1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns chains of integer comparisons into memcmp (the memcmp is 11 // later typically inlined as a chain of efficient hardware comparisons). This 12 // typically benefits c++ member or nonmember operator==(). 13 // 14 // The basic idea is to replace a larger chain of integer comparisons loaded 15 // from contiguous memory locations into a smaller chain of such integer 16 // comparisons. Benefits are double: 17 // - There are less jumps, and therefore less opportunities for mispredictions 18 // and I-cache misses. 19 // - Code size is smaller, both because jumps are removed and because the 20 // encoding of a 2*n byte compare is smaller than that of two n-byte 21 // compares. 22 23 //===----------------------------------------------------------------------===// 24 25 #include <algorithm> 26 #include <numeric> 27 #include <utility> 28 #include <vector> 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 40 namespace { 41 42 #define DEBUG_TYPE "mergeicmps" 43 44 // Returns true if the instruction is a simple load or a simple store 45 static bool isSimpleLoadOrStore(const Instruction *I) { 46 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 47 return LI->isSimple(); 48 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 49 return SI->isSimple(); 50 return false; 51 } 52 53 // A BCE atom. 54 struct BCEAtom { 55 BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} 56 57 const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } 58 59 bool operator<(const BCEAtom &O) const { 60 assert(Base() && "invalid atom"); 61 assert(O.Base() && "invalid atom"); 62 // Just ordering by (Base(), Offset) is sufficient. However because this 63 // means that the ordering will depend on the addresses of the base 64 // values, which are not reproducible from run to run. To guarantee 65 // stability, we use the names of the values if they exist; we sort by: 66 // (Base.getName(), Base(), Offset). 67 const int NameCmp = Base()->getName().compare(O.Base()->getName()); 68 if (NameCmp == 0) { 69 if (Base() == O.Base()) { 70 return Offset.slt(O.Offset); 71 } 72 return Base() < O.Base(); 73 } 74 return NameCmp < 0; 75 } 76 77 GetElementPtrInst *GEP; 78 LoadInst *LoadI; 79 APInt Offset; 80 }; 81 82 // If this value is a load from a constant offset w.r.t. a base address, and 83 // there are no other users of the load or address, returns the base address and 84 // the offset. 85 BCEAtom visitICmpLoadOperand(Value *const Val) { 86 BCEAtom Result; 87 if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { 88 LLVM_DEBUG(dbgs() << "load\n"); 89 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 90 LLVM_DEBUG(dbgs() << "used outside of block\n"); 91 return {}; 92 } 93 // Do not optimize atomic loads to non-atomic memcmp 94 if (!LoadI->isSimple()) { 95 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 96 return {}; 97 } 98 Value *const Addr = LoadI->getOperand(0); 99 if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { 100 LLVM_DEBUG(dbgs() << "GEP\n"); 101 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 102 LLVM_DEBUG(dbgs() << "used outside of block\n"); 103 return {}; 104 } 105 const auto &DL = GEP->getModule()->getDataLayout(); 106 if (!isDereferenceablePointer(GEP, DL)) { 107 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 108 // We need to make sure that we can do comparison in any order, so we 109 // require memory to be unconditionnally dereferencable. 110 return {}; 111 } 112 Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 113 if (GEP->accumulateConstantOffset(DL, Result.Offset)) { 114 Result.GEP = GEP; 115 Result.LoadI = LoadI; 116 } 117 } 118 } 119 return Result; 120 } 121 122 // A basic block with a comparison between two BCE atoms. 123 // The block might do extra work besides the atom comparison, in which case 124 // doesOtherWork() returns true. Under some conditions, the block can be 125 // split into the atom comparison part and the "other work" part 126 // (see canSplit()). 