1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns chains of integer comparisons into memcmp (the memcmp is 11 // later typically inlined as a chain of efficient hardware comparisons). This 12 // typically benefits c++ member or nonmember operator==(). 13 // 14 // The basic idea is to replace a larger chain of integer comparisons loaded 15 // from contiguous memory locations into a smaller chain of such integer 16 // comparisons. Benefits are double: 17 // - There are less jumps, and therefore less opportunities for mispredictions 18 // and I-cache misses. 19 // - Code size is smaller, both because jumps are removed and because the 20 // encoding of a 2*n byte compare is smaller than that of two n-byte 21 // compares. 22 23 //===----------------------------------------------------------------------===// 24 25 #include <algorithm> 26 #include <numeric> 27 #include <utility> 28 #include <vector> 29 #include "llvm/ADT/APSInt.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 40 namespace { 41 42 #define DEBUG_TYPE "mergeicmps" 43 44 #define MERGEICMPS_DOT_ON 45 46 // A BCE atom. 47 struct BCEAtom { 48 BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} 49 50 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 51 52 bool operator<(const BCEAtom &O) const { 53 return Base() == O.Base() ? Offset.slt(O.Offset) : Base() < O.Base(); 54 } 55 56 GetElementPtrInst *GEP; 57 LoadInst *LoadI; 58 APInt Offset; 59 }; 60 61 // If this value is a load from a constant offset w.r.t. a base address, and 62 // there are no othe rusers of the load or address, returns the base address and 63 // the offset. 64 BCEAtom visitICmpLoadOperand(Value *const Val) { 65 BCEAtom Result; 66 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 67 DEBUG(dbgs() << "load\n"); 68 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 69 DEBUG(dbgs() << "used outside of block\n"); 70 return {}; 71 } 72 if (LoadI->isVolatile()) { 73 DEBUG(dbgs() << "volatile\n"); 74 return {}; 75 } 76 Value *const Addr = LoadI->getOperand(0); 77 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 78 DEBUG(dbgs() << "GEP\n"); 79 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 80 DEBUG(dbgs() << "used outside of block\n"); 81 return {}; 82 } 83 const auto &DL = GEP->getModule()->getDataLayout(); 84 if (!isDereferenceablePointer(GEP, DL)) { 85 DEBUG(dbgs() << "not dereferenceable\n"); 86 // We need to make sure that we can do comparison in any order, so we 87 // require memory to be unconditionnally dereferencable. 88 return {}; 89 } 90 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 91 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 92 Result.GEP = GEP; 93 Result.LoadI = LoadI; 94 } 95 } 96 } 97 return Result; 98 } 99 100 // A basic block with a comparison between two BCE atoms. 101 // Note: the terminology is misleading: the comparison is symmetric, so there 102 // is no real {l/r}hs. To break the symmetry, we use the smallest atom as Lhs. 103 class BCECmpBlock { 104 public: 105 BCECmpBlock() {} 106 107 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 108 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 109 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 110 } 111 112 bool IsValid() const { 113 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 114 } 115 116 // Assert the the block is consistent: If valid, it should also have 117 // non-null members besides Lhs_ and Rhs_. 118 void AssertConsistent() const { 119 if (IsValid()) { 120 assert(BB); 121 assert(CmpI); 122 assert(BranchI); 123 } 124 } 125 126 const BCEAtom &Lhs() const { return Lhs_; } 127 const BCEAtom &Rhs() const { return Rhs_; } 128 int SizeBits() const { return SizeBits_; } 129 130 // Returns true if the block does other works besides comparison. 131 bool doesOtherWork() const; 132 133 // The basic block where this comparison happens. 134 BasicBlock *BB = nullptr; 135 // The ICMP for this comparison. 136 ICmpInst *CmpI = nullptr; 137 // The terminating branch. 138 BranchInst *BranchI = nullptr; 139 140 private: 141 BCEAtom Lhs_; 142 BCEAtom Rhs_; 143 int SizeBits_ = 0; 144 }; 145 146 bool BCECmpBlock::doesOtherWork() const { 147 AssertConsistent(); 148 // TODO(courbet): Can we allow some other things ? This is very conservative. 