1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns chains of integer comparisons into memcmp (the memcmp is 11 // later typically inlined as a chain of efficient hardware comparisons). This 12 // typically benefits c++ member or nonmember operator==(). 13 // 14 // The basic idea is to replace a larger chain of integer comparisons loaded 15 // from contiguous memory locations into a smaller chain of such integer 16 // comparisons. Benefits are double: 17 // - There are less jumps, and therefore less opportunities for mispredictions 18 // and I-cache misses. 19 // - Code size is smaller, both because jumps are removed and because the 20 // encoding of a 2*n byte compare is smaller than that of two n-byte 21 // compares. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <numeric> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "mergeicmps" 57 58 namespace { 59 60 // A BCE atom. 61 struct BCEAtom { 62 BCEAtom() = default; 63 64 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 65 66 bool operator<(const BCEAtom &O) const { 67 assert(Base() && "invalid atom"); 68 assert(O.Base() && "invalid atom"); 69 // Just ordering by (Base(), Offset) is sufficient. However because this 70 // means that the ordering will depend on the addresses of the base 71 // values, which are not reproducible from run to run. To guarantee 72 // stability, we use the names of the values if they exist; we sort by: 73 // (Base.getName(), Base(), Offset). 74 const int NameCmp = Base()->getName().compare(O.Base()->getName()); 75 if (NameCmp == 0) { 76 if (Base() == O.Base()) { 77 return Offset.slt(O.Offset); 78 } 79 return Base() < O.Base(); 80 } 81 return NameCmp < 0; 82 } 83 84 GetElementPtrInst *GEP = nullptr; 85 LoadInst *LoadI = nullptr; 86 APInt Offset; 87 }; 88 89 } // end anonymous namespace 90 91 // If this value is a load from a constant offset w.r.t. a base address, and 92 // there are no othe rusers of the load or address, returns the base address and 93 // the offset. 94 static BCEAtom visitICmpLoadOperand(Value *const Val) { 95 BCEAtom Result; 96 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 97 DEBUG(dbgs() << "load\n"); 98 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 99 DEBUG(dbgs() << "used outside of block\n"); 100 return {}; 101 } 102 if (LoadI->isVolatile()) { 103 DEBUG(dbgs() << "volatile\n"); 104 return {}; 105 } 106 Value *const Addr = LoadI->getOperand(0); 107 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 108 DEBUG(dbgs() << "GEP\n"); 109 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 110 DEBUG(dbgs() << "used outside of block\n"); 111 return {}; 112 } 113 const auto &DL = GEP->getModule()->getDataLayout(); 114 if (!isDereferenceablePointer(GEP, DL)) { 115 DEBUG(dbgs() << "not dereferenceable\n"); 116 // We need to make sure that we can do comparison in any order, so we 117 // require memory to be unconditionnally dereferencable. 118 return {}; 119 } 120 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 121 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 122 Result.GEP = GEP; 123 Result.LoadI = LoadI; 124 } 125 } 126 } 127 return Result; 128 } 129 130 namespace { 131 132 // A basic block with a comparison between two BCE atoms. 133 // Note: the terminology is misleading: the comparison is symmetric, so there 134 // is no real {l/r}hs. What we want though is to have the same base on the 135 // left (resp. right), so that we can detect consecutive loads. To ensure this 136 // we put the smallest atom on the left. 137 class BCECmpBlock { 138 public: 139 BCECmpBlock() = default; 140 141 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 142 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 143 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 144 } 145 146 bool IsValid() const { 147 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 148 } 149 150 // Assert the the block is consistent: If valid, it should also have 151 // non-null members besides Lhs_ and Rhs_. 152 void AssertConsistent() const { 153 if (IsValid()) { 154 assert(BB); 155 assert(CmpI); 156 assert(BranchI); 157 } 158 } 159 160 const BCEAtom &Lhs() const { return Lhs_; } 161 const BCEAtom &Rhs() const { return Rhs_; } 162 int SizeBits() const { return SizeBits_; } 163 164 // Returns true if the block does other works besides comparison. 165 bool doesOtherWork() const; 166 167 // The basic block where this comparison happens. 168 BasicBlock *BB = nullptr; 169 170 // The ICMP for this comparison. 