127 // Note: the terminology is misleading: the comparison is symmetric, so there 128 // is no real {l/r}hs. What we want though is to have the same base on the 129 // left (resp. right), so that we can detect consecutive loads. To ensure this 130 // we put the smallest atom on the left. 131 class BCECmpBlock { 132 public: 133 BCECmpBlock() {} 134 135 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 136 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { 137 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 138 } 139 140 bool IsValid() const { 141 return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; 142 } 143 144 // Assert the block is consistent: If valid, it should also have 145 // non-null members besides Lhs_ and Rhs_. 146 void AssertConsistent() const { 147 if (IsValid()) { 148 assert(BB); 149 assert(CmpI); 150 assert(BranchI); 151 } 152 } 153 154 const BCEAtom &Lhs() const { return Lhs_; } 155 const BCEAtom &Rhs() const { return Rhs_; } 156 int SizeBits() const { return SizeBits_; } 157 158 // Returns true if the block does other works besides comparison. 159 bool doesOtherWork() const; 160 161 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 162 // instructions in the block. 163 bool canSplit(AliasAnalysis *AA) const; 164 165 // Return true if this all the relevant instructions in the BCE-cmp-block can 166 // be sunk below this instruction. By doing this, we know we can separate the 167 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 168 // block. 169 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &, 170 AliasAnalysis *AA) const; 171 172 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 173 // instructions. Split the old block and move all non-BCE-cmp-insts into the 174 // new parent block. 175 void split(BasicBlock *NewParent, AliasAnalysis *AA) const; 176 177 // The basic block where this comparison happens. 178 BasicBlock *BB = nullptr; 179 // The ICMP for this comparison. 180 ICmpInst *CmpI = nullptr; 181 // The terminating branch. 182 BranchInst *BranchI = nullptr; 183 // The block requires splitting. 184 bool RequireSplit = false; 185 186 private: 187 BCEAtom Lhs_; 188 BCEAtom Rhs_; 189 int SizeBits_ = 0; 190 }; 191 192 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 193 DenseSet<Instruction *> &BlockInsts, 194 AliasAnalysis *AA) const { 195 // If this instruction has side effects and its in middle of the BCE cmp block 196 // instructions, then bail for now. 197 if (Inst->mayHaveSideEffects()) { 198 // Bail if this is not a simple load or store 199 if (!isSimpleLoadOrStore(Inst)) 200 return false; 201 // Disallow stores that might alias the BCE operands 202 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); 203 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); 204 if (isModSet(AA->getModRefInfo(Inst, LLoc)) || 205 isModSet(AA->getModRefInfo(Inst, RLoc))) 206 return false; 207 } 208 // Make sure this instruction does not use any of the BCE cmp block 209 // instructions as operand. 210 for (auto BI : BlockInsts) { 211 if (is_contained(Inst->operands(), BI)) 212 return false; 213 } 214 return true; 215 } 216 217 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const { 218 DenseSet<Instruction *> BlockInsts( 219 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 220 llvm::SmallVector<Instruction *, 4> OtherInsts; 221 for (Instruction &Inst : *BB) { 222 if (BlockInsts.count(&Inst)) 223 continue; 224 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && 225 "Split unsplittable block"); 226 // This is a non-BCE-cmp-block instruction. And it can be separated 227 // from the BCE-cmp-block instruction. 228 OtherInsts.push_back(&Inst); 229 } 230 231 // Do the actual spliting. 232 for (Instruction *Inst : reverse(OtherInsts)) { 233 Inst->moveBefore(&*NewParent->begin()); 234 } 235 } 236 237 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const { 238 DenseSet<Instruction *> BlockInsts( 239 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 240 for (Instruction &Inst : *BB) { 241 if (!BlockInsts.count(&Inst)) { 242 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) 243 return false; 244 } 245 } 246 return true; 247 } 248 249 bool BCECmpBlock::doesOtherWork() const { 250 AssertConsistent(); 251 // All the instructions we care about in the BCE cmp block. 252 DenseSet<Instruction *> BlockInsts( 253 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 254 // TODO(courbet): Can we allow some other things ? This is very conservative. 