1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns chains of integer comparisons into memcmp (the memcmp is 11 // later typically inlined as a chain of efficient hardware comparisons). This 12 // typically benefits c++ member or nonmember operator==(). 13 // 14 // The basic idea is to replace a larger chain of integer comparisons loaded 15 // from contiguous memory locations into a smaller chain of such integer 16 // comparisons. Benefits are double: 17 // - There are less jumps, and therefore less opportunities for mispredictions 18 // and I-cache misses. 19 // - Code size is smaller, both because jumps are removed and because the 20 // encoding of a 2*n byte compare is smaller than that of two n-byte 21 // compares. 22 23 //===----------------------------------------------------------------------===// 24 25 #include <algorithm> 26 #include <numeric> 27 #include <utility> 28 #include <vector> 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 40 namespace { 41 42 #define DEBUG_TYPE "mergeicmps" 43 44 // A BCE atom. 45 struct BCEAtom { 46 BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} 47 48 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 49 50 bool operator<(const BCEAtom &O) const { 51 assert(Base() && "invalid atom"); 52 assert(O.Base() && "invalid atom"); 53 // Just ordering by (Base(), Offset) is sufficient. However because this 54 // means that the ordering will depend on the addresses of the base 55 // values, which are not reproducible from run to run. To guarantee 56 // stability, we use the names of the values if they exist; we sort by: 57 // (Base.getName(), Base(), Offset). 58 const int NameCmp = Base()->getName().compare(O.Base()->getName()); 59 if (NameCmp == 0) { 60 if (Base() == O.Base()) { 61 return Offset.slt(O.Offset); 62 } 63 return Base() < O.Base(); 64 } 65 return NameCmp < 0; 66 } 67 68 GetElementPtrInst *GEP; 69 LoadInst *LoadI; 70 APInt Offset; 71 }; 72 73 // If this value is a load from a constant offset w.r.t. a base address, and 74 // there are no other users of the load or address, returns the base address and 75 // the offset. 76 BCEAtom visitICmpLoadOperand(Value *const Val) { 77 BCEAtom Result; 78 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 79 DEBUG(dbgs() << "load\n"); 80 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 81 DEBUG(dbgs() << "used outside of block\n"); 82 return {}; 83 } 84 if (LoadI->isVolatile()) { 85 DEBUG(dbgs() << "volatile\n"); 86 return {}; 87 } 88 Value *const Addr = LoadI->getOperand(0); 89 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 90 DEBUG(dbgs() << "GEP\n"); 91 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 92 DEBUG(dbgs() << "used outside of block\n"); 93 return {}; 94 } 95 const auto &DL = GEP->getModule()->getDataLayout(); 96 if (!isDereferenceablePointer(GEP, DL)) { 97 DEBUG(dbgs() << "not dereferenceable\n"); 98 // We need to make sure that we can do comparison in any order, so we 99 // require memory to be unconditionnally dereferencable. 100 return {}; 101 } 102 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 103 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 104 Result.GEP = GEP; 105 Result.LoadI = LoadI; 106 } 107 } 108 } 109 return Result; 110 } 111 112 // A basic block with a comparison between two BCE atoms. 113 // Note: the terminology is misleading: the comparison is symmetric, so there 114 // is no real {l/r}hs. What we want though is to have the same base on the 115 // left (resp. right), so that we can detect consecutive loads. To ensure this 116 // we put the smallest atom on the left. 117 class BCECmpBlock { 118 public: 119 BCECmpBlock() {} 120 121 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 122 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 123 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 124 } 125 126 bool IsValid() const { 127 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 128 } 129 130 // Assert the block is consistent: If valid, it should also have 131 // non-null members besides Lhs_ and Rhs_. 132 void AssertConsistent() const { 133 if (IsValid()) { 134 assert(BB); 135 assert(CmpI); 136 assert(BranchI); 137 } 138 } 139 140 const BCEAtom &Lhs() const { return Lhs_; } 141 const BCEAtom &Rhs() const { return Rhs_; } 142 int SizeBits() const { return SizeBits_; } 143 144 // Returns true if the block does other works besides comparison. 145 bool doesOtherWork() const; 146 147 // The basic block where this comparison happens. 148 BasicBlock *BB = nullptr; 149 // The ICMP for this comparison. 150 ICmpInst *CmpI = nullptr; 151 // The terminating branch. 