1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/CodeMetrics.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Scalar/LoopPassManager.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/LoopPeel.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/SizeOpts.h" 60 #include "llvm/Transforms/Utils/UnrollLoop.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <limits> 65 #include <optional> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is sometimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> 85 UnrollOptSizeThreshold( 86 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 87 cl::desc("The cost threshold for loop unrolling when optimizing for " 88 "size")); 89 90 static cl::opt<unsigned> UnrollPartialThreshold( 91 "unroll-partial-threshold", cl::Hidden, 92 cl::desc("The cost threshold for partial loop unrolling")); 93 94 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 95 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 97 "to the threshold when aggressively unrolling a loop due to the " 98 "dynamic cost savings. If completely unrolling a loop will reduce " 99 "the total runtime from X to Y, we boost the loop unroll " 100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 101 "X/Y). This limit avoids excessive code bloat.")); 102 103 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 104 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 105 cl::desc("Don't allow loop unrolling to simulate more than this number of" 106 "iterations when checking full unroll profitability")); 107 108 static cl::opt<unsigned> UnrollCount( 109 "unroll-count", cl::Hidden, 110 cl::desc("Use this unroll count for all loops including those with " 111 "unroll_count pragma values, for testing purposes")); 112 113 static cl::opt<unsigned> UnrollMaxCount( 114 "unroll-max-count", cl::Hidden, 115 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 116 "testing purposes")); 117 118 static cl::opt<unsigned> UnrollFullMaxCount( 119 "unroll-full-max-count", cl::Hidden, 120 cl::desc( 121 "Set the max unroll count for full unrolling, for testing purposes")); 122 123 static cl::opt<bool> 124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 125 cl::desc("Allows loops to be partially unrolled until " 126 "-unroll-threshold loop size is reached.")); 127 128 static cl::opt<bool> UnrollAllowRemainder( 129 "unroll-allow-remainder", cl::Hidden, 130 cl::desc("Allow generation of a loop remainder (extra iterations) " 131 "when unrolling a loop.")); 132 133 static cl::opt<bool> 134 UnrollRuntime("unroll-runtime", cl::Hidden, 135 cl::desc("Unroll loops with run-time trip counts")); 136 137 static cl::opt<unsigned> UnrollMaxUpperBound( 138 "unroll-max-upperbound", cl::init(8), cl::Hidden, 139 cl::desc( 140 "The max of trip count upper bound that is considered in unrolling")); 141 142 static cl::opt<unsigned> PragmaUnrollThreshold( 143 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 144 cl::desc("Unrolled size limit for loops with an unroll(full) or " 145 "unroll_count pragma.")); 146 147 static cl::opt<unsigned> FlatLoopTripCountThreshold( 148 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 149 cl::desc("If the runtime tripcount for the loop is lower than the " 150 "threshold, the loop is considered as flat and will be less " 151 "aggressively unrolled.")); 152 153 static cl::opt<bool> UnrollUnrollRemainder( 154 "unroll-remainder", cl::Hidden, 155 cl::desc("Allow the loop remainder to be unrolled.")); 156 157 // This option isn't ever intended to be enabled, it serves to allow 158 // experiments to check the assumptions about when this kind of revisit is 159 // necessary. 160 static cl::opt<bool> UnrollRevisitChildLoops( 161 "unroll-revisit-child-loops", cl::Hidden, 162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 163 "This shouldn't typically be needed as child loops (or their " 164 "clones) were already visited.")); 165 166 static cl::opt<unsigned> UnrollThresholdAggressive( 167 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 169 "optimizations")); 170 static cl::opt<unsigned> 171 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 172 cl::Hidden, 173 cl::desc("Default threshold (max size of unrolled " 174 "loop), used in all but O3 optimizations")); 175 176 static cl::opt<unsigned> PragmaUnrollFullMaxIterations( 177 "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden, 178 cl::desc("Maximum allowed iterations to unroll under pragma unroll full.")); 179 180 /// A magic value for use with the Threshold parameter to indicate 181 /// that the loop unroll should be performed regardless of how much 182 /// code expansion would result. 183 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 184 185 /// Gather the various unrolling parameters based on the defaults, compiler 186 /// flags, TTI overrides and user specified parameters. 