMerged;
523     } else {
524       // Merge all previous comparisons and start a new merge block.
525       mergeComparisons(
526           makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
527           Comparisons_[I].BB, Phi_, TLI);
528       NumMerged = 1;
529     }
530   }
531   mergeComparisons(makeArrayRef(Comparisons_)
532                        .slice(Comparisons_.size() - NumMerged, NumMerged),
533                    nullptr, Phi_, TLI);
534 
535   return true;
536 }
537 
538 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
539                                    BasicBlock *const NextBBInChain,
540                                    PHINode &Phi,
541                                    const TargetLibraryInfo *const TLI) {
542   assert(!Comparisons.empty());
543   const auto &FirstComparison = *Comparisons.begin();
544   BasicBlock *const BB = FirstComparison.BB;
545   LLVMContext &Context = BB->getContext();
546 
547   if (Comparisons.size() >= 2) {
548     // If there is one block that requires splitting, we do it now, i.e.
549     // just before we know we will collapse the chain. The instructions
550     // can be executed before any of the instructions in the chain.
551     auto C = std::find_if(Comparisons.begin(), Comparisons.end(),
552                           [](const BCECmpBlock &B) { return B.RequireSplit; });
553     if (C != Comparisons.end())
554       C->split(EntryBlock_);
555 
556     LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
557     const auto TotalSize =
558         std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
559                         [](int Size, const BCECmpBlock &C) {
560                           return Size + C.SizeBits();
561                         }) /
562         8;
563 
564     // Incoming edges do not need to be updated, and both GEPs are already
565     // computing the right address, we just need to:
566     //   - replace the two loads and the icmp with the memcmp
567     //   - update the branch
568     //   - update the incoming values in the phi.
569     FirstComparison.BranchI->eraseFromParent();
570     FirstComparison.CmpI->eraseFromParent();
571     FirstComparison.Lhs().LoadI->eraseFromParent();
572     FirstComparison.Rhs().LoadI->eraseFromParent();
573 
574     IRBuilder<> Builder(BB);
575     const auto &DL = Phi.getModule()->getDataLayout();
576     Value *const MemCmpCall = emitMemCmp(
577         FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
578         ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
579         Builder, DL, TLI);
580     Value *const MemCmpIsZero = Builder.CreateICmpEQ(
581         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
582 
583     // Add a branch to the next basic block in the chain.
584     if (NextBBInChain) {
585       Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
586       Phi.addIncoming(ConstantInt::getFalse(Context), BB);
587     } else {
588       Builder.CreateBr(Phi.getParent());
589       Phi.addIncoming(MemCmpIsZero, BB);
590     }
591 
592     // Delete merged blocks.
593     for (size_t I = 1; I < Comparisons.size(); ++I) {
594       BasicBlock *CBB = Comparisons[I].BB;
595       CBB->replaceAllUsesWith(BB);
596       CBB->eraseFromParent();
597     }
598   } else {
599     assert(Comparisons.size() == 1);
600     // There are no blocks to merge, but we still need to update the branches.
601     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
602     if (NextBBInChain) {
603       if (FirstComparison.BranchI->isConditional()) {
604         LLVM_DEBUG(dbgs() << "conditional -> conditional\n");
605         // Just update the "true" target, the "false" target should already be
606         // the phi block.
607         assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
608         FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
609         Phi.addIncoming(ConstantInt::getFalse(Context), BB);
610       } else {
611         LLVM_DEBUG(dbgs() << "unconditional -> conditional\n");
612         // Replace the unconditional branch by a conditional one.
613         FirstComparison.BranchI->eraseFromParent();
614         IRBuilder<> Builder(BB);
615         Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
616                              Phi.getParent());
617         Phi.addIncoming(FirstComparison.CmpI, BB);
618       }
619     } else {
620       if (FirstComparison.BranchI->isConditional()) {
621         LLVM_DEBUG(dbgs() << "conditional -> unconditional\n");
622         // Replace the conditional branch by an unconditional one.
623         FirstComparison.BranchI->eraseFromParent();
624         IRBuilder<> Builder(BB);
625         Builder.CreateBr(Phi.getParent());
626         Phi.addIncoming(FirstComparison.CmpI, BB);
627       } else {
628         LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n");
629         Phi.addIncoming(FirstComparison.CmpI, BB);
630       }
631     }
632   }
633 }
634 
635 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
636                                            BasicBlock *const LastBlock,
637                                            int NumBlocks) {
638   // Walk up from the last block to find other blocks.