152 BranchInst *BranchI = nullptr; 153 154 private: 155 BCEAtom Lhs_; 156 BCEAtom Rhs_; 157 int SizeBits_ = 0; 158 }; 159 160 bool BCECmpBlock::doesOtherWork() const { 161 AssertConsistent(); 162 // TODO(courbet): Can we allow some other things ? This is very conservative. 163 // We might be able to get away with anything does does not have any side 164 // effects outside of the basic block. 165 // Note: The GEPs and/or loads are not necessarily in the same block. 166 for (const Instruction &Inst : *BB) { 167 if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) { 168 if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true; 169 } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) { 170 if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true; 171 } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) { 172 if (C != CmpI) return true; 173 } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) { 174 if (Br != BranchI) return true; 175 } else { 176 return true; 177 } 178 } 179 return false; 180 } 181 182 // Visit the given comparison. If this is a comparison between two valid 183 // BCE atoms, returns the comparison. 184 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 185 const ICmpInst::Predicate ExpectedPredicate) { 186 if (CmpI->getPredicate() == ExpectedPredicate) { 187 DEBUG(dbgs() << "cmp " 188 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 189 << "\n"); 190 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 191 if (!Lhs.Base()) return {}; 192 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 193 if (!Rhs.Base()) return {}; 194 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 195 CmpI->getOperand(0)->getType()->getScalarSizeInBits()); 196 } 197 return {}; 198 } 199 200 // Visit the given comparison block. If this is a comparison between two valid 201 // BCE atoms, returns the comparison. 202 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 203 const BasicBlock *const PhiBlock) { 204 if (Block->empty()) return {}; 205 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 206 if (!BranchI) return {}; 207 DEBUG(dbgs() << "branch\n"); 208 if (BranchI->isUnconditional()) { 209 // In this case, we expect an incoming value which is the result of the 210 // comparison. This is the last link in the chain of comparisons (note 211 // that this does not mean that this is the last incoming value, blocks 212 // can be reordered). 213 auto *const CmpI = dyn_cast<ICmpInst>(Val); 214 if (!CmpI) return {}; 215 DEBUG(dbgs() << "icmp\n"); 216 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 217 Result.CmpI = CmpI; 218 Result.BranchI = BranchI; 219 return Result; 220 } else { 221 // In this case, we expect a constant incoming value (the comparison is 222 // chained). 223 const auto *const Const = dyn_cast<ConstantInt>(Val); 224 DEBUG(dbgs() << "const\n"); 225 if (!Const->isZero()) return {}; 226 DEBUG(dbgs() << "false\n"); 227 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 228 if (!CmpI) return {}; 229 DEBUG(dbgs() << "icmp\n"); 230 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 231 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 232 auto Result = visitICmp( 233 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 234 Result.CmpI = CmpI; 235 Result.BranchI = BranchI; 236 return Result; 237 } 238 return {}; 239 } 240 241 // A chain of comparisons. 242 class BCECmpChain { 243 public: 244 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); 245 246 int size() const { return Comparisons_.size(); } 247 248 #ifdef MERGEICMPS_DOT_ON 249 void dump() const; 250 #endif // MERGEICMPS_DOT_ON 251 252 bool simplify(const TargetLibraryInfo *const TLI); 253 254 private: 255 static bool IsContiguous(const BCECmpBlock &First, 256 const BCECmpBlock &Second) { 257 return First.Lhs().Base() == Second.Lhs().Base() && 258 First.Rhs().Base() == Second.Rhs().Base() && 259 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 260 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 261 } 262 263 // Merges the given comparison blocks into one memcmp block and update 264 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 265 // null, the merged block will link to the phi block. 266 static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 267 BasicBlock *const NextBBInChain, PHINode &Phi, 268 const TargetLibraryInfo *const TLI); 269 270 PHINode &Phi_; 271 std::vector<BCECmpBlock> Comparisons_; 272 // The original entry block (before sorting); 273 BasicBlock *EntryBlock_; 274 }; 275 276 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) 277 : Phi_(Phi) { 278 assert(!Blocks.empty() && "a chain should have at least one block"); 279 // Now look inside blocks to check for BCE comparisons. 