xref: /llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 2b7ae47ccb5039a3716e637a91f4f65833decbc4)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns chains of integer comparisons into memcmp (the memcmp is
11 // later typically inlined as a chain of efficient hardware comparisons). This
12 // typically benefits c++ member or nonmember operator==().
13 //
14 // The basic idea is to replace a larger chain of integer comparisons loaded
15 // from contiguous memory locations into a smaller chain of such integer
16 // comparisons. Benefits are double:
17 //  - There are less jumps, and therefore less opportunities for mispredictions
18 //    and I-cache misses.
19 //  - Code size is smaller, both because jumps are removed and because the
20 //    encoding of a 2*n byte compare is smaller than that of two n-byte
21 //    compares.
22 
23 //===----------------------------------------------------------------------===//
24 
25 #include <algorithm>
26 #include <numeric>
27 #include <utility>
28 #include <vector>
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 
40 namespace {
41 
42 #define DEBUG_TYPE "mergeicmps"
43 
44 // Returns true if the instruction is a simple load or a simple store
45 static bool isSimpleLoadOrStore(const Instruction *I) {
46   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
47     return LI->isSimple();
48   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
49     return SI->isSimple();
50   return false;
51 }
52 
53 // A BCE atom.
54 struct BCEAtom {
55   BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
56 
57   const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
58 
59   bool operator<(const BCEAtom &O) const {
60     assert(Base() && "invalid atom");
61     assert(O.Base() && "invalid atom");
62     // Just ordering by (Base(), Offset) is sufficient. However because this
63     // means that the ordering will depend on the addresses of the base
64     // values, which are not reproducible from run to run. To guarantee
65     // stability, we use the names of the values if they exist; we sort by:
66     // (Base.getName(), Base(), Offset).
67     const int NameCmp = Base()->getName().compare(O.Base()->getName());
68     if (NameCmp == 0) {
69       if (Base() == O.Base()) {
70         return Offset.slt(O.Offset);
71       }
72       return Base() < O.Base();
73     }
74     return NameCmp < 0;
75   }
76 
77   GetElementPtrInst *GEP;
78   LoadInst *LoadI;
79   APInt Offset;
80 };
81 
82 // If this value is a load from a constant offset w.r.t. a base address, and
83 // there are no other users of the load or address, returns the base address and
84 // the offset.
85 BCEAtom visitICmpLoadOperand(Value *const Val) {
86   BCEAtom Result;
87   if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
88     LLVM_DEBUG(dbgs() << "load\n");
89     if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
90       LLVM_DEBUG(dbgs() << "used outside of block\n");
91       return {};
92     }
93     // Do not optimize atomic loads to non-atomic memcmp
94     if (!LoadI->isSimple()) {
95       LLVM_DEBUG(dbgs() << "volatile or atomic\n");
96       return {};
97     }
98     Value *const Addr = LoadI->getOperand(0);
99     if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
100       LLVM_DEBUG(dbgs() << "GEP\n");
101       if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
102         LLVM_DEBUG(dbgs() << "used outside of block\n");
103         return {};
104       }
105       const auto &DL = GEP->getModule()->getDataLayout();
106       if (!isDereferenceablePointer(GEP, DL)) {
107         LLVM_DEBUG(dbgs() << "not dereferenceable\n");
108         // We need to make sure that we can do comparison in any order, so we
109         // require memory to be unconditionnally dereferencable.
110         return {};
111       }
112       Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
113       if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
114         Result.GEP = GEP;
115         Result.LoadI = LoadI;
116       }
117     }
118   }
119   return Result;
120 }
121 
122 // A basic block with a comparison between two BCE atoms.
123 // The block might do extra work besides the atom comparison, in which case
124 // doesOtherWork() returns true. Under some conditions, the block can be
125 // split into the atom comparison part and the "other work" part
126 // (see canSplit()).