639   std::vector<BasicBlock *> Blocks(NumBlocks);
640   assert(LastBlock && "invalid last block");
641   BasicBlock *CurBlock = LastBlock;
642   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
643     if (CurBlock->hasAddressTaken()) {
644       // Somebody is jumping to the block through an address, all bets are
645       // off.
646       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
647                         << " has its address taken\n");
648       return {};
649     }
650     Blocks[BlockIndex] = CurBlock;
651     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
652     if (!SinglePredecessor) {
653       // The block has two or more predecessors.
654       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
655                         << " has two or more predecessors\n");
656       return {};
657     }
658     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
659       // The block does not link back to the phi.
660       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
661                         << " does not link back to the phi\n");
662       return {};
663     }
664     CurBlock = SinglePredecessor;
665   }
666   Blocks[0] = CurBlock;
667   return Blocks;
668 }
669 
670 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) {
671   LLVM_DEBUG(dbgs() << "processPhi()\n");
672   if (Phi.getNumIncomingValues() <= 1) {
673     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
674     return false;
675   }
676   // We are looking for something that has the following structure:
677   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
678   //     \            \           \               \
679   //      ne           ne          ne              \
680   //       \            \           \               v
681   //        +------------+-----------+----------> bb_phi
682   //
683   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
684   //    It's the only block that contributes a non-constant value to the Phi.
685   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
686   //    them being the phi block.
687   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
688   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
689 
690   // The blocks are not necessarily ordered in the phi, so we start from the
691   // last block and reconstruct the order.
692   BasicBlock *LastBlock = nullptr;
693   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
694     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
695     if (LastBlock) {
696       // There are several non-constant values.
697       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
698       return false;
699     }
700     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
701         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
702             Phi.getIncomingBlock(I)) {
703       // Non-constant incoming value is not from a cmp instruction or not
704       // produced by the last block. We could end up processing the value
705       // producing block more than once.
706       //
707       // This is an uncommon case, so we bail.
708       LLVM_DEBUG(
709           dbgs()
710           << "skip: non-constant value not from cmp or not from last block.\n");
711       return false;
712     }
713     LastBlock = Phi.getIncomingBlock(I);
714   }
715   if (!LastBlock) {
716     // There is no non-constant block.
717     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
718     return false;
719   }
720   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
721     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
722     return false;
723   }
724 
725   const auto Blocks =
726       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
727   if (Blocks.empty()) return false;
728   BCECmpChain CmpChain(Blocks, Phi);
729 
730   if (CmpChain.size() < 2) {
731     LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
732     return false;
733   }
734 
735   return CmpChain.simplify(TLI);
736 }
737 
738 class MergeICmps : public FunctionPass {
739  public:
740   static char ID;
741 
742   MergeICmps() : FunctionPass(ID) {
743     initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
744   }
745 
746   bool runOnFunction(Function &F) override {
747     if (skipFunction(F)) return false;
748     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
749     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
750     auto PA = runImpl(F, &TLI, &TTI);
751     return !PA.areAllPreserved();
752   }
753 
754  private:
755   void getAnalysisUsage(AnalysisUsage &AU) const override {
756     AU.addRequired<TargetLibraryInfoWrapperPass>();
757     AU.addRequired<TargetTransformInfoWrapperPass>();
758   }
759 
760   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
761                             const TargetTransformInfo *TTI);
762 };
763 
764 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
765                                       const TargetTransformInfo *TTI) {
766   LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
767 
768   // We only try merging comparisons if the target wants to expand memcmp later.
769   // The rationale is to avoid turning small chains into memcmp calls.
770   if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
771 
772   // If we don't have memcmp avaiable we can't emit calls to it.
773   if (!TLI->has(LibFunc_memcmp))
774     return PreservedAnalyses::all();
775 
776   bool MadeChange = false;
777 
778   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
779     // A Phi operation is always first in a basic block.
780     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
781       MadeChange |= processPhi(*Phi, TLI);
782   }
783 
784   if (MadeChange) return PreservedAnalyses::none();
785   return PreservedAnalyses::all();
786 }
787 
788 }  // namespace
789 
790 char MergeICmps::ID = 0;
791 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
792                       "Merge contiguous icmps into a memcmp", false, false)
793 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
794 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
795 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
796                     "Merge contiguous icmps into a memcmp", false, false)
797 
798 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
799