255 // We might be able to get away with anything does not have any side 256 // effects outside of the basic block. 257 // Note: The GEPs and/or loads are not necessarily in the same block. 258 for (const Instruction &Inst : *BB) { 259 if (!BlockInsts.count(&Inst)) 260 return true; 261 } 262 return false; 263 } 264 265 // Visit the given comparison. If this is a comparison between two valid 266 // BCE atoms, returns the comparison. 267 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 268 const ICmpInst::Predicate ExpectedPredicate) { 269 // The comparison can only be used once: 270 // - For intermediate blocks, as a branch condition. 271 // - For the final block, as an incoming value for the Phi. 272 // If there are any other uses of the comparison, we cannot merge it with 273 // other comparisons as we would create an orphan use of the value. 274 if (!CmpI->hasOneUse()) { 275 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 276 return {}; 277 } 278 if (CmpI->getPredicate() == ExpectedPredicate) { 279 LLVM_DEBUG(dbgs() << "cmp " 280 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 281 << "\n"); 282 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); 283 if (!Lhs.Base()) return {}; 284 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); 285 if (!Rhs.Base()) return {}; 286 const auto &DL = CmpI->getModule()->getDataLayout(); 287 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 288 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); 289 } 290 return {}; 291 } 292 293 // Visit the given comparison block. If this is a comparison between two valid 294 // BCE atoms, returns the comparison. 295 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 296 const BasicBlock *const PhiBlock) { 297 if (Block->empty()) return {}; 298 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 299 if (!BranchI) return {}; 300 LLVM_DEBUG(dbgs() << "branch\n"); 301 if (BranchI->isUnconditional()) { 302 // In this case, we expect an incoming value which is the result of the 303 // comparison. This is the last link in the chain of comparisons (note 304 // that this does not mean that this is the last incoming value, blocks 305 // can be reordered). 306 auto *const CmpI = dyn_cast<ICmpInst>(Val); 307 if (!CmpI) return {}; 308 LLVM_DEBUG(dbgs() << "icmp\n"); 309 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); 310 Result.CmpI = CmpI; 311 Result.BranchI = BranchI; 312 return Result; 313 } else { 314 // In this case, we expect a constant incoming value (the comparison is 315 // chained). 316 const auto *const Const = dyn_cast<ConstantInt>(Val); 317 LLVM_DEBUG(dbgs() << "const\n"); 318 if (!Const->isZero()) return {}; 319 LLVM_DEBUG(dbgs() << "false\n"); 320 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 321 if (!CmpI) return {}; 322 LLVM_DEBUG(dbgs() << "icmp\n"); 323 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 324 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 325 auto Result = visitICmp( 326 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); 327 Result.CmpI = CmpI; 328 Result.BranchI = BranchI; 329 return Result; 330 } 331 return {}; 332 } 333 334 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 335 BCECmpBlock &Comparison) { 336 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 337 << "': Found cmp of " << Comparison.SizeBits() 338 << " bits between " << Comparison.Lhs().Base() << " + " 339 << Comparison.Lhs().Offset << " and " 340 << Comparison.Rhs().Base() << " + " 341 << Comparison.Rhs().Offset << "\n"); 342 LLVM_DEBUG(dbgs() << "\n"); 343 Comparisons.push_back(Comparison); 344 } 345 346 // A chain of comparisons. 347 class BCECmpChain { 348 public: 349 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 350 AliasAnalysis *AA); 351 352 int size() const { return Comparisons_.size(); } 353 354 #ifdef MERGEICMPS_DOT_ON 355 void dump() const; 356 #endif // MERGEICMPS_DOT_ON 357 358 bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA); 359 360 private: 361 static bool IsContiguous(const BCECmpBlock &First, 362 const BCECmpBlock &Second) { 363 return First.Lhs().Base() == Second.Lhs().Base() && 364 First.Rhs().Base() == Second.Rhs().Base() && 365 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 366 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 367 } 368 369 // Merges the given comparison blocks into one memcmp block and update 370 // branches. Comparisons are assumed to be continguous. If NextBBInChain is 371 // null, the merged block will link to the phi block. 