xref: /llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
12 //
13 // The basic idea is to replace a larger chain of integer comparisons loaded
14 // from contiguous memory locations into a smaller chain of such integer
15 // comparisons. Benefits are double:
16 //  - There are less jumps, and therefore less opportunities for mispredictions
17 //    and I-cache misses.
18 //  - Code size is smaller, both because jumps are removed and because the
19 //    encoding of a 2*n byte compare is smaller than that of two n-byte
20 //    compares.
21 
22 //===----------------------------------------------------------------------===//
23 
24 #include <algorithm>
25 #include <numeric>
26 #include <utility>
27 #include <vector>
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41 #define DEBUG_TYPE "mergeicmps"
42 
43 // Returns true if the instruction is a simple load or a simple store
44 static bool isSimpleLoadOrStore(const Instruction *I) {
45   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
46     return LI->isSimple();
47   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
48     return SI->isSimple();
49   return false;
50 }
51 
52 // A BCE atom.
53 struct BCEAtom {
54   BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
55 
56   const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
57 
58   bool operator<(const BCEAtom &O) const {
59     assert(Base() && "invalid atom");
60     assert(O.Base() && "invalid atom");
61     // Just ordering by (Base(), Offset) is sufficient. However because this
62     // means that the ordering will depend on the addresses of the base
63     // values, which are not reproducible from run to run. To guarantee
64     // stability, we use the names of the values if they exist; we sort by:
65     // (Base.getName(), Base(), Offset).
66     const int NameCmp = Base()->getName().compare(O.Base()->getName());
67     if (NameCmp == 0) {
68       if (Base() == O.Base()) {
69         return Offset.slt(O.Offset);
70       }
71       return Base() < O.Base();
72     }
73     return NameCmp < 0;
74   }
75 
76   GetElementPtrInst *GEP;
77   LoadInst *LoadI;
78   APInt Offset;
79 };
80 
81 // If this value is a load from a constant offset w.r.t. a base address, and
82 // there are no other users of the load or address, returns the base address and
83 // the offset.
84 BCEAtom visitICmpLoadOperand(Value *const Val) {
85   BCEAtom Result;
86   if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
87     LLVM_DEBUG(dbgs() << "load\n");
88     if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
89       LLVM_DEBUG(dbgs() << "used outside of block\n");
90       return {};
91     }
92     // Do not optimize atomic loads to non-atomic memcmp
93     if (!LoadI->isSimple()) {
94       LLVM_DEBUG(dbgs() << "volatile or atomic\n");
95       return {};
96     }
97     Value *const Addr = LoadI->getOperand(0);
98     if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
99       LLVM_DEBUG(dbgs() << "GEP\n");
100       if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
101         LLVM_DEBUG(dbgs() << "used outside of block\n");
102         return {};
103       }
104       const auto &DL = GEP->getModule()->getDataLayout();
105       if (!isDereferenceablePointer(GEP, DL)) {
106         LLVM_DEBUG(dbgs() << "not dereferenceable\n");
107         // We need to make sure that we can do comparison in any order, so we
108         // require memory to be unconditionnally dereferencable.
109         return {};
110       }
111       Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
112       if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
113         Result.GEP = GEP;
114         Result.LoadI = LoadI;
115       }
116     }
117   }
118   return Result;
119 }
120 
121 // A basic block with a comparison between two BCE atoms.
122 // The block might do extra work besides the atom comparison, in which case
123 // doesOtherWork() returns true. Under some conditions, the block can be
124 // split into the atom comparison part and the "other work" part
125 // (see canSplit()).
126 // Note: the terminology is misleading: the comparison is symmetric, so there
127 // is no real {l/r}hs. What we want though is to have the same base on the
128 // left (resp. right), so that we can detect consecutive loads. To ensure this
129 // we put the smallest atom on the left.
