xref: /llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 9473c01e968bc4ecf5ea7c54ef0c84b687d365ea)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns chains of integer comparisons into memcmp (the memcmp is
11 // later typically inlined as a chain of efficient hardware comparisons). This
12 // typically benefits c++ member or nonmember operator==().
13 //
14 // The basic idea is to replace a larger chain of integer comparisons loaded
15 // from contiguous memory locations into a smaller chain of such integer
16 // comparisons. Benefits are double:
17 //  - There are less jumps, and therefore less opportunities for mispredictions
18 //    and I-cache misses.
19 //  - Code size is smaller, both because jumps are removed and because the
20 //    encoding of a 2*n byte compare is smaller than that of two n-byte
21 //    compares.
22 
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/ADT/APSInt.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 
34 using namespace llvm;
35 
36 namespace {
37 
38 #define DEBUG_TYPE "mergeicmps"
39 
40 #define MERGEICMPS_DOT_ON
41 
42 // A BCE atom.
43 struct BCEAtom {
44   const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
45 
46   bool operator<(const BCEAtom &O) const {
47     return Base() == O.Base() ? Offset.slt(O.Offset) : Base() < O.Base();
48   }
49 
50   GetElementPtrInst *GEP = nullptr;
51   LoadInst *LoadI = nullptr;
52   APInt Offset;
53 };
54 
55 // If this value is a load from a constant offset w.r.t. a base address, and
56 // there are no othe rusers of the load or address, returns the base address and
57 // the offset.
58 BCEAtom visitICmpLoadOperand(Value *const Val) {
59   BCEAtom Result;
60   if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
61     DEBUG(dbgs() << "load\n");
62     if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
63       DEBUG(dbgs() << "used outside of block\n");
64       return {};
65     }
66     if (LoadI->isVolatile()) {
67       DEBUG(dbgs() << "volatile\n");
68       return {};
69     }
70     Value *const Addr = LoadI->getOperand(0);
71     if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
72       DEBUG(dbgs() << "GEP\n");
73       if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
74         DEBUG(dbgs() << "used outside of block\n");
75         return {};
76       }
77       const auto &DL = GEP->getModule()->getDataLayout();
78       if (!isDereferenceablePointer(GEP, DL)) {
79         DEBUG(dbgs() << "not dereferenceable\n");
80         // We need to make sure that we can do comparison in any order, so we
81         // require memory to be unconditionnally dereferencable.
82         return {};
83       }
84       Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
85       if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
86         Result.GEP = GEP;
87         Result.LoadI = LoadI;
88       }
89     }
90   }
91   return Result;
92 }
93 
94 // A basic block with a comparison between two BCE atoms.
95 // Note: the terminology is misleading: the comparison is symmetric, so there
96 // is no real {l/r}hs. To break the symmetry, we use the smallest atom as Lhs.
97 class BCECmpBlock {
98  public:
99   BCECmpBlock() {}
100 
101   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
102       : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
103     if (Rhs_ < Lhs_)
104       std::swap(Rhs_, Lhs_);
105   }
106 
107   bool IsValid() const {
108     return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
109   }
110 
111   // Assert the the block is consistent: If valid, it should also have
112   // non-null members besides Lhs_ and Rhs_.
113   void AssertConsistent() const {
114     if (IsValid()) {
115       assert(BB);
116       assert(CmpI);
117       assert(BranchI);
118     }
119   }
120 
121   const BCEAtom &Lhs() const { return Lhs_; }
122   const BCEAtom &Rhs() const { return Rhs_; }
123   int SizeBits() const { return SizeBits_; }
124 
125   // Returns true if the block does other works besides comparison.
126   bool doesOtherWork() const;
127 
128   // The basic block where this comparison happens.
129   BasicBlock *BB = nullptr;
130   // The ICMP for this comparison.
131   ICmpInst *CmpI = nullptr;
132   // The terminating branch.
133   BranchInst *BranchI = nullptr;
134 
135  private:
136   BCEAtom Lhs_;
137   BCEAtom Rhs_;
138   int SizeBits_ = 0;
139 };
140 
141 bool BCECmpBlock::doesOtherWork() const {
142   AssertConsistent();
143   // TODO(courbet): Can we allow some other things ? This is very conservative.