187 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 188 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 189 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 190 OptimizationRemarkEmitter &ORE, int OptLevel, 191 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, 192 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, 193 std::optional<bool> UserUpperBound, 194 std::optional<unsigned> UserFullUnrollMaxCount) { 195 TargetTransformInfo::UnrollingPreferences UP; 196 197 // Set up the defaults 198 UP.Threshold = 199 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 200 UP.MaxPercentThresholdBoost = 400; 201 UP.OptSizeThreshold = UnrollOptSizeThreshold; 202 UP.PartialThreshold = 150; 203 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 204 UP.Count = 0; 205 UP.DefaultUnrollRuntimeCount = 8; 206 UP.MaxCount = std::numeric_limits<unsigned>::max(); 207 UP.MaxUpperBound = UnrollMaxUpperBound; 208 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 209 UP.BEInsns = 2; 210 UP.Partial = false; 211 UP.Runtime = false; 212 UP.AllowRemainder = true; 213 UP.UnrollRemainder = false; 214 UP.AllowExpensiveTripCount = false; 215 UP.Force = false; 216 UP.UpperBound = false; 217 UP.UnrollAndJam = false; 218 UP.UnrollAndJamInnerLoopThreshold = 60; 219 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 220 221 // Override with any target specific settings 222 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 223 224 // Apply size attributes 225 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 226 // Let unroll hints / pragmas take precedence over PGSO. 227 (hasUnrollTransformation(L) != TM_ForcedByUser && 228 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 229 PGSOQueryType::IRPass)); 230 if (OptForSize) { 231 UP.Threshold = UP.OptSizeThreshold; 232 UP.PartialThreshold = UP.PartialOptSizeThreshold; 233 UP.MaxPercentThresholdBoost = 100; 234 } 235 236 // Apply any user values specified by cl::opt 237 if (UnrollThreshold.getNumOccurrences() > 0) 238 UP.Threshold = UnrollThreshold; 239 if (UnrollPartialThreshold.getNumOccurrences() > 0) 240 UP.PartialThreshold = UnrollPartialThreshold; 241 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 242 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 243 if (UnrollMaxCount.getNumOccurrences() > 0) 244 UP.MaxCount = UnrollMaxCount; 245 if (UnrollMaxUpperBound.getNumOccurrences() > 0) 246 UP.MaxUpperBound = UnrollMaxUpperBound; 247 if (UnrollFullMaxCount.getNumOccurrences() > 0) 248 UP.FullUnrollMaxCount = UnrollFullMaxCount; 249 if (UnrollAllowPartial.getNumOccurrences() > 0) 250 UP.Partial = UnrollAllowPartial; 251 if (UnrollAllowRemainder.getNumOccurrences() > 0) 252 UP.AllowRemainder = UnrollAllowRemainder; 253 if (UnrollRuntime.getNumOccurrences() > 0) 254 UP.Runtime = UnrollRuntime; 255 if (UnrollMaxUpperBound == 0) 256 UP.UpperBound = false; 257 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 258 UP.UnrollRemainder = UnrollUnrollRemainder; 259 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 260 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 261 262 // Apply user values provided by argument 263 if (UserThreshold) { 264 UP.Threshold = *UserThreshold; 265 UP.PartialThreshold = *UserThreshold; 266 } 267 if (UserCount) 268 UP.Count = *UserCount; 269 if (UserAllowPartial) 270 UP.Partial = *UserAllowPartial; 271 if (UserRuntime) 272 UP.Runtime = *UserRuntime; 273 if (UserUpperBound) 274 UP.UpperBound = *UserUpperBound; 275 if (UserFullUnrollMaxCount) 276 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 277 278 return UP; 279 } 280 281 namespace { 282 283 /// A struct to densely store the state of an instruction after unrolling at 284 /// each iteration. 285 /// 286 /// This is designed to work like a tuple of <Instruction *, int> for the 287 /// purposes of hashing and lookup, but to be able to associate two boolean 288 /// states with each key. 289 struct UnrolledInstState { 290 Instruction *I; 291 int Iteration : 30; 292 unsigned IsFree : 1; 293 unsigned IsCounted : 1; 294 }; 295 296 /// Hashing and equality testing for a set of the instruction states. 297 struct UnrolledInstStateKeyInfo { 298 using PtrInfo = DenseMapInfo<Instruction *>; 299 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 300 301 static inline UnrolledInstState getEmptyKey() { 302 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 303 } 304 305 static inline UnrolledInstState getTombstoneKey() { 306 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 307 } 308 309 static inline unsigned getHashValue(const UnrolledInstState &S) { 310 return PairInfo::getHashValue({S.I, S.Iteration}); 311 } 312 313 static inline bool isEqual(const UnrolledInstState &LHS, 314 const UnrolledInstState &RHS) { 315 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 316 } 317 }; 318 319 struct EstimatedUnrollCost { 320 /// The estimated cost after unrolling. 