xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision ffd79b3312cea51c0787aad479ce285771470397)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopPeel.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/SizeOpts.h"
60 #include "llvm/Transforms/Utils/UnrollLoop.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <limits>
65 #include <optional>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-unroll"
73 
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77              " the current top-most loop. This is sometimes preferred to reduce"
78              " compile time."));
79 
80 static cl::opt<unsigned>
81     UnrollThreshold("unroll-threshold", cl::Hidden,
82                     cl::desc("The cost threshold for loop unrolling"));
83 
84 static cl::opt<unsigned>
85     UnrollOptSizeThreshold(
86       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
87       cl::desc("The cost threshold for loop unrolling when optimizing for "
88                "size"));
89 
90 static cl::opt<unsigned> UnrollPartialThreshold(
91     "unroll-partial-threshold", cl::Hidden,
92     cl::desc("The cost threshold for partial loop unrolling"));
93 
94 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
95     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
96     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
97              "to the threshold when aggressively unrolling a loop due to the "
98              "dynamic cost savings. If completely unrolling a loop will reduce "
99              "the total runtime from X to Y, we boost the loop unroll "
100              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
101              "X/Y). This limit avoids excessive code bloat."));
102 
103 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
104     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
105     cl::desc("Don't allow loop unrolling to simulate more than this number of"
106              "iterations when checking full unroll profitability"));
107 
108 static cl::opt<unsigned> UnrollCount(
109     "unroll-count", cl::Hidden,
110     cl::desc("Use this unroll count for all loops including those with "
111              "unroll_count pragma values, for testing purposes"));
112 
113 static cl::opt<unsigned> UnrollMaxCount(
114     "unroll-max-count", cl::Hidden,
115     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
116              "testing purposes"));
117 
118 static cl::opt<unsigned> UnrollFullMaxCount(
119     "unroll-full-max-count", cl::Hidden,
120     cl::desc(
121         "Set the max unroll count for full unrolling, for testing purposes"));
122 
123 static cl::opt<bool>
124     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
125                        cl::desc("Allows loops to be partially unrolled until "
126                                 "-unroll-threshold loop size is reached."));
127 
128 static cl::opt<bool> UnrollAllowRemainder(
129     "unroll-allow-remainder", cl::Hidden,
130     cl::desc("Allow generation of a loop remainder (extra iterations) "
131              "when unrolling a loop."));
132 
133 static cl::opt<bool>
134     UnrollRuntime("unroll-runtime", cl::Hidden,
135                   cl::desc("Unroll loops with run-time trip counts"));
136 
137 static cl::opt<unsigned> UnrollMaxUpperBound(
138     "unroll-max-upperbound", cl::init(8), cl::Hidden,
139     cl::desc(
140         "The max of trip count upper bound that is considered in unrolling"));
141 
142 static cl::opt<unsigned> PragmaUnrollThreshold(
143     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
144     cl::desc("Unrolled size limit for loops with an unroll(full) or "
145              "unroll_count pragma."));
146 
147 static cl::opt<unsigned> FlatLoopTripCountThreshold(
148     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
149     cl::desc("If the runtime tripcount for the loop is lower than the "
150              "threshold, the loop is considered as flat and will be less "
151              "aggressively unrolled."));
152 
153 static cl::opt<bool> UnrollUnrollRemainder(
154   "unroll-remainder", cl::Hidden,
155   cl::desc("Allow the loop remainder to be unrolled."));
156 
157 // This option isn't ever intended to be enabled, it serves to allow
158 // experiments to check the assumptions about when this kind of revisit is
159 // necessary.
160 static cl::opt<bool> UnrollRevisitChildLoops(
161     "unroll-revisit-child-loops", cl::Hidden,
162     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
163              "This shouldn't typically be needed as child loops (or their "
164              "clones) were already visited."));
165 
166 static cl::opt<unsigned> UnrollThresholdAggressive(
167     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
168     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
169              "optimizations"));
170 static cl::opt<unsigned>
171     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
172                            cl::Hidden,
173                            cl::desc("Default threshold (max size of unrolled "
174                                     "loop), used in all but O3 optimizations"));
175 
176 static cl::opt<unsigned> PragmaUnrollFullMaxIterations(
177     "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden,
178     cl::desc("Maximum allowed iterations to unroll under pragma unroll full."));
179 
180 /// A magic value for use with the Threshold parameter to indicate
181 /// that the loop unroll should be performed regardless of how much
182 /// code expansion would result.
183 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
184 
185 /// Gather the various unrolling parameters based on the defaults, compiler
186 /// flags, TTI overrides and user specified parameters.
187 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
188     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
189     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
190     OptimizationRemarkEmitter &ORE, int OptLevel,
191     std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
192     std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
193     std::optional<bool> UserUpperBound,
194     std::optional<unsigned> UserFullUnrollMaxCount) {
195   TargetTransformInfo::UnrollingPreferences UP;
196 
197   // Set up the defaults
198   UP.Threshold =
199       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
200   UP.MaxPercentThresholdBoost = 400;
201   UP.OptSizeThreshold = UnrollOptSizeThreshold;
202   UP.PartialThreshold = 150;
203   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
204   UP.Count = 0;
205   UP.DefaultUnrollRuntimeCount = 8;
206   UP.MaxCount = std::numeric_limits<unsigned>::max();
207   UP.MaxUpperBound = UnrollMaxUpperBound;
208   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
209   UP.BEInsns = 2;
210   UP.Partial = false;
211   UP.Runtime = false;
212   UP.AllowRemainder = true;
213   UP.UnrollRemainder = false;
214   UP.AllowExpensiveTripCount = false;
215   UP.Force = false;
216   UP.UpperBound = false;
217   UP.UnrollAndJam = false;
218   UP.UnrollAndJamInnerLoopThreshold = 60;
219   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
220 
221   // Override with any target specific settings
222   TTI.getUnrollingPreferences(L, SE, UP, &ORE);
223 
224   // Apply size attributes
225   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
226                     // Let unroll hints / pragmas take precedence over PGSO.