127 // Note: the terminology is misleading: the comparison is symmetric, so there
128 // is no real {l/r}hs. What we want though is to have the same base on the
129 // left (resp. right), so that we can detect consecutive loads. To ensure this
130 // we put the smallest atom on the left.
131 class BCECmpBlock {
132  public:
133   BCECmpBlock() {}
134 
135   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
136       : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
137     if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
138   }
139 
140   bool IsValid() const {
141     return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
142   }
143 
144   // Assert the block is consistent: If valid, it should also have
145   // non-null members besides Lhs_ and Rhs_.
146   void AssertConsistent() const {
147     if (IsValid()) {
148       assert(BB);
149       assert(CmpI);
150       assert(BranchI);
151     }
152   }
153 
154   const BCEAtom &Lhs() const { return Lhs_; }
155   const BCEAtom &Rhs() const { return Rhs_; }
156   int SizeBits() const { return SizeBits_; }
157 
158   // Returns true if the block does other works besides comparison.
159   bool doesOtherWork() const;
160 
161   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
162   // instructions in the block.
163   bool canSplit(AliasAnalysis *AA) const;
164 
165   // Return true if this all the relevant instructions in the BCE-cmp-block can
166   // be sunk below this instruction. By doing this, we know we can separate the
167   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
168   // block.
169   bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
170                          AliasAnalysis *AA) const;
171 
172   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
173   // instructions. Split the old block and move all non-BCE-cmp-insts into the
174   // new parent block.
175   void split(BasicBlock *NewParent, AliasAnalysis *AA) const;
176 
177   // The basic block where this comparison happens.
178   BasicBlock *BB = nullptr;
179   // The ICMP for this comparison.
180   ICmpInst *CmpI = nullptr;
181   // The terminating branch.
182   BranchInst *BranchI = nullptr;
183   // The block requires splitting.
184   bool RequireSplit = false;
185 
186 private:
187   BCEAtom Lhs_;
188   BCEAtom Rhs_;
189   int SizeBits_ = 0;
190 };
191 
192 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
193                                     DenseSet<Instruction *> &BlockInsts,
194                                     AliasAnalysis *AA) const {
195   // If this instruction has side effects and its in middle of the BCE cmp block
196   // instructions, then bail for now.
197   if (Inst->mayHaveSideEffects()) {
198     // Bail if this is not a simple load or store
199     if (!isSimpleLoadOrStore(Inst))
200       return false;
201     // Disallow stores that might alias the BCE operands
202     MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
203     MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
204     if (isModSet(AA->getModRefInfo(Inst, LLoc)) ||
205         isModSet(AA->getModRefInfo(Inst, RLoc)))
206         return false;
207   }
208   // Make sure this instruction does not use any of the BCE cmp block
209   // instructions as operand.
210   for (auto BI : BlockInsts) {
211     if (is_contained(Inst->operands(), BI))
212       return false;
213   }
214   return true;
215 }
216 
217 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const {
218   DenseSet<Instruction *> BlockInsts(
219       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
220   llvm::SmallVector<Instruction *, 4> OtherInsts;
221   for (Instruction &Inst : *BB) {
222     if (BlockInsts.count(&Inst))
223       continue;
224       assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
225              "Split unsplittable block");
226     // This is a non-BCE-cmp-block instruction. And it can be separated
227     // from the BCE-cmp-block instruction.
228     OtherInsts.push_back(&Inst);
229   }
230 
231   // Do the actual spliting.
232   for (Instruction *Inst : reverse(OtherInsts)) {
233     Inst->moveBefore(&*NewParent->begin());
234   }
235 }
236 
237 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const {
238   DenseSet<Instruction *> BlockInsts(
239       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
240   for (Instruction &Inst : *BB) {
241     if (!BlockInsts.count(&Inst)) {
242       if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
243         return false;
244     }
245   }
246   return true;
247 }
248 
249 bool BCECmpBlock::doesOtherWork() const {
250   AssertConsistent();
251   // All the instructions we care about in the BCE cmp block.