144   // We might be able to get away with anything does does not have any side
145   // effects outside of the basic block.
146   // Note: The GEPs and/or loads are not necessarily in the same block.
147   for (const Instruction &Inst : *BB) {
148     if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) {
149       if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP))
150         return true;
151     } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) {
152       if (!(Lhs_.LoadI == L || Rhs_.LoadI == L))
153         return true;
154     } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) {
155       if (C != CmpI)
156         return true;
157     } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) {
158       if (Br != BranchI)
159         return true;
160     } else {
161       return true;
162     }
163   }
164   return false;
165 }
166 
167 // Visit the given comparison. If this is a comparison between two valid
168 // BCE atoms, returns the comparison.
169 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
170                       const ICmpInst::Predicate ExpectedPredicate) {
171   if (CmpI->getPredicate() == ExpectedPredicate) {
172     DEBUG(dbgs() << "cmp "
173                  << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
174                  << "\n");
175     auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
176     if (!Lhs.Base())
177       return {};
178     auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
179     if (!Rhs.Base())
180       return {};
181     return BCECmpBlock(std::move(Lhs), std::move(Rhs),
182                        CmpI->getOperand(0)->getType()->getScalarSizeInBits());
183   }
184   return {};
185 }
186 
187 // Visit the given comparison block. If this is a comparison between two valid
188 // BCE atoms, returns the comparison.
189 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
190                           const BasicBlock *const PhiBlock) {
191   if (Block->empty())
192     return {};
193   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
194   if (!BranchI)
195     return {};
196   DEBUG(dbgs() << "branch\n");
197   if (BranchI->isUnconditional()) {
198     // In this case, we expect an incoming value which is the result of the
199     // comparison. This is the last link in the chain of comparisons (note
200     // that this does not mean that this is the last incoming value, blocks
201     // can be reordered).
202     auto *const CmpI = dyn_cast<ICmpInst>(Val);
203     if (!CmpI)
204       return {};
205     DEBUG(dbgs() << "icmp\n");
206     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
207     Result.CmpI = CmpI;
208     Result.BranchI = BranchI;
209     return Result;
210   } else {
211     // In this case, we expect a constant incoming value (the comparison is
212     // chained).
213     const auto *const Const = dyn_cast<ConstantInt>(Val);
214     DEBUG(dbgs() << "const\n");
215     if (!Const->isZero())
216       return {};
217     DEBUG(dbgs() << "false\n");
218     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
219     if (!CmpI)
220       return {};
221     DEBUG(dbgs() << "icmp\n");
222     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
223     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
224     auto Result = visitICmp(
225         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
226     Result.CmpI = CmpI;
227     Result.BranchI = BranchI;
228     return Result;
229   }
230   return {};
231 }
232 
233 // A chain of comparisons.
234 class BCECmpChain {
235  public:
236   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi);
237 
238   int size() const { return Comparisons_.size(); }
239 
240 #ifdef MERGEICMPS_DOT_ON
241   void dump() const;
242 #endif  // MERGEICMPS_DOT_ON
243 
244   bool simplify(const TargetLibraryInfo *const TLI);
245 
246  private:
247   static bool IsContiguous(const BCECmpBlock &First,
248                            const BCECmpBlock &Second) {
249     return First.Lhs().Base() == Second.Lhs().Base() &&
250            First.Rhs().Base() == Second.Rhs().Base() &&
251            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
252            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
253   }
254 
255   // Merges the given comparison blocks into one memcmp block and update
256   // branches. Comparisons are assumed to be continguous. If NextBBInChain is
257   // null, the merged block will link to the phi block.
258   static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
259                                BasicBlock *const NextBBInChain, PHINode &Phi,
260                                const TargetLibraryInfo *const TLI);
261 
262   PHINode &Phi_;
263   std::vector<BCECmpBlock> Comparisons_;
264   // The original entry block (before sorting);
265   BasicBlock *EntryBlock_;
266 };
267 
268 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi)
269     : Phi_(Phi) {
270   // Now look inside blocks to check for BCE comparisons.
271   std::vector<BCECmpBlock> Comparisons;
272   for (BasicBlock *Block : Blocks) {
273     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
274                                            Block, Phi.getParent());
275     Comparison.BB = Block;
276     if (!Comparison.IsValid()) {
277       DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n");
278       return;
279     }
280     if (Comparison.doesOtherWork()) {
281       DEBUG(dbgs() << "block does extra work besides compare\n");
282       if (Comparisons.empty()) {  // First block.