149 // We might be able to get away with anything does does not have any side 150 // effects outside of the basic block. 151 // Note: The GEPs and/or loads are not necessarily in the same block. 152 for (const Instruction &Inst : *BB) { 153 if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) { 154 if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true; 155 } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) { 156 if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true; 157 } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) { 158 if (C != CmpI) return true; 159 } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) { 160 if (Br != BranchI) return true; 161 } else { 162 return true; 163 } 164 } 165 return false; 166 } 167 168 // Visit the given comparison. If this is a comparison between two valid 169 // BCE atoms, returns the comparison. 170 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 171 const ICmpInst::Predicate ExpectedPredicate) { 172 if (CmpI->getPredicate() == ExpectedPredicate) { 173 DEBUG(dbgs() << "cmp " 174 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 175 << "\n"); 176 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 177 if (!Lhs.Base()) return {}; 178 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 179 if (!Rhs.Base()) return {}; 180 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 181 CmpI->getOperand(0)->getType()->getScalarSizeInBits()); 182 } 183 return {}; 184 } 185 186 // Visit the given comparison block. If this is a comparison between two valid 187 // BCE atoms, returns the comparison. 188 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 189 const BasicBlock *const PhiBlock) { 190 if (Block->empty()) return {}; 191 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 192 if (!BranchI) return {}; 193 DEBUG(dbgs() << "branch\n"); 194 if (BranchI->isUnconditional()) { 195 // In this case, we expect an incoming value which is the result of the 196 // comparison. This is the last link in the chain of comparisons (note 197 // that this does not mean that this is the last incoming value, blocks 198 // can be reordered). 199 auto *const CmpI = dyn_cast<ICmpInst>(Val); 200 if (!CmpI) return {}; 201 DEBUG(dbgs() << "icmp\n"); 202 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 203 Result.CmpI = CmpI; 204 Result.BranchI = BranchI; 205 return Result; 206 } else { 207 // In this case, we expect a constant incoming value (the comparison is 208 // chained). 209 const auto *const Const = dyn_cast<ConstantInt>(Val); 210 DEBUG(dbgs() << "const\n"); 211 if (!Const->isZero()) return {}; 212 DEBUG(dbgs() << "false\n"); 213 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 214 if (!CmpI) return {}; 215 DEBUG(dbgs() << "icmp\n"); 216 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 217 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 218 auto Result = visitICmp( 219 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 220 Result.CmpI = CmpI; 221 Result.BranchI = BranchI; 222 return Result; 223 } 224 return {}; 225 } 226 227 // A chain of comparisons. 228 class BCECmpChain { 229 public: 230 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); 231 232 int size() const { return Comparisons_.size(); } 233 234 #ifdef MERGEICMPS_DOT_ON 235 void dump() const; 236 #endif // MERGEICMPS_DOT_ON 237 238 bool simplify(const TargetLibraryInfo *const TLI); 239 240 private: 241 static bool IsContiguous(const BCECmpBlock &First, 242 const BCECmpBlock &Second) { 243 return First.Lhs().Base() == Second.Lhs().Base() && 244 First.Rhs().Base() == Second.Rhs().Base() && 245 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 246 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 247 } 248 249 // Merges the given comparison blocks into one memcmp block and update 250 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 251 // null, the merged block will link to the phi block. 252 static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 253 BasicBlock *const NextBBInChain, PHINode &Phi, 254 const TargetLibraryInfo *const TLI); 255 256 PHINode &Phi_; 257 std::vector<BCECmpBlock> Comparisons_; 258 // The original entry block (before sorting); 259 BasicBlock *EntryBlock_; 260 }; 261 262 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) 263 : Phi_(Phi) { 264 // Now look inside blocks to check for BCE comparisons. 