1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Analysis/DomTreeUpdater.h" 45 #include "llvm/Analysis/GlobalsModRef.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 55 #include "llvm/Transforms/Utils/BuildLibCalls.h" 56 #include <algorithm> 57 #include <numeric> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 namespace { 64 65 #define DEBUG_TYPE "mergeicmps" 66 67 // Returns true if the instruction is a simple load or a simple store 68 static bool isSimpleLoadOrStore(const Instruction *I) { 69 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 70 return LI->isSimple(); 71 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 72 return SI->isSimple(); 73 return false; 74 } 75 76 // A BCE atom "Binary Compare Expression Atom" represents an integer load 77 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 78 // at the top. 79 struct BCEAtom { 80 BCEAtom() = default; 81 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) 82 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} 83 84 // We want to order BCEAtoms by (Base, Offset). However we cannot use 85 // the pointer values for Base because these are non-deterministic. 86 // To make sure that the sort order is stable, we first assign to each atom 87 // base value an index based on its order of appearance in the chain of 88 // comparisons. We call this index `BaseOrdering`. For example, for: 89 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] 90 // | block 1 | | block 2 | | block 3 | 91 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, 92 // which is before block 2. 93 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. 94 bool operator<(const BCEAtom &O) const { 95 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); 96 } 97 98 GetElementPtrInst *GEP = nullptr; 99 LoadInst *LoadI = nullptr; 100 unsigned BaseId = 0; 101 APInt Offset; 102 }; 103 104 // A class that assigns increasing ids to values in the order in which they are 105 // seen. See comment in `BCEAtom::operator<()``. 106 class BaseIdentifier { 107 public: 108 // Returns the id for value `Base`, after assigning one if `Base` has not been 109 // seen before. 110 int getBaseId(const Value *Base) { 111 assert(Base && "invalid base"); 112 const auto Insertion = BaseToIndex.try_emplace(Base, Order); 113 if (Insertion.second) 114 ++Order; 115 return Insertion.first->second; 116 } 117 118 private: 119 unsigned Order = 1; 120 DenseMap<const Value*, int> BaseToIndex; 121 }; 122 123 // If this value is a load from a constant offset w.r.t. a base address, and 124 // there are no other users of the load or address, returns the base address and 125 // the offset. 126 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { 127 auto *const LoadI = dyn_cast<LoadInst>(Val); 128 if (!LoadI) 129 return {}; 130 LLVM_DEBUG(dbgs() << "load\n"); 131 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 132 LLVM_DEBUG(dbgs() << "used outside of block\n"); 133 return {}; 134 } 135 // Do not optimize atomic loads to non-atomic memcmp 136 if (!LoadI->isSimple()) { 137 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 138 return {}; 139 } 140 Value *const Addr = LoadI->getOperand(0); 141 auto *const GEP = dyn_cast<GetElementPtrInst>(Addr); 142 if (!GEP) 143 return {}; 144 LLVM_DEBUG(dbgs() << "GEP\n"); 145 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 146 LLVM_DEBUG(dbgs() << "used outside of block\n"); 147 return {}; 148 } 149 const auto &DL = GEP->getModule()->getDataLayout(); 150 if (!isDereferenceablePointer(GEP, DL)) { 151 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 152 // We need to make sure that we can do comparison in any order, so we 153 // require memory to be unconditionnally dereferencable. 154 return {}; 155 } 156 APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 157 if (!GEP->accumulateConstantOffset(DL, Offset)) 158 return {}; 159 return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()), 160 Offset); 161 } 162 163 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the 164 // example at the top. 165 // The block might do extra work besides the atom comparison, in which case 166 // doesOtherWork() returns true. Under some conditions, the block can be 167 // split into the atom comparison part and the "other work" part 168 // (see canSplit()). 