321 unsigned UnrolledCost; 322 323 /// The estimated dynamic cost of executing the instructions in the 324 /// rolled form. 325 unsigned RolledDynamicCost; 326 }; 327 328 struct PragmaInfo { 329 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 330 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 331 PragmaEnableUnroll(PEU) {} 332 const bool UserUnrollCount; 333 const bool PragmaFullUnroll; 334 const unsigned PragmaCount; 335 const bool PragmaEnableUnroll; 336 }; 337 338 } // end anonymous namespace 339 340 /// Figure out if the loop is worth full unrolling. 341 /// 342 /// Complete loop unrolling can make some loads constant, and we need to know 343 /// if that would expose any further optimization opportunities. This routine 344 /// estimates this optimization. It computes cost of unrolled loop 345 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 346 /// dynamic cost we mean that we won't count costs of blocks that are known not 347 /// to be executed (i.e. if we have a branch in the loop and we know that at the 348 /// given iteration its condition would be resolved to true, we won't add up the 349 /// cost of the 'false'-block). 350 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 351 /// the analysis failed (no benefits expected from the unrolling, or the loop is 352 /// too big to analyze), the returned value is std::nullopt. 353 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 354 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 355 const SmallPtrSetImpl<const Value *> &EphValues, 356 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 357 unsigned MaxIterationsCountToAnalyze) { 358 // We want to be able to scale offsets by the trip count and add more offsets 359 // to them without checking for overflows, and we already don't want to 360 // analyze *massive* trip counts, so we force the max to be reasonably small. 361 assert(MaxIterationsCountToAnalyze < 362 (unsigned)(std::numeric_limits<int>::max() / 2) && 363 "The unroll iterations max is too large!"); 364 365 // Only analyze inner loops. We can't properly estimate cost of nested loops 366 // and we won't visit inner loops again anyway. 367 if (!L->isInnermost()) 368 return std::nullopt; 369 370 // Don't simulate loops with a big or unknown tripcount 371 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 372 return std::nullopt; 373 374 SmallSetVector<BasicBlock *, 16> BBWorklist; 375 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 376 DenseMap<Value *, Value *> SimplifiedValues; 377 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 378 379 // The estimated cost of the unrolled form of the loop. We try to estimate 380 // this by simplifying as much as we can while computing the estimate. 381 InstructionCost UnrolledCost = 0; 382 383 // We also track the estimated dynamic (that is, actually executed) cost in 384 // the rolled form. This helps identify cases when the savings from unrolling 385 // aren't just exposing dead control flows, but actual reduced dynamic 386 // instructions due to the simplifications which we expect to occur after 387 // unrolling. 388 InstructionCost RolledDynamicCost = 0; 389 390 // We track the simplification of each instruction in each iteration. We use 391 // this to recursively merge costs into the unrolled cost on-demand so that 392 // we don't count the cost of any dead code. This is essentially a map from 393 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 394 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 395 396 // A small worklist used to accumulate cost of instructions from each 397 // observable and reached root in the loop. 398 SmallVector<Instruction *, 16> CostWorklist; 399 400 // PHI-used worklist used between iterations while accumulating cost. 401 SmallVector<Instruction *, 4> PHIUsedList; 402 403 // Helper function to accumulate cost for instructions in the loop. 404 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 405 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 406 assert(CostWorklist.empty() && "Must start with an empty cost list"); 407 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 408 CostWorklist.push_back(&RootI); 409 TargetTransformInfo::TargetCostKind CostKind = 410 RootI.getFunction()->hasMinSize() ? 411 TargetTransformInfo::TCK_CodeSize : 412 TargetTransformInfo::TCK_SizeAndLatency; 413 for (;; --Iteration) { 414 do { 415 Instruction *I = CostWorklist.pop_back_val(); 416 417 // InstCostMap only uses I and Iteration as a key, the other two values 418 // don't matter here. 419 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 420 if (CostIter == InstCostMap.end()) 421 // If an input to a PHI node comes from a dead path through the loop 422 // we may have no cost data for it here. What that actually means is 423 // that it is free. 424 continue; 425 auto &Cost = *CostIter; 426 if (Cost.IsCounted) 427 // Already counted this instruction. 