130 class BCECmpBlock {
131  public:
132   BCECmpBlock() {}
133 
134   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
135       : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
136     if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
137   }
138 
139   bool IsValid() const {
140     return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
141   }
142 
143   // Assert the block is consistent: If valid, it should also have
144   // non-null members besides Lhs_ and Rhs_.
145   void AssertConsistent() const {
146     if (IsValid()) {
147       assert(BB);
148       assert(CmpI);
149       assert(BranchI);
150     }
151   }
152 
153   const BCEAtom &Lhs() const { return Lhs_; }
154   const BCEAtom &Rhs() const { return Rhs_; }
155   int SizeBits() const { return SizeBits_; }
156 
157   // Returns true if the block does other works besides comparison.
158   bool doesOtherWork() const;
159 
160   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
161   // instructions in the block.
162   bool canSplit(AliasAnalysis *AA) const;
163 
164   // Return true if this all the relevant instructions in the BCE-cmp-block can
165   // be sunk below this instruction. By doing this, we know we can separate the
166   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
167   // block.
168   bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
169                          AliasAnalysis *AA) const;
170 
171   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
172   // instructions. Split the old block and move all non-BCE-cmp-insts into the
173   // new parent block.
174   void split(BasicBlock *NewParent, AliasAnalysis *AA) const;
175 
176   // The basic block where this comparison happens.
177   BasicBlock *BB = nullptr;
178   // The ICMP for this comparison.
179   ICmpInst *CmpI = nullptr;
180   // The terminating branch.
181   BranchInst *BranchI = nullptr;
182   // The block requires splitting.
183   bool RequireSplit = false;
184 
185 private:
186   BCEAtom Lhs_;
187   BCEAtom Rhs_;
188   int SizeBits_ = 0;
189 };
190 
191 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
192                                     DenseSet<Instruction *> &BlockInsts,
193                                     AliasAnalysis *AA) const {
194   // If this instruction has side effects and its in middle of the BCE cmp block
195   // instructions, then bail for now.
196   if (Inst->mayHaveSideEffects()) {
197     // Bail if this is not a simple load or store
198     if (!isSimpleLoadOrStore(Inst))
199       return false;
200     // Disallow stores that might alias the BCE operands
201     MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
202     MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
203     if (isModSet(AA->getModRefInfo(Inst, LLoc)) ||
204         isModSet(AA->getModRefInfo(Inst, RLoc)))
205         return false;
206   }
207   // Make sure this instruction does not use any of the BCE cmp block
208   // instructions as operand.
209   for (auto BI : BlockInsts) {
210     if (is_contained(Inst->operands(), BI))
211       return false;
212   }
213   return true;
214 }
215 
216 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const {
217   DenseSet<Instruction *> BlockInsts(
218       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
219   llvm::SmallVector<Instruction *, 4> OtherInsts;
220   for (Instruction &Inst : *BB) {
221     if (BlockInsts.count(&Inst))
222       continue;
223       assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
224              "Split unsplittable block");
225     // This is a non-BCE-cmp-block instruction. And it can be separated
226     // from the BCE-cmp-block instruction.
227     OtherInsts.push_back(&Inst);
228   }
229 
230   // Do the actual spliting.
231   for (Instruction *Inst : reverse(OtherInsts)) {
232     Inst->moveBefore(&*NewParent->begin());
233   }
234 }
235 
236 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const {
237   DenseSet<Instruction *> BlockInsts(
238       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
239   for (Instruction &Inst : *BB) {
240     if (!BlockInsts.count(&Inst)) {
241       if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
242         return false;
243     }
244   }
245   return true;
246 }
247 
248 bool BCECmpBlock::doesOtherWork() const {
249   AssertConsistent();
250   // All the instructions we care about in the BCE cmp block.
251   DenseSet<Instruction *> BlockInsts(
252       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
253   // TODO(courbet): Can we allow some other things ? This is very conservative.
254   // We might be able to get away with anything does not have any side
255   // effects outside of the basic block.