169 // Note: the terminology is misleading: the comparison is symmetric, so there 170 // is no real {l/r}hs. What we want though is to have the same base on the 171 // left (resp. right), so that we can detect consecutive loads. To ensure this 172 // we put the smallest atom on the left. 173 class BCECmpBlock { 174 public: 175 BCECmpBlock() {} 176 177 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 178 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 179 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 180 } 181 182 bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; } 183 184 // Assert the block is consistent: If valid, it should also have 185 // non-null members besides Lhs_ and Rhs_. 186 void AssertConsistent() const { 187 if (IsValid()) { 188 assert(BB); 189 assert(CmpI); 190 assert(BranchI); 191 } 192 } 193 194 const BCEAtom &Lhs() const { return Lhs_; } 195 const BCEAtom &Rhs() const { return Rhs_; } 196 int SizeBits() const { return SizeBits_; } 197 198 // Returns true if the block does other works besides comparison. 199 bool doesOtherWork() const; 200 201 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 202 // instructions in the block. 203 bool canSplit(AliasAnalysis *AA) const; 204 205 // Return true if this all the relevant instructions in the BCE-cmp-block can 206 // be sunk below this instruction. By doing this, we know we can separate the 207 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 208 // block. 209 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &, 210 AliasAnalysis *AA) const; 211 212 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 213 // instructions. Split the old block and move all non-BCE-cmp-insts into the 214 // new parent block. 215 void split(BasicBlock *NewParent, AliasAnalysis *AA) const; 216 217 // The basic block where this comparison happens. 218 BasicBlock *BB = nullptr; 219 // The ICMP for this comparison. 220 ICmpInst *CmpI = nullptr; 221 // The terminating branch. 222 BranchInst *BranchI = nullptr; 223 // The block requires splitting. 224 bool RequireSplit = false; 225 226 private: 227 BCEAtom Lhs_; 228 BCEAtom Rhs_; 229 int SizeBits_ = 0; 230 }; 231 232 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 233 DenseSet<Instruction *> &BlockInsts, 234 AliasAnalysis *AA) const { 235 // If this instruction has side effects and its in middle of the BCE cmp block 236 // instructions, then bail for now. 237 if (Inst->mayHaveSideEffects()) { 238 // Bail if this is not a simple load or store 239 if (!isSimpleLoadOrStore(Inst)) 240 return false; 241 // Disallow stores that might alias the BCE operands 242 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); 243 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); 244 if (isModSet(AA->getModRefInfo(Inst, LLoc)) || 245 isModSet(AA->getModRefInfo(Inst, RLoc))) 246 return false; 247 } 248 // Make sure this instruction does not use any of the BCE cmp block 249 // instructions as operand. 250 for (auto BI : BlockInsts) { 251 if (is_contained(Inst->operands(), BI)) 252 return false; 253 } 254 return true; 255 } 256 257 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const { 258 DenseSet<Instruction *> BlockInsts( 259 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 260 llvm::SmallVector<Instruction *, 4> OtherInsts; 261 for (Instruction &Inst : *BB) { 262 if (BlockInsts.count(&Inst)) 263 continue; 264 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && 265 "Split unsplittable block"); 266 // This is a non-BCE-cmp-block instruction. And it can be separated 267 // from the BCE-cmp-block instruction. 268 OtherInsts.push_back(&Inst); 269 } 270 271 // Do the actual spliting. 272 for (Instruction *Inst : reverse(OtherInsts)) { 273 Inst->moveBefore(&*NewParent->begin()); 274 } 275 } 276 277 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const { 278 DenseSet<Instruction *> BlockInsts( 279 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 280 for (Instruction &Inst : *BB) { 281 if (!BlockInsts.count(&Inst)) { 282 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) 283 return false; 284 } 285 } 286 return true; 287 } 288 289 bool BCECmpBlock::doesOtherWork() const { 290 AssertConsistent(); 291 // All the instructions we care about in the BCE cmp block. 292 DenseSet<Instruction *> BlockInsts( 293 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 294 // TODO(courbet): Can we allow some other things ? This is very conservative. 295 // We might be able to get away with anything does not have any side 296 // effects outside of the basic block. 297 // Note: The GEPs and/or loads are not necessarily in the same block. 298 for (const Instruction &Inst : *BB) { 299 if (!BlockInsts.count(&Inst)) 300 return true; 301 } 302 return false; 303 } 304 305 // Visit the given comparison. If this is a comparison between two valid 306 // BCE atoms, returns the comparison. 