372 void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 373 BasicBlock *const NextBBInChain, PHINode &Phi, 374 const TargetLibraryInfo *const TLI, AliasAnalysis *AA); 375 376 PHINode &Phi_; 377 std::vector<BCECmpBlock> Comparisons_; 378 // The original entry block (before sorting); 379 BasicBlock *EntryBlock_; 380 }; 381 382 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 383 AliasAnalysis *AA) 384 : Phi_(Phi) { 385 assert(!Blocks.empty() && "a chain should have at least one block"); 386 // Now look inside blocks to check for BCE comparisons. 387 std::vector<BCECmpBlock> Comparisons; 388 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { 389 BasicBlock *const Block = Blocks[BlockIdx]; 390 assert(Block && "invalid block"); 391 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 392 Block, Phi.getParent()); 393 Comparison.BB = Block; 394 if (!Comparison.IsValid()) { 395 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 396 return; 397 } 398 if (Comparison.doesOtherWork()) { 399 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() 400 << "' does extra work besides compare\n"); 401 if (Comparisons.empty()) { 402 // This is the initial block in the chain, in case this block does other 403 // work, we can try to split the block and move the irrelevant 404 // instructions to the predecessor. 405 // 406 // If this is not the initial block in the chain, splitting it wont 407 // work. 408 // 409 // As once split, there will still be instructions before the BCE cmp 410 // instructions that do other work in program order, i.e. within the 411 // chain before sorting. Unless we can abort the chain at this point 412 // and start anew. 413 // 414 // NOTE: we only handle block with single predecessor for now. 415 if (Comparison.canSplit(AA)) { 416 LLVM_DEBUG(dbgs() 417 << "Split initial block '" << Comparison.BB->getName() 418 << "' that does extra work besides compare\n"); 419 Comparison.RequireSplit = true; 420 enqueueBlock(Comparisons, Comparison); 421 } else { 422 LLVM_DEBUG(dbgs() 423 << "ignoring initial block '" << Comparison.BB->getName() 424 << "' that does extra work besides compare\n"); 425 } 426 continue; 427 } 428 // TODO(courbet): Right now we abort the whole chain. We could be 429 // merging only the blocks that don't do other work and resume the 430 // chain from there. For example: 431 // if (a[0] == b[0]) { // bb1 432 // if (a[1] == b[1]) { // bb2 433 // some_value = 3; //bb3 434 // if (a[2] == b[2]) { //bb3 435 // do a ton of stuff //bb4 436 // } 437 // } 438 // } 439 // 440 // This is: 441 // 442 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 443 // \ \ \ \ 444 // ne ne ne \ 445 // \ \ \ v 446 // +------------+-----------+----------> bb_phi 447 // 448 // We can only merge the first two comparisons, because bb3* does 449 // "other work" (setting some_value to 3). 450 // We could still merge bb1 and bb2 though. 451 return; 452 } 453 enqueueBlock(Comparisons, Comparison); 454 } 455 456 // It is possible we have no suitable comparison to merge. 457 if (Comparisons.empty()) { 458 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 459 return; 460 } 461 EntryBlock_ = Comparisons[0].BB; 462 Comparisons_ = std::move(Comparisons); 463 #ifdef MERGEICMPS_DOT_ON 464 errs() << "BEFORE REORDERING:\n\n"; 465 dump(); 466 #endif // MERGEICMPS_DOT_ON 467 // Reorder blocks by LHS. We can do that without changing the 468 // semantics because we are only accessing dereferencable memory. 