227                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
228                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
229                                                  PGSOQueryType::IRPass));
230   if (OptForSize) {
231     UP.Threshold = UP.OptSizeThreshold;
232     UP.PartialThreshold = UP.PartialOptSizeThreshold;
233     UP.MaxPercentThresholdBoost = 100;
234   }
235 
236   // Apply any user values specified by cl::opt
237   if (UnrollThreshold.getNumOccurrences() > 0)
238     UP.Threshold = UnrollThreshold;
239   if (UnrollPartialThreshold.getNumOccurrences() > 0)
240     UP.PartialThreshold = UnrollPartialThreshold;
241   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
242     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
243   if (UnrollMaxCount.getNumOccurrences() > 0)
244     UP.MaxCount = UnrollMaxCount;
245   if (UnrollMaxUpperBound.getNumOccurrences() > 0)
246     UP.MaxUpperBound = UnrollMaxUpperBound;
247   if (UnrollFullMaxCount.getNumOccurrences() > 0)
248     UP.FullUnrollMaxCount = UnrollFullMaxCount;
249   if (UnrollAllowPartial.getNumOccurrences() > 0)
250     UP.Partial = UnrollAllowPartial;
251   if (UnrollAllowRemainder.getNumOccurrences() > 0)
252     UP.AllowRemainder = UnrollAllowRemainder;
253   if (UnrollRuntime.getNumOccurrences() > 0)
254     UP.Runtime = UnrollRuntime;
255   if (UnrollMaxUpperBound == 0)
256     UP.UpperBound = false;
257   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
258     UP.UnrollRemainder = UnrollUnrollRemainder;
259   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
260     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
261 
262   // Apply user values provided by argument
263   if (UserThreshold) {
264     UP.Threshold = *UserThreshold;
265     UP.PartialThreshold = *UserThreshold;
266   }
267   if (UserCount)
268     UP.Count = *UserCount;
269   if (UserAllowPartial)
270     UP.Partial = *UserAllowPartial;
271   if (UserRuntime)
272     UP.Runtime = *UserRuntime;
273   if (UserUpperBound)
274     UP.UpperBound = *UserUpperBound;
275   if (UserFullUnrollMaxCount)
276     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
277 
278   return UP;
279 }
280 
281 namespace {
282 
283 /// A struct to densely store the state of an instruction after unrolling at
284 /// each iteration.
285 ///
286 /// This is designed to work like a tuple of <Instruction *, int> for the
287 /// purposes of hashing and lookup, but to be able to associate two boolean
288 /// states with each key.
289 struct UnrolledInstState {
290   Instruction *I;
291   int Iteration : 30;
292   unsigned IsFree : 1;
293   unsigned IsCounted : 1;
294 };
295 
296 /// Hashing and equality testing for a set of the instruction states.
297 struct UnrolledInstStateKeyInfo {
298   using PtrInfo = DenseMapInfo<Instruction *>;
299   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
300 
301   static inline UnrolledInstState getEmptyKey() {
302     return {PtrInfo::getEmptyKey(), 0, 0, 0};
303   }
304 
305   static inline UnrolledInstState getTombstoneKey() {
306     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
307   }
308 
309   static inline unsigned getHashValue(const UnrolledInstState &S) {
310     return PairInfo::getHashValue({S.I, S.Iteration});
311   }
312 
313   static inline bool isEqual(const UnrolledInstState &LHS,
314                              const UnrolledInstState &RHS) {
315     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
316   }
317 };
318 
319 struct EstimatedUnrollCost {
320   /// The estimated cost after unrolling.
321   unsigned UnrolledCost;
322 
323   /// The estimated dynamic cost of executing the instructions in the
324   /// rolled form.
325   unsigned RolledDynamicCost;
326 };
327 
328 struct PragmaInfo {
329   PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
330       : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
331         PragmaEnableUnroll(PEU) {}
332   const bool UserUnrollCount;
333   const bool PragmaFullUnroll;
334   const unsigned PragmaCount;
335   const bool PragmaEnableUnroll;
336 };
337 
338 } // end anonymous namespace
339 
340 /// Figure out if the loop is worth full unrolling.
341 ///
342 /// Complete loop unrolling can make some loads constant, and we need to know
343 /// if that would expose any further optimization opportunities.  This routine
344 /// estimates this optimization.  It computes cost of unrolled loop
345 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
346 /// dynamic cost we mean that we won't count costs of blocks that are known not
347 /// to be executed (i.e. if we have a branch in the loop and we know that at the
348 /// given iteration its condition would be resolved to true, we won't add up the
349 /// cost of the 'false'-block).
350 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
351 /// the analysis failed (no benefits expected from the unrolling, or the loop is
352 /// too big to analyze), the returned value is std::nullopt.
353 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
354     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
355     const SmallPtrSetImpl<const Value *> &EphValues,
356     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
357     unsigned MaxIterationsCountToAnalyze) {
358   // We want to be able to scale offsets by the trip count and add more offsets
359   // to them without checking for overflows, and we already don't want to
360   // analyze *massive* trip counts, so we force the max to be reasonably small.
361   assert(MaxIterationsCountToAnalyze <
362              (unsigned)(std::numeric_limits<int>::max() / 2) &&
363          "The unroll iterations max is too large!");
364 
365   // Only analyze inner loops. We can't properly estimate cost of nested loops
366   // and we won't visit inner loops again anyway.
367   if (!L->isInnermost())
368     return std::nullopt;
369 
370   // Don't simulate loops with a big or unknown tripcount
371   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
372     return std::nullopt;
373 
374   SmallSetVector<BasicBlock *, 16> BBWorklist;
375   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
376   DenseMap<Value *, Value *> SimplifiedValues;
377   SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
378 
379   // The estimated cost of the unrolled form of the loop. We try to estimate
380   // this by simplifying as much as we can while computing the estimate.
381   InstructionCost UnrolledCost = 0;
382 
383   // We also track the estimated dynamic (that is, actually executed) cost in
384   // the rolled form. This helps identify cases when the savings from unrolling
385   // aren't just exposing dead control flows, but actual reduced dynamic
386   // instructions due to the simplifications which we expect to occur after
387   // unrolling.
388   InstructionCost RolledDynamicCost = 0;
389 
390   // We track the simplification of each instruction in each iteration. We use
391   // this to recursively merge costs into the unrolled cost on-demand so that
392   // we don't count the cost of any dead code. This is essentially a map from
393   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
394   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
395 
396   // A small worklist used to accumulate cost of instructions from each
397   // observable and reached root in the loop.
398   SmallVector<Instruction *, 16> CostWorklist;
399 
400   // PHI-used worklist used between iterations while accumulating cost.
401   SmallVector<Instruction *, 4> PHIUsedList;
402 
403   // Helper function to accumulate cost for instructions in the loop.
404   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
405     assert(Iteration >= 0 && "Cannot have a negative iteration!");
406     assert(CostWorklist.empty() && "Must start with an empty cost list");
407     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
408     CostWorklist.push_back(&RootI);
409     TargetTransformInfo::TargetCostKind CostKind =
410       RootI.getFunction()->hasMinSize() ?
411       TargetTransformInfo::TCK_CodeSize :
412       TargetTransformInfo::TCK_SizeAndLatency;
413     for (;; --Iteration) {
414       do {
415         Instruction *I = CostWorklist.pop_back_val();
416 
417         // InstCostMap only uses I and Iteration as a key, the other two values
418         // don't matter here.
419         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
420         if (CostIter == InstCostMap.end())
421           // If an input to a PHI node comes from a dead path through the loop
422           // we may have no cost data for it here. What that actually means is
423           // that it is free.
424           continue;
425         auto &Cost = *CostIter;
426         if (Cost.IsCounted)
427           // Already counted this instruction.
428           continue;
429 
430         // Mark that we are counting the cost of this instruction now.
431         Cost.IsCounted = true;
432 
433         // If this is a PHI node in the loop header, just add it to the PHI set.
