1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar/MergeICmps.h" 45 #include "llvm/Analysis/DomTreeUpdater.h" 46 #include "llvm/Analysis/GlobalsModRef.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 58 #include "llvm/Transforms/Utils/BuildLibCalls.h" 59 #include <algorithm> 60 #include <numeric> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 namespace { 67 68 #define DEBUG_TYPE "mergeicmps" 69 70 // A BCE atom "Binary Compare Expression Atom" represents an integer load 71 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 72 // at the top. 73 struct BCEAtom { 74 BCEAtom() = default; 75 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) 76 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} 77 78 BCEAtom(const BCEAtom &) = delete; 79 BCEAtom &operator=(const BCEAtom &) = delete; 80 81 BCEAtom(BCEAtom &&that) = default; 82 BCEAtom &operator=(BCEAtom &&that) { 83 if (this == &that) 84 return *this; 85 GEP = that.GEP; 86 LoadI = that.LoadI; 87 BaseId = that.BaseId; 88 Offset = std::move(that.Offset); 89 return *this; 90 } 91 92 // We want to order BCEAtoms by (Base, Offset). However we cannot use 93 // the pointer values for Base because these are non-deterministic. 94 // To make sure that the sort order is stable, we first assign to each atom 95 // base value an index based on its order of appearance in the chain of 96 // comparisons. We call this index `BaseOrdering`. For example, for: 97 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] 98 // | block 1 | | block 2 | | block 3 | 99 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, 100 // which is before block 2. 101 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. 102 bool operator<(const BCEAtom &O) const { 103 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); 104 } 105 106 GetElementPtrInst *GEP = nullptr; 107 LoadInst *LoadI = nullptr; 108 unsigned BaseId = 0; 109 APInt Offset; 110 }; 111 112 // A class that assigns increasing ids to values in the order in which they are 113 // seen. See comment in `BCEAtom::operator<()``. 114 class BaseIdentifier { 115 public: 116 // Returns the id for value `Base`, after assigning one if `Base` has not been 117 // seen before. 118 int getBaseId(const Value *Base) { 119 assert(Base && "invalid base"); 120 const auto Insertion = BaseToIndex.try_emplace(Base, Order); 121 if (Insertion.second) 122 ++Order; 123 return Insertion.first->second; 124 } 125 126 private: 127 unsigned Order = 1; 128 DenseMap<const Value*, int> BaseToIndex; 129 }; 130 131 // If this value is a load from a constant offset w.r.t. a base address, and 132 // there are no other users of the load or address, returns the base address and 133 // the offset. 134 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { 135 auto *const LoadI = dyn_cast<LoadInst>(Val); 136 if (!LoadI) 137 return {}; 138 LLVM_DEBUG(dbgs() << "load\n"); 139 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 140 LLVM_DEBUG(dbgs() << "used outside of block\n"); 141 return {}; 142 } 143 // Do not optimize atomic loads to non-atomic memcmp 144 if (!LoadI->isSimple()) { 145 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 146 return {}; 147 } 148 Value *Addr = LoadI->getOperand(0); 149 if (Addr->getType()->getPointerAddressSpace() != 0) { 150 LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n"); 151 return {}; 152 } 153 const auto &DL = LoadI->getModule()->getDataLayout(); 154 if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) { 155 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 156 // We need to make sure that we can do comparison in any order, so we 157 // require memory to be unconditionally dereferenceable. 