256   // Note: The GEPs and/or loads are not necessarily in the same block.
257   for (const Instruction &Inst : *BB) {
258     if (!BlockInsts.count(&Inst))
259       return true;
260   }
261   return false;
262 }
263 
264 // Visit the given comparison. If this is a comparison between two valid
265 // BCE atoms, returns the comparison.
266 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
267                       const ICmpInst::Predicate ExpectedPredicate) {
268   // The comparison can only be used once:
269   //  - For intermediate blocks, as a branch condition.
270   //  - For the final block, as an incoming value for the Phi.
271   // If there are any other uses of the comparison, we cannot merge it with
272   // other comparisons as we would create an orphan use of the value.
273   if (!CmpI->hasOneUse()) {
274     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
275     return {};
276   }
277   if (CmpI->getPredicate() == ExpectedPredicate) {
278     LLVM_DEBUG(dbgs() << "cmp "
279                       << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
280                       << "\n");
281     auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
282     if (!Lhs.Base()) return {};
283     auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
284     if (!Rhs.Base()) return {};
285     const auto &DL = CmpI->getModule()->getDataLayout();
286     return BCECmpBlock(std::move(Lhs), std::move(Rhs),
287                        DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
288   }
289   return {};
290 }
291 
292 // Visit the given comparison block. If this is a comparison between two valid
293 // BCE atoms, returns the comparison.
294 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
295                           const BasicBlock *const PhiBlock) {
296   if (Block->empty()) return {};
297   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
298   if (!BranchI) return {};
299   LLVM_DEBUG(dbgs() << "branch\n");
300   if (BranchI->isUnconditional()) {
301     // In this case, we expect an incoming value which is the result of the
302     // comparison. This is the last link in the chain of comparisons (note
303     // that this does not mean that this is the last incoming value, blocks
304     // can be reordered).
305     auto *const CmpI = dyn_cast<ICmpInst>(Val);
306     if (!CmpI) return {};
307     LLVM_DEBUG(dbgs() << "icmp\n");
308     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
309     Result.CmpI = CmpI;
310     Result.BranchI = BranchI;
311     return Result;
312   } else {
313     // In this case, we expect a constant incoming value (the comparison is
314     // chained).
315     const auto *const Const = dyn_cast<ConstantInt>(Val);
316     LLVM_DEBUG(dbgs() << "const\n");
317     if (!Const->isZero()) return {};
318     LLVM_DEBUG(dbgs() << "false\n");
319     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
320     if (!CmpI) return {};
321     LLVM_DEBUG(dbgs() << "icmp\n");
322     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
323     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
324     auto Result = visitICmp(
325         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
326     Result.CmpI = CmpI;
327     Result.BranchI = BranchI;
328     return Result;
329   }
330   return {};
331 }
332 
333 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
334                                 BCECmpBlock &Comparison) {
335   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
336                     << "': Found cmp of " << Comparison.SizeBits()
337                     << " bits between " << Comparison.Lhs().Base() << " + "
338                     << Comparison.Lhs().Offset << " and "
339                     << Comparison.Rhs().Base() << " + "
340                     << Comparison.Rhs().Offset << "\n");
341   LLVM_DEBUG(dbgs() << "\n");
342   Comparisons.push_back(Comparison);
343 }
344 
345 // A chain of comparisons.
346 class BCECmpChain {
347  public:
348   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
349               AliasAnalysis *AA);
350 
351   int size() const { return Comparisons_.size(); }
352 
353 #ifdef MERGEICMPS_DOT_ON
354   void dump() const;
355 #endif  // MERGEICMPS_DOT_ON
356 
357   bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
358 
359  private:
360   static bool IsContiguous(const BCECmpBlock &First,
361                            const BCECmpBlock &Second) {
362     return First.Lhs().Base() == Second.Lhs().Base() &&
363            First.Rhs().Base() == Second.Rhs().Base() &&
364            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
365            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
366   }
367 
368   // Merges the given comparison blocks into one memcmp block and update
369   // branches. Comparisons are assumed to be continguous. If NextBBInChain is
370   // null, the merged block will link to the phi block.