434         if (auto *PhiI = dyn_cast<PHINode>(I))
435           if (PhiI->getParent() == L->getHeader()) {
436             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
437                                   "inherently simplify during unrolling.");
438             if (Iteration == 0)
439               continue;
440 
441             // Push the incoming value from the backedge into the PHI used list
442             // if it is an in-loop instruction. We'll use this to populate the
443             // cost worklist for the next iteration (as we count backwards).
444             if (auto *OpI = dyn_cast<Instruction>(
445                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
446               if (L->contains(OpI))
447                 PHIUsedList.push_back(OpI);
448             continue;
449           }
450 
451         // First accumulate the cost of this instruction.
452         if (!Cost.IsFree) {
453           // Consider simplified operands in instruction cost.
454           SmallVector<Value *, 4> Operands;
455           transform(I->operands(), std::back_inserter(Operands),
456                     [&](Value *Op) {
457                       if (auto Res = SimplifiedValues.lookup(Op))
458                         return Res;
459                       return Op;
460                     });
461           UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind);
462           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
463                             << Iteration << "): ");
464           LLVM_DEBUG(I->dump());
465         }
466 
467         // We must count the cost of every operand which is not free,
468         // recursively. If we reach a loop PHI node, simply add it to the set
469         // to be considered on the next iteration (backwards!).
470         for (Value *Op : I->operands()) {
471           // Check whether this operand is free due to being a constant or
472           // outside the loop.
473           auto *OpI = dyn_cast<Instruction>(Op);
474           if (!OpI || !L->contains(OpI))
475             continue;
476 
477           // Otherwise accumulate its cost.
478           CostWorklist.push_back(OpI);
479         }
480       } while (!CostWorklist.empty());
481 
482       if (PHIUsedList.empty())
483         // We've exhausted the search.
484         break;
485 
486       assert(Iteration > 0 &&
487              "Cannot track PHI-used values past the first iteration!");
488       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
489       PHIUsedList.clear();
490     }
491   };
492 
493   // Ensure that we don't violate the loop structure invariants relied on by
494   // this analysis.
495   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
496   assert(L->isLCSSAForm(DT) &&
497          "Must have loops in LCSSA form to track live-out values.");
498 
499   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
500 
501   TargetTransformInfo::TargetCostKind CostKind =
502     L->getHeader()->getParent()->hasMinSize() ?
503     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
504   // Simulate execution of each iteration of the loop counting instructions,
505   // which would be simplified.
506   // Since the same load will take different values on different iterations,
507   // we literally have to go through all loop's iterations.
508   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
509     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
510 
511     // Prepare for the iteration by collecting any simplified entry or backedge
512     // inputs.
513     for (Instruction &I : *L->getHeader()) {
514       auto *PHI = dyn_cast<PHINode>(&I);
515       if (!PHI)
516         break;
517 
518       // The loop header PHI nodes must have exactly two input: one from the
519       // loop preheader and one from the loop latch.
520       assert(
521           PHI->getNumIncomingValues() == 2 &&
522           "Must have an incoming value only for the preheader and the latch.");
523 
524       Value *V = PHI->getIncomingValueForBlock(
525           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
526       if (Iteration != 0 && SimplifiedValues.count(V))
527         V = SimplifiedValues.lookup(V);
528       SimplifiedInputValues.push_back({PHI, V});
529     }
530 
531     // Now clear and re-populate the map for the next iteration.
532     SimplifiedValues.clear();
533     while (!SimplifiedInputValues.empty())
534       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
535 
536     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
537 
538     BBWorklist.clear();
539     BBWorklist.insert(L->getHeader());
540     // Note that we *must not* cache the size, this loop grows the worklist.
541     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
542       BasicBlock *BB = BBWorklist[Idx];
543 
544       // Visit all instructions in the given basic block and try to simplify
545       // it.  We don't change the actual IR, just count optimization
546       // opportunities.
547       for (Instruction &I : *BB) {
548         // These won't get into the final code - don't even try calculating the
549         // cost for them.
550         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
551           continue;
552 
553         // Track this instruction's expected baseline cost when executing the
554         // rolled loop form.
555         RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
556 
557         // Visit the instruction to analyze its loop cost after unrolling,
558         // and if the visitor returns true, mark the instruction as free after
559         // unrolling and continue.
560         bool IsFree = Analyzer.visit(I);
561         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
562                                            (unsigned)IsFree,
563                                            /*IsCounted*/ false}).second;
564         (void)Inserted;
565         assert(Inserted && "Cannot have a state for an unvisited instruction!");
566 
567         if (IsFree)
568           continue;
569 
570         // Can't properly model a cost of a call.
571         // FIXME: With a proper cost model we should be able to do it.
572         if (auto *CI = dyn_cast<CallInst>(&I)) {
573           const Function *Callee = CI->getCalledFunction();
574           if (!Callee || TTI.isLoweredToCall(Callee)) {
575             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
576             return std::nullopt;
577           }
578         }
579 
580         // If the instruction might have a side-effect recursively account for
581         // the cost of it and all the instructions leading up to it.
582         if (I.mayHaveSideEffects())
583           AddCostRecursively(I, Iteration);
584 
585         // If unrolled body turns out to be too big, bail out.
586         if (UnrolledCost > MaxUnrolledLoopSize) {
587           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
588                             << "  UnrolledCost: " << UnrolledCost
589                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
590                             << "\n");
591           return std::nullopt;
592         }
593       }
594 
595       Instruction *TI = BB->getTerminator();
596 
597       auto getSimplifiedConstant = [&](Value *V) -> Constant * {
598         if (SimplifiedValues.count(V))
599           V = SimplifiedValues.lookup(V);
600         return dyn_cast<Constant>(V);
601       };
602 
603       // Add in the live successors by first checking whether we have terminator
604       // that may be simplified based on the values simplified by this call.
605       BasicBlock *KnownSucc = nullptr;
606       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
607         if (BI->isConditional()) {
608           if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
609             // Just take the first successor if condition is undef
610             if (isa<UndefValue>(SimpleCond))
611               KnownSucc = BI->getSuccessor(0);
612             else if (ConstantInt *SimpleCondVal =
613                          dyn_cast<ConstantInt>(SimpleCond))
614               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
615           }
616         }
617       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
618         if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
619           // Just take the first successor if condition is undef
620           if (isa<UndefValue>(SimpleCond))
621             KnownSucc = SI->getSuccessor(0);
622           else if (ConstantInt *SimpleCondVal =
623                        dyn_cast<ConstantInt>(SimpleCond))
624             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
625         }
626       }
627       if (KnownSucc) {
628         if (L->contains(KnownSucc))
629           BBWorklist.insert(KnownSucc);
630         else
631           ExitWorklist.insert({BB, KnownSucc});
632         continue;
633       }
634 
635       // Add BB's successors to the worklist.
636       for (BasicBlock *Succ : successors(BB))
637         if (L->contains(Succ))
638           BBWorklist.insert(Succ);
639         else
640           ExitWorklist.insert({BB, Succ});
641       AddCostRecursively(*TI, Iteration);
642     }
643 
644     // If we found no optimization opportunities on the first iteration, we
645     // won't find them on later ones too.