171 ICmpInst *CmpI = nullptr; 172 173 // The terminating branch. 174 BranchInst *BranchI = nullptr; 175 176 private: 177 BCEAtom Lhs_; 178 BCEAtom Rhs_; 179 int SizeBits_ = 0; 180 }; 181 182 } // end anonymous namespace 183 184 bool BCECmpBlock::doesOtherWork() const { 185 AssertConsistent(); 186 // TODO(courbet): Can we allow some other things ? This is very conservative. 187 // We might be able to get away with anything does does not have any side 188 // effects outside of the basic block. 189 // Note: The GEPs and/or loads are not necessarily in the same block. 190 for (const Instruction &Inst : *BB) { 191 if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) { 192 if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true; 193 } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) { 194 if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true; 195 } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) { 196 if (C != CmpI) return true; 197 } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) { 198 if (Br != BranchI) return true; 199 } else { 200 return true; 201 } 202 } 203 return false; 204 } 205 206 // Visit the given comparison. If this is a comparison between two valid 207 // BCE atoms, returns the comparison. 208 static BCECmpBlock visitICmp(const ICmpInst *const CmpI, 209 const ICmpInst::Predicate ExpectedPredicate) { 210 if (CmpI->getPredicate() == ExpectedPredicate) { 211 DEBUG(dbgs() << "cmp " 212 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 213 << "\n"); 214 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 215 if (!Lhs.Base()) return {}; 216 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 217 if (!Rhs.Base()) return {}; 218 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 219 CmpI->getOperand(0)->getType()->getScalarSizeInBits()); 220 } 221 return {}; 222 } 223 224 // Visit the given comparison block. If this is a comparison between two valid 225 // BCE atoms, returns the comparison. 226 static BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 227 const BasicBlock *const PhiBlock) { 228 if (Block->empty()) return {}; 229 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 230 if (!BranchI) return {}; 231 DEBUG(dbgs() << "branch\n"); 232 if (BranchI->isUnconditional()) { 233 // In this case, we expect an incoming value which is the result of the 234 // comparison. This is the last link in the chain of comparisons (note 235 // that this does not mean that this is the last incoming value, blocks 236 // can be reordered). 237 auto *const CmpI = dyn_cast<ICmpInst>(Val); 238 if (!CmpI) return {}; 239 DEBUG(dbgs() << "icmp\n"); 240 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 241 Result.CmpI = CmpI; 242 Result.BranchI = BranchI; 243 return Result; 244 } else { 245 // In this case, we expect a constant incoming value (the comparison is 246 // chained). 247 const auto *const Const = dyn_cast<ConstantInt>(Val); 248 DEBUG(dbgs() << "const\n"); 249 if (!Const->isZero()) return {}; 250 DEBUG(dbgs() << "false\n"); 251 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 252 if (!CmpI) return {}; 253 DEBUG(dbgs() << "icmp\n"); 254 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 255 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 256 auto Result = visitICmp( 257 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 258 Result.CmpI = CmpI; 259 Result.BranchI = BranchI; 260 return Result; 261 } 262 return {}; 263 } 264 265 namespace { 266 267 // A chain of comparisons. 268 class BCECmpChain { 269 public: 270 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); 271 272 int size() const { return Comparisons_.size(); } 273 274 #ifdef MERGEICMPS_DOT_ON 275 void dump() const; 276 #endif // MERGEICMPS_DOT_ON 277 278 bool simplify(const TargetLibraryInfo *const TLI); 279 280 private: 281 static bool IsContiguous(const BCECmpBlock &First, 282 const BCECmpBlock &Second) { 283 return First.Lhs().Base() == Second.Lhs().Base() && 284 First.Rhs().Base() == Second.Rhs().Base() && 285 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 286 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 287 } 288 289 // Merges the given comparison blocks into one memcmp block and update 290 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 291 // null, the merged block will link to the phi block. 