158 return {}; 159 } 160 161 APInt Offset = APInt(DL.getIndexTypeSizeInBits(Addr->getType()), 0); 162 Value *Base = Addr; 163 auto *GEP = dyn_cast<GetElementPtrInst>(Addr); 164 if (GEP) { 165 LLVM_DEBUG(dbgs() << "GEP\n"); 166 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 167 LLVM_DEBUG(dbgs() << "used outside of block\n"); 168 return {}; 169 } 170 if (!GEP->accumulateConstantOffset(DL, Offset)) 171 return {}; 172 Base = GEP->getPointerOperand(); 173 } 174 return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset); 175 } 176 177 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the 178 // top. 179 // Note: the terminology is misleading: the comparison is symmetric, so there 180 // is no real {l/r}hs. What we want though is to have the same base on the 181 // left (resp. right), so that we can detect consecutive loads. To ensure this 182 // we put the smallest atom on the left. 183 struct BCECmp { 184 BCEAtom Lhs; 185 BCEAtom Rhs; 186 int SizeBits; 187 const ICmpInst *CmpI; 188 189 BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI) 190 : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) { 191 if (Rhs < Lhs) std::swap(Rhs, Lhs); 192 } 193 }; 194 195 // A basic block with a comparison between two BCE atoms. 196 // The block might do extra work besides the atom comparison, in which case 197 // doesOtherWork() returns true. Under some conditions, the block can be 198 // split into the atom comparison part and the "other work" part 199 // (see canSplit()). 200 class BCECmpBlock { 201 public: 202 typedef SmallDenseSet<const Instruction *, 8> InstructionSet; 203 204 BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts) 205 : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {} 206 207 const BCEAtom &Lhs() const { return Cmp.Lhs; } 208 const BCEAtom &Rhs() const { return Cmp.Rhs; } 209 int SizeBits() const { return Cmp.SizeBits; } 210 211 // Returns true if the block does other works besides comparison. 212 bool doesOtherWork() const; 213 214 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 215 // instructions in the block. 216 bool canSplit(AliasAnalysis &AA) const; 217 218 // Return true if this all the relevant instructions in the BCE-cmp-block can 219 // be sunk below this instruction. By doing this, we know we can separate the 220 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 221 // block. 222 bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const; 223 224 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 225 // instructions. Split the old block and move all non-BCE-cmp-insts into the 226 // new parent block. 227 void split(BasicBlock *NewParent, AliasAnalysis &AA) const; 228 229 // The basic block where this comparison happens. 230 BasicBlock *BB; 231 // Instructions relating to the BCECmp and branch. 232 InstructionSet BlockInsts; 233 // The block requires splitting. 234 bool RequireSplit = false; 235 // Original order of this block in the chain. 236 unsigned OrigOrder = 0; 237 238 private: 239 BCECmp Cmp; 240 }; 241 242 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 243 AliasAnalysis &AA) const { 244 // If this instruction may clobber the loads and is in middle of the BCE cmp 245 // block instructions, then bail for now. 246 if (Inst->mayWriteToMemory()) { 247 auto MayClobber = [&](LoadInst *LI) { 248 // If a potentially clobbering instruction comes before the load, 249 // we can still safely sink the load. 250 return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) && 251 isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI))); 252 }; 253 if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI)) 254 return false; 255 } 256 // Make sure this instruction does not use any of the BCE cmp block 257 // instructions as operand. 258 return llvm::none_of(Inst->operands(), [&](const Value *Op) { 259 const Instruction *OpI = dyn_cast<Instruction>(Op); 260 return OpI && BlockInsts.contains(OpI); 261 }); 262 } 263 264 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { 265 llvm::SmallVector<Instruction *, 4> OtherInsts; 266 for (Instruction &Inst : *BB) { 267 if (BlockInsts.count(&Inst)) 268 continue; 269 assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block"); 270 // This is a non-BCE-cmp-block instruction. And it can be separated 271 // from the BCE-cmp-block instruction. 272 OtherInsts.push_back(&Inst); 273 } 274 275 // Do the actual spliting. 276 for (Instruction *Inst : reverse(OtherInsts)) 277 Inst->moveBefore(*NewParent, NewParent->begin()); 278 } 279 280 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { 281 for (Instruction &Inst : *BB) { 282 if (!BlockInsts.count(&Inst)) { 283 if (!canSinkBCECmpInst(&Inst, AA)) 284 return false; 285 } 286 } 287 return true; 288 } 289 290 bool BCECmpBlock::doesOtherWork() const { 291 // TODO(courbet): Can we allow some other things ? This is very conservative. 