xref: /llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 34be1b0288bb9b383e86a28bbd4e2cc6512d7662)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns chains of integer comparisons into memcmp (the memcmp is
11 // later typically inlined as a chain of efficient hardware comparisons). This
12 // typically benefits c++ member or nonmember operator==().
13 //
14 // The basic idea is to replace a larger chain of integer comparisons loaded
15 // from contiguous memory locations into a smaller chain of such integer
16 // comparisons. Benefits are double:
17 //  - There are less jumps, and therefore less opportunities for mispredictions
18 //    and I-cache misses.
19 //  - Code size is smaller, both because jumps are removed and because the
20 //    encoding of a 2*n byte compare is smaller than that of two n-byte
21 //    compares.
22 
23 //===----------------------------------------------------------------------===//
24 
25 #include <algorithm>
26 #include <numeric>
27 #include <utility>
28 #include <vector>
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 
40 namespace {
41 
42 #define DEBUG_TYPE "mergeicmps"
43 
44 // A BCE atom.
45 struct BCEAtom {
46   BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
47 
48   const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
49 
50   bool operator<(const BCEAtom &O) const {
51     assert(Base() && "invalid atom");
52     assert(O.Base() && "invalid atom");
53     // Just ordering by (Base(), Offset) is sufficient. However because this
54     // means that the ordering will depend on the addresses of the base
55     // values, which are not reproducible from run to run. To guarantee
56     // stability, we use the names of the values if they exist; we sort by:
57     // (Base.getName(), Base(), Offset).
58     const int NameCmp = Base()->getName().compare(O.Base()->getName());
59     if (NameCmp == 0) {
60       if (Base() == O.Base()) {
61         return Offset.slt(O.Offset);
62       }
63       return Base() < O.Base();
64     }
65     return NameCmp < 0;
66   }
67 
68   GetElementPtrInst *GEP;
69   LoadInst *LoadI;
70   APInt Offset;
71 };
72 
73 // If this value is a load from a constant offset w.r.t. a base address, and
74 // there are no other users of the load or address, returns the base address and
75 // the offset.
76 BCEAtom visitICmpLoadOperand(Value *const Val) {
77   BCEAtom Result;
78   if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
79     DEBUG(dbgs() << "load\n");
80     if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
81       DEBUG(dbgs() << "used outside of block\n");
82       return {};
83     }
84     if (LoadI->isVolatile()) {
85       DEBUG(dbgs() << "volatile\n");
86       return {};
87     }
88     Value *const Addr = LoadI->getOperand(0);
89     if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
90       DEBUG(dbgs() << "GEP\n");
91       if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
92         DEBUG(dbgs() << "used outside of block\n");
93         return {};
94       }
95       const auto &DL = GEP->getModule()->getDataLayout();
96       if (!isDereferenceablePointer(GEP, DL)) {
97         DEBUG(dbgs() << "not dereferenceable\n");
98         // We need to make sure that we can do comparison in any order, so we
99         // require memory to be unconditionnally dereferencable.
100         return {};
101       }
102       Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
103       if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
104         Result.GEP = GEP;
105         Result.LoadI = LoadI;
106       }
107     }
108   }
109   return Result;
110 }
111 
112 // A basic block with a comparison between two BCE atoms.
113 // Note: the terminology is misleading: the comparison is symmetric, so there
114 // is no real {l/r}hs. What we want though is to have the same base on the
115 // left (resp. right), so that we can detect consecutive loads. To ensure this
116 // we put the smallest atom on the left.
117 class BCECmpBlock {
118  public:
119   BCECmpBlock() {}
120 
121   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
122       : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
123     if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
124   }
125 
126   bool IsValid() const {
127     return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
128   }
129 
130   // Assert the block is consistent: If valid, it should also have
131   // non-null members besides Lhs_ and Rhs_.
132   void AssertConsistent() const {
133     if (IsValid()) {
134       assert(BB);
135       assert(CmpI);
136       assert(BranchI);
137     }
138   }
139 
140   const BCEAtom &Lhs() const { return Lhs_; }
141   const BCEAtom &Rhs() const { return Rhs_; }
142   int SizeBits() const { return SizeBits_; }
143 
144   // Returns true if the block does other works besides comparison.
145   bool doesOtherWork() const;
146 
147   // The basic block where this comparison happens.
148   BasicBlock *BB = nullptr;
149   // The ICMP for this comparison.
150   ICmpInst *CmpI = nullptr;
151   // The terminating branch.