469 llvm::sort(Comparisons_, [](const BCECmpBlock &a, const BCECmpBlock &b) { 470 return a.Lhs() < b.Lhs(); 471 }); 472 #ifdef MERGEICMPS_DOT_ON 473 errs() << "AFTER REORDERING:\n\n"; 474 dump(); 475 #endif // MERGEICMPS_DOT_ON 476 } 477 478 #ifdef MERGEICMPS_DOT_ON 479 void BCECmpChain::dump() const { 480 errs() << "digraph dag {\n"; 481 errs() << " graph [bgcolor=transparent];\n"; 482 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 483 errs() << " edge [color=black];\n"; 484 for (size_t I = 0; I < Comparisons_.size(); ++I) { 485 const auto &Comparison = Comparisons_[I]; 486 errs() << " \"" << I << "\" [label=\"%" 487 << Comparison.Lhs().Base()->getName() << " + " 488 << Comparison.Lhs().Offset << " == %" 489 << Comparison.Rhs().Base()->getName() << " + " 490 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 491 << " bytes)\"];\n"; 492 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 493 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 494 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 495 } 496 errs() << " \"Phi\" [label=\"Phi\"];\n"; 497 errs() << "}\n\n"; 498 } 499 #endif // MERGEICMPS_DOT_ON 500 501 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI, 502 AliasAnalysis *AA) { 503 // First pass to check if there is at least one merge. If not, we don't do 504 // anything and we keep analysis passes intact. 505 { 506 bool AtLeastOneMerged = false; 507 for (size_t I = 1; I < Comparisons_.size(); ++I) { 508 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 509 AtLeastOneMerged = true; 510 break; 511 } 512 } 513 if (!AtLeastOneMerged) return false; 514 } 515 516 // Remove phi references to comparison blocks, they will be rebuilt as we 517 // merge the blocks. 518 for (const auto &Comparison : Comparisons_) { 519 Phi_.removeIncomingValue(Comparison.BB, false); 520 } 521 522 // If entry block is part of the chain, we need to make the first block 523 // of the chain the new entry block of the function. 524 BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock(); 525 for (size_t I = 1; I < Comparisons_.size(); ++I) { 526 if (Entry == Comparisons_[I].BB) { 527 BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "", 528 Entry->getParent(), Entry); 529 BranchInst::Create(Entry, NEntryBB); 530 break; 531 } 532 } 533 534 // Point the predecessors of the chain to the first comparison block (which is 535 // the new entry point) and update the entry block of the chain. 536 if (EntryBlock_ != Comparisons_[0].BB) { 537 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); 538 EntryBlock_ = Comparisons_[0].BB; 539 } 540 541 // Effectively merge blocks. 542 int NumMerged = 1; 543 for (size_t I = 1; I < Comparisons_.size(); ++I) { 544 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { 545 ++NumMerged; 546 } else { 547 // Merge all previous comparisons and start a new merge block. 548 mergeComparisons( 549 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), 550 Comparisons_[I].BB, Phi_, TLI, AA); 551 NumMerged = 1; 552 } 553 } 554 mergeComparisons(makeArrayRef(Comparisons_) 555 .slice(Comparisons_.size() - NumMerged, NumMerged), 556 nullptr, Phi_, TLI, AA); 557 558 return true; 559 } 560 561 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 562 BasicBlock *const NextBBInChain, 563 PHINode &Phi, 564 const TargetLibraryInfo *const TLI, 565 AliasAnalysis *AA) { 566 assert(!Comparisons.empty()); 567 const auto &FirstComparison = *Comparisons.begin(); 568 BasicBlock *const BB = FirstComparison.BB; 569 LLVMContext &Context = BB->getContext(); 570 571 if (Comparisons.size() >= 2) { 572 // If there is one block that requires splitting, we do it now, i.e. 573 // just before we know we will collapse the chain. The instructions 574 // can be executed before any of the instructions in the chain. 575 auto C = std::find_if(Comparisons.begin(), Comparisons.end(), 576 [](const BCECmpBlock &B) { return B.RequireSplit; }); 577 if (C != Comparisons.end()) 578 C->split(EntryBlock_, AA); 579 580 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); 581 const auto TotalSize = 582 std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 583 [](int Size, const BCECmpBlock &C) { 584 return Size + C.SizeBits(); 585 }) / 586 8; 587 588 // Incoming edges do not need to be updated, and both GEPs are already 589 // computing the right address, we just need to: 590 // - replace the two loads and the icmp with the memcmp 591 // - update the branch 592 // - update the incoming values in the phi. 593 FirstComparison.BranchI->eraseFromParent(); 594 FirstComparison.CmpI->eraseFromParent(); 595 FirstComparison.Lhs().LoadI->eraseFromParent(); 596 FirstComparison.Rhs().LoadI->eraseFromParent(); 597 598 IRBuilder<> Builder(BB); 599 const auto &DL = Phi.getModule()->getDataLayout(); 600 Value *const MemCmpCall = emitMemCmp( 601 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, 602 ConstantInt::get(DL.getIntPtrType(Context), TotalSize), 603 Builder, DL, TLI); 604 Value *const MemCmpIsZero = Builder.CreateICmpEQ( 605 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 606 607 // Add a branch to the next basic block in the chain. 