371   void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
372                         BasicBlock *const NextBBInChain, PHINode &Phi,
373                         const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
374 
375   PHINode &Phi_;
376   std::vector<BCECmpBlock> Comparisons_;
377   // The original entry block (before sorting);
378   BasicBlock *EntryBlock_;
379 };
380 
381 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
382                          AliasAnalysis *AA)
383     : Phi_(Phi) {
384   assert(!Blocks.empty() && "a chain should have at least one block");
385   // Now look inside blocks to check for BCE comparisons.
386   std::vector<BCECmpBlock> Comparisons;
387   for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
388     BasicBlock *const Block = Blocks[BlockIdx];
389     assert(Block && "invalid block");
390     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
391                                            Block, Phi.getParent());
392     Comparison.BB = Block;
393     if (!Comparison.IsValid()) {
394       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
395       return;
396     }
397     if (Comparison.doesOtherWork()) {
398       LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
399                         << "' does extra work besides compare\n");
400       if (Comparisons.empty()) {
401         // This is the initial block in the chain, in case this block does other
402         // work, we can try to split the block and move the irrelevant
403         // instructions to the predecessor.
404         //
405         // If this is not the initial block in the chain, splitting it wont
406         // work.
407         //
408         // As once split, there will still be instructions before the BCE cmp
409         // instructions that do other work in program order, i.e. within the
410         // chain before sorting. Unless we can abort the chain at this point
411         // and start anew.
412         //
413         // NOTE: we only handle block with single predecessor for now.
414         if (Comparison.canSplit(AA)) {
415           LLVM_DEBUG(dbgs()
416                      << "Split initial block '" << Comparison.BB->getName()
417                      << "' that does extra work besides compare\n");
418           Comparison.RequireSplit = true;
419           enqueueBlock(Comparisons, Comparison);
420         } else {
421           LLVM_DEBUG(dbgs()
422                      << "ignoring initial block '" << Comparison.BB->getName()
423                      << "' that does extra work besides compare\n");
424         }
425         continue;
426       }
427       // TODO(courbet): Right now we abort the whole chain. We could be
428       // merging only the blocks that don't do other work and resume the
429       // chain from there. For example:
430       //  if (a[0] == b[0]) {  // bb1
431       //    if (a[1] == b[1]) {  // bb2
432       //      some_value = 3; //bb3
433       //      if (a[2] == b[2]) { //bb3
434       //        do a ton of stuff  //bb4
435       //      }
436       //    }
437       //  }
438       //
439       // This is:
440       //
441       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
442       //  \            \           \               \
443       //   ne           ne          ne              \
444       //    \            \           \               v
445       //     +------------+-----------+----------> bb_phi
446       //
447       // We can only merge the first two comparisons, because bb3* does
448       // "other work" (setting some_value to 3).
449       // We could still merge bb1 and bb2 though.
450       return;
451     }
452     enqueueBlock(Comparisons, Comparison);
453   }
454 
455   // It is possible we have no suitable comparison to merge.
456   if (Comparisons.empty()) {
457     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
458     return;
459   }
460   EntryBlock_ = Comparisons[0].BB;
461   Comparisons_ = std::move(Comparisons);
462 #ifdef MERGEICMPS_DOT_ON
463   errs() << "BEFORE REORDERING:\n\n";
464   dump();
465 #endif  // MERGEICMPS_DOT_ON
466   // Reorder blocks by LHS. We can do that without changing the
467   // semantics because we are only accessing dereferencable memory.