252   DenseSet<Instruction *> BlockInsts(
253       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
254   // TODO(courbet): Can we allow some other things ? This is very conservative.
255   // We might be able to get away with anything does not have any side
256   // effects outside of the basic block.
257   // Note: The GEPs and/or loads are not necessarily in the same block.
258   for (const Instruction &Inst : *BB) {
259     if (!BlockInsts.count(&Inst))
260       return true;
261   }
262   return false;
263 }
264 
265 // Visit the given comparison. If this is a comparison between two valid
266 // BCE atoms, returns the comparison.
267 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
268                       const ICmpInst::Predicate ExpectedPredicate) {
269   // The comparison can only be used once:
270   //  - For intermediate blocks, as a branch condition.
271   //  - For the final block, as an incoming value for the Phi.
272   // If there are any other uses of the comparison, we cannot merge it with
273   // other comparisons as we would create an orphan use of the value.
274   if (!CmpI->hasOneUse()) {
275     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
276     return {};
277   }
278   if (CmpI->getPredicate() == ExpectedPredicate) {
279     LLVM_DEBUG(dbgs() << "cmp "
280                       << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
281                       << "\n");
282     auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
283     if (!Lhs.Base()) return {};
284     auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
285     if (!Rhs.Base()) return {};
286     const auto &DL = CmpI->getModule()->getDataLayout();
287     return BCECmpBlock(std::move(Lhs), std::move(Rhs),
288                        DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
289   }
290   return {};
291 }
292 
293 // Visit the given comparison block. If this is a comparison between two valid
294 // BCE atoms, returns the comparison.
295 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
296                           const BasicBlock *const PhiBlock) {
297   if (Block->empty()) return {};
298   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
299   if (!BranchI) return {};
300   LLVM_DEBUG(dbgs() << "branch\n");
301   if (BranchI->isUnconditional()) {
302     // In this case, we expect an incoming value which is the result of the
303     // comparison. This is the last link in the chain of comparisons (note
304     // that this does not mean that this is the last incoming value, blocks
305     // can be reordered).
306     auto *const CmpI = dyn_cast<ICmpInst>(Val);
307     if (!CmpI) return {};
308     LLVM_DEBUG(dbgs() << "icmp\n");
309     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
310     Result.CmpI = CmpI;
311     Result.BranchI = BranchI;
312     return Result;
313   } else {
314     // In this case, we expect a constant incoming value (the comparison is
315     // chained).
316     const auto *const Const = dyn_cast<ConstantInt>(Val);
317     LLVM_DEBUG(dbgs() << "const\n");
318     if (!Const->isZero()) return {};
319     LLVM_DEBUG(dbgs() << "false\n");
320     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
321     if (!CmpI) return {};
322     LLVM_DEBUG(dbgs() << "icmp\n");
323     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
324     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
325     auto Result = visitICmp(
326         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
327     Result.CmpI = CmpI;
328     Result.BranchI = BranchI;
329     return Result;
330   }
331   return {};
332 }
333 
334 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
335                                 BCECmpBlock &Comparison) {
336   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
337                     << "': Found cmp of " << Comparison.SizeBits()
338                     << " bits between " << Comparison.Lhs().Base() << " + "
339                     << Comparison.Lhs().Offset << " and "
340                     << Comparison.Rhs().Base() << " + "
341                     << Comparison.Rhs().Offset << "\n");
342   LLVM_DEBUG(dbgs() << "\n");
343   Comparisons.push_back(Comparison);
344 }
345 
346 // A chain of comparisons.
347 class BCECmpChain {
348  public:
349   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
350               AliasAnalysis *AA);
351 
352   int size() const { return Comparisons_.size(); }
353 
354 #ifdef MERGEICMPS_DOT_ON
355   void dump() const;
356 #endif  // MERGEICMPS_DOT_ON
357 
358   bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
359 
360  private:
361   static bool IsContiguous(const BCECmpBlock &First,
362                            const BCECmpBlock &Second) {
363     return First.Lhs().Base() == Second.Lhs().Base() &&
364            First.Rhs().Base() == Second.Rhs().Base() &&
365            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
366            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
367   }
368 
369   // Merges the given comparison blocks into one memcmp block and update
370   // branches. Comparisons are assumed to be continguous. If NextBBInChain is
371   // null, the merged block will link to the phi block.