608 if (NextBBInChain) { 609 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); 610 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 611 } else { 612 Builder.CreateBr(Phi.getParent()); 613 Phi.addIncoming(MemCmpIsZero, BB); 614 } 615 616 // Delete merged blocks. 617 for (size_t I = 1; I < Comparisons.size(); ++I) { 618 BasicBlock *CBB = Comparisons[I].BB; 619 CBB->replaceAllUsesWith(BB); 620 CBB->eraseFromParent(); 621 } 622 } else { 623 assert(Comparisons.size() == 1); 624 // There are no blocks to merge, but we still need to update the branches. 625 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 626 if (NextBBInChain) { 627 if (FirstComparison.BranchI->isConditional()) { 628 LLVM_DEBUG(dbgs() << "conditional -> conditional\n"); 629 // Just update the "true" target, the "false" target should already be 630 // the phi block. 631 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); 632 FirstComparison.BranchI->setSuccessor(0, NextBBInChain); 633 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 634 } else { 635 LLVM_DEBUG(dbgs() << "unconditional -> conditional\n"); 636 // Replace the unconditional branch by a conditional one. 637 FirstComparison.BranchI->eraseFromParent(); 638 IRBuilder<> Builder(BB); 639 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, 640 Phi.getParent()); 641 Phi.addIncoming(FirstComparison.CmpI, BB); 642 } 643 } else { 644 if (FirstComparison.BranchI->isConditional()) { 645 LLVM_DEBUG(dbgs() << "conditional -> unconditional\n"); 646 // Replace the conditional branch by an unconditional one. 647 FirstComparison.BranchI->eraseFromParent(); 648 IRBuilder<> Builder(BB); 649 Builder.CreateBr(Phi.getParent()); 650 Phi.addIncoming(FirstComparison.CmpI, BB); 651 } else { 652 LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n"); 653 Phi.addIncoming(FirstComparison.CmpI, BB); 654 } 655 } 656 } 657 } 658 659 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 660 BasicBlock *const LastBlock, 661 int NumBlocks) { 662 // Walk up from the last block to find other blocks. 663 std::vector<BasicBlock *> Blocks(NumBlocks); 664 assert(LastBlock && "invalid last block"); 665 BasicBlock *CurBlock = LastBlock; 666 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 667 if (CurBlock->hasAddressTaken()) { 668 // Somebody is jumping to the block through an address, all bets are 669 // off. 670 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 671 << " has its address taken\n"); 672 return {}; 673 } 674 Blocks[BlockIndex] = CurBlock; 675 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 676 if (!SinglePredecessor) { 677 // The block has two or more predecessors. 678 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 679 << " has two or more predecessors\n"); 680 return {}; 681 } 682 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 683 // The block does not link back to the phi. 684 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 685 << " does not link back to the phi\n"); 686 return {}; 687 } 688 CurBlock = SinglePredecessor; 689 } 690 Blocks[0] = CurBlock; 691 return Blocks; 692 } 693 694 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI, 695 AliasAnalysis *AA) { 696 LLVM_DEBUG(dbgs() << "processPhi()\n"); 697 if (Phi.getNumIncomingValues() <= 1) { 698 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 699 return false; 700 } 701 // We are looking for something that has the following structure: 702 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 703 // \ \ \ \ 704 // ne ne ne \ 705 // \ \ \ v 706 // +------------+-----------+----------> bb_phi 707 // 708 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 709 // It's the only block that contributes a non-constant value to the Phi. 710 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 711 // them being the phi block. 