265 std::vector<BCECmpBlock> Comparisons; 266 for (BasicBlock *Block : Blocks) { 267 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 268 Block, Phi.getParent()); 269 Comparison.BB = Block; 270 if (!Comparison.IsValid()) { 271 DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n"); 272 return; 273 } 274 if (Comparison.doesOtherWork()) { 275 DEBUG(dbgs() << "block does extra work besides compare\n"); 276 if (Comparisons.empty()) { // First block. 277 // TODO(courbet): The first block can do other things, and we should 278 // split them apart in a separate block before the comparison chain. 279 // Right now we just discard it and make the chain shorter. 280 DEBUG(dbgs() 281 << "ignoring first block that does extra work besides compare\n"); 282 continue; 283 } 284 // TODO(courbet): Right now we abort the whole chain. We could be 285 // merging only the blocks that don't do other work and resume the 286 // chain from there. For example: 287 // if (a[0] == b[0]) { // bb1 288 // if (a[1] == b[1]) { // bb2 289 // some_value = 3; //bb3 290 // if (a[2] == b[2]) { //bb3 291 // do a ton of stuff //bb4 292 // } 293 // } 294 // } 295 // 296 // This is: 297 // 298 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 299 // \ \ \ \ 300 // ne ne ne \ 301 // \ \ \ v 302 // +------------+-----------+----------> bb_phi 303 // 304 // We can only merge the first two comparisons, because bb3* does 305 // "other work" (setting some_value to 3). 306 // We could still merge bb1 and bb2 though. 307 return; 308 } 309 DEBUG(dbgs() << "*Found cmp of " << Comparison.SizeBits() 310 << " bits between " << Comparison.Lhs().Base() << " + " 311 << Comparison.Lhs().Offset << " and " 312 << Comparison.Rhs().Base() << " + " << Comparison.Rhs().Offset 313 << "\n"); 314 DEBUG(dbgs() << "\n"); 315 Comparisons.push_back(Comparison); 316 } 317 EntryBlock_ = Comparisons[0].BB; 318 Comparisons_ = std::move(Comparisons); 319 #ifdef MERGEICMPS_DOT_ON 320 errs() << "BEFORE REORDERING:\n\n"; 321 dump(); 322 #endif // MERGEICMPS_DOT_ON 323 // Reorder blocks by LHS. We can do that without changing the 324 // semantics because we are only accessing dereferencable memory. 325 std::sort(Comparisons_.begin(), Comparisons_.end(), 326 [](const BCECmpBlock &a, const BCECmpBlock &b) { 327 return a.Lhs() < b.Lhs(); 328 }); 329 #ifdef MERGEICMPS_DOT_ON 330 errs() << "AFTER REORDERING:\n\n"; 331 dump(); 332 #endif // MERGEICMPS_DOT_ON 333 } 334 335 #ifdef MERGEICMPS_DOT_ON 336 void BCECmpChain::dump() const { 337 errs() << "digraph dag {\n"; 338 errs() << " graph [bgcolor=transparent];\n"; 339 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 340 errs() << " edge [color=black];\n"; 341 for (size_t I = 0; I < Comparisons_.size(); ++I) { 342 const auto &Comparison = Comparisons_[I]; 343 errs() << " \"" << I << "\" [label=\"%" 344 << Comparison.Lhs().Base()->getName() << " + " 345 << Comparison.Lhs().Offset << " == %" 346 << Comparison.Rhs().Base()->getName() << " + " 347 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 348 << " bytes)\"];\n"; 349 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 350 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 351 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 352 } 353 errs() << " \"Phi\" [label=\"Phi\"];\n"; 354 errs() << "}\n\n"; 355 } 356 #endif // MERGEICMPS_DOT_ON 357 358 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { 359 // First pass to check if there is at least one merge. If not, we don't do 360 // anything and we keep analysis passes intact. 361 { 362 bool AtLeastOneMerged = false; 363 for (size_t I = 1; I < Comparisons_.size(); ++I) { 364 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 365 AtLeastOneMerged = true; 366 break; 367 } 368 } 369 if (!AtLeastOneMerged) return false; 370 } 371 372 // Remove phi references to comparison blocks, they will be rebuilt as we 373 // merge the blocks. 374 for (const auto &Comparison : Comparisons_) { 375 Phi_.removeIncomingValue(Comparison.BB, false); 376 } 377 378 // Point the predecessors of the chain to the first comparison block (which is 379 // the new entry point). 380 if (EntryBlock_ != Comparisons_[0].BB) 381 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 382 383 // Effectively merge blocks. 