372   void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
373                         BasicBlock *const NextBBInChain, PHINode &Phi,
374                         const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
375 
376   PHINode &Phi_;
377   std::vector<BCECmpBlock> Comparisons_;
378   // The original entry block (before sorting);
379   BasicBlock *EntryBlock_;
380 };
381 
382 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
383                          AliasAnalysis *AA)
384     : Phi_(Phi) {
385   assert(!Blocks.empty() && "a chain should have at least one block");
386   // Now look inside blocks to check for BCE comparisons.
387   std::vector<BCECmpBlock> Comparisons;
388   for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
389     BasicBlock *const Block = Blocks[BlockIdx];
390     assert(Block && "invalid block");
391     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
392                                            Block, Phi.getParent());
393     Comparison.BB = Block;
394     if (!Comparison.IsValid()) {
395       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
396       return;
397     }
398     if (Comparison.doesOtherWork()) {
399       LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
400                         << "' does extra work besides compare\n");
401       if (Comparisons.empty()) {
402         // This is the initial block in the chain, in case this block does other
403         // work, we can try to split the block and move the irrelevant
404         // instructions to the predecessor.
405         //
406         // If this is not the initial block in the chain, splitting it wont
407         // work.
408         //
409         // As once split, there will still be instructions before the BCE cmp
410         // instructions that do other work in program order, i.e. within the
411         // chain before sorting. Unless we can abort the chain at this point
412         // and start anew.
413         //
414         // NOTE: we only handle block with single predecessor for now.
415         if (Comparison.canSplit(AA)) {
416           LLVM_DEBUG(dbgs()
417                      << "Split initial block '" << Comparison.BB->getName()
418                      << "' that does extra work besides compare\n");
419           Comparison.RequireSplit = true;
420           enqueueBlock(Comparisons, Comparison);
421         } else {
422           LLVM_DEBUG(dbgs()
423                      << "ignoring initial block '" << Comparison.BB->getName()
424                      << "' that does extra work besides compare\n");
425         }
426         continue;
427       }
428       // TODO(courbet): Right now we abort the whole chain. We could be
429       // merging only the blocks that don't do other work and resume the
430       // chain from there. For example:
431       //  if (a[0] == b[0]) {  // bb1
432       //    if (a[1] == b[1]) {  // bb2
433       //      some_value = 3; //bb3
434       //      if (a[2] == b[2]) { //bb3
435       //        do a ton of stuff  //bb4
436       //      }
437       //    }
438       //  }
439       //
440       // This is:
441       //
442       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
443       //  \            \           \               \
444       //   ne           ne          ne              \
445       //    \            \           \               v
446       //     +------------+-----------+----------> bb_phi
447       //
448       // We can only merge the first two comparisons, because bb3* does
449       // "other work" (setting some_value to 3).
450       // We could still merge bb1 and bb2 though.
451       return;
452     }
453     enqueueBlock(Comparisons, Comparison);
454   }
455 
456   // It is possible we have no suitable comparison to merge.
457   if (Comparisons.empty()) {
458     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
459     return;
460   }
461   EntryBlock_ = Comparisons[0].BB;
462   Comparisons_ = std::move(Comparisons);
463 #ifdef MERGEICMPS_DOT_ON
464   errs() << "BEFORE REORDERING:\n\n";
465   dump();
466 #endif  // MERGEICMPS_DOT_ON
467   // Reorder blocks by LHS. We can do that without changing the
468   // semantics because we are only accessing dereferencable memory.