152   BranchInst *BranchI = nullptr;
153 
154  private:
155   BCEAtom Lhs_;
156   BCEAtom Rhs_;
157   int SizeBits_ = 0;
158 };
159 
160 bool BCECmpBlock::doesOtherWork() const {
161   AssertConsistent();
162   // TODO(courbet): Can we allow some other things ? This is very conservative.
163   // We might be able to get away with anything does does not have any side
164   // effects outside of the basic block.
165   // Note: The GEPs and/or loads are not necessarily in the same block.
166   for (const Instruction &Inst : *BB) {
167     if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) {
168       if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true;
169     } else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) {
170       if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true;
171     } else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) {
172       if (C != CmpI) return true;
173     } else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) {
174       if (Br != BranchI) return true;
175     } else {
176       return true;
177     }
178   }
179   return false;
180 }
181 
182 // Visit the given comparison. If this is a comparison between two valid
183 // BCE atoms, returns the comparison.
184 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
185                       const ICmpInst::Predicate ExpectedPredicate) {
186   if (CmpI->getPredicate() == ExpectedPredicate) {
187     DEBUG(dbgs() << "cmp "
188                  << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
189                  << "\n");
190     auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
191     if (!Lhs.Base()) return {};
192     auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
193     if (!Rhs.Base()) return {};
194     return BCECmpBlock(std::move(Lhs), std::move(Rhs),
195                        CmpI->getOperand(0)->getType()->getScalarSizeInBits());
196   }
197   return {};
198 }
199 
200 // Visit the given comparison block. If this is a comparison between two valid
201 // BCE atoms, returns the comparison.
202 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
203                           const BasicBlock *const PhiBlock) {
204   if (Block->empty()) return {};
205   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
206   if (!BranchI) return {};
207   DEBUG(dbgs() << "branch\n");
208   if (BranchI->isUnconditional()) {
209     // In this case, we expect an incoming value which is the result of the
210     // comparison. This is the last link in the chain of comparisons (note
211     // that this does not mean that this is the last incoming value, blocks
212     // can be reordered).
213     auto *const CmpI = dyn_cast<ICmpInst>(Val);
214     if (!CmpI) return {};
215     DEBUG(dbgs() << "icmp\n");
216     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
217     Result.CmpI = CmpI;
218     Result.BranchI = BranchI;
219     return Result;
220   } else {
221     // In this case, we expect a constant incoming value (the comparison is
222     // chained).
223     const auto *const Const = dyn_cast<ConstantInt>(Val);
224     DEBUG(dbgs() << "const\n");
225     if (!Const->isZero()) return {};
226     DEBUG(dbgs() << "false\n");
227     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
228     if (!CmpI) return {};
229     DEBUG(dbgs() << "icmp\n");
230     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
231     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
232     auto Result = visitICmp(
233         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
234     Result.CmpI = CmpI;
235     Result.BranchI = BranchI;
236     return Result;
237   }
238   return {};
239 }
240 
241 // A chain of comparisons.
242 class BCECmpChain {
243  public:
244   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi);
245 
246   int size() const { return Comparisons_.size(); }
247 
248 #ifdef MERGEICMPS_DOT_ON
249   void dump() const;
250 #endif  // MERGEICMPS_DOT_ON
251 
252   bool simplify(const TargetLibraryInfo *const TLI);
253 
254  private:
255   static bool IsContiguous(const BCECmpBlock &First,
256                            const BCECmpBlock &Second) {
257     return First.Lhs().Base() == Second.Lhs().Base() &&
258            First.Rhs().Base() == Second.Rhs().Base() &&
259            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
260            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
261   }
262 
263   // Merges the given comparison blocks into one memcmp block and update
264   // branches. Comparisons are assumed to be continguous. If NextBBInChain is
265   // null, the merged block will link to the phi block.
266   static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
267                                BasicBlock *const NextBBInChain, PHINode &Phi,
268                                const TargetLibraryInfo *const TLI);
269 
270   PHINode &Phi_;
271   std::vector<BCECmpBlock> Comparisons_;
272   // The original entry block (before sorting);
273   BasicBlock *EntryBlock_;
274 };
275 
276 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi)
277     : Phi_(Phi) {
278   assert(!Blocks.empty() && "a chain should have at least one block");
279   // Now look inside blocks to check for BCE comparisons.