384 int NumMerged = 1; 385 for (size_t I = 1; I < Comparisons_.size(); ++I) { 386 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 387 ++NumMerged; 388 } else { 389 // Merge all previous comparisons and start a new merge block. 390 mergeComparisons( 391 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 392 Comparisons_[I].BB, Phi_, TLI); 393 NumMerged = 1; 394 } 395 } 396 mergeComparisons(makeArrayRef(Comparisons_) 397 .slice(Comparisons_.size() - NumMerged, NumMerged), 398 nullptr, Phi_, TLI); 399 400 return true; 401 } 402 403 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 404 BasicBlock *const NextBBInChain, 405 PHINode &Phi, 406 const TargetLibraryInfo *const TLI) { 407 assert(!Comparisons.empty()); 408 const auto &FirstComparison = *Comparisons.begin(); 409 BasicBlock *const BB = FirstComparison.BB; 410 LLVMContext &Context = BB->getContext(); 411 412 if (Comparisons.size() >= 2) { 413 DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 414 const auto TotalSize = 415 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 416 [](int Size, const BCECmpBlock &C) { 417 return Size + C.SizeBits(); 418 }) / 419 8; 420 421 // Incoming edges do not need to be updated, and both GEPs are already 422 // computing the right address, we just need to: 423 // - replace the two loads and the icmp with the memcmp 424 // - update the branch 425 // - update the incoming values in the phi. 426 FirstComparison.BranchI->eraseFromParent(); 427 FirstComparison.CmpI->eraseFromParent(); 428 FirstComparison.Lhs().LoadI->eraseFromParent(); 429 FirstComparison.Rhs().LoadI->eraseFromParent(); 430 431 IRBuilder<> Builder(BB); 432 const auto &DL = Phi.getModule()->getDataLayout(); 433 Value *const MemCmpCall = 434 emitMemCmp(FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, 435 ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 436 Builder, DL, TLI); 437 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 438 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 439 440 // Add a branch to the next basic block in the chain. 441 if (NextBBInChain) { 442 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 443 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 444 } else { 445 Builder.CreateBr(Phi.getParent()); 446 Phi.addIncoming(MemCmpIsZero, BB); 447 } 448 449 // Delete merged blocks. 450 for (size_t I = 1; I < Comparisons.size(); ++I) { 451 BasicBlock *CBB = Comparisons[I].BB; 452 CBB->replaceAllUsesWith(BB); 453 CBB->eraseFromParent(); 454 } 455 } else { 456 assert(Comparisons.size() == 1); 457 // There are no blocks to merge, but we still need to update the branches. 458 DEBUG(dbgs() << "Only one comparison, updating branches\n"); 459 if (NextBBInChain) { 460 if (FirstComparison.BranchI->isConditional()) { 461 DEBUG(dbgs() << "conditional -> conditional\n"); 462 // Just update the "true" target, the "false" target should already be 463 // the phi block. 464 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 465 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 466 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 467 } else { 468 DEBUG(dbgs() << "unconditional -> conditional\n"); 469 // Replace the unconditional branch by a conditional one. 470 FirstComparison.BranchI->eraseFromParent(); 471 IRBuilder<> Builder(BB); 472 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 473 Phi.getParent()); 474 Phi.addIncoming(FirstComparison.CmpI, BB); 475 } 476 } else { 477 if (FirstComparison.BranchI->isConditional()) { 478 DEBUG(dbgs() << "conditional -> unconditional\n"); 479 // Replace the conditional branch by an unconditional one. 480 FirstComparison.BranchI->eraseFromParent(); 481 IRBuilder<> Builder(BB); 482 Builder.CreateBr(Phi.getParent()); 483 Phi.addIncoming(FirstComparison.CmpI, BB); 484 } else { 485 DEBUG(dbgs() << "unconditional -> unconditional\n"); 486 Phi.addIncoming(FirstComparison.CmpI, BB); 487 } 488 } 489 } 490 } 491 492 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 493 BasicBlock *const LastBlock, 494 int NumBlocks) { 495 // Walk up from the last block to find other blocks. 