283         // TODO(courbet): The first block can do other things, and we should
284         // split them apart in a separate block before the comparison chain.
285         // Right now we just discard it and make the chain shorter.
286         DEBUG(dbgs()
287               << "ignoring first block that does extra work besides compare\n");
288         continue;
289       }
290       // TODO(courbet): Right now we abort the whole chain. We could be
291       // merging only the blocks that don't do other work and resume the
292       // chain from there. For example:
293       //  if (a[0] == b[0]) {  // bb1
294       //    if (a[1] == b[1]) {  // bb2
295       //      some_value = 3; //bb3
296       //      if (a[2] == b[2]) { //bb3
297       //        do a ton of stuff  //bb4
298       //      }
299       //    }
300       //  }
301       //
302       // This is:
303       //
304       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
305       //  \            \           \               \
306       //   ne           ne          ne              \
307       //    \            \           \               v
308       //     +------------+-----------+----------> bb_phi
309       //
310       // We can only merge the first two comparisons, because bb3* does
311       // "other work" (setting some_value to 3).
312       // We could still merge bb1 and bb2 though.
313       return;
314     }
315     DEBUG(dbgs() << "*Found cmp of " << Comparison.SizeBits()
316                  << " bits between " << Comparison.Lhs().Base() << " + "
317                  << Comparison.Lhs().Offset << " and "
318                  << Comparison.Rhs().Base() << " + " << Comparison.Rhs().Offset
319                  << "\n");
320     DEBUG(dbgs() << "\n");
321     Comparisons.push_back(Comparison);
322   }
323   EntryBlock_ = Comparisons[0].BB;
324   Comparisons_ = std::move(Comparisons);
325 #ifdef MERGEICMPS_DOT_ON
326   errs() << "BEFORE REORDERING:\n\n";
327   dump();
328 #endif  // MERGEICMPS_DOT_ON
329   // Reorder blocks by LHS. We can do that without changing the
330   // semantics because we are only accessing dereferencable memory.
331   std::sort(Comparisons_.begin(), Comparisons_.end(),
332             [](const BCECmpBlock &a, const BCECmpBlock &b) {
333               return a.Lhs() < b.Lhs();
334             });
335 #ifdef MERGEICMPS_DOT_ON
336   errs() << "AFTER REORDERING:\n\n";
337   dump();
338 #endif  // MERGEICMPS_DOT_ON
339 }
340 
341 #ifdef MERGEICMPS_DOT_ON
342 void BCECmpChain::dump() const {
343   errs() << "digraph dag {\n";
344   errs() << " graph [bgcolor=transparent];\n";
345   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
346   errs() << " edge [color=black];\n";
347   for (size_t I = 0; I < Comparisons_.size(); ++I) {
348     const auto &Comparison = Comparisons_[I];
349     errs() << " \"" << I << "\" [label=\"%"
350            << Comparison.Lhs().Base()->getName() << " + "
351            << Comparison.Lhs().Offset << " == %"
352            << Comparison.Rhs().Base()->getName() << " + "
353            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
354            << " bytes)\"];\n";
355     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
356     if (I > 0)
357       errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
358     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
359   }
360   errs() << " \"Phi\" [label=\"Phi\"];\n";
361   errs() << "}\n\n";
362 }
363 #endif  // MERGEICMPS_DOT_ON
364 
365 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) {
366   // First pass to check if there is at least one merge. If not, we don't do
367   // anything and we keep analysis passes intact.
368   {
369     bool AtLeastOneMerged = false;
370     for (size_t I = 1; I < Comparisons_.size(); ++I) {
371       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
372         AtLeastOneMerged = true;
373         break;
374       }
375     }
376     if (!AtLeastOneMerged)
377       return false;
378   }
379 
380   // Remove phi references to comparison blocks, they will be rebuilt as we
381   // merge the blocks.
382   for (const auto &Comparison : Comparisons_) {
383     Phi_.removeIncomingValue(Comparison.BB, false);
384   }
385 
386   // Point the predecessors of the chain to the first comparison block (which is
387   // the new entry point).