292 // We might be able to get away with anything does not have any side 293 // effects outside of the basic block. 294 // Note: The GEPs and/or loads are not necessarily in the same block. 295 for (const Instruction &Inst : *BB) { 296 if (!BlockInsts.count(&Inst)) 297 return true; 298 } 299 return false; 300 } 301 302 // Visit the given comparison. If this is a comparison between two valid 303 // BCE atoms, returns the comparison. 304 std::optional<BCECmp> visitICmp(const ICmpInst *const CmpI, 305 const ICmpInst::Predicate ExpectedPredicate, 306 BaseIdentifier &BaseId) { 307 // The comparison can only be used once: 308 // - For intermediate blocks, as a branch condition. 309 // - For the final block, as an incoming value for the Phi. 310 // If there are any other uses of the comparison, we cannot merge it with 311 // other comparisons as we would create an orphan use of the value. 312 if (!CmpI->hasOneUse()) { 313 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 314 return std::nullopt; 315 } 316 if (CmpI->getPredicate() != ExpectedPredicate) 317 return std::nullopt; 318 LLVM_DEBUG(dbgs() << "cmp " 319 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 320 << "\n"); 321 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); 322 if (!Lhs.BaseId) 323 return std::nullopt; 324 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); 325 if (!Rhs.BaseId) 326 return std::nullopt; 327 const auto &DL = CmpI->getModule()->getDataLayout(); 328 return BCECmp(std::move(Lhs), std::move(Rhs), 329 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI); 330 } 331 332 // Visit the given comparison block. If this is a comparison between two valid 333 // BCE atoms, returns the comparison. 334 std::optional<BCECmpBlock> 335 visitCmpBlock(Value *const Baseline, ICmpInst::Predicate &Predicate, 336 Value *const Val, BasicBlock *const Block, 337 const BasicBlock *const PhiBlock, BaseIdentifier &BaseId) { 338 if (Block->empty()) 339 return std::nullopt; 340 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 341 if (!BranchI) 342 return std::nullopt; 343 LLVM_DEBUG(dbgs() << "branch\n"); 344 Value *Cond; 345 ICmpInst::Predicate ExpectedPredicate; 346 if (BranchI->isUnconditional()) { 347 // In this case, we expect an incoming value which is the result of the 348 // comparison. This is the last link in the chain of comparisons (note 349 // that this does not mean that this is the last incoming value, blocks 350 // can be reordered). 351 Cond = Val; 352 const auto *const ConstBase = cast<ConstantInt>(Baseline); 353 assert(ConstBase->getType()->isIntegerTy(1) && 354 "Select condition is not an i1?"); 355 ExpectedPredicate = 356 ConstBase->isOne() ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 357 358 // Remember the correct predicate. 359 Predicate = ExpectedPredicate; 360 } else { 361 // All the incoming values must be consistent. 362 if (Baseline != Val) 363 return std::nullopt; 364 // In this case, we expect a constant incoming value (the comparison is 365 // chained). 366 const auto *const Const = cast<ConstantInt>(Val); 367 assert(Const->getType()->isIntegerTy(1) && 368 "Incoming value is not an i1?"); 369 LLVM_DEBUG(dbgs() << "const i1 value\n"); 370 if (!Const->isZero() && !Const->isOne()) 371 return std::nullopt; 372 LLVM_DEBUG(dbgs() << *Const << "\n"); 373 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 374 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 375 Cond = BranchI->getCondition(); 376 ExpectedPredicate = 377 FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 378 } 379 380 auto *CmpI = dyn_cast<ICmpInst>(Cond); 381 if (!CmpI) 382 return std::nullopt; 383 LLVM_DEBUG(dbgs() << "icmp\n"); 384 385 std::optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId); 386 if (!Result) 387 return std::nullopt; 388 389 BCECmpBlock::InstructionSet BlockInsts( 390 {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI}); 391 if (Result->Lhs.GEP) 392 BlockInsts.insert(Result->Lhs.GEP); 393 if (Result->Rhs.GEP) 394 BlockInsts.insert(Result->Rhs.GEP); 395 return BCECmpBlock(std::move(*Result), Block, BlockInsts); 396 } 397 398 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 399 BCECmpBlock &&Comparison) { 400 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 401 << "': Found cmp of " << Comparison.SizeBits() 402 << " bits between " << Comparison.Lhs().BaseId << " + " 403 << Comparison.Lhs().Offset << " and " 404 << Comparison.Rhs().BaseId << " + " 405 << Comparison.Rhs().Offset << "\n"); 406 LLVM_DEBUG(dbgs() << "\n"); 407 Comparison.OrigOrder = Comparisons.size(); 408 Comparisons.push_back(std::move(Comparison)); 409 } 410 411 // A chain of comparisons. 