468   llvm::sort(Comparisons_, [](const BCECmpBlock &a, const BCECmpBlock &b) {
469     return a.Lhs() < b.Lhs();
470   });
471 #ifdef MERGEICMPS_DOT_ON
472   errs() << "AFTER REORDERING:\n\n";
473   dump();
474 #endif  // MERGEICMPS_DOT_ON
475 }
476 
477 #ifdef MERGEICMPS_DOT_ON
478 void BCECmpChain::dump() const {
479   errs() << "digraph dag {\n";
480   errs() << " graph [bgcolor=transparent];\n";
481   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
482   errs() << " edge [color=black];\n";
483   for (size_t I = 0; I < Comparisons_.size(); ++I) {
484     const auto &Comparison = Comparisons_[I];
485     errs() << " \"" << I << "\" [label=\"%"
486            << Comparison.Lhs().Base()->getName() << " + "
487            << Comparison.Lhs().Offset << " == %"
488            << Comparison.Rhs().Base()->getName() << " + "
489            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
490            << " bytes)\"];\n";
491     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
492     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
493     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
494   }
495   errs() << " \"Phi\" [label=\"Phi\"];\n";
496   errs() << "}\n\n";
497 }
498 #endif  // MERGEICMPS_DOT_ON
499 
500 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI,
501                            AliasAnalysis *AA) {
502   // First pass to check if there is at least one merge. If not, we don't do
503   // anything and we keep analysis passes intact.
504   {
505     bool AtLeastOneMerged = false;
506     for (size_t I = 1; I < Comparisons_.size(); ++I) {
507       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
508         AtLeastOneMerged = true;
509         break;
510       }
511     }
512     if (!AtLeastOneMerged) return false;
513   }
514 
515   // Remove phi references to comparison blocks, they will be rebuilt as we
516   // merge the blocks.
517   for (const auto &Comparison : Comparisons_) {
518     Phi_.removeIncomingValue(Comparison.BB, false);
519   }
520 
521   // If entry block is part of the chain, we need to make the first block
522   // of the chain the new entry block of the function.
523   BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock();
524   for (size_t I = 1; I < Comparisons_.size(); ++I) {
525     if (Entry == Comparisons_[I].BB) {
526       BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "",
527                                                 Entry->getParent(), Entry);
528       BranchInst::Create(Entry, NEntryBB);
529       break;
530     }
531   }
532 
533   // Point the predecessors of the chain to the first comparison block (which is
534   // the new entry point) and update the entry block of the chain.
535   if (EntryBlock_ != Comparisons_[0].BB) {
536     EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
537     EntryBlock_ = Comparisons_[0].BB;
538   }
539 
540   // Effectively merge blocks.
541   int NumMerged = 1;
542   for (size_t I = 1; I < Comparisons_.size(); ++I) {
543     if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
544       ++NumMerged;
545     } else {
546       // Merge all previous comparisons and start a new merge block.
547       mergeComparisons(
548           makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
549           Comparisons_[I].BB, Phi_, TLI, AA);
550       NumMerged = 1;
551     }
552   }
553   mergeComparisons(makeArrayRef(Comparisons_)
554                        .slice(Comparisons_.size() - NumMerged, NumMerged),
555                    nullptr, Phi_, TLI, AA);
556 
557   return true;
558 }
559 
560 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
561                                    BasicBlock *const NextBBInChain,
562                                    PHINode &Phi,
563                                    const TargetLibraryInfo *const TLI,
564                                    AliasAnalysis *AA) {
565   assert(!Comparisons.empty());
566   const auto &FirstComparison = *Comparisons.begin();
567   BasicBlock *const BB = FirstComparison.BB;
568   LLVMContext &Context = BB->getContext();
569 
570   if (Comparisons.size() >= 2) {
571     // If there is one block that requires splitting, we do it now, i.e.
572     // just before we know we will collapse the chain. The instructions
573     // can be executed before any of the instructions in the chain.