388   if (EntryBlock_ != Comparisons_[0].BB)
389     EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
390 
391   // Effectively merge blocks.
392   int NumMerged = 1;
393   for (size_t I = 1; I < Comparisons_.size(); ++I) {
394     if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
395       ++NumMerged;
396     } else {
397       // Merge all previous comparisons and start a new merge block.
398       mergeComparisons(
399           makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
400           Comparisons_[I].BB, Phi_, TLI);
401       NumMerged = 1;
402     }
403   }
404   mergeComparisons(makeArrayRef(Comparisons_)
405                        .slice(Comparisons_.size() - NumMerged, NumMerged),
406                    nullptr, Phi_, TLI);
407 
408   return true;
409 }
410 
411 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
412                                    BasicBlock *const NextBBInChain,
413                                    PHINode &Phi,
414                                    const TargetLibraryInfo *const TLI) {
415   assert(!Comparisons.empty());
416   const auto &FirstComparison = *Comparisons.begin();
417   BasicBlock *const BB = FirstComparison.BB;
418   LLVMContext &Context = BB->getContext();
419 
420   if (Comparisons.size() >= 2) {
421     DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
422     const auto TotalSize =
423         std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
424                         [](int Size, const BCECmpBlock &C) {
425                           return Size + C.SizeBits();
426                         }) /
427         8;
428 
429     // Incoming edges do not need to be updated, and both GEPs are already
430     // computing the right address, we just need to:
431     //   - replace the two loads and the icmp with the memcmp
432     //   - update the branch
433     //   - update the incoming values in the phi.
434     FirstComparison.BranchI->eraseFromParent();
435     FirstComparison.CmpI->eraseFromParent();
436     FirstComparison.Lhs().LoadI->eraseFromParent();
437     FirstComparison.Rhs().LoadI->eraseFromParent();
438 
439     IRBuilder<> Builder(BB);
440     const auto &DL = Phi.getModule()->getDataLayout();
441     Value *const MemCmpCall =
442         emitMemCmp(FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
443                    ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
444                    Builder, DL, TLI);
445     Value *const MemCmpIsZero = Builder.CreateICmpEQ(
446         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
447 
448     // Add a branch to the next basic block in the chain.
449     if (NextBBInChain) {
450       Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
451       Phi.addIncoming(ConstantInt::getFalse(Context), BB);
452     } else {
453       Builder.CreateBr(Phi.getParent());
454       Phi.addIncoming(MemCmpIsZero, BB);
455     }
456 
457     // Delete merged blocks.
458     for (size_t I = 1; I < Comparisons.size(); ++I) {
459       BasicBlock *CBB = Comparisons[I].BB;
460       CBB->replaceAllUsesWith(BB);
461       CBB->eraseFromParent();
462     }
463   } else {
464     assert(Comparisons.size() == 1);
465     // There are no blocks to merge, but we still need to update the branches.
466     DEBUG(dbgs() << "Only one comparison, updating branches\n");
467     if (NextBBInChain) {
468       if (FirstComparison.BranchI->isConditional()) {
469         DEBUG(dbgs() << "conditional -> conditional\n");
470         // Just update the "true" target, the "false" target should already be
471         // the phi block.
472         assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
473         FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
474         Phi.addIncoming(ConstantInt::getFalse(Context), BB);
475       } else {
476         DEBUG(dbgs() << "unconditional -> conditional\n");
477         // Replace the unconditional branch by a conditional one.
478         FirstComparison.BranchI->eraseFromParent();
479         IRBuilder<> Builder(BB);
480         Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
481                              Phi.getParent());
482         Phi.addIncoming(FirstComparison.CmpI, BB);
483       }
484     } else {
485       if (FirstComparison.BranchI->isConditional()) {
486         DEBUG(dbgs() << "conditional -> unconditional\n");
487         // Replace the conditional branch by an unconditional one.
488         FirstComparison.BranchI->eraseFromParent();
489         IRBuilder<> Builder(BB);
490         Builder.CreateBr(Phi.getParent());
491         Phi.addIncoming(FirstComparison.CmpI, BB);
492       } else {
493         DEBUG(dbgs() << "unconditional -> unconditional\n");
494         Phi.addIncoming(FirstComparison.CmpI, BB);
495       }
496     }
497   }
498 }
499 
500 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
501                                            BasicBlock *const LastBlock,
502                                            int NumBlocks) {
503   // Walk up from the last block to find other blocks.