280 std::vector<BCECmpBlock> Comparisons; 281 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { 282 BasicBlock *const Block = Blocks[BlockIdx]; 283 assert(Block && "invalid block"); 284 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 285 Block, Phi.getParent()); 286 Comparison.BB = Block; 287 if (!Comparison.IsValid()) { 288 DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n"); 289 return; 290 } 291 if (Comparison.doesOtherWork()) { 292 DEBUG(dbgs() << "block '" << Comparison.BB->getName() 293 << "' does extra work besides compare\n"); 294 if (BlockIdx == 0) { // First block. 295 // TODO(courbet): The first block can do other things, and we should 296 // split them apart in a separate block before the comparison chain. 297 // Right now we just discard it and make the chain shorter. 298 DEBUG(dbgs() 299 << "ignoring first block '" << Comparison.BB->getName() 300 << "' that does extra work besides compare\n"); 301 continue; 302 } 303 // TODO(courbet): Right now we abort the whole chain. We could be 304 // merging only the blocks that don't do other work and resume the 305 // chain from there. For example: 306 // if (a[0] == b[0]) { // bb1 307 // if (a[1] == b[1]) { // bb2 308 // some_value = 3; //bb3 309 // if (a[2] == b[2]) { //bb3 310 // do a ton of stuff //bb4 311 // } 312 // } 313 // } 314 // 315 // This is: 316 // 317 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 318 // \ \ \ \ 319 // ne ne ne \ 320 // \ \ \ v 321 // +------------+-----------+----------> bb_phi 322 // 323 // We can only merge the first two comparisons, because bb3* does 324 // "other work" (setting some_value to 3). 325 // We could still merge bb1 and bb2 though. 326 return; 327 } 328 DEBUG(dbgs() << "Block '" << Comparison.BB->getName()<< "': Found cmp of " 329 << Comparison.SizeBits() << " bits between " 330 << Comparison.Lhs().Base() << " + " << Comparison.Lhs().Offset 331 << " and " << Comparison.Rhs().Base() << " + " 332 << Comparison.Rhs().Offset << "\n"); 333 DEBUG(dbgs() << "\n"); 334 Comparisons.push_back(Comparison); 335 } 336 assert(!Comparisons.empty() && "chain with no BCE basic blocks"); 337 EntryBlock_ = Comparisons[0].BB; 338 Comparisons_ = std::move(Comparisons); 339 #ifdef MERGEICMPS_DOT_ON 340 errs() << "BEFORE REORDERING:\n\n"; 341 dump(); 342 #endif // MERGEICMPS_DOT_ON 343 // Reorder blocks by LHS. We can do that without changing the 344 // semantics because we are only accessing dereferencable memory. 345 std::sort(Comparisons_.begin(), Comparisons_.end(), 346 [](const BCECmpBlock &a, const BCECmpBlock &b) { 347 return a.Lhs() < b.Lhs(); 348 }); 349 #ifdef MERGEICMPS_DOT_ON 350 errs() << "AFTER REORDERING:\n\n"; 351 dump(); 352 #endif // MERGEICMPS_DOT_ON 353 } 354 355 #ifdef MERGEICMPS_DOT_ON 356 void BCECmpChain::dump() const { 357 errs() << "digraph dag {\n"; 358 errs() << " graph [bgcolor=transparent];\n"; 359 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 360 errs() << " edge [color=black];\n"; 361 for (size_t I = 0; I < Comparisons_.size(); ++I) { 362 const auto &Comparison = Comparisons_[I]; 363 errs() << " \"" << I << "\" [label=\"%" 364 << Comparison.Lhs().Base()->getName() << " + " 365 << Comparison.Lhs().Offset << " == %" 366 << Comparison.Rhs().Base()->getName() << " + " 367 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 368 << " bytes)\"];\n"; 369 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 370 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 371 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 372 } 373 errs() << " \"Phi\" [label=\"Phi\"];\n"; 374 errs() << "}\n\n"; 375 } 376 #endif // MERGEICMPS_DOT_ON 377 378 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { 379 // First pass to check if there is at least one merge. If not, we don't do 380 // anything and we keep analysis passes intact. 381 { 382 bool AtLeastOneMerged = false; 383 for (size_t I = 1; I < Comparisons_.size(); ++I) { 384 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 385 AtLeastOneMerged = true; 386 break; 387 } 388 } 389 if (!AtLeastOneMerged) return false; 390 } 391 392 // Remove phi references to comparison blocks, they will be rebuilt as we 393 // merge the blocks. 394 for (const auto &Comparison : Comparisons_) { 395 Phi_.removeIncomingValue(Comparison.BB, false); 396 } 397 398 // Point the predecessors of the chain to the first comparison block (which is 399 // the new entry point). 400 if (EntryBlock_ != Comparisons_[0].BB) 401 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 402 403 // Effectively merge blocks. 