292 static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 293 BasicBlock *const NextBBInChain, PHINode &Phi, 294 const TargetLibraryInfo *const TLI); 295 296 PHINode &Phi_; 297 std::vector<BCECmpBlock> Comparisons_; 298 299 // The original entry block (before sorting); 300 BasicBlock *EntryBlock_; 301 }; 302 303 } // end anonymous namespace 304 305 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) 306 : Phi_(Phi) { 307 // Now look inside blocks to check for BCE comparisons. 308 std::vector<BCECmpBlock> Comparisons; 309 for (BasicBlock *Block : Blocks) { 310 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 311 Block, Phi.getParent()); 312 Comparison.BB = Block; 313 if (!Comparison.IsValid()) { 314 DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n"); 315 return; 316 } 317 if (Comparison.doesOtherWork()) { 318 DEBUG(dbgs() << "block does extra work besides compare\n"); 319 if (Comparisons.empty()) { // First block. 320 // TODO(courbet): The first block can do other things, and we should 321 // split them apart in a separate block before the comparison chain. 322 // Right now we just discard it and make the chain shorter. 323 DEBUG(dbgs() 324 << "ignoring first block that does extra work besides compare\n"); 325 continue; 326 } 327 // TODO(courbet): Right now we abort the whole chain. We could be 328 // merging only the blocks that don't do other work and resume the 329 // chain from there. For example: 330 // if (a[0] == b[0]) { // bb1 331 // if (a[1] == b[1]) { // bb2 332 // some_value = 3; //bb3 333 // if (a[2] == b[2]) { //bb3 334 // do a ton of stuff //bb4 335 // } 336 // } 337 // } 338 // 339 // This is: 340 // 341 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 342 // \ \ \ \ 343 // ne ne ne \ 344 // \ \ \ v 345 // +------------+-----------+----------> bb_phi 346 // 347 // We can only merge the first two comparisons, because bb3* does 348 // "other work" (setting some_value to 3). 349 // We could still merge bb1 and bb2 though. 350 return; 351 } 352 DEBUG(dbgs() << "*Found cmp of " << Comparison.SizeBits() 353 << " bits between " << Comparison.Lhs().Base() << " + " 354 << Comparison.Lhs().Offset << " and " 355 << Comparison.Rhs().Base() << " + " << Comparison.Rhs().Offset 356 << "\n"); 357 DEBUG(dbgs() << "\n"); 358 Comparisons.push_back(Comparison); 359 } 360 EntryBlock_ = Comparisons[0].BB; 361 Comparisons_ = std::move(Comparisons); 362 #ifdef MERGEICMPS_DOT_ON 363 errs() << "BEFORE REORDERING:\n\n"; 364 dump(); 365 #endif // MERGEICMPS_DOT_ON 366 // Reorder blocks by LHS. We can do that without changing the 367 // semantics because we are only accessing dereferencable memory. 368 std::sort(Comparisons_.begin(), Comparisons_.end(), 369 [](const BCECmpBlock &a, const BCECmpBlock &b) { 370 return a.Lhs() < b.Lhs(); 371 }); 372 #ifdef MERGEICMPS_DOT_ON 373 errs() << "AFTER REORDERING:\n\n"; 374 dump(); 375 #endif // MERGEICMPS_DOT_ON 376 } 377 378 #ifdef MERGEICMPS_DOT_ON 379 void BCECmpChain::dump() const { 380 errs() << "digraph dag {\n"; 381 errs() << " graph [bgcolor=transparent];\n"; 382 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 383 errs() << " edge [color=black];\n"; 384 for (size_t I = 0; I < Comparisons_.size(); ++I) { 385 const auto &Comparison = Comparisons_[I]; 386 errs() << " \"" << I << "\" [label=\"%" 387 << Comparison.Lhs().Base()->getName() << " + " 388 << Comparison.Lhs().Offset << " == %" 389 << Comparison.Rhs().Base()->getName() << " + " 390 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 391 << " bytes)\"];\n"; 392 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 393 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 394 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 395 } 396 errs() << " \"Phi\" [label=\"Phi\"];\n"; 397 errs() << "}\n\n"; 398 } 399 #endif // MERGEICMPS_DOT_ON 400 401 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { 402 // First pass to check if there is at least one merge. If not, we don't do 403 // anything and we keep analysis passes intact. 404 { 405 bool AtLeastOneMerged = false; 406 for (size_t I = 1; I < Comparisons_.size(); ++I) { 407 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 408 AtLeastOneMerged = true; 409 break; 410 } 411 } 412 if (!AtLeastOneMerged) return false; 413 } 414 415 // Remove phi references to comparison blocks, they will be rebuilt as we 416 // merge the blocks. 417 for (const auto &Comparison : Comparisons_) { 418 Phi_.removeIncomingValue(Comparison.BB, false); 419 } 420 421 // Point the predecessors of the chain to the first comparison block (which is 422 // the new entry point). 423 if (EntryBlock_ != Comparisons_[0].BB) 424 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 425 426 // Effectively merge blocks. 