428 continue; 429 430 // Mark that we are counting the cost of this instruction now. 431 Cost.IsCounted = true; 432 433 // If this is a PHI node in the loop header, just add it to the PHI set. 434 if (auto *PhiI = dyn_cast<PHINode>(I)) 435 if (PhiI->getParent() == L->getHeader()) { 436 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 437 "inherently simplify during unrolling."); 438 if (Iteration == 0) 439 continue; 440 441 // Push the incoming value from the backedge into the PHI used list 442 // if it is an in-loop instruction. We'll use this to populate the 443 // cost worklist for the next iteration (as we count backwards). 444 if (auto *OpI = dyn_cast<Instruction>( 445 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 446 if (L->contains(OpI)) 447 PHIUsedList.push_back(OpI); 448 continue; 449 } 450 451 // First accumulate the cost of this instruction. 452 if (!Cost.IsFree) { 453 // Consider simplified operands in instruction cost. 454 SmallVector<Value *, 4> Operands; 455 transform(I->operands(), std::back_inserter(Operands), 456 [&](Value *Op) { 457 if (auto Res = SimplifiedValues.lookup(Op)) 458 return Res; 459 return Op; 460 }); 461 UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind); 462 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 463 << Iteration << "): "); 464 LLVM_DEBUG(I->dump()); 465 } 466 467 // We must count the cost of every operand which is not free, 468 // recursively. If we reach a loop PHI node, simply add it to the set 469 // to be considered on the next iteration (backwards!). 470 for (Value *Op : I->operands()) { 471 // Check whether this operand is free due to being a constant or 472 // outside the loop. 473 auto *OpI = dyn_cast<Instruction>(Op); 474 if (!OpI || !L->contains(OpI)) 475 continue; 476 477 // Otherwise accumulate its cost. 478 CostWorklist.push_back(OpI); 479 } 480 } while (!CostWorklist.empty()); 481 482 if (PHIUsedList.empty()) 483 // We've exhausted the search. 484 break; 485 486 assert(Iteration > 0 && 487 "Cannot track PHI-used values past the first iteration!"); 488 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 489 PHIUsedList.clear(); 490 } 491 }; 492 493 // Ensure that we don't violate the loop structure invariants relied on by 494 // this analysis. 495 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 496 assert(L->isLCSSAForm(DT) && 497 "Must have loops in LCSSA form to track live-out values."); 498 499 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 500 501 TargetTransformInfo::TargetCostKind CostKind = 502 L->getHeader()->getParent()->hasMinSize() ? 503 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 504 // Simulate execution of each iteration of the loop counting instructions, 505 // which would be simplified. 506 // Since the same load will take different values on different iterations, 507 // we literally have to go through all loop's iterations. 508 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 509 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 510 511 // Prepare for the iteration by collecting any simplified entry or backedge 512 // inputs. 513 for (Instruction &I : *L->getHeader()) { 514 auto *PHI = dyn_cast<PHINode>(&I); 515 if (!PHI) 516 break; 517 518 // The loop header PHI nodes must have exactly two input: one from the 519 // loop preheader and one from the loop latch. 520 assert( 521 PHI->getNumIncomingValues() == 2 && 522 "Must have an incoming value only for the preheader and the latch."); 523 524 Value *V = PHI->getIncomingValueForBlock( 525 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 526 if (Iteration != 0 && SimplifiedValues.count(V)) 527 V = SimplifiedValues.lookup(V); 528 SimplifiedInputValues.push_back({PHI, V}); 529 } 530 531 // Now clear and re-populate the map for the next iteration. 532 SimplifiedValues.clear(); 533 while (!SimplifiedInputValues.empty()) 534 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 535 536 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 537 538 BBWorklist.clear(); 539 BBWorklist.insert(L->getHeader()); 540 // Note that we *must not* cache the size, this loop grows the worklist. 541 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 542 BasicBlock *BB = BBWorklist[Idx]; 543 544 // Visit all instructions in the given basic block and try to simplify 545 // it. We don't change the actual IR, just count optimization 546 // opportunities. 547 for (Instruction &I : *BB) { 548 // These won't get into the final code - don't even try calculating the 549 // cost for them. 550 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 551 continue; 552 553 // Track this instruction's expected baseline cost when executing the 554 // rolled loop form. 555 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind); 556 557 // Visit the instruction to analyze its loop cost after unrolling, 558 // and if the visitor returns true, mark the instruction as free after 559 // unrolling and continue. 