504   std::vector<BasicBlock *> Blocks(NumBlocks);
505   BasicBlock *CurBlock = LastBlock;
506   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
507     if (CurBlock->hasAddressTaken()) {
508       // Somebody is jumping to the block through an address, all bets are
509       // off.
510       DEBUG(dbgs() << "skip: block " << BlockIndex
511                    << " has its address taken\n");
512       return {};
513     }
514     Blocks[BlockIndex] = CurBlock;
515     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
516     if (!SinglePredecessor) {
517       // The block has two or more predecessors.
518       DEBUG(dbgs() << "skip: block " << BlockIndex
519                    << " has two or more predecessors\n");
520       return {};
521     }
522     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
523       // The block does not link back to the phi.
524       DEBUG(dbgs() << "skip: block " << BlockIndex
525                    << " does not link back to the phi\n");
526       return {};
527     }
528     CurBlock = SinglePredecessor;
529   }
530   Blocks[0] = CurBlock;
531   return Blocks;
532 }
533 
534 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) {
535   DEBUG(dbgs() << "processPhi()\n");
536   if (Phi.getNumIncomingValues() <= 1) {
537     DEBUG(dbgs() << "skip: only one incoming value in phi\n");
538     return false;
539   }
540   // We are looking for something that has the following structure:
541   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
542   //     \            \           \               \
543   //      ne           ne          ne              \
544   //       \            \           \               v
545   //        +------------+-----------+----------> bb_phi
546   //
547   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
548   //    It's the only block that contributes a non-constant value to the Phi.
549   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
550   //    them being the the phi block.
551   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
552   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
553 
554   // The blocks are not necessarily ordered in the phi, so we start from the
555   // last block and reconstruct the order.
556   BasicBlock *LastBlock = nullptr;
557   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
558     if (isa<ConstantInt>(Phi.getIncomingValue(I)))
559       continue;
560     if (LastBlock) {
561       // There are several non-constant values.
562       DEBUG(dbgs() << "skip: several non-constant values\n");
563       return false;
564     }
565     LastBlock = Phi.getIncomingBlock(I);
566   }
567   if (!LastBlock) {
568     // There is no non-constant block.
569     DEBUG(dbgs() << "skip: no non-constant block\n");
570     return false;
571   }
572   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
573     DEBUG(dbgs() << "skip: last block non-phi successor\n");
574     return false;
575   }
576 
577   const auto Blocks =
578       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
579   if (Blocks.empty())
580     return false;
581   BCECmpChain CmpChain(Blocks, Phi);
582 
583   if (CmpChain.size() < 2) {
584     DEBUG(dbgs() << "skip: only one compare block\n");
585     return false;
586   }
587 
588   return CmpChain.simplify(TLI);
589 }
590 
591 class MergeICmps : public FunctionPass {
592  public:
593   static char ID;
594 
595   MergeICmps() : FunctionPass(ID) {
596     initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
597   }
598 
599   bool runOnFunction(Function &F) override {
600     if (skipFunction(F)) return false;
601     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
602     auto PA = runImpl(F, &TLI);
603     return !PA.areAllPreserved();
604   }
605 
606  private:
607   void getAnalysisUsage(AnalysisUsage &AU) const override {
608     AU.addRequired<TargetLibraryInfoWrapperPass>();
609   }
610 
611   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI);
612 };
613 
614 PreservedAnalyses MergeICmps::runImpl(Function &F,
615                                       const TargetLibraryInfo *TLI) {
616   DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
617 
618   bool MadeChange = false;
619 
620   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
621     // A Phi operation is always first in a basic block.
622     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
623       MadeChange |= processPhi(*Phi, TLI);
624   }
625 
626   if (MadeChange)
627     return PreservedAnalyses::none();
628   return PreservedAnalyses::all();
629 }
630 
631 }  // namespace
632 
633 char MergeICmps::ID = 0;
634 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
635                       "Merge contiguous icmps into a memcmp", false, false)
636 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
637 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
638                     "Merge contiguous icmps into a memcmp", false, false)
639 
640 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
641 
642