427 int NumMerged = 1; 428 for (size_t I = 1; I < Comparisons_.size(); ++I) { 429 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 430 ++NumMerged; 431 } else { 432 // Merge all previous comparisons and start a new merge block. 433 mergeComparisons( 434 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 435 Comparisons_[I].BB, Phi_, TLI); 436 NumMerged = 1; 437 } 438 } 439 mergeComparisons(makeArrayRef(Comparisons_) 440 .slice(Comparisons_.size() - NumMerged, NumMerged), 441 nullptr, Phi_, TLI); 442 443 return true; 444 } 445 446 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 447 BasicBlock *const NextBBInChain, 448 PHINode &Phi, 449 const TargetLibraryInfo *const TLI) { 450 assert(!Comparisons.empty()); 451 const auto &FirstComparison = *Comparisons.begin(); 452 BasicBlock *const BB = FirstComparison.BB; 453 LLVMContext &Context = BB->getContext(); 454 455 if (Comparisons.size() >= 2) { 456 DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 457 const auto TotalSize = 458 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 459 [](int Size, const BCECmpBlock &C) { 460 return Size + C.SizeBits(); 461 }) / 462 8; 463 464 // Incoming edges do not need to be updated, and both GEPs are already 465 // computing the right address, we just need to: 466 // - replace the two loads and the icmp with the memcmp 467 // - update the branch 468 // - update the incoming values in the phi. 469 FirstComparison.BranchI->eraseFromParent(); 470 FirstComparison.CmpI->eraseFromParent(); 471 FirstComparison.Lhs().LoadI->eraseFromParent(); 472 FirstComparison.Rhs().LoadI->eraseFromParent(); 473 474 IRBuilder<> Builder(BB); 475 const auto &DL = Phi.getModule()->getDataLayout(); 476 Value *const MemCmpCall = emitMemCmp( 477 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, 478 ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 479 Builder, DL, TLI); 480 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 481 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 482 483 // Add a branch to the next basic block in the chain. 484 if (NextBBInChain) { 485 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 486 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 487 } else { 488 Builder.CreateBr(Phi.getParent()); 489 Phi.addIncoming(MemCmpIsZero, BB); 490 } 491 492 // Delete merged blocks. 493 for (size_t I = 1; I < Comparisons.size(); ++I) { 494 BasicBlock *CBB = Comparisons[I].BB; 495 CBB->replaceAllUsesWith(BB); 496 CBB->eraseFromParent(); 497 } 498 } else { 499 assert(Comparisons.size() == 1); 500 // There are no blocks to merge, but we still need to update the branches. 501 DEBUG(dbgs() << "Only one comparison, updating branches\n"); 502 if (NextBBInChain) { 503 if (FirstComparison.BranchI->isConditional()) { 504 DEBUG(dbgs() << "conditional -> conditional\n"); 505 // Just update the "true" target, the "false" target should already be 506 // the phi block. 507 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 508 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 509 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 510 } else { 511 DEBUG(dbgs() << "unconditional -> conditional\n"); 512 // Replace the unconditional branch by a conditional one. 513 FirstComparison.BranchI->eraseFromParent(); 514 IRBuilder<> Builder(BB); 515 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 516 Phi.getParent()); 517 Phi.addIncoming(FirstComparison.CmpI, BB); 518 } 519 } else { 520 if (FirstComparison.BranchI->isConditional()) { 521 DEBUG(dbgs() << "conditional -> unconditional\n"); 522 // Replace the conditional branch by an unconditional one. 523 FirstComparison.BranchI->eraseFromParent(); 524 IRBuilder<> Builder(BB); 525 Builder.CreateBr(Phi.getParent()); 526 Phi.addIncoming(FirstComparison.CmpI, BB); 527 } else { 528 DEBUG(dbgs() << "unconditional -> unconditional\n"); 529 Phi.addIncoming(FirstComparison.CmpI, BB); 530 } 531 } 532 } 533 } 534 535 static std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 536 BasicBlock *const LastBlock, 537 int NumBlocks) { 538 // Walk up from the last block to find other blocks. 539 std::vector<BasicBlock *> Blocks(NumBlocks); 540 BasicBlock *CurBlock = LastBlock; 541 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 542 if (CurBlock->hasAddressTaken()) { 543 // Somebody is jumping to the block through an address, all bets are 544 // off. 545 DEBUG(dbgs() << "skip: block " << BlockIndex 546 << " has its address taken\n"); 547 return {}; 548 } 549 Blocks[BlockIndex] = CurBlock; 550 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 551 if (!SinglePredecessor) { 552 // The block has two or more predecessors. 