560 bool IsFree = Analyzer.visit(I); 561 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 562 (unsigned)IsFree, 563 /*IsCounted*/ false}).second; 564 (void)Inserted; 565 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 566 567 if (IsFree) 568 continue; 569 570 // Can't properly model a cost of a call. 571 // FIXME: With a proper cost model we should be able to do it. 572 if (auto *CI = dyn_cast<CallInst>(&I)) { 573 const Function *Callee = CI->getCalledFunction(); 574 if (!Callee || TTI.isLoweredToCall(Callee)) { 575 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 576 return std::nullopt; 577 } 578 } 579 580 // If the instruction might have a side-effect recursively account for 581 // the cost of it and all the instructions leading up to it. 582 if (I.mayHaveSideEffects()) 583 AddCostRecursively(I, Iteration); 584 585 // If unrolled body turns out to be too big, bail out. 586 if (UnrolledCost > MaxUnrolledLoopSize) { 587 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 588 << " UnrolledCost: " << UnrolledCost 589 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 590 << "\n"); 591 return std::nullopt; 592 } 593 } 594 595 Instruction *TI = BB->getTerminator(); 596 597 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 598 if (SimplifiedValues.count(V)) 599 V = SimplifiedValues.lookup(V); 600 return dyn_cast<Constant>(V); 601 }; 602 603 // Add in the live successors by first checking whether we have terminator 604 // that may be simplified based on the values simplified by this call. 605 BasicBlock *KnownSucc = nullptr; 606 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 607 if (BI->isConditional()) { 608 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 609 // Just take the first successor if condition is undef 610 if (isa<UndefValue>(SimpleCond)) 611 KnownSucc = BI->getSuccessor(0); 612 else if (ConstantInt *SimpleCondVal = 613 dyn_cast<ConstantInt>(SimpleCond)) 614 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 615 } 616 } 617 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 618 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 619 // Just take the first successor if condition is undef 620 if (isa<UndefValue>(SimpleCond)) 621 KnownSucc = SI->getSuccessor(0); 622 else if (ConstantInt *SimpleCondVal = 623 dyn_cast<ConstantInt>(SimpleCond)) 624 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 625 } 626 } 627 if (KnownSucc) { 628 if (L->contains(KnownSucc)) 629 BBWorklist.insert(KnownSucc); 630 else 631 ExitWorklist.insert({BB, KnownSucc}); 632 continue; 633 } 634 635 // Add BB's successors to the worklist. 636 for (BasicBlock *Succ : successors(BB)) 637 if (L->contains(Succ)) 638 BBWorklist.insert(Succ); 639 else 640 ExitWorklist.insert({BB, Succ}); 641 AddCostRecursively(*TI, Iteration); 642 } 643 644 // If we found no optimization opportunities on the first iteration, we 645 // won't find them on later ones too. 646 if (UnrolledCost == RolledDynamicCost) { 647 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 648 << " UnrolledCost: " << UnrolledCost << "\n"); 649 return std::nullopt; 650 } 651 } 652 653 while (!ExitWorklist.empty()) { 654 BasicBlock *ExitingBB, *ExitBB; 655 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 656 657 for (Instruction &I : *ExitBB) { 658 auto *PN = dyn_cast<PHINode>(&I); 659 if (!PN) 660 break; 661 662 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 663 if (auto *OpI = dyn_cast<Instruction>(Op)) 664 if (L->contains(OpI)) 665 AddCostRecursively(*OpI, TripCount - 1); 666 } 667 } 668 669 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 670 "All instructions must have a valid cost, whether the " 671 "loop is rolled or unrolled."); 672 673 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 674 << "UnrolledCost: " << UnrolledCost << ", " 675 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 676 return {{unsigned(*UnrolledCost.getValue()), 677 unsigned(*RolledDynamicCost.getValue())}}; 678 } 679 680 UnrollCostEstimator::UnrollCostEstimator( 681 const Loop *L, const TargetTransformInfo &TTI, 682 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 683 CodeMetrics Metrics; 684 for (BasicBlock *BB : L->blocks()) 685 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 686 NumInlineCandidates = Metrics.NumInlineCandidates; 687 NotDuplicatable = Metrics.notDuplicatable; 688 Convergent = Metrics.convergent; 689 LoopSize = Metrics.NumInsts; 690 691 // Don't allow an estimate of size zero. This would allows unrolling of loops 692 // with huge iteration counts, which is a compile time problem even if it's 693 // not a problem for code quality. Also, the code using this size may assume 694 // that each loop has at least three instructions (likely a conditional 695 // branch, a comparison feeding that branch, and some kind of loop increment 696 // feeding that comparison instruction). 