412 class BCECmpChain { 413 public: 414 using ContiguousBlocks = std::vector<BCECmpBlock>; 415 416 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 417 AliasAnalysis &AA); 418 419 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 420 DomTreeUpdater &DTU); 421 422 bool atLeastOneMerged() const { 423 return any_of(MergedBlocks_, 424 [](const auto &Blocks) { return Blocks.size() > 1; }); 425 } 426 427 private: 428 PHINode &Phi_; 429 // The list of all blocks in the chain, grouped by contiguity. 430 std::vector<ContiguousBlocks> MergedBlocks_; 431 // The original entry block (before sorting); 432 BasicBlock *EntryBlock_; 433 // Remember the predicate type of the chain. 434 ICmpInst::Predicate Predicate_; 435 }; 436 437 static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) { 438 return First.Lhs().BaseId == Second.Lhs().BaseId && 439 First.Rhs().BaseId == Second.Rhs().BaseId && 440 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 441 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 442 } 443 444 static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) { 445 unsigned MinOrigOrder = std::numeric_limits<unsigned>::max(); 446 for (const BCECmpBlock &Block : Blocks) 447 MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder); 448 return MinOrigOrder; 449 } 450 451 /// Given a chain of comparison blocks, groups the blocks into contiguous 452 /// ranges that can be merged together into a single comparison. 453 static std::vector<BCECmpChain::ContiguousBlocks> 454 mergeBlocks(std::vector<BCECmpBlock> &&Blocks) { 455 std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks; 456 457 // Sort to detect continuous offsets. 458 llvm::sort(Blocks, 459 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { 460 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < 461 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); 462 }); 463 464 BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr; 465 for (BCECmpBlock &Block : Blocks) { 466 if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) { 467 MergedBlocks.emplace_back(); 468 LastMergedBlock = &MergedBlocks.back(); 469 } else { 470 LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into " 471 << LastMergedBlock->back().BB->getName() << "\n"); 472 } 473 LastMergedBlock->push_back(std::move(Block)); 474 } 475 476 // While we allow reordering for merging, do not reorder unmerged comparisons. 477 // Doing so may introduce branch on poison. 478 llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks, 479 const BCECmpChain::ContiguousBlocks &RhsBlocks) { 480 return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks); 481 }); 482 483 return MergedBlocks; 484 } 485 486 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 487 AliasAnalysis &AA) 488 : Phi_(Phi) { 489 assert(!Blocks.empty() && "a chain should have at least one block"); 490 // Now look inside blocks to check for BCE comparisons. 491 std::vector<BCECmpBlock> Comparisons; 492 BaseIdentifier BaseId; 493 Value *const Baseline = Phi.getIncomingValueForBlock(Blocks[0]); 494 Predicate_ = CmpInst::BAD_ICMP_PREDICATE; 495 for (BasicBlock *const Block : Blocks) { 496 assert(Block && "invalid block"); 497 std::optional<BCECmpBlock> Comparison = 498 visitCmpBlock(Baseline, Predicate_, Phi.getIncomingValueForBlock(Block), 499 Block, Phi.getParent(), BaseId); 500 if (!Comparison) { 501 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 502 return; 503 } 504 if (Comparison->doesOtherWork()) { 505 LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName() 506 << "' does extra work besides compare\n"); 507 if (Comparisons.empty()) { 508 // This is the initial block in the chain, in case this block does other 509 // work, we can try to split the block and move the irrelevant 510 // instructions to the predecessor. 