307 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 308 const ICmpInst::Predicate ExpectedPredicate, 309 BaseIdentifier &BaseId) { 310 // The comparison can only be used once: 311 // - For intermediate blocks, as a branch condition. 312 // - For the final block, as an incoming value for the Phi. 313 // If there are any other uses of the comparison, we cannot merge it with 314 // other comparisons as we would create an orphan use of the value. 315 if (!CmpI->hasOneUse()) { 316 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 317 return {}; 318 } 319 if (CmpI->getPredicate() != ExpectedPredicate) 320 return {}; 321 LLVM_DEBUG(dbgs() << "cmp " 322 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 323 << "\n"); 324 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); 325 if (!Lhs.BaseId) 326 return {}; 327 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); 328 if (!Rhs.BaseId) 329 return {}; 330 const auto &DL = CmpI->getModule()->getDataLayout(); 331 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 332 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); 333 } 334 335 // Visit the given comparison block. If this is a comparison between two valid 336 // BCE atoms, returns the comparison. 337 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 338 const BasicBlock *const PhiBlock, 339 BaseIdentifier &BaseId) { 340 if (Block->empty()) return {}; 341 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 342 if (!BranchI) return {}; 343 LLVM_DEBUG(dbgs() << "branch\n"); 344 if (BranchI->isUnconditional()) { 345 // In this case, we expect an incoming value which is the result of the 346 // comparison. This is the last link in the chain of comparisons (note 347 // that this does not mean that this is the last incoming value, blocks 348 // can be reordered). 349 auto *const CmpI = dyn_cast<ICmpInst>(Val); 350 if (!CmpI) return {}; 351 LLVM_DEBUG(dbgs() << "icmp\n"); 352 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId); 353 Result.CmpI = CmpI; 354 Result.BranchI = BranchI; 355 return Result; 356 } else { 357 // In this case, we expect a constant incoming value (the comparison is 358 // chained). 359 const auto *const Const = dyn_cast<ConstantInt>(Val); 360 LLVM_DEBUG(dbgs() << "const\n"); 361 if (!Const->isZero()) return {}; 362 LLVM_DEBUG(dbgs() << "false\n"); 363 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 364 if (!CmpI) return {}; 365 LLVM_DEBUG(dbgs() << "icmp\n"); 366 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 367 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 368 auto Result = visitICmp( 369 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 370 BaseId); 371 Result.CmpI = CmpI; 372 Result.BranchI = BranchI; 373 return Result; 374 } 375 return {}; 376 } 377 378 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 379 BCECmpBlock &Comparison) { 380 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 381 << "': Found cmp of " << Comparison.SizeBits() 382 << " bits between " << Comparison.Lhs().BaseId << " + " 383 << Comparison.Lhs().Offset << " and " 384 << Comparison.Rhs().BaseId << " + " 385 << Comparison.Rhs().Offset << "\n"); 386 LLVM_DEBUG(dbgs() << "\n"); 387 Comparisons.push_back(Comparison); 388 } 389 390 // A chain of comparisons. 391 class BCECmpChain { 392 public: 393 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 394 AliasAnalysis *AA); 395 396 int size() const { return Comparisons_.size(); } 397 398 #ifdef MERGEICMPS_DOT_ON 399 void dump() const; 400 #endif // MERGEICMPS_DOT_ON 401 402 bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA, 403 DomTreeUpdater &DTU); 404 405 private: 406 static bool IsContiguous(const BCECmpBlock &First, 407 const BCECmpBlock &Second) { 408 return First.Lhs().BaseId == Second.Lhs().BaseId && 409 First.Rhs().BaseId == Second.Rhs().BaseId && 410 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 411 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 412 } 413 414 PHINode &Phi_; 415 std::vector<BCECmpBlock> Comparisons_; 416 // The original entry block (before sorting); 417 BasicBlock *EntryBlock_; 418 }; 419 420 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 421 AliasAnalysis *AA) 422 : Phi_(Phi) { 423 assert(!Blocks.empty() && "a chain should have at least one block"); 424 // Now look inside blocks to check for BCE comparisons. 