697 if (LoopSize.isValid() && LoopSize < BEInsns + 1) 698 // This is an open coded max() on InstructionCost 699 LoopSize = BEInsns + 1; 700 } 701 702 uint64_t UnrollCostEstimator::getUnrolledLoopSize( 703 const TargetTransformInfo::UnrollingPreferences &UP, 704 unsigned CountOverwrite) const { 705 unsigned LS = *LoopSize.getValue(); 706 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 707 if (CountOverwrite) 708 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; 709 else 710 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; 711 } 712 713 // Returns the loop hint metadata node with the given name (for example, 714 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 715 // returned. 716 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 717 if (MDNode *LoopID = L->getLoopID()) 718 return GetUnrollMetadata(LoopID, Name); 719 return nullptr; 720 } 721 722 // Returns true if the loop has an unroll(full) pragma. 723 static bool hasUnrollFullPragma(const Loop *L) { 724 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 725 } 726 727 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 728 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 729 static bool hasUnrollEnablePragma(const Loop *L) { 730 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 731 } 732 733 // Returns true if the loop has an runtime unroll(disable) pragma. 734 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 735 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 736 } 737 738 // If loop has an unroll_count pragma return the (necessarily 739 // positive) value from the pragma. Otherwise return 0. 740 static unsigned unrollCountPragmaValue(const Loop *L) { 741 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 742 if (MD) { 743 assert(MD->getNumOperands() == 2 && 744 "Unroll count hint metadata should have two operands."); 745 unsigned Count = 746 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 747 assert(Count >= 1 && "Unroll count must be positive."); 748 return Count; 749 } 750 return 0; 751 } 752 753 // Computes the boosting factor for complete unrolling. 754 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 755 // be beneficial to fully unroll the loop even if unrolledcost is large. We 756 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 757 // the unroll threshold. 758 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 759 unsigned MaxPercentThresholdBoost) { 760 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 761 return 100; 762 else if (Cost.UnrolledCost != 0) 763 // The boosting factor is RolledDynamicCost / UnrolledCost 764 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 765 MaxPercentThresholdBoost); 766 else 767 return MaxPercentThresholdBoost; 768 } 769 770 static std::optional<unsigned> 771 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 772 const unsigned TripMultiple, const unsigned TripCount, 773 unsigned MaxTripCount, const UnrollCostEstimator UCE, 774 const TargetTransformInfo::UnrollingPreferences &UP) { 775 776 // Using unroll pragma 777 // 1st priority is unroll count set by "unroll-count" option. 778 779 if (PInfo.UserUnrollCount) { 780 if (UP.AllowRemainder && 781 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 782 return (unsigned)UnrollCount; 783 } 784 785 // 2nd priority is unroll count set by pragma. 786 if (PInfo.PragmaCount > 0) { 787 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) 788 return PInfo.PragmaCount; 789 } 790 791 if (PInfo.PragmaFullUnroll && TripCount != 0) { 792 // Certain cases with UBSAN can cause trip count to be calculated as 793 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler 794 // doesn't hang trying to unroll the loop. See PR77842 795 if (TripCount > PragmaUnrollFullMaxIterations) { 796 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n"); 797 return std::nullopt; 798 } 799 800 return TripCount; 801 } 802 803 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && 804 MaxTripCount <= UP.MaxUpperBound) 805 return MaxTripCount; 806 807 // if didn't return until here, should continue to other priorties 808 return std::nullopt; 809 } 810 811 static std::optional<unsigned> shouldFullUnroll( 812 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 813 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 814 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 815 const TargetTransformInfo::UnrollingPreferences &UP) { 816 assert(FullUnrollTripCount && "should be non-zero!"); 817 818 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 819 return std::nullopt; 820 821 // When computing the unrolled size, note that BEInsns are not replicated 822 // like the rest of the loop body. 823 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 824 return FullUnrollTripCount; 825 826 // The loop isn't that small, but we still can fully unroll it if that 827 // helps to remove a significant number of instructions. 