280   std::vector<BCECmpBlock> Comparisons;
281   for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
282     BasicBlock *const Block = Blocks[BlockIdx];
283     assert(Block && "invalid block");
284     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
285                                            Block, Phi.getParent());
286     Comparison.BB = Block;
287     if (!Comparison.IsValid()) {
288       DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n");
289       return;
290     }
291     if (Comparison.doesOtherWork()) {
292       DEBUG(dbgs() << "block '" << Comparison.BB->getName()
293                    << "' does extra work besides compare\n");
294       if (BlockIdx == 0) {  // First block.
295         // TODO(courbet): The first block can do other things, and we should
296         // split them apart in a separate block before the comparison chain.
297         // Right now we just discard it and make the chain shorter.
298         DEBUG(dbgs()
299               << "ignoring first block '" << Comparison.BB->getName()
300               << "' that does extra work besides compare\n");
301         continue;
302       }
303       // TODO(courbet): Right now we abort the whole chain. We could be
304       // merging only the blocks that don't do other work and resume the
305       // chain from there. For example:
306       //  if (a[0] == b[0]) {  // bb1
307       //    if (a[1] == b[1]) {  // bb2
308       //      some_value = 3; //bb3
309       //      if (a[2] == b[2]) { //bb3
310       //        do a ton of stuff  //bb4
311       //      }
312       //    }
313       //  }
314       //
315       // This is:
316       //
317       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
318       //  \            \           \               \
319       //   ne           ne          ne              \
320       //    \            \           \               v
321       //     +------------+-----------+----------> bb_phi
322       //
323       // We can only merge the first two comparisons, because bb3* does
324       // "other work" (setting some_value to 3).
325       // We could still merge bb1 and bb2 though.
326       return;
327     }
328     DEBUG(dbgs() << "Block '" << Comparison.BB->getName()<< "': Found cmp of "
329                  << Comparison.SizeBits() << " bits between "
330                  << Comparison.Lhs().Base() << " + " << Comparison.Lhs().Offset
331                  << " and " << Comparison.Rhs().Base() << " + "
332                  << Comparison.Rhs().Offset << "\n");
333     DEBUG(dbgs() << "\n");
334     Comparisons.push_back(Comparison);
335   }
336   assert(!Comparisons.empty() && "chain with no BCE basic blocks");
337   EntryBlock_ = Comparisons[0].BB;
338   Comparisons_ = std::move(Comparisons);
339 #ifdef MERGEICMPS_DOT_ON
340   errs() << "BEFORE REORDERING:\n\n";
341   dump();
342 #endif  // MERGEICMPS_DOT_ON
343   // Reorder blocks by LHS. We can do that without changing the
344   // semantics because we are only accessing dereferencable memory.
345   std::sort(Comparisons_.begin(), Comparisons_.end(),
346             [](const BCECmpBlock &a, const BCECmpBlock &b) {
347               return a.Lhs() < b.Lhs();
348             });
349 #ifdef MERGEICMPS_DOT_ON
350   errs() << "AFTER REORDERING:\n\n";
351   dump();
352 #endif  // MERGEICMPS_DOT_ON
353 }
354 
355 #ifdef MERGEICMPS_DOT_ON
356 void BCECmpChain::dump() const {
357   errs() << "digraph dag {\n";
358   errs() << " graph [bgcolor=transparent];\n";
359   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
360   errs() << " edge [color=black];\n";
361   for (size_t I = 0; I < Comparisons_.size(); ++I) {
362     const auto &Comparison = Comparisons_[I];
363     errs() << " \"" << I << "\" [label=\"%"
364            << Comparison.Lhs().Base()->getName() << " + "
365            << Comparison.Lhs().Offset << " == %"
366            << Comparison.Rhs().Base()->getName() << " + "
367            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
368            << " bytes)\"];\n";
369     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
370     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
371     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
372   }
373   errs() << " \"Phi\" [label=\"Phi\"];\n";
374   errs() << "}\n\n";
375 }
376 #endif  // MERGEICMPS_DOT_ON
377 
378 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) {
379   // First pass to check if there is at least one merge. If not, we don't do
380   // anything and we keep analysis passes intact.
381   {
382     bool AtLeastOneMerged = false;
383     for (size_t I = 1; I < Comparisons_.size(); ++I) {
384       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
385         AtLeastOneMerged = true;
386         break;
387       }
388     }
389     if (!AtLeastOneMerged) return false;
390   }
391 
392   // Remove phi references to comparison blocks, they will be rebuilt as we
393   // merge the blocks.
394   for (const auto &Comparison : Comparisons_) {
395     Phi_.removeIncomingValue(Comparison.BB, false);
396   }
397 
398   // Point the predecessors of the chain to the first comparison block (which is
399   // the new entry point).