404 int NumMerged = 1; 405 for (size_t I = 1; I < Comparisons_.size(); ++I) { 406 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 407 ++NumMerged; 408 } else { 409 // Merge all previous comparisons and start a new merge block. 410 mergeComparisons( 411 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 412 Comparisons_[I].BB, Phi_, TLI); 413 NumMerged = 1; 414 } 415 } 416 mergeComparisons(makeArrayRef(Comparisons_) 417 .slice(Comparisons_.size() - NumMerged, NumMerged), 418 nullptr, Phi_, TLI); 419 420 return true; 421 } 422 423 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 424 BasicBlock *const NextBBInChain, 425 PHINode &Phi, 426 const TargetLibraryInfo *const TLI) { 427 assert(!Comparisons.empty()); 428 const auto &FirstComparison = *Comparisons.begin(); 429 BasicBlock *const BB = FirstComparison.BB; 430 LLVMContext &Context = BB->getContext(); 431 432 if (Comparisons.size() >= 2) { 433 DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 434 const auto TotalSize = 435 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 436 [](int Size, const BCECmpBlock &C) { 437 return Size + C.SizeBits(); 438 }) / 439 8; 440 441 // Incoming edges do not need to be updated, and both GEPs are already 442 // computing the right address, we just need to: 443 // - replace the two loads and the icmp with the memcmp 444 // - update the branch 445 // - update the incoming values in the phi. 446 FirstComparison.BranchI->eraseFromParent(); 447 FirstComparison.CmpI->eraseFromParent(); 448 FirstComparison.Lhs().LoadI->eraseFromParent(); 449 FirstComparison.Rhs().LoadI->eraseFromParent(); 450 451 IRBuilder<> Builder(BB); 452 const auto &DL = Phi.getModule()->getDataLayout(); 453 Value *const MemCmpCall = emitMemCmp( 454 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 455 Builder, DL, TLI); 456 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 457 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 458 459 // Add a branch to the next basic block in the chain. 460 if (NextBBInChain) { 461 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 462 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 463 } else { 464 Builder.CreateBr(Phi.getParent()); 465 Phi.addIncoming(MemCmpIsZero, BB); 466 } 467 468 // Delete merged blocks. 469 for (size_t I = 1; I < Comparisons.size(); ++I) { 470 BasicBlock *CBB = Comparisons[I].BB; 471 CBB->replaceAllUsesWith(BB); 472 CBB->eraseFromParent(); 473 } 474 } else { 475 assert(Comparisons.size() == 1); 476 // There are no blocks to merge, but we still need to update the branches. 477 DEBUG(dbgs() << "Only one comparison, updating branches\n"); 478 if (NextBBInChain) { 479 if (FirstComparison.BranchI->isConditional()) { 480 DEBUG(dbgs() << "conditional -> conditional\n"); 481 // Just update the "true" target, the "false" target should already be 482 // the phi block. 483 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 484 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 485 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 486 } else { 487 DEBUG(dbgs() << "unconditional -> conditional\n"); 488 // Replace the unconditional branch by a conditional one. 489 FirstComparison.BranchI->eraseFromParent(); 490 IRBuilder<> Builder(BB); 491 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 492 Phi.getParent()); 493 Phi.addIncoming(FirstComparison.CmpI, BB); 494 } 495 } else { 496 if (FirstComparison.BranchI->isConditional()) { 497 DEBUG(dbgs() << "conditional -> unconditional\n"); 498 // Replace the conditional branch by an unconditional one. 499 FirstComparison.BranchI->eraseFromParent(); 500 IRBuilder<> Builder(BB); 501 Builder.CreateBr(Phi.getParent()); 502 Phi.addIncoming(FirstComparison.CmpI, BB); 503 } else { 504 DEBUG(dbgs() << "unconditional -> unconditional\n"); 505 Phi.addIncoming(FirstComparison.CmpI, BB); 506 } 507 } 508 } 509 } 510 511 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 512 BasicBlock *const LastBlock, 513 int NumBlocks) { 514 // Walk up from the last block to find other blocks. 515 std::vector<BasicBlock *> Blocks(NumBlocks); 516 assert(LastBlock && "invalid last block"); 517 BasicBlock *CurBlock = LastBlock; 518 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 519 if (CurBlock->hasAddressTaken()) { 520 // Somebody is jumping to the block through an address, all bets are 521 // off. 522 DEBUG(dbgs() << "skip: block " << BlockIndex 523 << " has its address taken\n"); 524 return {}; 525 } 526 Blocks[BlockIndex] = CurBlock; 527 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 528 if (!SinglePredecessor) { 529 // The block has two or more predecessors. 