425 std::vector<BCECmpBlock> Comparisons; 426 BaseIdentifier BaseId; 427 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { 428 BasicBlock *const Block = Blocks[BlockIdx]; 429 assert(Block && "invalid block"); 430 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 431 Block, Phi.getParent(), BaseId); 432 Comparison.BB = Block; 433 if (!Comparison.IsValid()) { 434 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 435 return; 436 } 437 if (Comparison.doesOtherWork()) { 438 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() 439 << "' does extra work besides compare\n"); 440 if (Comparisons.empty()) { 441 // This is the initial block in the chain, in case this block does other 442 // work, we can try to split the block and move the irrelevant 443 // instructions to the predecessor. 444 // 445 // If this is not the initial block in the chain, splitting it wont 446 // work. 447 // 448 // As once split, there will still be instructions before the BCE cmp 449 // instructions that do other work in program order, i.e. within the 450 // chain before sorting. Unless we can abort the chain at this point 451 // and start anew. 452 // 453 // NOTE: we only handle blocks a with single predecessor for now. 454 if (Comparison.canSplit(AA)) { 455 LLVM_DEBUG(dbgs() 456 << "Split initial block '" << Comparison.BB->getName() 457 << "' that does extra work besides compare\n"); 458 Comparison.RequireSplit = true; 459 enqueueBlock(Comparisons, Comparison); 460 } else { 461 LLVM_DEBUG(dbgs() 462 << "ignoring initial block '" << Comparison.BB->getName() 463 << "' that does extra work besides compare\n"); 464 } 465 continue; 466 } 467 // TODO(courbet): Right now we abort the whole chain. We could be 468 // merging only the blocks that don't do other work and resume the 469 // chain from there. For example: 470 // if (a[0] == b[0]) { // bb1 471 // if (a[1] == b[1]) { // bb2 472 // some_value = 3; //bb3 473 // if (a[2] == b[2]) { //bb3 474 // do a ton of stuff //bb4 475 // } 476 // } 477 // } 478 // 479 // This is: 480 // 481 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 482 // \ \ \ \ 483 // ne ne ne \ 484 // \ \ \ v 485 // +------------+-----------+----------> bb_phi 486 // 487 // We can only merge the first two comparisons, because bb3* does 488 // "other work" (setting some_value to 3). 489 // We could still merge bb1 and bb2 though. 490 return; 491 } 492 enqueueBlock(Comparisons, Comparison); 493 } 494 495 // It is possible we have no suitable comparison to merge. 496 if (Comparisons.empty()) { 497 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 498 return; 499 } 500 EntryBlock_ = Comparisons[0].BB; 501 Comparisons_ = std::move(Comparisons); 502 #ifdef MERGEICMPS_DOT_ON 503 errs() << "BEFORE REORDERING:\n\n"; 504 dump(); 505 #endif // MERGEICMPS_DOT_ON 506 // Reorder blocks by LHS. We can do that without changing the 507 // semantics because we are only accessing dereferencable memory. 508 llvm::sort(Comparisons_, 509 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { 510 return LhsBlock.Lhs() < RhsBlock.Lhs(); 511 }); 512 #ifdef MERGEICMPS_DOT_ON 513 errs() << "AFTER REORDERING:\n\n"; 514 dump(); 515 #endif // MERGEICMPS_DOT_ON 516 } 517 518 #ifdef MERGEICMPS_DOT_ON 519 void BCECmpChain::dump() const { 520 errs() << "digraph dag {\n"; 521 errs() << " graph [bgcolor=transparent];\n"; 522 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 523 errs() << " edge [color=black];\n"; 524 for (size_t I = 0; I < Comparisons_.size(); ++I) { 525 const auto &Comparison = Comparisons_[I]; 526 errs() << " \"" << I << "\" [label=\"%" 527 << Comparison.Lhs().Base()->getName() << " + " 528 << Comparison.Lhs().Offset << " == %" 529 << Comparison.Rhs().Base()->getName() << " + " 530 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 531 << " bytes)\"];\n"; 532 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 533 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 534 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 535 } 536 errs() << " \"Phi\" [label=\"Phi\"];\n"; 537 errs() << "}\n\n"; 538 } 539 #endif // MERGEICMPS_DOT_ON 540 541 namespace { 542 543 // A class to compute the name of a set of merged basic blocks. 544 // This is optimized for the common case of no block names. 545 class MergedBlockName { 546 // Storage for the uncommon case of several named blocks. 