400   if (EntryBlock_ != Comparisons_[0].BB)
401     EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
402 
403   // Effectively merge blocks.
404   int NumMerged = 1;
405   for (size_t I = 1; I < Comparisons_.size(); ++I) {
406     if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
407       ++NumMerged;
408     } else {
409       // Merge all previous comparisons and start a new merge block.
410       mergeComparisons(
411           makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
412           Comparisons_[I].BB, Phi_, TLI);
413       NumMerged = 1;
414     }
415   }
416   mergeComparisons(makeArrayRef(Comparisons_)
417                        .slice(Comparisons_.size() - NumMerged, NumMerged),
418                    nullptr, Phi_, TLI);
419 
420   return true;
421 }
422 
423 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
424                                    BasicBlock *const NextBBInChain,
425                                    PHINode &Phi,
426                                    const TargetLibraryInfo *const TLI) {
427   assert(!Comparisons.empty());
428   const auto &FirstComparison = *Comparisons.begin();
429   BasicBlock *const BB = FirstComparison.BB;
430   LLVMContext &Context = BB->getContext();
431 
432   if (Comparisons.size() >= 2) {
433     DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
434     const auto TotalSize =
435         std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
436                         [](int Size, const BCECmpBlock &C) {
437                           return Size + C.SizeBits();
438                         }) /
439         8;
440 
441     // Incoming edges do not need to be updated, and both GEPs are already
442     // computing the right address, we just need to:
443     //   - replace the two loads and the icmp with the memcmp
444     //   - update the branch
445     //   - update the incoming values in the phi.
446     FirstComparison.BranchI->eraseFromParent();
447     FirstComparison.CmpI->eraseFromParent();
448     FirstComparison.Lhs().LoadI->eraseFromParent();
449     FirstComparison.Rhs().LoadI->eraseFromParent();
450 
451     IRBuilder<> Builder(BB);
452     const auto &DL = Phi.getModule()->getDataLayout();
453     Value *const MemCmpCall = emitMemCmp(
454         FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
455         Builder, DL, TLI);
456     Value *const MemCmpIsZero = Builder.CreateICmpEQ(
457         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
458 
459     // Add a branch to the next basic block in the chain.
460     if (NextBBInChain) {
461       Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
462       Phi.addIncoming(ConstantInt::getFalse(Context), BB);
463     } else {
464       Builder.CreateBr(Phi.getParent());
465       Phi.addIncoming(MemCmpIsZero, BB);
466     }
467 
468     // Delete merged blocks.
469     for (size_t I = 1; I < Comparisons.size(); ++I) {
470       BasicBlock *CBB = Comparisons[I].BB;
471       CBB->replaceAllUsesWith(BB);
472       CBB->eraseFromParent();
473     }
474   } else {
475     assert(Comparisons.size() == 1);
476     // There are no blocks to merge, but we still need to update the branches.
477     DEBUG(dbgs() << "Only one comparison, updating branches\n");
478     if (NextBBInChain) {
479       if (FirstComparison.BranchI->isConditional()) {
480         DEBUG(dbgs() << "conditional -> conditional\n");
481         // Just update the "true" target, the "false" target should already be
482         // the phi block.
483         assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
484         FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
485         Phi.addIncoming(ConstantInt::getFalse(Context), BB);
486       } else {
487         DEBUG(dbgs() << "unconditional -> conditional\n");
488         // Replace the unconditional branch by a conditional one.
489         FirstComparison.BranchI->eraseFromParent();
490         IRBuilder<> Builder(BB);
491         Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
492                              Phi.getParent());
493         Phi.addIncoming(FirstComparison.CmpI, BB);
494       }
495     } else {
496       if (FirstComparison.BranchI->isConditional()) {
497         DEBUG(dbgs() << "conditional -> unconditional\n");
498         // Replace the conditional branch by an unconditional one.
499         FirstComparison.BranchI->eraseFromParent();
500         IRBuilder<> Builder(BB);
501         Builder.CreateBr(Phi.getParent());
502         Phi.addIncoming(FirstComparison.CmpI, BB);
503       } else {
504         DEBUG(dbgs() << "unconditional -> unconditional\n");
505         Phi.addIncoming(FirstComparison.CmpI, BB);
506       }
507     }
508   }
509 }
510 
511 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
512                                            BasicBlock *const LastBlock,
513                                            int NumBlocks) {
514   // Walk up from the last block to find other blocks.