530 DEBUG(dbgs() << "skip: block " << BlockIndex 531 << " has two or more predecessors\n"); 532 return {}; 533 } 534 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 535 // The block does not link back to the phi. 536 DEBUG(dbgs() << "skip: block " << BlockIndex 537 << " does not link back to the phi\n"); 538 return {}; 539 } 540 CurBlock = SinglePredecessor; 541 } 542 Blocks[0] = CurBlock; 543 return Blocks; 544 } 545 546 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { 547 DEBUG(dbgs() << "processPhi()\n"); 548 if (Phi.getNumIncomingValues() <= 1) { 549 DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 550 return false; 551 } 552 // We are looking for something that has the following structure: 553 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 554 // \ \ \ \ 555 // ne ne ne \ 556 // \ \ \ v 557 // +------------+-----------+----------> bb_phi 558 // 559 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 560 // It's the only block that contributes a non-constant value to the Phi. 561 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 562 // them being the phi block. 563 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 564 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 565 566 // The blocks are not necessarily ordered in the phi, so we start from the 567 // last block and reconstruct the order. 568 BasicBlock *LastBlock = nullptr; 569 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 570 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 571 if (LastBlock) { 572 // There are several non-constant values. 573 DEBUG(dbgs() << "skip: several non-constant values\n"); 574 return false; 575 } 576 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 577 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 578 Phi.getIncomingBlock(I)) { 579 // Non-constant incoming value is not from a cmp instruction or not 580 // produced by the last block. We could end up processing the value 581 // producing block more than once. 582 // 583 // This is an uncommon case, so we bail. 584 DEBUG( 585 dbgs() 586 << "skip: non-constant value not from cmp or not from last block.\n"); 587 return false; 588 } 589 LastBlock = Phi.getIncomingBlock(I); 590 } 591 if (!LastBlock) { 592 // There is no non-constant block. 593 DEBUG(dbgs() << "skip: no non-constant block\n"); 594 return false; 595 } 596 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 597 DEBUG(dbgs() << "skip: last block non-phi successor\n"); 598 return false; 599 } 600 601 const auto Blocks = 602 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 603 if (Blocks.empty()) return false; 604 BCECmpChain CmpChain(Blocks, Phi); 605 606 if (CmpChain.size() < 2) { 607 DEBUG(dbgs() << "skip: only one compare block\n"); 608 return false; 609 } 610 611 return CmpChain.simplify(TLI); 612 } 613 614 class MergeICmps : public FunctionPass { 615 public: 616 static char ID; 617 618 MergeICmps() : FunctionPass(ID) { 619 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 620 } 621 622 bool runOnFunction(Function &F) override { 623 if (skipFunction(F)) return false; 624 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 625 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 626 auto PA = runImpl(F, &TLI, &TTI); 627 return !PA.areAllPreserved(); 628 } 629 630 private: 631 void getAnalysisUsage(AnalysisUsage &AU) const override { 632 AU.addRequired<TargetLibraryInfoWrapperPass>(); 633 AU.addRequired<TargetTransformInfoWrapperPass>(); 634 } 635 636 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 637 const TargetTransformInfo *TTI); 638 }; 639 640 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 641 const TargetTransformInfo *TTI) { 642 DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 643 644 // We only try merging comparisons if the target wants to expand memcmp later. 645 // The rationale is to avoid turning small chains into memcmp calls. 646 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); 647 648 bool MadeChange = false; 649 650 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 651 // A Phi operation is always first in a basic block. 652 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 653 MadeChange |= processPhi(*Phi, TLI); 654 } 655 656 if (MadeChange) return PreservedAnalyses::none(); 657 return PreservedAnalyses::all(); 658 } 659 660 } // namespace 661 662 char MergeICmps::ID = 0; 663 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 664 "Merge contiguous icmps into a memcmp", false, false) 665 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 666 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 667 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 668 "Merge contiguous icmps into a memcmp", false, false) 669 670 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 671