469   llvm::sort(Comparisons_, [](const BCECmpBlock &a, const BCECmpBlock &b) {
470     return a.Lhs() < b.Lhs();
471   });
472 #ifdef MERGEICMPS_DOT_ON
473   errs() << "AFTER REORDERING:\n\n";
474   dump();
475 #endif  // MERGEICMPS_DOT_ON
476 }
477 
478 #ifdef MERGEICMPS_DOT_ON
479 void BCECmpChain::dump() const {
480   errs() << "digraph dag {\n";
481   errs() << " graph [bgcolor=transparent];\n";
482   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
483   errs() << " edge [color=black];\n";
484   for (size_t I = 0; I < Comparisons_.size(); ++I) {
485     const auto &Comparison = Comparisons_[I];
486     errs() << " \"" << I << "\" [label=\"%"
487            << Comparison.Lhs().Base()->getName() << " + "
488            << Comparison.Lhs().Offset << " == %"
489            << Comparison.Rhs().Base()->getName() << " + "
490            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
491            << " bytes)\"];\n";
492     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
493     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
494     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
495   }
496   errs() << " \"Phi\" [label=\"Phi\"];\n";
497   errs() << "}\n\n";
498 }
499 #endif  // MERGEICMPS_DOT_ON
500 
501 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI,
502                            AliasAnalysis *AA) {
503   // First pass to check if there is at least one merge. If not, we don't do
504   // anything and we keep analysis passes intact.
505   {
506     bool AtLeastOneMerged = false;
507     for (size_t I = 1; I < Comparisons_.size(); ++I) {
508       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
509         AtLeastOneMerged = true;
510         break;
511       }
512     }
513     if (!AtLeastOneMerged) return false;
514   }
515 
516   // Remove phi references to comparison blocks, they will be rebuilt as we
517   // merge the blocks.
518   for (const auto &Comparison : Comparisons_) {
519     Phi_.removeIncomingValue(Comparison.BB, false);
520   }
521 
522   // If entry block is part of the chain, we need to make the first block
523   // of the chain the new entry block of the function.
524   BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock();
525   for (size_t I = 1; I < Comparisons_.size(); ++I) {
526     if (Entry == Comparisons_[I].BB) {
527       BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "",
528                                                 Entry->getParent(), Entry);
529       BranchInst::Create(Entry, NEntryBB);
530       break;
531     }
532   }
533 
534   // Point the predecessors of the chain to the first comparison block (which is
535   // the new entry point) and update the entry block of the chain.
536   if (EntryBlock_ != Comparisons_[0].BB) {
537     EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
538     EntryBlock_ = Comparisons_[0].BB;
539   }
540 
541   // Effectively merge blocks.
542   int NumMerged = 1;
543   for (size_t I = 1; I < Comparisons_.size(); ++I) {
544     if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
545       ++NumMerged;
546     } else {
547       // Merge all previous comparisons and start a new merge block.
548       mergeComparisons(
549           makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
550           Comparisons_[I].BB, Phi_, TLI, AA);
551       NumMerged = 1;
552     }
553   }
554   mergeComparisons(makeArrayRef(Comparisons_)
555                        .slice(Comparisons_.size() - NumMerged, NumMerged),
556                    nullptr, Phi_, TLI, AA);
557 
558   return true;
559 }
560 
561 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
562                                    BasicBlock *const NextBBInChain,
563                                    PHINode &Phi,
564                                    const TargetLibraryInfo *const TLI,
565                                    AliasAnalysis *AA) {
566   assert(!Comparisons.empty());
567   const auto &FirstComparison = *Comparisons.begin();
568   BasicBlock *const BB = FirstComparison.BB;
569   LLVMContext &Context = BB->getContext();
570 
571   if (Comparisons.size() >= 2) {
572     // If there is one block that requires splitting, we do it now, i.e.
573     // just before we know we will collapse the chain. The instructions
574     // can be executed before any of the instructions in the chain.