515   std::vector<BasicBlock *> Blocks(NumBlocks);
516   assert(LastBlock && "invalid last block");
517   BasicBlock *CurBlock = LastBlock;
518   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
519     if (CurBlock->hasAddressTaken()) {
520       // Somebody is jumping to the block through an address, all bets are
521       // off.
522       DEBUG(dbgs() << "skip: block " << BlockIndex
523                    << " has its address taken\n");
524       return {};
525     }
526     Blocks[BlockIndex] = CurBlock;
527     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
528     if (!SinglePredecessor) {
529       // The block has two or more predecessors.
530       DEBUG(dbgs() << "skip: block " << BlockIndex
531                    << " has two or more predecessors\n");
532       return {};
533     }
534     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
535       // The block does not link back to the phi.
536       DEBUG(dbgs() << "skip: block " << BlockIndex
537                    << " does not link back to the phi\n");
538       return {};
539     }
540     CurBlock = SinglePredecessor;
541   }
542   Blocks[0] = CurBlock;
543   return Blocks;
544 }
545 
546 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) {
547   DEBUG(dbgs() << "processPhi()\n");
548   if (Phi.getNumIncomingValues() <= 1) {
549     DEBUG(dbgs() << "skip: only one incoming value in phi\n");
550     return false;
551   }
552   // We are looking for something that has the following structure:
553   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
554   //     \            \           \               \
555   //      ne           ne          ne              \
556   //       \            \           \               v
557   //        +------------+-----------+----------> bb_phi
558   //
559   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
560   //    It's the only block that contributes a non-constant value to the Phi.
561   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
562   //    them being the phi block.
563   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
564   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
565 
566   // The blocks are not necessarily ordered in the phi, so we start from the
567   // last block and reconstruct the order.
568   BasicBlock *LastBlock = nullptr;
569   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
570     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
571     if (LastBlock) {
572       // There are several non-constant values.
573       DEBUG(dbgs() << "skip: several non-constant values\n");
574       return false;
575     }
576     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
577         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
578             Phi.getIncomingBlock(I)) {
579       // Non-constant incoming value is not from a cmp instruction or not
580       // produced by the last block. We could end up processing the value
581       // producing block more than once.
582       //
583       // This is an uncommon case, so we bail.
584       DEBUG(
585           dbgs()
586           << "skip: non-constant value not from cmp or not from last block.\n");
587       return false;
588     }
589     LastBlock = Phi.getIncomingBlock(I);
590   }
591   if (!LastBlock) {
592     // There is no non-constant block.
593     DEBUG(dbgs() << "skip: no non-constant block\n");
594     return false;
595   }
596   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
597     DEBUG(dbgs() << "skip: last block non-phi successor\n");
598     return false;
599   }
600 
601   const auto Blocks =
602       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
603   if (Blocks.empty()) return false;
604   BCECmpChain CmpChain(Blocks, Phi);
605 
606   if (CmpChain.size() < 2) {
607     DEBUG(dbgs() << "skip: only one compare block\n");
608     return false;
609   }
610 
611   return CmpChain.simplify(TLI);
612 }
613 
614 class MergeICmps : public FunctionPass {
615  public:
616   static char ID;
617 
618   MergeICmps() : FunctionPass(ID) {
619     initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
620   }
621 
622   bool runOnFunction(Function &F) override {
623     if (skipFunction(F)) return false;
624     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
625     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
626     auto PA = runImpl(F, &TLI, &TTI);
627     return !PA.areAllPreserved();
628   }
629 
630  private:
631   void getAnalysisUsage(AnalysisUsage &AU) const override {
632     AU.addRequired<TargetLibraryInfoWrapperPass>();
633     AU.addRequired<TargetTransformInfoWrapperPass>();
634   }
635 
636   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
637                             const TargetTransformInfo *TTI);
638 };
639 
640 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
641                                       const TargetTransformInfo *TTI) {
642   DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
643 
644   // We only try merging comparisons if the target wants to expand memcmp later.
645   // The rationale is to avoid turning small chains into memcmp calls.
646   if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
647 
648   bool MadeChange = false;
649 
650   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
651     // A Phi operation is always first in a basic block.
652     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
653       MadeChange |= processPhi(*Phi, TLI);
654   }
655 
656   if (MadeChange) return PreservedAnalyses::none();
657   return PreservedAnalyses::all();
658 }
659 
660 }  // namespace
661 
662 char MergeICmps::ID = 0;
663 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
664                       "Merge contiguous icmps into a memcmp", false, false)
665 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
666 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
667 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
668                     "Merge contiguous icmps into a memcmp", false, false)
669 
670 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
671