574     auto C = std::find_if(Comparisons.begin(), Comparisons.end(),
575                           [](const BCECmpBlock &B) { return B.RequireSplit; });
576     if (C != Comparisons.end())
577       C->split(EntryBlock_, AA);
578 
579     LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
580     const auto TotalSize =
581         std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
582                         [](int Size, const BCECmpBlock &C) {
583                           return Size + C.SizeBits();
584                         }) /
585         8;
586 
587     // Incoming edges do not need to be updated, and both GEPs are already
588     // computing the right address, we just need to:
589     //   - replace the two loads and the icmp with the memcmp
590     //   - update the branch
591     //   - update the incoming values in the phi.
592     FirstComparison.BranchI->eraseFromParent();
593     FirstComparison.CmpI->eraseFromParent();
594     FirstComparison.Lhs().LoadI->eraseFromParent();
595     FirstComparison.Rhs().LoadI->eraseFromParent();
596 
597     IRBuilder<> Builder(BB);
598     const auto &DL = Phi.getModule()->getDataLayout();
599     Value *const MemCmpCall = emitMemCmp(
600         FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
601         ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
602         Builder, DL, TLI);
603     Value *const MemCmpIsZero = Builder.CreateICmpEQ(
604         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
605 
606     // Add a branch to the next basic block in the chain.
607     if (NextBBInChain) {
608       Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
609       Phi.addIncoming(ConstantInt::getFalse(Context), BB);
610     } else {
611       Builder.CreateBr(Phi.getParent());
612       Phi.addIncoming(MemCmpIsZero, BB);
613     }
614 
615     // Delete merged blocks.
616     for (size_t I = 1; I < Comparisons.size(); ++I) {
617       BasicBlock *CBB = Comparisons[I].BB;
618       CBB->replaceAllUsesWith(BB);
619       CBB->eraseFromParent();
620     }
621   } else {
622     assert(Comparisons.size() == 1);
623     // There are no blocks to merge, but we still need to update the branches.
624     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
625     if (NextBBInChain) {
626       if (FirstComparison.BranchI->isConditional()) {
627         LLVM_DEBUG(dbgs() << "conditional -> conditional\n");
628         // Just update the "true" target, the "false" target should already be
629         // the phi block.
630         assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
631         FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
632         Phi.addIncoming(ConstantInt::getFalse(Context), BB);
633       } else {
634         LLVM_DEBUG(dbgs() << "unconditional -> conditional\n");
635         // Replace the unconditional branch by a conditional one.
636         FirstComparison.BranchI->eraseFromParent();
637         IRBuilder<> Builder(BB);
638         Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
639                              Phi.getParent());
640         Phi.addIncoming(FirstComparison.CmpI, BB);
641       }
642     } else {
643       if (FirstComparison.BranchI->isConditional()) {
644         LLVM_DEBUG(dbgs() << "conditional -> unconditional\n");
645         // Replace the conditional branch by an unconditional one.
646         FirstComparison.BranchI->eraseFromParent();
647         IRBuilder<> Builder(BB);
648         Builder.CreateBr(Phi.getParent());
649         Phi.addIncoming(FirstComparison.CmpI, BB);
650       } else {
651         LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n");
652         Phi.addIncoming(FirstComparison.CmpI, BB);
653       }
654     }
655   }
656 }
657 
658 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
659                                            BasicBlock *const LastBlock,
660                                            int NumBlocks) {
661   // Walk up from the last block to find other blocks.
662   std::vector<BasicBlock *> Blocks(NumBlocks);
663   assert(LastBlock && "invalid last block");
664   BasicBlock *CurBlock = LastBlock;
665   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
666     if (CurBlock->hasAddressTaken()) {
667       // Somebody is jumping to the block through an address, all bets are
668       // off.
669       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
670                         << " has its address taken\n");
671       return {};
672     }
673     Blocks[BlockIndex] = CurBlock;
674     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
675     if (!SinglePredecessor) {
676       // The block has two or more predecessors.
677       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
678                         << " has two or more predecessors\n");
679       return {};
680     }
681     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
682       // The block does not link back to the phi.