575     auto C = std::find_if(Comparisons.begin(), Comparisons.end(),
576                           [](const BCECmpBlock &B) { return B.RequireSplit; });
577     if (C != Comparisons.end())
578       C->split(EntryBlock_, AA);
579 
580     LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
581     const auto TotalSize =
582         std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
583                         [](int Size, const BCECmpBlock &C) {
584                           return Size + C.SizeBits();
585                         }) /
586         8;
587 
588     // Incoming edges do not need to be updated, and both GEPs are already
589     // computing the right address, we just need to:
590     //   - replace the two loads and the icmp with the memcmp
591     //   - update the branch
592     //   - update the incoming values in the phi.
593     FirstComparison.BranchI->eraseFromParent();
594     FirstComparison.CmpI->eraseFromParent();
595     FirstComparison.Lhs().LoadI->eraseFromParent();
596     FirstComparison.Rhs().LoadI->eraseFromParent();
597 
598     IRBuilder<> Builder(BB);
599     const auto &DL = Phi.getModule()->getDataLayout();
600     Value *const MemCmpCall = emitMemCmp(
601         FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
602         ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
603         Builder, DL, TLI);
604     Value *const MemCmpIsZero = Builder.CreateICmpEQ(
605         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
606 
607     // Add a branch to the next basic block in the chain.
608     if (NextBBInChain) {
609       Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
610       Phi.addIncoming(ConstantInt::getFalse(Context), BB);
611     } else {
612       Builder.CreateBr(Phi.getParent());
613       Phi.addIncoming(MemCmpIsZero, BB);
614     }
615 
616     // Delete merged blocks.
617     for (size_t I = 1; I < Comparisons.size(); ++I) {
618       BasicBlock *CBB = Comparisons[I].BB;
619       CBB->replaceAllUsesWith(BB);
620       CBB->eraseFromParent();
621     }
622   } else {
623     assert(Comparisons.size() == 1);
624     // There are no blocks to merge, but we still need to update the branches.
625     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
626     if (NextBBInChain) {
627       if (FirstComparison.BranchI->isConditional()) {
628         LLVM_DEBUG(dbgs() << "conditional -> conditional\n");
629         // Just update the "true" target, the "false" target should already be
630         // the phi block.
631         assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
632         FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
633         Phi.addIncoming(ConstantInt::getFalse(Context), BB);
634       } else {
635         LLVM_DEBUG(dbgs() << "unconditional -> conditional\n");
636         // Replace the unconditional branch by a conditional one.
637         FirstComparison.BranchI->eraseFromParent();
638         IRBuilder<> Builder(BB);
639         Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
640                              Phi.getParent());
641         Phi.addIncoming(FirstComparison.CmpI, BB);
642       }
643     } else {
644       if (FirstComparison.BranchI->isConditional()) {
645         LLVM_DEBUG(dbgs() << "conditional -> unconditional\n");
646         // Replace the conditional branch by an unconditional one.
647         FirstComparison.BranchI->eraseFromParent();
648         IRBuilder<> Builder(BB);
649         Builder.CreateBr(Phi.getParent());
650         Phi.addIncoming(FirstComparison.CmpI, BB);
651       } else {
652         LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n");
653         Phi.addIncoming(FirstComparison.CmpI, BB);
654       }
655     }
656   }
657 }
658 
659 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
660                                            BasicBlock *const LastBlock,
661                                            int NumBlocks) {
662   // Walk up from the last block to find other blocks.
663   std::vector<BasicBlock *> Blocks(NumBlocks);
664   assert(LastBlock && "invalid last block");
665   BasicBlock *CurBlock = LastBlock;
666   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
667     if (CurBlock->hasAddressTaken()) {
668       // Somebody is jumping to the block through an address, all bets are
669       // off.
670       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
671                         << " has its address taken\n");
672       return {};
673     }
674     Blocks[BlockIndex] = CurBlock;
675     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
676     if (!SinglePredecessor) {
677       // The block has two or more predecessors.
678       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
679                         << " has two or more predecessors\n");
680       return {};
681     }
682     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
683       // The block does not link back to the phi.