828 // To check that, run additional analysis on the loop. 829 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 830 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 831 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 832 UP.MaxIterationsCountToAnalyze)) { 833 unsigned Boost = 834 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 835 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 836 return FullUnrollTripCount; 837 } 838 return std::nullopt; 839 } 840 841 static std::optional<unsigned> 842 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 843 const UnrollCostEstimator UCE, 844 const TargetTransformInfo::UnrollingPreferences &UP) { 845 846 if (!TripCount) 847 return std::nullopt; 848 849 if (!UP.Partial) { 850 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 851 << "-unroll-allow-partial not given\n"); 852 return 0; 853 } 854 unsigned count = UP.Count; 855 if (count == 0) 856 count = TripCount; 857 if (UP.PartialThreshold != NoThreshold) { 858 // Reduce unroll count to be modulo of TripCount for partial unrolling. 859 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 860 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 861 (LoopSize - UP.BEInsns); 862 if (count > UP.MaxCount) 863 count = UP.MaxCount; 864 while (count != 0 && TripCount % count != 0) 865 count--; 866 if (UP.AllowRemainder && count <= 1) { 867 // If there is no Count that is modulo of TripCount, set Count to 868 // largest power-of-two factor that satisfies the threshold limit. 869 // As we'll create fixup loop, do the type of unrolling only if 870 // remainder loop is allowed. 871 count = UP.DefaultUnrollRuntimeCount; 872 while (count != 0 && 873 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 874 count >>= 1; 875 } 876 if (count < 2) { 877 count = 0; 878 } 879 } else { 880 count = TripCount; 881 } 882 if (count > UP.MaxCount) 883 count = UP.MaxCount; 884 885 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 886 887 return count; 888 } 889 // Returns true if unroll count was set explicitly. 890 // Calculates unroll count and writes it to UP.Count. 891 // Unless IgnoreUser is true, will also use metadata and command-line options 892 // that are specific to to the LoopUnroll pass (which, for instance, are 893 // irrelevant for the LoopUnrollAndJam pass). 894 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 895 // many LoopUnroll-specific options. The shared functionality should be 896 // refactored into it own function. 897 bool llvm::computeUnrollCount( 898 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 899 AssumptionCache *AC, ScalarEvolution &SE, 900 const SmallPtrSetImpl<const Value *> &EphValues, 901 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 902 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, 903 TargetTransformInfo::UnrollingPreferences &UP, 904 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 905 906 unsigned LoopSize = UCE.getRolledLoopSize(); 907 908 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 909 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 910 const unsigned PragmaCount = unrollCountPragmaValue(L); 911 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 912 913 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 914 PragmaEnableUnroll || UserUnrollCount; 915 916 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 917 PragmaEnableUnroll); 918 // Use an explicit peel count that has been specified for testing. In this 919 // case it's not permitted to also specify an explicit unroll count. 920 if (PP.PeelCount) { 921 if (UnrollCount.getNumOccurrences() > 0) { 922 report_fatal_error("Cannot specify both explicit peel count and " 923 "explicit unroll count", /*GenCrashDiag=*/false); 924 } 925 UP.Count = 1; 926 UP.Runtime = false; 927 return true; 928 } 929 // Check for explicit Count. 930 // 1st priority is unroll count set by "unroll-count" option. 931 // 2nd priority is unroll count set by pragma. 932 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 933 MaxTripCount, UCE, UP)) { 934 UP.Count = *UnrollFactor; 935 936 if (UserUnrollCount || (PragmaCount > 0)) { 937 UP.AllowExpensiveTripCount = true; 938 UP.Force = true; 939 } 940 UP.Runtime |= (PragmaCount > 0); 941 return ExplicitUnroll; 942 } else { 943 if (ExplicitUnroll && TripCount != 0) { 944 // If the loop has an unrolling pragma, we want to be more aggressive with 945 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 946 // value which is larger than the default limits. 