712 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 713 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 714 715 // The blocks are not necessarily ordered in the phi, so we start from the 716 // last block and reconstruct the order. 717 BasicBlock *LastBlock = nullptr; 718 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 719 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 720 if (LastBlock) { 721 // There are several non-constant values. 722 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 723 return false; 724 } 725 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 726 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 727 Phi.getIncomingBlock(I)) { 728 // Non-constant incoming value is not from a cmp instruction or not 729 // produced by the last block. We could end up processing the value 730 // producing block more than once. 731 // 732 // This is an uncommon case, so we bail. 733 LLVM_DEBUG( 734 dbgs() 735 << "skip: non-constant value not from cmp or not from last block.\n"); 736 return false; 737 } 738 LastBlock = Phi.getIncomingBlock(I); 739 } 740 if (!LastBlock) { 741 // There is no non-constant block. 742 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 743 return false; 744 } 745 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 746 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 747 return false; 748 } 749 750 const auto Blocks = 751 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 752 if (Blocks.empty()) return false; 753 BCECmpChain CmpChain(Blocks, Phi, AA); 754 755 if (CmpChain.size() < 2) { 756 LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); 757 return false; 758 } 759 760 return CmpChain.simplify(TLI, AA); 761 } 762 763 class MergeICmps : public FunctionPass { 764 public: 765 static char ID; 766 767 MergeICmps() : FunctionPass(ID) { 768 initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); 769 } 770 771 bool runOnFunction(Function &F) override { 772 if (skipFunction(F)) return false; 773 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 774 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 775 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 776 auto PA = runImpl(F, &TLI, &TTI, AA); 777 return !PA.areAllPreserved(); 778 } 779 780 private: 781 void getAnalysisUsage(AnalysisUsage &AU) const override { 782 AU.addRequired<TargetLibraryInfoWrapperPass>(); 783 AU.addRequired<TargetTransformInfoWrapperPass>(); 784 AU.addRequired<AAResultsWrapperPass>(); 785 } 786 787 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 788 const TargetTransformInfo *TTI, AliasAnalysis *AA); 789 }; 790 791 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, 792 const TargetTransformInfo *TTI, 793 AliasAnalysis *AA) { 794 LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); 795 796 // We only try merging comparisons if the target wants to expand memcmp later. 797 // The rationale is to avoid turning small chains into memcmp calls. 798 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); 799 800 // If we don't have memcmp avaiable we can't emit calls to it. 801 if (!TLI->has(LibFunc_memcmp)) 802 return PreservedAnalyses::all(); 803 804 bool MadeChange = false; 805 806 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 807 // A Phi operation is always first in a basic block. 808 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 809 MadeChange |= processPhi(*Phi, TLI, AA); 810 } 811 812 if (MadeChange) return PreservedAnalyses::none(); 813 return PreservedAnalyses::all(); 814 } 815 816 } // namespace 817 818 char MergeICmps::ID = 0; 819 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", 820 "Merge contiguous icmps into a memcmp", false, false) 821 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 822 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 823 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 824 INITIALIZE_PASS_END(MergeICmps, "mergeicmps", 825 "Merge contiguous icmps into a memcmp", false, false) 826 827 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } 828