646     if (UnrolledCost == RolledDynamicCost) {
647       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
648                         << "  UnrolledCost: " << UnrolledCost << "\n");
649       return std::nullopt;
650     }
651   }
652 
653   while (!ExitWorklist.empty()) {
654     BasicBlock *ExitingBB, *ExitBB;
655     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
656 
657     for (Instruction &I : *ExitBB) {
658       auto *PN = dyn_cast<PHINode>(&I);
659       if (!PN)
660         break;
661 
662       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
663       if (auto *OpI = dyn_cast<Instruction>(Op))
664         if (L->contains(OpI))
665           AddCostRecursively(*OpI, TripCount - 1);
666     }
667   }
668 
669   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
670          "All instructions must have a valid cost, whether the "
671          "loop is rolled or unrolled.");
672 
673   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
674                     << "UnrolledCost: " << UnrolledCost << ", "
675                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
676   return {{unsigned(*UnrolledCost.getValue()),
677            unsigned(*RolledDynamicCost.getValue())}};
678 }
679 
680 UnrollCostEstimator::UnrollCostEstimator(
681     const Loop *L, const TargetTransformInfo &TTI,
682     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
683   CodeMetrics Metrics;
684   for (BasicBlock *BB : L->blocks())
685     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
686   NumInlineCandidates = Metrics.NumInlineCandidates;
687   NotDuplicatable = Metrics.notDuplicatable;
688   Convergent = Metrics.convergent;
689   LoopSize = Metrics.NumInsts;
690 
691   // Don't allow an estimate of size zero.  This would allows unrolling of loops
692   // with huge iteration counts, which is a compile time problem even if it's
693   // not a problem for code quality. Also, the code using this size may assume
694   // that each loop has at least three instructions (likely a conditional
695   // branch, a comparison feeding that branch, and some kind of loop increment
696   // feeding that comparison instruction).
697   if (LoopSize.isValid() && LoopSize < BEInsns + 1)
698     // This is an open coded max() on InstructionCost
699     LoopSize = BEInsns + 1;
700 }
701 
702 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
703     const TargetTransformInfo::UnrollingPreferences &UP,
704     unsigned CountOverwrite) const {
705   unsigned LS = *LoopSize.getValue();
706   assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
707   if (CountOverwrite)
708     return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns;
709   else
710     return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns;
711 }
712 
713 // Returns the loop hint metadata node with the given name (for example,
714 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
715 // returned.
716 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
717   if (MDNode *LoopID = L->getLoopID())
718     return GetUnrollMetadata(LoopID, Name);
719   return nullptr;
720 }
721 
722 // Returns true if the loop has an unroll(full) pragma.
723 static bool hasUnrollFullPragma(const Loop *L) {
724   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
725 }
726 
727 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
728 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
729 static bool hasUnrollEnablePragma(const Loop *L) {
730   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
731 }
732 
733 // Returns true if the loop has an runtime unroll(disable) pragma.
734 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
735   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
736 }
737 
738 // If loop has an unroll_count pragma return the (necessarily
739 // positive) value from the pragma.  Otherwise return 0.
740 static unsigned unrollCountPragmaValue(const Loop *L) {
741   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
742   if (MD) {
743     assert(MD->getNumOperands() == 2 &&
744            "Unroll count hint metadata should have two operands.");
745     unsigned Count =
746         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
747     assert(Count >= 1 && "Unroll count must be positive.");
748     return Count;
749   }
750   return 0;
751 }
752 
753 // Computes the boosting factor for complete unrolling.
754 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
755 // be beneficial to fully unroll the loop even if unrolledcost is large. We
756 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
757 // the unroll threshold.
758 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
759                                             unsigned MaxPercentThresholdBoost) {
760   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
761     return 100;
762   else if (Cost.UnrolledCost != 0)
763     // The boosting factor is RolledDynamicCost / UnrolledCost
764     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
765                     MaxPercentThresholdBoost);
766   else
767     return MaxPercentThresholdBoost;
768 }
769 
770 static std::optional<unsigned>
771 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
772                    const unsigned TripMultiple, const unsigned TripCount,
773                    unsigned MaxTripCount, const UnrollCostEstimator UCE,
774                    const TargetTransformInfo::UnrollingPreferences &UP) {
775 
776   // Using unroll pragma
777   // 1st priority is unroll count set by "unroll-count" option.
778 
779   if (PInfo.UserUnrollCount) {
780     if (UP.AllowRemainder &&
781         UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
782       return (unsigned)UnrollCount;
783   }
784 
785   // 2nd priority is unroll count set by pragma.
786   if (PInfo.PragmaCount > 0) {
787     if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
788       return PInfo.PragmaCount;
789   }
790 
791   if (PInfo.PragmaFullUnroll && TripCount != 0) {
792     // Certain cases with UBSAN can cause trip count to be calculated as
793     // INT_MAX, Block full unrolling at a reasonable limit so that the compiler
794     // doesn't hang trying to unroll the loop. See PR77842
795     if (TripCount > PragmaUnrollFullMaxIterations) {
796       LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n");
797       return std::nullopt;
798     }
799 
800     return TripCount;
801   }
802 
803   if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount &&
804       MaxTripCount <= UP.MaxUpperBound)
805     return MaxTripCount;
806 
807   // if didn't return until here, should continue to other priorties
808   return std::nullopt;
809 }
810 
811 static std::optional<unsigned> shouldFullUnroll(
812     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
813     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
814     const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
815     const TargetTransformInfo::UnrollingPreferences &UP) {
816   assert(FullUnrollTripCount && "should be non-zero!");
817 
818   if (FullUnrollTripCount > UP.FullUnrollMaxCount)
819     return std::nullopt;
820 
821   // When computing the unrolled size, note that BEInsns are not replicated
822   // like the rest of the loop body.
823   if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
824     return FullUnrollTripCount;
825 
826   // The loop isn't that small, but we still can fully unroll it if that
827   // helps to remove a significant number of instructions.
828   // To check that, run additional analysis on the loop.
829   if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
830           L, FullUnrollTripCount, DT, SE, EphValues, TTI,
831           UP.Threshold * UP.MaxPercentThresholdBoost / 100,
832           UP.MaxIterationsCountToAnalyze)) {
833     unsigned Boost =
834       getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
835     if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
836       return FullUnrollTripCount;
837   }
838   return std::nullopt;
839 }
840 
841 static std::optional<unsigned>
842 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
843                     const UnrollCostEstimator UCE,
844                     const TargetTransformInfo::UnrollingPreferences &UP) {
845 
846   if (!TripCount)
847     return std::nullopt;
848 
849   if (!UP.Partial) {
850     LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
851                << "-unroll-allow-partial not given\n");
852     return 0;
853   }
854   unsigned count = UP.Count;
855   if (count == 0)
856     count = TripCount;
857   if (UP.PartialThreshold != NoThreshold) {
858     // Reduce unroll count to be modulo of TripCount for partial unrolling.