496 std::vector<BasicBlock *> Blocks(NumBlocks); 497 BasicBlock *CurBlock = LastBlock; 498 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 499 if (CurBlock->hasAddressTaken()) { 500 // Somebody is jumping to the block through an address, all bets are 501 // off. 502 DEBUG(dbgs() << "skip: block " << BlockIndex 503 << " has its address taken\n"); 504 return {}; 505 } 506 Blocks[BlockIndex] = CurBlock; 507 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 508 if (!SinglePredecessor) { 509 // The block has two or more predecessors. 510 DEBUG(dbgs() << "skip: block " << BlockIndex 511 << " has two or more predecessors\n"); 512 return {}; 513 } 514 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 515 // The block does not link back to the phi. 516 DEBUG(dbgs() << "skip: block " << BlockIndex 517 << " does not link back to the phi\n"); 518 return {}; 519 } 520 CurBlock = SinglePredecessor; 521 } 522 Blocks[0] = CurBlock; 523 return Blocks; 524 } 525 526 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { 527 DEBUG(dbgs() << "processPhi()\n"); 528 if (Phi.getNumIncomingValues() <= 1) { 529 DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 530 return false; 531 } 532 // We are looking for something that has the following structure: 533 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 534 // \ \ \ \ 535 // ne ne ne \ 536 // \ \ \ v 537 // +------------+-----------+----------> bb_phi 538 // 539 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 540 // It's the only block that contributes a non-constant value to the Phi. 541 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 542 // them being the the phi block. 543 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 544 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 545 546 // The blocks are not necessarily ordered in the phi, so we start from the 547 // last block and reconstruct the order. 548 BasicBlock *LastBlock = nullptr; 549 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 550 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 551 if (LastBlock) { 552 // There are several non-constant values. 553 DEBUG(dbgs() << "skip: several non-constant values\n"); 554 return false; 555 } 556 LastBlock = Phi.getIncomingBlock(I); 557 } 558 if (!LastBlock) { 559 // There is no non-constant block. 560 DEBUG(dbgs() << "skip: no non-constant block\n"); 561 return false; 562 } 563 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 564 DEBUG(dbgs() << "skip: last block non-phi successor\n"); 565 return false; 566 } 567 568 const auto Blocks = 569 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 570 if (Blocks.empty()) return false; 571 BCECmpChain CmpChain(Blocks, Phi); 572 573 if (CmpChain.size() < 2) { 574 DEBUG(dbgs() << "skip: only one compare block\n"); 575 return false; 576 } 577 578 return CmpChain.simplify(TLI); 579 } 580 581 class MergeICmps : public FunctionPass { 582 public: 583 static char ID; 584 585 MergeICmps() : FunctionPass(ID) { 586 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 587 } 588 589 bool runOnFunction(Function &F) override { 590 if (skipFunction(F)) return false; 591 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 592 auto PA = runImpl(F, &TLI); 593 return !PA.areAllPreserved(); 594 } 595 596 private: 597 void getAnalysisUsage(AnalysisUsage &AU) const override { 598 AU.addRequired<TargetLibraryInfoWrapperPass>(); 599 } 600 601 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI); 602 }; 603 604 PreservedAnalyses MergeICmps::runImpl(Function &F, 605 const TargetLibraryInfo *TLI) { 606 DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 607 608 bool MadeChange = false; 609 610 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 611 // A Phi operation is always first in a basic block. 612 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 613 MadeChange |= processPhi(*Phi, TLI); 614 } 615 616 if (MadeChange) return PreservedAnalyses::none(); 617 return PreservedAnalyses::all(); 618 } 619 620 } // namespace 621 622 char MergeICmps::ID = 0; 623 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 624 "Merge contiguous icmps into a memcmp", false, false) 625 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 626 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 627 "Merge contiguous icmps into a memcmp", false, false) 628 629 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 630