547 SmallString<16> Scratch; 548 549 public: 550 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) 551 : Name(makeName(Comparisons)) {} 552 const StringRef Name; 553 554 private: 555 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { 556 assert(!Comparisons.empty() && "no basic block"); 557 // Fast path: only one block, or no names at all. 558 if (Comparisons.size() == 1) 559 return Comparisons[0].BB->getName(); 560 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 561 [](int i, const BCECmpBlock &Cmp) { 562 return i + Cmp.BB->getName().size(); 563 }); 564 if (size == 0) 565 return StringRef("", 0); 566 567 // Slow path: at least two blocks, at least one block with a name. 568 Scratch.clear(); 569 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for 570 // separators. 571 Scratch.reserve(size + Comparisons.size() - 1); 572 const auto append = [this](StringRef str) { 573 Scratch.append(str.begin(), str.end()); 574 }; 575 append(Comparisons[0].BB->getName()); 576 for (int I = 1, E = Comparisons.size(); I < E; ++I) { 577 const BasicBlock *const BB = Comparisons[I].BB; 578 if (!BB->getName().empty()) { 579 append("+"); 580 append(BB->getName()); 581 } 582 } 583 return StringRef(Scratch); 584 } 585 }; 586 } // namespace 587 588 // Merges the given contiguous comparison blocks into one memcmp block. 589 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 590 BasicBlock *const InsertBefore, 591 BasicBlock *const NextCmpBlock, 592 PHINode &Phi, 593 const TargetLibraryInfo *const TLI, 594 AliasAnalysis *AA, DomTreeUpdater &DTU) { 595 assert(!Comparisons.empty() && "merging zero comparisons"); 596 LLVMContext &Context = NextCmpBlock->getContext(); 597 const BCECmpBlock &FirstCmp = Comparisons[0]; 598 599 // Create a new cmp block before next cmp block. 600 BasicBlock *const BB = 601 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, 602 NextCmpBlock->getParent(), InsertBefore); 603 IRBuilder<> Builder(BB); 604 // Add the GEPs from the first BCECmpBlock. 605 Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); 606 Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); 607 608 Value *IsEqual = nullptr; 609 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " 610 << BB->getName() << "\n"); 611 if (Comparisons.size() == 1) { 612 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 613 Value *const LhsLoad = 614 Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs); 615 Value *const RhsLoad = 616 Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs); 617 // There are no blocks to merge, just do the comparison. 618 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); 619 } else { 620 // If there is one block that requires splitting, we do it now, i.e. 621 // just before we know we will collapse the chain. The instructions 622 // can be executed before any of the instructions in the chain. 623 const auto ToSplit = 624 std::find_if(Comparisons.begin(), Comparisons.end(), 625 [](const BCECmpBlock &B) { return B.RequireSplit; }); 626 if (ToSplit != Comparisons.end()) { 627 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); 628 ToSplit->split(BB, AA); 629 } 630 631 const unsigned TotalSizeBits = std::accumulate( 632 Comparisons.begin(), Comparisons.end(), 0u, 633 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); 634 635 // Create memcmp() == 0. 636 const auto &DL = Phi.getModule()->getDataLayout(); 637 Value *const MemCmpCall = emitMemCmp( 638 Lhs, Rhs, 639 ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder, 640 DL, TLI); 641 IsEqual = Builder.CreateICmpEQ( 642 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 643 } 644 645 BasicBlock *const PhiBB = Phi.getParent(); 646 // Add a branch to the next basic block in the chain. 647 if (NextCmpBlock == PhiBB) { 648 // Continue to phi, passing it the comparison result. 649 Builder.CreateBr(PhiBB); 650 Phi.addIncoming(IsEqual, BB); 651 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); 652 } else { 653 // Continue to next block if equal, exit to phi else. 654 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); 655 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 656 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, 657 {DominatorTree::Insert, BB, PhiBB}}); 658 } 659 return BB; 660 } 661 662 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI, 663 AliasAnalysis *AA, DomTreeUpdater &DTU) { 664 assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain"); 665 // First pass to check if there is at least one merge. If not, we don't do 666 // anything and we keep analysis passes intact. 