511 // 512 // If this is not the initial block in the chain, splitting it wont 513 // work. 514 // 515 // As once split, there will still be instructions before the BCE cmp 516 // instructions that do other work in program order, i.e. within the 517 // chain before sorting. Unless we can abort the chain at this point 518 // and start anew. 519 // 520 // NOTE: we only handle blocks a with single predecessor for now. 521 if (Comparison->canSplit(AA)) { 522 LLVM_DEBUG(dbgs() 523 << "Split initial block '" << Comparison->BB->getName() 524 << "' that does extra work besides compare\n"); 525 Comparison->RequireSplit = true; 526 enqueueBlock(Comparisons, std::move(*Comparison)); 527 } else { 528 LLVM_DEBUG(dbgs() 529 << "ignoring initial block '" << Comparison->BB->getName() 530 << "' that does extra work besides compare\n"); 531 } 532 continue; 533 } 534 // TODO(courbet): Right now we abort the whole chain. We could be 535 // merging only the blocks that don't do other work and resume the 536 // chain from there. For example: 537 // if (a[0] == b[0]) { // bb1 538 // if (a[1] == b[1]) { // bb2 539 // some_value = 3; //bb3 540 // if (a[2] == b[2]) { //bb3 541 // do a ton of stuff //bb4 542 // } 543 // } 544 // } 545 // 546 // This is: 547 // 548 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 549 // \ \ \ \ 550 // ne ne ne \ 551 // \ \ \ v 552 // +------------+-----------+----------> bb_phi 553 // 554 // We can only merge the first two comparisons, because bb3* does 555 // "other work" (setting some_value to 3). 556 // We could still merge bb1 and bb2 though. 557 return; 558 } 559 enqueueBlock(Comparisons, std::move(*Comparison)); 560 } 561 562 // It is possible we have no suitable comparison to merge. 563 if (Comparisons.empty()) { 564 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 565 return; 566 } 567 EntryBlock_ = Comparisons[0].BB; 568 MergedBlocks_ = mergeBlocks(std::move(Comparisons)); 569 } 570 571 namespace { 572 573 // A class to compute the name of a set of merged basic blocks. 574 // This is optimized for the common case of no block names. 575 class MergedBlockName { 576 // Storage for the uncommon case of several named blocks. 577 SmallString<16> Scratch; 578 579 public: 580 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) 581 : Name(makeName(Comparisons)) {} 582 const StringRef Name; 583 584 private: 585 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { 586 assert(!Comparisons.empty() && "no basic block"); 587 // Fast path: only one block, or no names at all. 588 if (Comparisons.size() == 1) 589 return Comparisons[0].BB->getName(); 590 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 591 [](int i, const BCECmpBlock &Cmp) { 592 return i + Cmp.BB->getName().size(); 593 }); 594 if (size == 0) 595 return StringRef("", 0); 596 597 // Slow path: at least two blocks, at least one block with a name. 598 Scratch.clear(); 599 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for 600 // separators. 601 Scratch.reserve(size + Comparisons.size() - 1); 602 const auto append = [this](StringRef str) { 603 Scratch.append(str.begin(), str.end()); 604 }; 605 append(Comparisons[0].BB->getName()); 606 for (int I = 1, E = Comparisons.size(); I < E; ++I) { 607 const BasicBlock *const BB = Comparisons[I].BB; 608 if (!BB->getName().empty()) { 609 append("+"); 610 append(BB->getName()); 611 } 612 } 613 return Scratch.str(); 614 } 615 }; 616 } // namespace 617 618 // Merges the given contiguous comparison blocks into one memcmp block. 619 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 620 BasicBlock *const InsertBefore, 621 BasicBlock *const NextCmpBlock, 622 PHINode &Phi, const TargetLibraryInfo &TLI, 623 AliasAnalysis &AA, DomTreeUpdater &DTU, 624 ICmpInst::Predicate Predicate) { 625 assert(!Comparisons.empty() && "merging zero comparisons"); 626 LLVMContext &Context = NextCmpBlock->getContext(); 627 const BCECmpBlock &FirstCmp = Comparisons[0]; 628 629 // Create a new cmp block before next cmp block. 