859     if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
860       count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
861         (LoopSize - UP.BEInsns);
862     if (count > UP.MaxCount)
863       count = UP.MaxCount;
864     while (count != 0 && TripCount % count != 0)
865       count--;
866     if (UP.AllowRemainder && count <= 1) {
867       // If there is no Count that is modulo of TripCount, set Count to
868       // largest power-of-two factor that satisfies the threshold limit.
869       // As we'll create fixup loop, do the type of unrolling only if
870       // remainder loop is allowed.
871       count = UP.DefaultUnrollRuntimeCount;
872       while (count != 0 &&
873              UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
874         count >>= 1;
875     }
876     if (count < 2) {
877       count = 0;
878     }
879   } else {
880     count = TripCount;
881   }
882   if (count > UP.MaxCount)
883     count = UP.MaxCount;
884 
885   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << count << "\n");
886 
887   return count;
888 }
889 // Returns true if unroll count was set explicitly.
890 // Calculates unroll count and writes it to UP.Count.
891 // Unless IgnoreUser is true, will also use metadata and command-line options
892 // that are specific to to the LoopUnroll pass (which, for instance, are
893 // irrelevant for the LoopUnrollAndJam pass).
894 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
895 // many LoopUnroll-specific options. The shared functionality should be
896 // refactored into it own function.
897 bool llvm::computeUnrollCount(
898     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
899     AssumptionCache *AC, ScalarEvolution &SE,
900     const SmallPtrSetImpl<const Value *> &EphValues,
901     OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
902     bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE,
903     TargetTransformInfo::UnrollingPreferences &UP,
904     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
905 
906   unsigned LoopSize = UCE.getRolledLoopSize();
907 
908   const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
909   const bool PragmaFullUnroll = hasUnrollFullPragma(L);
910   const unsigned PragmaCount = unrollCountPragmaValue(L);
911   const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
912 
913   const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
914                               PragmaEnableUnroll || UserUnrollCount;
915 
916   PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
917                    PragmaEnableUnroll);
918   // Use an explicit peel count that has been specified for testing. In this
919   // case it's not permitted to also specify an explicit unroll count.
920   if (PP.PeelCount) {
921     if (UnrollCount.getNumOccurrences() > 0) {
922       report_fatal_error("Cannot specify both explicit peel count and "
923                          "explicit unroll count", /*GenCrashDiag=*/false);
924     }
925     UP.Count = 1;
926     UP.Runtime = false;
927     return true;
928   }
929   // Check for explicit Count.
930   // 1st priority is unroll count set by "unroll-count" option.
931   // 2nd priority is unroll count set by pragma.
932   if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
933                                              MaxTripCount, UCE, UP)) {
934     UP.Count = *UnrollFactor;
935 
936     if (UserUnrollCount || (PragmaCount > 0)) {
937       UP.AllowExpensiveTripCount = true;
938       UP.Force = true;
939     }
940     UP.Runtime |= (PragmaCount > 0);
941     return ExplicitUnroll;
942   } else {
943     if (ExplicitUnroll && TripCount != 0) {
944       // If the loop has an unrolling pragma, we want to be more aggressive with
945       // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
946       // value which is larger than the default limits.
947       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
948       UP.PartialThreshold =
949           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
950     }
951   }
952 
953   // 3rd priority is exact full unrolling.  This will eliminate all copies
954   // of some exit test.
955   UP.Count = 0;
956   if (TripCount) {
957     UP.Count = TripCount;
958     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
959                                              TripCount, UCE, UP)) {
960       UP.Count = *UnrollFactor;
961       UseUpperBound = false;
962       return ExplicitUnroll;
963     }
964   }
965 
966   // 4th priority is bounded unrolling.
967   // We can unroll by the upper bound amount if it's generally allowed or if
968   // we know that the loop is executed either the upper bound or zero times.
969   // (MaxOrZero unrolling keeps only the first loop test, so the number of
970   // loop tests remains the same compared to the non-unrolled version, whereas
971   // the generic upper bound unrolling keeps all but the last loop test so the
972   // number of loop tests goes up which may end up being worse on targets with
973   // constrained branch predictor resources so is controlled by an option.)
974   // In addition we only unroll small upper bounds.
975   // Note that the cost of bounded unrolling is always strictly greater than
976   // cost of exact full unrolling.  As such, if we have an exact count and
977   // found it unprofitable, we'll never chose to bounded unroll.
978   if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
979       MaxTripCount <= UP.MaxUpperBound) {
980     UP.Count = MaxTripCount;
981     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
982                                              MaxTripCount, UCE, UP)) {
983       UP.Count = *UnrollFactor;
984       UseUpperBound = true;
985       return ExplicitUnroll;
986     }
987   }
988 
989   // 5th priority is loop peeling.
990   computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
991   if (PP.PeelCount) {
992     UP.Runtime = false;
993     UP.Count = 1;
994     return ExplicitUnroll;
995   }
996 
997   // Before starting partial unrolling, set up.partial to true,
998   // if user explicitly asked  for unrolling
999   if (TripCount)
1000     UP.Partial |= ExplicitUnroll;
1001 
1002   // 6th priority is partial unrolling.
1003   // Try partial unroll only when TripCount could be statically calculated.
1004   if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
1005     UP.Count = *UnrollFactor;
1006 
1007     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1008         UP.Count != TripCount)
1009       ORE->emit([&]() {
1010         return OptimizationRemarkMissed(DEBUG_TYPE,
1011                                         "FullUnrollAsDirectedTooLarge",
1012                                         L->getStartLoc(), L->getHeader())
1013                << "Unable to fully unroll loop as directed by unroll pragma "
1014                   "because "
1015                   "unrolled size is too large.";
1016       });
1017 
1018     if (UP.PartialThreshold != NoThreshold) {
1019       if (UP.Count == 0) {
1020         if (PragmaEnableUnroll)
1021           ORE->emit([&]() {
1022             return OptimizationRemarkMissed(DEBUG_TYPE,
1023                                             "UnrollAsDirectedTooLarge",
1024                                             L->getStartLoc(), L->getHeader())
1025                    << "Unable to unroll loop as directed by unroll(enable) "
1026                       "pragma "
1027                       "because unrolled size is too large.";
1028           });
1029       }
1030     }
1031     return ExplicitUnroll;
1032   }
1033   assert(TripCount == 0 &&
1034          "All cases when TripCount is constant should be covered here.");
1035   if (PragmaFullUnroll)
1036     ORE->emit([&]() {
1037       return OptimizationRemarkMissed(
1038                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1039                  L->getStartLoc(), L->getHeader())
1040              << "Unable to fully unroll loop as directed by unroll(full) "
1041                 "pragma "
1042                 "because loop has a runtime trip count.";
1043     });
1044 
1045   // 7th priority is runtime unrolling.
1046   // Don't unroll a runtime trip count loop when it is disabled.
1047   if (hasRuntimeUnrollDisablePragma(L)) {
1048     UP.Count = 0;
1049     return false;
1050   }
1051 
1052   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1053   if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) {
1054     UP.Count = 0;
1055     return false;
1056   }
1057 
1058   // Check if the runtime trip count is too small when profile is available.