667 const auto AtLeastOneMerged = [this]() { 668 for (size_t I = 1; I < Comparisons_.size(); ++I) { 669 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) 670 return true; 671 } 672 return false; 673 }; 674 if (!AtLeastOneMerged()) 675 return false; 676 677 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " 678 << EntryBlock_->getName() << "\n"); 679 680 // Effectively merge blocks. We go in the reverse direction from the phi block 681 // so that the next block is always available to branch to. 682 const auto mergeRange = [this, TLI, AA, &DTU](int I, int Num, 683 BasicBlock *InsertBefore, 684 BasicBlock *Next) { 685 return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num), 686 InsertBefore, Next, Phi_, TLI, AA, DTU); 687 }; 688 int NumMerged = 1; 689 BasicBlock *NextCmpBlock = Phi_.getParent(); 690 for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) { 691 if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) { 692 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName() 693 << " into " << Comparisons_[I + 1].BB->getName() 694 << "\n"); 695 ++NumMerged; 696 } else { 697 NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock); 698 NumMerged = 1; 699 } 700 } 701 // Insert the entry block for the new chain before the old entry block. 702 // If the old entry block was the function entry, this ensures that the new 703 // entry can become the function entry. 704 NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock); 705 706 // Replace the original cmp chain with the new cmp chain by pointing all 707 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp 708 // blocks in the old chain unreachable. 709 while (!pred_empty(EntryBlock_)) { 710 BasicBlock* const Pred = *pred_begin(EntryBlock_); 711 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() 712 << "\n"); 713 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); 714 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, 715 {DominatorTree::Insert, Pred, NextCmpBlock}}); 716 } 717 718 // If the old cmp chain was the function entry, we need to update the function 719 // entry. 720 const bool ChainEntryIsFnEntry = 721 (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock()); 722 if (ChainEntryIsFnEntry && DTU.hasDomTree()) { 723 LLVM_DEBUG(dbgs() << "Changing function entry from " 724 << EntryBlock_->getName() << " to " 725 << NextCmpBlock->getName() << "\n"); 726 DTU.getDomTree().setNewRoot(NextCmpBlock); 727 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); 728 } 729 EntryBlock_ = nullptr; 730 731 // Delete merged blocks. This also removes incoming values in phi. 732 SmallVector<BasicBlock *, 16> DeadBlocks; 733 for (auto &Cmp : Comparisons_) { 734 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n"); 735 DeadBlocks.push_back(Cmp.BB); 736 } 737 DeleteDeadBlocks(DeadBlocks, &DTU); 738 739 Comparisons_.clear(); 740 return true; 741 } 742 743 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 744 BasicBlock *const LastBlock, 745 int NumBlocks) { 746 // Walk up from the last block to find other blocks. 747 std::vector<BasicBlock *> Blocks(NumBlocks); 748 assert(LastBlock && "invalid last block"); 749 BasicBlock *CurBlock = LastBlock; 750 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 751 if (CurBlock->hasAddressTaken()) { 752 // Somebody is jumping to the block through an address, all bets are 753 // off. 754 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 755 << " has its address taken\n"); 756 return {}; 757 } 758 Blocks[BlockIndex] = CurBlock; 759 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 760 if (!SinglePredecessor) { 761 // The block has two or more predecessors. 762 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 763 << " has two or more predecessors\n"); 764 return {}; 765 } 766 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 767 // The block does not link back to the phi. 768 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 769 << " does not link back to the phi\n"); 770 return {}; 771 } 772 CurBlock = SinglePredecessor; 773 } 774 Blocks[0] = CurBlock; 775 return Blocks; 776 } 777 778 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI, 779 AliasAnalysis *AA, DomTreeUpdater &DTU) { 780 LLVM_DEBUG(dbgs() << "processPhi()\n"); 781 if (Phi.getNumIncomingValues() <= 1) { 782 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 783 return false; 784 } 785 // We are looking for something that has the following structure: 786 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 787 // \ \ \ \ 788 // ne ne ne \ 789 // \ \ \ v 790 // +------------+-----------+----------> bb_phi 791 // 792 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 793 // It's the only block that contributes a non-constant value to the Phi. 794 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 795 // them being the phi block. 