630 BasicBlock *const BB = 631 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, 632 NextCmpBlock->getParent(), InsertBefore); 633 IRBuilder<> Builder(BB); 634 // Add the GEPs from the first BCECmpBlock. 635 Value *Lhs, *Rhs; 636 if (FirstCmp.Lhs().GEP) 637 Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); 638 else 639 Lhs = FirstCmp.Lhs().LoadI->getPointerOperand(); 640 if (FirstCmp.Rhs().GEP) 641 Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); 642 else 643 Rhs = FirstCmp.Rhs().LoadI->getPointerOperand(); 644 645 Value *ICmpValue = nullptr; 646 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " 647 << BB->getName() << "\n"); 648 649 // If there is one block that requires splitting, we do it now, i.e. 650 // just before we know we will collapse the chain. The instructions 651 // can be executed before any of the instructions in the chain. 652 const auto ToSplit = llvm::find_if( 653 Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; }); 654 if (ToSplit != Comparisons.end()) { 655 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); 656 ToSplit->split(BB, AA); 657 } 658 659 // For a Icmp chain, the Predicate is record the last link in the chain of 660 // comparisons. When we spilt the chain The new spilted chain of comparisons 661 // is end with ICMP_EQ. 662 // Only the last link in the chain is a unconditionla jmp. 663 BasicBlock *const TailBB = Comparisons[Comparisons.size() - 1].BB; 664 auto *const BranchI = dyn_cast<BranchInst>(TailBB->getTerminator()); 665 ICmpInst::Predicate Pred = 666 BranchI->isUnconditional() ? Predicate : ICmpInst::ICMP_EQ; 667 if (Comparisons.size() == 1) { 668 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 669 // Use clone to keep the metadata 670 Instruction *const LhsLoad = Builder.Insert(FirstCmp.Lhs().LoadI->clone()); 671 Instruction *const RhsLoad = Builder.Insert(FirstCmp.Rhs().LoadI->clone()); 672 LhsLoad->replaceUsesOfWith(LhsLoad->getOperand(0), Lhs); 673 RhsLoad->replaceUsesOfWith(RhsLoad->getOperand(0), Rhs); 674 // There are no blocks to merge, just do the comparison. 675 ICmpValue = Builder.CreateICmp(Pred, LhsLoad, RhsLoad); 676 } else { 677 const unsigned TotalSizeBits = std::accumulate( 678 Comparisons.begin(), Comparisons.end(), 0u, 679 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); 680 681 // memcmp expects a 'size_t' argument and returns 'int'. 682 unsigned SizeTBits = TLI.getSizeTSize(*Phi.getModule()); 683 unsigned IntBits = TLI.getIntSize(); 684 685 // Create memcmp() == 0. 686 const auto &DL = Phi.getModule()->getDataLayout(); 687 Value *const MemCmpCall = emitMemCmp( 688 Lhs, Rhs, 689 ConstantInt::get(Builder.getIntNTy(SizeTBits), TotalSizeBits / 8), 690 Builder, DL, &TLI); 691 ICmpValue = Builder.CreateICmp( 692 Pred, MemCmpCall, ConstantInt::get(Builder.getIntNTy(IntBits), 0)); 693 } 694 695 BasicBlock *const PhiBB = Phi.getParent(); 696 // Add a branch to the next basic block in the chain. 697 if (NextCmpBlock == PhiBB) { 698 // Continue to phi, passing it the comparison result. 699 Builder.CreateBr(PhiBB); 700 Phi.addIncoming(ICmpValue, BB); 701 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); 702 } else { 703 // Continue to next block if equal, exit to phi else. 704 Builder.CreateCondBr(ICmpValue, NextCmpBlock, PhiBB); 705 Value *ConstantVal = Predicate == CmpInst::ICMP_NE 706 ? ConstantInt::getTrue(Context) 707 : ConstantInt::getFalse(Context); 708 Phi.addIncoming(ConstantVal, BB); 709 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, 710 {DominatorTree::Insert, BB, PhiBB}}); 711 } 712 return BB; 713 } 714 715 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 716 DomTreeUpdater &DTU) { 717 assert(atLeastOneMerged() && "simplifying trivial BCECmpChain"); 718 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " 719 << EntryBlock_->getName() << "\n"); 720 721 // Effectively merge blocks. We go in the reverse direction from the phi block 722 // so that the next block is always available to branch to. 723 BasicBlock *InsertBefore = EntryBlock_; 724 BasicBlock *NextCmpBlock = Phi_.getParent(); 725 assert(Predicate_ != CmpInst::BAD_ICMP_PREDICATE && 726 "Got the chain of comparisons"); 727 for (const auto &Blocks : reverse(MergedBlocks_)) { 728 InsertBefore = NextCmpBlock = mergeComparisons( 729 Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU, Predicate_); 730 } 731 732 // Replace the original cmp chain with the new cmp chain by pointing all 733 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp 734 // blocks in the old chain unreachable. 