684       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
685                         << " does not link back to the phi\n");
686       return {};
687     }
688     CurBlock = SinglePredecessor;
689   }
690   Blocks[0] = CurBlock;
691   return Blocks;
692 }
693 
694 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI,
695                 AliasAnalysis *AA) {
696   LLVM_DEBUG(dbgs() << "processPhi()\n");
697   if (Phi.getNumIncomingValues() <= 1) {
698     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
699     return false;
700   }
701   // We are looking for something that has the following structure:
702   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
703   //     \            \           \               \
704   //      ne           ne          ne              \
705   //       \            \           \               v
706   //        +------------+-----------+----------> bb_phi
707   //
708   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
709   //    It's the only block that contributes a non-constant value to the Phi.
710   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
711   //    them being the phi block.
712   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
713   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
714 
715   // The blocks are not necessarily ordered in the phi, so we start from the
716   // last block and reconstruct the order.
717   BasicBlock *LastBlock = nullptr;
718   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
719     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
720     if (LastBlock) {
721       // There are several non-constant values.
722       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
723       return false;
724     }
725     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
726         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
727             Phi.getIncomingBlock(I)) {
728       // Non-constant incoming value is not from a cmp instruction or not
729       // produced by the last block. We could end up processing the value
730       // producing block more than once.
731       //
732       // This is an uncommon case, so we bail.
733       LLVM_DEBUG(
734           dbgs()
735           << "skip: non-constant value not from cmp or not from last block.\n");
736       return false;
737     }
738     LastBlock = Phi.getIncomingBlock(I);
739   }
740   if (!LastBlock) {
741     // There is no non-constant block.
742     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
743     return false;
744   }
745   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
746     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
747     return false;
748   }
749 
750   const auto Blocks =
751       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
752   if (Blocks.empty()) return false;
753   BCECmpChain CmpChain(Blocks, Phi, AA);
754 
755   if (CmpChain.size() < 2) {
756     LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
757     return false;
758   }
759 
760   return CmpChain.simplify(TLI, AA);
761 }
762 
763 class MergeICmps : public FunctionPass {
764  public:
765   static char ID;
766 
767   MergeICmps() : FunctionPass(ID) {
768     initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
769   }
770 
771   bool runOnFunction(Function &F) override {
772     if (skipFunction(F)) return false;
773     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
774     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
775     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
776     auto PA = runImpl(F, &TLI, &TTI, AA);
777     return !PA.areAllPreserved();
778   }
779 
780  private:
781   void getAnalysisUsage(AnalysisUsage &AU) const override {
782     AU.addRequired<TargetLibraryInfoWrapperPass>();
783     AU.addRequired<TargetTransformInfoWrapperPass>();
784     AU.addRequired<AAResultsWrapperPass>();
785   }
786 
787   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
788                             const TargetTransformInfo *TTI, AliasAnalysis *AA);
789 };
790 
791 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
792                                       const TargetTransformInfo *TTI,
793                                       AliasAnalysis *AA) {
794   LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
795 
796   // We only try merging comparisons if the target wants to expand memcmp later.
797   // The rationale is to avoid turning small chains into memcmp calls.
798   if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
799 
800   // If we don't have memcmp avaiable we can't emit calls to it.
801   if (!TLI->has(LibFunc_memcmp))
802     return PreservedAnalyses::all();
803 
804   bool MadeChange = false;
805 
806   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
807     // A Phi operation is always first in a basic block.
808     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
809       MadeChange |= processPhi(*Phi, TLI, AA);
810   }
811 
812   if (MadeChange) return PreservedAnalyses::none();
813   return PreservedAnalyses::all();
814 }
815 
816 }  // namespace
817 
818 char MergeICmps::ID = 0;
819 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
820                       "Merge contiguous icmps into a memcmp", false, false)
821 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
822 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
823 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
824 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
825                     "Merge contiguous icmps into a memcmp", false, false)
826 
827 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
828