1059   if (L->getHeader()->getParent()->hasProfileData()) {
1060     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1061       if (*ProfileTripCount < FlatLoopTripCountThreshold)
1062         return false;
1063       else
1064         UP.AllowExpensiveTripCount = true;
1065     }
1066   }
1067   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1068   if (!UP.Runtime) {
1069     LLVM_DEBUG(
1070         dbgs() << "  will not try to unroll loop with runtime trip count "
1071                << "-unroll-runtime not given\n");
1072     UP.Count = 0;
1073     return false;
1074   }
1075   if (UP.Count == 0)
1076     UP.Count = UP.DefaultUnrollRuntimeCount;
1077 
1078   // Reduce unroll count to be the largest power-of-two factor of
1079   // the original count which satisfies the threshold limit.
1080   while (UP.Count != 0 &&
1081          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1082     UP.Count >>= 1;
1083 
1084 #ifndef NDEBUG
1085   unsigned OrigCount = UP.Count;
1086 #endif
1087 
1088   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1089     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1090       UP.Count >>= 1;
1091     LLVM_DEBUG(
1092         dbgs() << "Remainder loop is restricted (that could architecture "
1093                   "specific or because the loop contains a convergent "
1094                   "instruction), so unroll count must divide the trip "
1095                   "multiple, "
1096                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1097                << " to " << UP.Count << ".\n");
1098 
1099     using namespace ore;
1100 
1101     if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1102       ORE->emit([&]() {
1103         return OptimizationRemarkMissed(DEBUG_TYPE,
1104                                         "DifferentUnrollCountFromDirected",
1105                                         L->getStartLoc(), L->getHeader())
1106                << "Unable to unroll loop the number of times directed by "
1107                   "unroll_count pragma because remainder loop is restricted "
1108                   "(that could architecture specific or because the loop "
1109                   "contains a convergent instruction) and so must have an "
1110                   "unroll "
1111                   "count that divides the loop trip multiple of "
1112                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1113                << NV("UnrollCount", UP.Count) << " time(s).";
1114       });
1115   }
1116 
1117   if (UP.Count > UP.MaxCount)
1118     UP.Count = UP.MaxCount;
1119 
1120   if (MaxTripCount && UP.Count > MaxTripCount)
1121     UP.Count = MaxTripCount;
1122 
1123   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1124                     << "\n");
1125   if (UP.Count < 2)
1126     UP.Count = 0;
1127   return ExplicitUnroll;
1128 }
1129 
1130 static LoopUnrollResult
1131 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1132                 const TargetTransformInfo &TTI, AssumptionCache &AC,
1133                 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1134                 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1135                 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV,
1136                 std::optional<unsigned> ProvidedCount,
1137                 std::optional<unsigned> ProvidedThreshold,
1138                 std::optional<bool> ProvidedAllowPartial,
1139                 std::optional<bool> ProvidedRuntime,
1140                 std::optional<bool> ProvidedUpperBound,
1141                 std::optional<bool> ProvidedAllowPeeling,
1142                 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1143                 std::optional<unsigned> ProvidedFullUnrollMaxCount) {
1144 
1145   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1146                     << L->getHeader()->getParent()->getName() << "] Loop %"
1147                     << L->getHeader()->getName() << "\n");
1148   TransformationMode TM = hasUnrollTransformation(L);
1149   if (TM & TM_Disable)
1150     return LoopUnrollResult::Unmodified;
1151 
1152   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1153   // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1154   // automatic unrolling from interfering with the user requested
1155   // transformation.
1156   Loop *ParentL = L->getParentLoop();
1157   if (ParentL != nullptr &&
1158       hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1159       hasUnrollTransformation(L) != TM_ForcedByUser) {
1160     LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1161                       << " llvm.loop.unroll_and_jam.\n");
1162     return LoopUnrollResult::Unmodified;
1163   }
1164 
1165   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1166   // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1167   // unrolling from interfering with the user requested transformation.
1168   if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1169       hasUnrollTransformation(L) != TM_ForcedByUser) {
1170     LLVM_DEBUG(
1171         dbgs()
1172         << "  Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1173     return LoopUnrollResult::Unmodified;
1174   }
1175 
1176   if (!L->isLoopSimplifyForm()) {
1177     LLVM_DEBUG(
1178         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1179     return LoopUnrollResult::Unmodified;
1180   }
1181 
1182   // When automatic unrolling is disabled, do not unroll unless overridden for
1183   // this loop.
1184   if (OnlyWhenForced && !(TM & TM_Enable))
1185     return LoopUnrollResult::Unmodified;
1186 
1187   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1188   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1189       L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1190       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1191       ProvidedFullUnrollMaxCount);
1192   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1193       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1194 
1195   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1196   // as threshold later on.
1197   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1198       !OptForSize)
1199     return LoopUnrollResult::Unmodified;
1200 
1201   SmallPtrSet<const Value *, 32> EphValues;
1202   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1203 
1204   UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
1205   if (!UCE.canUnroll()) {
1206     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains instructions"
1207                       << " which cannot be duplicated or have invalid cost.\n");
1208     return LoopUnrollResult::Unmodified;
1209   }
1210 
1211   unsigned LoopSize = UCE.getRolledLoopSize();
1212   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1213 
1214   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1215   // later), to (fully) unroll loops, if it does not increase code size.
1216   if (OptForSize)
1217     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1218 
1219   if (UCE.NumInlineCandidates != 0) {
1220     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1221     return LoopUnrollResult::Unmodified;
1222   }
1223 
1224   // Find the smallest exact trip count for any exit. This is an upper bound
1225   // on the loop trip count, but an exit at an earlier iteration is still
1226   // possible. An unroll by the smallest exact trip count guarantees that all
1227   // branches relating to at least one exit can be eliminated. This is unlike
1228   // the max trip count, which only guarantees that the backedge can be broken.
1229   unsigned TripCount = 0;
1230   unsigned TripMultiple = 1;
1231   SmallVector<BasicBlock *, 8> ExitingBlocks;
1232   L->getExitingBlocks(ExitingBlocks);
1233   for (BasicBlock *ExitingBlock : ExitingBlocks)
1234     if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1235       if (!TripCount || TC < TripCount)
1236         TripCount = TripMultiple = TC;
1237 
1238   if (!TripCount) {
1239     // If no exact trip count is known, determine the trip multiple of either
1240     // the loop latch or the single exiting block.
1241     // TODO: Relax for multiple exits.
1242     BasicBlock *ExitingBlock = L->getLoopLatch();
1243     if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1244       ExitingBlock = L->getExitingBlock();
1245     if (ExitingBlock)
1246       TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1247   }
1248 
1249   // If the loop contains a convergent operation, the prelude we'd add
1250   // to do the first few instructions before we hit the unrolled loop
1251   // is unsafe -- it adds a control-flow dependency to the convergent
1252   // operation.  Therefore restrict remainder loop (try unrolling without).
1253   //
1254   // TODO: This is quite conservative.  In practice, convergent_op()
1255   // is likely to be called unconditionally in the loop.  In this
1256   // case, the program would be ill-formed (on most architectures)
1257   // unless n were the same on all threads in a thread group.