735 while (!pred_empty(EntryBlock_)) { 736 BasicBlock* const Pred = *pred_begin(EntryBlock_); 737 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() 738 << "\n"); 739 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); 740 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, 741 {DominatorTree::Insert, Pred, NextCmpBlock}}); 742 } 743 744 // If the old cmp chain was the function entry, we need to update the function 745 // entry. 746 const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock(); 747 if (ChainEntryIsFnEntry && DTU.hasDomTree()) { 748 LLVM_DEBUG(dbgs() << "Changing function entry from " 749 << EntryBlock_->getName() << " to " 750 << NextCmpBlock->getName() << "\n"); 751 DTU.getDomTree().setNewRoot(NextCmpBlock); 752 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); 753 } 754 EntryBlock_ = nullptr; 755 756 // Delete merged blocks. This also removes incoming values in phi. 757 SmallVector<BasicBlock *, 16> DeadBlocks; 758 for (const auto &Blocks : MergedBlocks_) { 759 for (const BCECmpBlock &Block : Blocks) { 760 LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName() 761 << "\n"); 762 DeadBlocks.push_back(Block.BB); 763 } 764 } 765 DeleteDeadBlocks(DeadBlocks, &DTU); 766 767 MergedBlocks_.clear(); 768 return true; 769 } 770 771 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 772 BasicBlock *const LastBlock, 773 int NumBlocks) { 774 // Walk up from the last block to find other blocks. 775 std::vector<BasicBlock *> Blocks(NumBlocks); 776 assert(LastBlock && "invalid last block"); 777 BasicBlock *CurBlock = LastBlock; 778 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 779 if (CurBlock->hasAddressTaken()) { 780 // Somebody is jumping to the block through an address, all bets are 781 // off. 782 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 783 << " has its address taken\n"); 784 return {}; 785 } 786 Blocks[BlockIndex] = CurBlock; 787 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 788 if (!SinglePredecessor) { 789 // The block has two or more predecessors. 790 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 791 << " has two or more predecessors\n"); 792 return {}; 793 } 794 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 795 // The block does not link back to the phi. 796 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 797 << " does not link back to the phi\n"); 798 return {}; 799 } 800 CurBlock = SinglePredecessor; 801 } 802 Blocks[0] = CurBlock; 803 return Blocks; 804 } 805 806 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, 807 DomTreeUpdater &DTU) { 808 LLVM_DEBUG(dbgs() << "processPhi()\n"); 809 if (Phi.getNumIncomingValues() <= 1) { 810 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 811 return false; 812 } 813 // We are looking for something that has the following structure: 814 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 815 // \ \ \ \ 816 // ne ne ne \ 817 // \ \ \ v 818 // +------------+-----------+----------> bb_phi 819 // 820 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 821 // It's the only block that contributes a non-constant value to the Phi. 822 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 823 // them being the phi block. 824 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 825 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 826 827 // The blocks are not necessarily ordered in the phi, so we start from the 828 // last block and reconstruct the order. 829 BasicBlock *LastBlock = nullptr; 830 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 831 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 832 if (LastBlock) { 833 // There are several non-constant values. 