796 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 797 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 798 799 // The blocks are not necessarily ordered in the phi, so we start from the 800 // last block and reconstruct the order. 801 BasicBlock *LastBlock = nullptr; 802 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 803 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 804 if (LastBlock) { 805 // There are several non-constant values. 806 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 807 return false; 808 } 809 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 810 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 811 Phi.getIncomingBlock(I)) { 812 // Non-constant incoming value is not from a cmp instruction or not 813 // produced by the last block. We could end up processing the value 814 // producing block more than once. 815 // 816 // This is an uncommon case, so we bail. 817 LLVM_DEBUG( 818 dbgs() 819 << "skip: non-constant value not from cmp or not from last block.\n"); 820 return false; 821 } 822 LastBlock = Phi.getIncomingBlock(I); 823 } 824 if (!LastBlock) { 825 // There is no non-constant block. 826 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 827 return false; 828 } 829 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 830 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 831 return false; 832 } 833 834 const auto Blocks = 835 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 836 if (Blocks.empty()) return false; 837 BCECmpChain CmpChain(Blocks, Phi, AA); 838 839 if (CmpChain.size() < 2) { 840 LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); 841 return false; 842 } 843 844 return CmpChain.simplify(TLI, AA, DTU); 845 } 846 847 class MergeICmps : public FunctionPass { 848 public: 849 static char ID; 850 851 MergeICmps() : FunctionPass(ID) { 852 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 853 } 854 855 bool runOnFunction(Function &F) override { 856 if (skipFunction(F)) return false; 857 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 858 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 859 // MergeICmps does not need the DominatorTree, but we update it if it's 860 // already available. 861 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 862 DomTreeUpdater DTU(DTWP ? &DTWP->getDomTree() : nullptr, 863 /*PostDominatorTree*/ nullptr, 864 DomTreeUpdater::UpdateStrategy::Eager); 865 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 866 auto PA = runImpl(F, &TLI, &TTI, AA, DTU); 867 return !PA.areAllPreserved(); 868 } 869 870 private: 871 void getAnalysisUsage(AnalysisUsage &AU) const override { 872 AU.addRequired<TargetLibraryInfoWrapperPass>(); 873 AU.addRequired<TargetTransformInfoWrapperPass>(); 874 AU.addRequired<AAResultsWrapperPass>(); 875 AU.addPreserved<GlobalsAAWrapperPass>(); 876 AU.addPreserved<DominatorTreeWrapperPass>(); 877 } 878 879 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AliasAnalysis *AA, 881 DomTreeUpdater &DTU); 882 }; 883 884 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 885 const TargetTransformInfo *TTI, 886 AliasAnalysis *AA, DomTreeUpdater &DTU) { 887 LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 888 889 // We only try merging comparisons if the target wants to expand memcmp later. 890 // The rationale is to avoid turning small chains into memcmp calls. 891 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); 892 893 // If we don't have memcmp avaiable we can't emit calls to it. 894 if (!TLI->has(LibFunc_memcmp)) 895 return PreservedAnalyses::all(); 896 897 bool MadeChange = false; 898 899 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 900 // A Phi operation is always first in a basic block. 901 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 902 MadeChange |= processPhi(*Phi, TLI, AA, DTU); 903 } 904 905 if (!MadeChange) 906 return PreservedAnalyses::all(); 907 PreservedAnalyses PA; 908 PA.preserve<GlobalsAA>(); 909 PA.preserve<DominatorTreeAnalysis>(); 910 return PA; 911 } 912 913 } // namespace 914 915 char MergeICmps::ID = 0; 916 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 917 "Merge contiguous icmps into a memcmp", false, false) 918 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 919 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 920 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 921 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 922 "Merge contiguous icmps into a memcmp", false, false) 923 924 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 925