1258   // Assuming n is the same on all threads, any kind of unrolling is
1259   // safe.  But currently llvm's notion of convergence isn't powerful
1260   // enough to express this.
1261   if (UCE.Convergent)
1262     UP.AllowRemainder = false;
1263 
1264   // Try to find the trip count upper bound if we cannot find the exact trip
1265   // count.
1266   unsigned MaxTripCount = 0;
1267   bool MaxOrZero = false;
1268   if (!TripCount) {
1269     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1270     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1271   }
1272 
1273   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1274   // fully unroll the loop.
1275   bool UseUpperBound = false;
1276   bool IsCountSetExplicitly = computeUnrollCount(
1277       L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount,
1278       MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound);
1279   if (!UP.Count)
1280     return LoopUnrollResult::Unmodified;
1281 
1282   if (PP.PeelCount) {
1283     assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1284     LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1285                       << " with iteration count " << PP.PeelCount << "!\n");
1286     ORE.emit([&]() {
1287       return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1288                                 L->getHeader())
1289              << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1290              << " iterations";
1291     });
1292 
1293     ValueToValueMapTy VMap;
1294     if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) {
1295       simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1296       // If the loop was peeled, we already "used up" the profile information
1297       // we had, so we don't want to unroll or peel again.
1298       if (PP.PeelProfiledIterations)
1299         L->setLoopAlreadyUnrolled();
1300       return LoopUnrollResult::PartiallyUnrolled;
1301     }
1302     return LoopUnrollResult::Unmodified;
1303   }
1304 
1305   // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1306   if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) {
1307     LLVM_DEBUG(
1308         dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1309     return LoopUnrollResult::Unmodified;
1310   }
1311 
1312   // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1313   // However, we only want to actually perform it if we don't know the trip
1314   // count and the unroll count doesn't divide the known trip multiple.
1315   // TODO: This decision should probably be pushed up into
1316   // computeUnrollCount().
1317   UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1318 
1319   // Save loop properties before it is transformed.
1320   MDNode *OrigLoopID = L->getLoopID();
1321 
1322   // Unroll the loop.
1323   Loop *RemainderLoop = nullptr;
1324   LoopUnrollResult UnrollResult = UnrollLoop(
1325       L,
1326       {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1327        UP.UnrollRemainder, ForgetAllSCEV},
1328       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1329   if (UnrollResult == LoopUnrollResult::Unmodified)
1330     return LoopUnrollResult::Unmodified;
1331 
1332   if (RemainderLoop) {
1333     std::optional<MDNode *> RemainderLoopID =
1334         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1335                                         LLVMLoopUnrollFollowupRemainder});
1336     if (RemainderLoopID)
1337       RemainderLoop->setLoopID(*RemainderLoopID);
1338   }
1339 
1340   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1341     std::optional<MDNode *> NewLoopID =
1342         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1343                                         LLVMLoopUnrollFollowupUnrolled});
1344     if (NewLoopID) {
1345       L->setLoopID(*NewLoopID);
1346 
1347       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1348       // explicitly.
1349       return UnrollResult;
1350     }
1351   }
1352 
1353   // If loop has an unroll count pragma or unrolled by explicitly set count
1354   // mark loop as unrolled to prevent unrolling beyond that requested.
1355   if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1356     L->setLoopAlreadyUnrolled();
1357 
1358   return UnrollResult;
1359 }
1360 
1361 namespace {
1362 
1363 class LoopUnroll : public LoopPass {
1364 public:
1365   static char ID; // Pass ID, replacement for typeid
1366 
1367   int OptLevel;
1368 
1369   /// If false, use a cost model to determine whether unrolling of a loop is
1370   /// profitable. If true, only loops that explicitly request unrolling via
1371   /// metadata are considered. All other loops are skipped.
1372   bool OnlyWhenForced;
1373 
1374   /// If false, when SCEV is invalidated, only forget everything in the
1375   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1376   /// Otherwise, forgetAllLoops and rebuild when needed next.
1377   bool ForgetAllSCEV;
1378 
1379   std::optional<unsigned> ProvidedCount;
1380   std::optional<unsigned> ProvidedThreshold;
1381   std::optional<bool> ProvidedAllowPartial;
1382   std::optional<bool> ProvidedRuntime;
1383   std::optional<bool> ProvidedUpperBound;
1384   std::optional<bool> ProvidedAllowPeeling;
1385   std::optional<bool> ProvidedAllowProfileBasedPeeling;
1386   std::optional<unsigned> ProvidedFullUnrollMaxCount;
1387 
1388   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1389              bool ForgetAllSCEV = false,
1390              std::optional<unsigned> Threshold = std::nullopt,
1391              std::optional<unsigned> Count = std::nullopt,
1392              std::optional<bool> AllowPartial = std::nullopt,
1393              std::optional<bool> Runtime = std::nullopt,
1394              std::optional<bool> UpperBound = std::nullopt,
1395              std::optional<bool> AllowPeeling = std::nullopt,
1396              std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1397              std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1398       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1399         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1400         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1401         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1402         ProvidedAllowPeeling(AllowPeeling),
1403         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1404         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1405     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1406   }
1407 
1408   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1409     if (skipLoop(L))
1410       return false;
1411 
1412     Function &F = *L->getHeader()->getParent();
1413 
1414     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1415     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1416     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1417     const TargetTransformInfo &TTI =
1418         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1419     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1420     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1421     // pass.  Function analyses need to be preserved across loop transformations
1422     // but ORE cannot be preserved (see comment before the pass definition).
1423     OptimizationRemarkEmitter ORE(&F);
1424     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1425 
1426     LoopUnrollResult Result = tryToUnrollLoop(
1427         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1428         /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount,
1429         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1430         ProvidedUpperBound, ProvidedAllowPeeling,
1431         ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount);
1432 
1433     if (Result == LoopUnrollResult::FullyUnrolled)
1434       LPM.markLoopAsDeleted(*L);
1435 
1436     return Result != LoopUnrollResult::Unmodified;
1437   }
1438 
1439   /// This transformation requires natural loop information & requires that
1440   /// loop preheaders be inserted into the CFG...
1441   void getAnalysisUsage(AnalysisUsage &AU) const override {
1442     AU.addRequired<AssumptionCacheTracker>();
1443     AU.addRequired<TargetTransformInfoWrapperPass>();
1444     // FIXME: Loop passes are required to preserve domtree, and for now we just
1445     // recreate dom info if anything gets unrolled.
1446     getLoopAnalysisUsage(AU);
1447   }
1448 };
1449 
1450 } // end anonymous namespace
1451 
1452 char LoopUnroll::ID = 0;
1453 
1454 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1455 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1456 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1457 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1458 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1459 
1460 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1461                                  bool ForgetAllSCEV, int Threshold, int Count,
1462                                  int AllowPartial, int Runtime, int UpperBound,
1463                                  int AllowPeeling) {
1464   // TODO: It would make more sense for this function to take the optionals
1465   // directly, but that's dangerous since it would silently break out of tree
1466   // callers.