553 DEBUG(dbgs() << "skip: block " << BlockIndex 554 << " has two or more predecessors\n"); 555 return {}; 556 } 557 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 558 // The block does not link back to the phi. 559 DEBUG(dbgs() << "skip: block " << BlockIndex 560 << " does not link back to the phi\n"); 561 return {}; 562 } 563 CurBlock = SinglePredecessor; 564 } 565 Blocks[0] = CurBlock; 566 return Blocks; 567 } 568 569 static bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { 570 DEBUG(dbgs() << "processPhi()\n"); 571 if (Phi.getNumIncomingValues() <= 1) { 572 DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 573 return false; 574 } 575 // We are looking for something that has the following structure: 576 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 577 // \ \ \ \ 578 // ne ne ne \ 579 // \ \ \ v 580 // +------------+-----------+----------> bb_phi 581 // 582 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 583 // It's the only block that contributes a non-constant value to the Phi. 584 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 585 // them being the the phi block. 586 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 587 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 588 589 // The blocks are not necessarily ordered in the phi, so we start from the 590 // last block and reconstruct the order. 591 BasicBlock *LastBlock = nullptr; 592 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 593 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 594 if (LastBlock) { 595 // There are several non-constant values. 596 DEBUG(dbgs() << "skip: several non-constant values\n"); 597 return false; 598 } 599 LastBlock = Phi.getIncomingBlock(I); 600 } 601 if (!LastBlock) { 602 // There is no non-constant block. 603 DEBUG(dbgs() << "skip: no non-constant block\n"); 604 return false; 605 } 606 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 607 DEBUG(dbgs() << "skip: last block non-phi successor\n"); 608 return false; 609 } 610 611 const auto Blocks = 612 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 613 if (Blocks.empty()) return false; 614 BCECmpChain CmpChain(Blocks, Phi); 615 616 if (CmpChain.size() < 2) { 617 DEBUG(dbgs() << "skip: only one compare block\n"); 618 return false; 619 } 620 621 return CmpChain.simplify(TLI); 622 } 623 624 namespace { 625 626 class MergeICmps : public FunctionPass { 627 public: 628 static char ID; 629 630 MergeICmps() : FunctionPass(ID) { 631 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 632 } 633 634 bool runOnFunction(Function &F) override { 635 if (skipFunction(F)) return false; 636 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 637 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 638 auto PA = runImpl(F, &TLI, &TTI); 639 return !PA.areAllPreserved(); 640 } 641 642 void getAnalysisUsage(AnalysisUsage &AU) const override { 643 AU.addRequired<TargetLibraryInfoWrapperPass>(); 644 AU.addRequired<TargetTransformInfoWrapperPass>(); 645 } 646 647 private: 648 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 649 const TargetTransformInfo *TTI); 650 }; 651 652 } // end anonymous namespace 653 654 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 655 const TargetTransformInfo *TTI) { 656 DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 657 658 // We only try merging comparisons if the target wants to expand memcmp later. 659 // The rationale is to avoid turning small chains into memcmp calls. 660 unsigned MaxLoadSize; 661 if (!TTI->enableMemCmpExpansion(MaxLoadSize)) return PreservedAnalyses::all(); 662 663 bool MadeChange = false; 664 665 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 666 // A Phi operation is always first in a basic block. 667 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 668 MadeChange |= processPhi(*Phi, TLI); 669 } 670 671 if (MadeChange) return PreservedAnalyses::none(); 672 return PreservedAnalyses::all(); 673 } 674 675 char MergeICmps::ID = 0; 676 677 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 678 "Merge contiguous icmps into a memcmp", false, false) 679 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 680 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 681 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 682 "Merge contiguous icmps into a memcmp", false, false) 683 684 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 685