683       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
684                         << " does not link back to the phi\n");
685       return {};
686     }
687     CurBlock = SinglePredecessor;
688   }
689   Blocks[0] = CurBlock;
690   return Blocks;
691 }
692 
693 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI,
694                 AliasAnalysis *AA) {
695   LLVM_DEBUG(dbgs() << "processPhi()\n");
696   if (Phi.getNumIncomingValues() <= 1) {
697     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
698     return false;
699   }
700   // We are looking for something that has the following structure:
701   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
702   //     \            \           \               \
703   //      ne           ne          ne              \
704   //       \            \           \               v
705   //        +------------+-----------+----------> bb_phi
706   //
707   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
708   //    It's the only block that contributes a non-constant value to the Phi.
709   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
710   //    them being the phi block.
711   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
712   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
713 
714   // The blocks are not necessarily ordered in the phi, so we start from the
715   // last block and reconstruct the order.
716   BasicBlock *LastBlock = nullptr;
717   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
718     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
719     if (LastBlock) {
720       // There are several non-constant values.
721       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
722       return false;
723     }
724     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
725         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
726             Phi.getIncomingBlock(I)) {
727       // Non-constant incoming value is not from a cmp instruction or not
728       // produced by the last block. We could end up processing the value
729       // producing block more than once.
730       //
731       // This is an uncommon case, so we bail.
732       LLVM_DEBUG(
733           dbgs()
734           << "skip: non-constant value not from cmp or not from last block.\n");
735       return false;
736     }
737     LastBlock = Phi.getIncomingBlock(I);
738   }
739   if (!LastBlock) {
740     // There is no non-constant block.
741     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
742     return false;
743   }
744   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
745     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
746     return false;
747   }
748 
749   const auto Blocks =
750       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
751   if (Blocks.empty()) return false;
752   BCECmpChain CmpChain(Blocks, Phi, AA);
753 
754   if (CmpChain.size() < 2) {
755     LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
756     return false;
757   }
758 
759   return CmpChain.simplify(TLI, AA);
760 }
761 
762 class MergeICmps : public FunctionPass {
763  public:
764   static char ID;
765 
766   MergeICmps() : FunctionPass(ID) {
767     initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
768   }
769 
770   bool runOnFunction(Function &F) override {
771     if (skipFunction(F)) return false;
772     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
773     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
774     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
775     auto PA = runImpl(F, &TLI, &TTI, AA);
776     return !PA.areAllPreserved();
777   }
778 
779  private:
780   void getAnalysisUsage(AnalysisUsage &AU) const override {
781     AU.addRequired<TargetLibraryInfoWrapperPass>();
782     AU.addRequired<TargetTransformInfoWrapperPass>();
783     AU.addRequired<AAResultsWrapperPass>();
784   }
785 
786   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
787                             const TargetTransformInfo *TTI, AliasAnalysis *AA);
788 };
789 
790 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
791                                       const TargetTransformInfo *TTI,
792                                       AliasAnalysis *AA) {
793   LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
794 
795   // We only try merging comparisons if the target wants to expand memcmp later.
796   // The rationale is to avoid turning small chains into memcmp calls.
797   if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
798 
799   // If we don't have memcmp avaiable we can't emit calls to it.
800   if (!TLI->has(LibFunc_memcmp))
801     return PreservedAnalyses::all();
802 
803   bool MadeChange = false;
804 
805   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
806     // A Phi operation is always first in a basic block.
807     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
808       MadeChange |= processPhi(*Phi, TLI, AA);
809   }
810 
811   if (MadeChange) return PreservedAnalyses::none();
812   return PreservedAnalyses::all();
813 }
814 
815 }  // namespace
816 
817 char MergeICmps::ID = 0;
818 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
819                       "Merge contiguous icmps into a memcmp", false, false)
820 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
821 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
822 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
823 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
824                     "Merge contiguous icmps into a memcmp", false, false)
825 
826 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
827