834 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 835 return false; 836 } 837 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 838 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 839 Phi.getIncomingBlock(I)) { 840 // Non-constant incoming value is not from a cmp instruction or not 841 // produced by the last block. We could end up processing the value 842 // producing block more than once. 843 // 844 // This is an uncommon case, so we bail. 845 LLVM_DEBUG( 846 dbgs() 847 << "skip: non-constant value not from cmp or not from last block.\n"); 848 return false; 849 } 850 LastBlock = Phi.getIncomingBlock(I); 851 } 852 if (!LastBlock) { 853 // There is no non-constant block. 854 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 855 return false; 856 } 857 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 858 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 859 return false; 860 } 861 862 const auto Blocks = 863 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 864 if (Blocks.empty()) return false; 865 BCECmpChain CmpChain(Blocks, Phi, AA); 866 867 if (!CmpChain.atLeastOneMerged()) { 868 LLVM_DEBUG(dbgs() << "skip: nothing merged\n"); 869 return false; 870 } 871 872 return CmpChain.simplify(TLI, AA, DTU); 873 } 874 875 static bool runImpl(Function &F, const TargetLibraryInfo &TLI, 876 const TargetTransformInfo &TTI, AliasAnalysis &AA, 877 DominatorTree *DT) { 878 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); 879 880 // We only try merging comparisons if the target wants to expand memcmp later. 881 // The rationale is to avoid turning small chains into memcmp calls. 882 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) 883 return false; 884 885 // If we don't have memcmp avaiable we can't emit calls to it. 886 if (!TLI.has(LibFunc_memcmp)) 887 return false; 888 889 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, 890 DomTreeUpdater::UpdateStrategy::Eager); 891 892 bool MadeChange = false; 893 894 for (BasicBlock &BB : llvm::drop_begin(F)) { 895 // A Phi operation is always first in a basic block. 896 if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin())) 897 MadeChange |= processPhi(*Phi, TLI, AA, DTU); 898 } 899 900 return MadeChange; 901 } 902 903 class MergeICmpsLegacyPass : public FunctionPass { 904 public: 905 static char ID; 906 907 MergeICmpsLegacyPass() : FunctionPass(ID) { 908 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); 909 } 910 911 bool runOnFunction(Function &F) override { 912 if (skipFunction(F)) return false; 913 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 914 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 915 // MergeICmps does not need the DominatorTree, but we update it if it's 916 // already available. 917 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 918 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 919 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); 920 } 921 922 private: 923 void getAnalysisUsage(AnalysisUsage &AU) const override { 924 AU.addRequired<TargetLibraryInfoWrapperPass>(); 925 AU.addRequired<TargetTransformInfoWrapperPass>(); 926 AU.addRequired<AAResultsWrapperPass>(); 927 AU.addPreserved<GlobalsAAWrapperPass>(); 928 AU.addPreserved<DominatorTreeWrapperPass>(); 929 } 930 }; 931 932 } // namespace 933 934 char MergeICmpsLegacyPass::ID = 0; 935 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", 936 "Merge contiguous icmps into a memcmp", false, false) 937 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 938 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 939 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 940 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", 941 "Merge contiguous icmps into a memcmp", false, false) 942 943 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } 944 945 PreservedAnalyses MergeICmpsPass::run(Function &F, 946 FunctionAnalysisManager &AM) { 947 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 948 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 949 auto &AA = AM.getResult<AAManager>(F); 950 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 951 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); 952 if (!MadeChanges) 953 return PreservedAnalyses::all(); 954 PreservedAnalyses PA; 955 PA.preserve<DominatorTreeAnalysis>(); 956 return PA; 957 } 958