1467   return new LoopUnroll(
1468       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1469       Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1470       Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1471       AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1472       Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1473       UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1474       AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1475 }
1476 
1477 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1478                                           LoopStandardAnalysisResults &AR,
1479                                           LPMUpdater &Updater) {
1480   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1481   // pass. Function analyses need to be preserved across loop transformations
1482   // but ORE cannot be preserved (see comment before the pass definition).
1483   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1484 
1485   // Keep track of the previous loop structure so we can identify new loops
1486   // created by unrolling.
1487   Loop *ParentL = L.getParentLoop();
1488   SmallPtrSet<Loop *, 4> OldLoops;
1489   if (ParentL)
1490     OldLoops.insert(ParentL->begin(), ParentL->end());
1491   else
1492     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1493 
1494   std::string LoopName = std::string(L.getName());
1495 
1496   bool Changed =
1497       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1498                       /*BFI*/ nullptr, /*PSI*/ nullptr,
1499                       /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true,
1500                       OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt,
1501                       /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1502                       /*Runtime*/ false, /*UpperBound*/ false,
1503                       /*AllowPeeling*/ true,
1504                       /*AllowProfileBasedPeeling*/ false,
1505                       /*FullUnrollMaxCount*/ std::nullopt) !=
1506       LoopUnrollResult::Unmodified;
1507   if (!Changed)
1508     return PreservedAnalyses::all();
1509 
1510   // The parent must not be damaged by unrolling!
1511 #ifndef NDEBUG
1512   if (ParentL)
1513     ParentL->verifyLoop();
1514 #endif
1515 
1516   // Unrolling can do several things to introduce new loops into a loop nest:
1517   // - Full unrolling clones child loops within the current loop but then
1518   //   removes the current loop making all of the children appear to be new
1519   //   sibling loops.
1520   //
1521   // When a new loop appears as a sibling loop after fully unrolling,
1522   // its nesting structure has fundamentally changed and we want to revisit
1523   // it to reflect that.
1524   //
1525   // When unrolling has removed the current loop, we need to tell the
1526   // infrastructure that it is gone.
1527   //
1528   // Finally, we support a debugging/testing mode where we revisit child loops
1529   // as well. These are not expected to require further optimizations as either
1530   // they or the loop they were cloned from have been directly visited already.
1531   // But the debugging mode allows us to check this assumption.
1532   bool IsCurrentLoopValid = false;
1533   SmallVector<Loop *, 4> SibLoops;
1534   if (ParentL)
1535     SibLoops.append(ParentL->begin(), ParentL->end());
1536   else
1537     SibLoops.append(AR.LI.begin(), AR.LI.end());
1538   erase_if(SibLoops, [&](Loop *SibLoop) {
1539     if (SibLoop == &L) {
1540       IsCurrentLoopValid = true;
1541       return true;
1542     }
1543 
1544     // Otherwise erase the loop from the list if it was in the old loops.
1545     return OldLoops.contains(SibLoop);
1546   });
1547   Updater.addSiblingLoops(SibLoops);
1548 
1549   if (!IsCurrentLoopValid) {
1550     Updater.markLoopAsDeleted(L, LoopName);
1551   } else {
1552     // We can only walk child loops if the current loop remained valid.
1553     if (UnrollRevisitChildLoops) {
1554       // Walk *all* of the child loops.
1555       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1556       Updater.addChildLoops(ChildLoops);
1557     }
1558   }
1559 
1560   return getLoopPassPreservedAnalyses();
1561 }
1562 
1563 PreservedAnalyses LoopUnrollPass::run(Function &F,
1564                                       FunctionAnalysisManager &AM) {
1565   auto &LI = AM.getResult<LoopAnalysis>(F);
1566   // There are no loops in the function. Return before computing other expensive
1567   // analyses.
1568   if (LI.empty())
1569     return PreservedAnalyses::all();
1570   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1571   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1572   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1573   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1574   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1575 
1576   LoopAnalysisManager *LAM = nullptr;
1577   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1578     LAM = &LAMProxy->getManager();
1579 
1580   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1581   ProfileSummaryInfo *PSI =
1582       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1583   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1584       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1585 
1586   bool Changed = false;
1587 
1588   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1589   // Since simplification may add new inner loops, it has to run before the
1590   // legality and profitability checks. This means running the loop unroller
1591   // will simplify all loops, regardless of whether anything end up being
1592   // unrolled.
1593   for (const auto &L : LI) {
1594     Changed |=
1595         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1596     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1597   }
1598 
1599   // Add the loop nests in the reverse order of LoopInfo. See method
1600   // declaration.
1601   SmallPriorityWorklist<Loop *, 4> Worklist;
1602   appendLoopsToWorklist(LI, Worklist);
1603 
1604   while (!Worklist.empty()) {
1605     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1606     // from back to front so that we work forward across the CFG, which
1607     // for unrolling is only needed to get optimization remarks emitted in
1608     // a forward order.
1609     Loop &L = *Worklist.pop_back_val();
1610 #ifndef NDEBUG
1611     Loop *ParentL = L.getParentLoop();
1612 #endif
1613 
1614     // Check if the profile summary indicates that the profiled application
1615     // has a huge working set size, in which case we disable peeling to avoid
1616     // bloating it further.
1617     std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1618     if (PSI && PSI->hasHugeWorkingSetSize())
1619       LocalAllowPeeling = false;
1620     std::string LoopName = std::string(L.getName());
1621     // The API here is quite complex to call and we allow to select some
1622     // flavors of unrolling during construction time (by setting UnrollOpts).
1623     LoopUnrollResult Result = tryToUnrollLoop(
1624         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1625         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false,
1626         UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV,
1627         /*Count*/ std::nullopt,
1628         /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1629         UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1630         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1631     Changed |= Result != LoopUnrollResult::Unmodified;
1632 
1633     // The parent must not be damaged by unrolling!
1634 #ifndef NDEBUG
1635     if (Result != LoopUnrollResult::Unmodified && ParentL)
1636       ParentL->verifyLoop();
1637 #endif
1638 
1639     // Clear any cached analysis results for L if we removed it completely.
1640     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1641       LAM->clear(L, LoopName);
1642   }
1643 
1644   if (!Changed)
1645     return PreservedAnalyses::all();
1646 
1647   return getLoopPassPreservedAnalyses();
1648 }
1649 
1650 void LoopUnrollPass::printPipeline(
1651     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1652   static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1653       OS, MapClassName2PassName);
1654   OS << '<';
1655   if (UnrollOpts.AllowPartial != std::nullopt)
1656     OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1657   if (UnrollOpts.AllowPeeling != std::nullopt)
1658     OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1659   if (UnrollOpts.AllowRuntime != std::nullopt)
1660     OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1661   if (UnrollOpts.AllowUpperBound != std::nullopt)
1662     OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1663   if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1664     OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1665        << "profile-peeling;";
1666   if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1667     OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';';
1668   OS << 'O' << UnrollOpts.OptLevel;
1669   OS << '>';
1670 }
1671