947 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 948 UP.PartialThreshold = 949 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 950 } 951 } 952 953 // 3rd priority is exact full unrolling. This will eliminate all copies 954 // of some exit test. 955 UP.Count = 0; 956 if (TripCount) { 957 UP.Count = TripCount; 958 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 959 TripCount, UCE, UP)) { 960 UP.Count = *UnrollFactor; 961 UseUpperBound = false; 962 return ExplicitUnroll; 963 } 964 } 965 966 // 4th priority is bounded unrolling. 967 // We can unroll by the upper bound amount if it's generally allowed or if 968 // we know that the loop is executed either the upper bound or zero times. 969 // (MaxOrZero unrolling keeps only the first loop test, so the number of 970 // loop tests remains the same compared to the non-unrolled version, whereas 971 // the generic upper bound unrolling keeps all but the last loop test so the 972 // number of loop tests goes up which may end up being worse on targets with 973 // constrained branch predictor resources so is controlled by an option.) 974 // In addition we only unroll small upper bounds. 975 // Note that the cost of bounded unrolling is always strictly greater than 976 // cost of exact full unrolling. As such, if we have an exact count and 977 // found it unprofitable, we'll never chose to bounded unroll. 978 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 979 MaxTripCount <= UP.MaxUpperBound) { 980 UP.Count = MaxTripCount; 981 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 982 MaxTripCount, UCE, UP)) { 983 UP.Count = *UnrollFactor; 984 UseUpperBound = true; 985 return ExplicitUnroll; 986 } 987 } 988 989 // 5th priority is loop peeling. 990 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold); 991 if (PP.PeelCount) { 992 UP.Runtime = false; 993 UP.Count = 1; 994 return ExplicitUnroll; 995 } 996 997 // Before starting partial unrolling, set up.partial to true, 998 // if user explicitly asked for unrolling 999 if (TripCount) 1000 UP.Partial |= ExplicitUnroll; 1001 1002 // 6th priority is partial unrolling. 1003 // Try partial unroll only when TripCount could be statically calculated. 1004 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 1005 UP.Count = *UnrollFactor; 1006 1007 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 1008 UP.Count != TripCount) 1009 ORE->emit([&]() { 1010 return OptimizationRemarkMissed(DEBUG_TYPE, 1011 "FullUnrollAsDirectedTooLarge", 1012 L->getStartLoc(), L->getHeader()) 1013 << "Unable to fully unroll loop as directed by unroll pragma " 1014 "because " 1015 "unrolled size is too large."; 1016 }); 1017 1018 if (UP.PartialThreshold != NoThreshold) { 1019 if (UP.Count == 0) { 1020 if (PragmaEnableUnroll) 1021 ORE->emit([&]() { 1022 return OptimizationRemarkMissed(DEBUG_TYPE, 1023 "UnrollAsDirectedTooLarge", 1024 L->getStartLoc(), L->getHeader()) 1025 << "Unable to unroll loop as directed by unroll(enable) " 1026 "pragma " 1027 "because unrolled size is too large."; 1028 }); 1029 } 1030 } 1031 return ExplicitUnroll; 1032 } 1033 assert(TripCount == 0 && 1034 "All cases when TripCount is constant should be covered here."); 1035 if (PragmaFullUnroll) 1036 ORE->emit([&]() { 1037 return OptimizationRemarkMissed( 1038 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1039 L->getStartLoc(), L->getHeader()) 1040 << "Unable to fully unroll loop as directed by unroll(full) " 1041 "pragma " 1042 "because loop has a runtime trip count."; 1043 }); 1044 1045 // 7th priority is runtime unrolling. 1046 // Don't unroll a runtime trip count loop when it is disabled. 1047 if (hasRuntimeUnrollDisablePragma(L)) { 1048 UP.Count = 0; 1049 return false; 1050 } 1051 1052 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1053 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { 1054 UP.Count = 0; 1055 return false; 1056 } 1057 1058 // Check if the runtime trip count is too small when profile is available. 1059 if (L->getHeader()->getParent()->hasProfileData()) { 1060 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1061 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1062 return false; 1063 else 1064 UP.AllowExpensiveTripCount = true; 1065 } 1066 } 1067 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1068 if (!UP.Runtime) { 1069 LLVM_DEBUG( 1070 dbgs() << " will not try to unroll loop with runtime trip count " 1071 << "-unroll-runtime not given\n"); 1072 UP.Count = 0; 1073 return false; 1074 } 1075 if (UP.Count == 0) 1076 UP.Count = UP.DefaultUnrollRuntimeCount; 1077 1078 // Reduce unroll count to be the largest power-of-two factor of 1079 // the original count which satisfies the threshold limit. 1080 while (UP.Count != 0 && 1081 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1082 UP.Count >>= 1; 1083 1084 #ifndef NDEBUG 1085 unsigned OrigCount = UP.Count; 1086 #endif 1087 1088 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1089 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1090 UP.Count >>= 1; 1091 LLVM_DEBUG( 1092 dbgs() << "Remainder loop is restricted (that could architecture " 1093 "specific or because the loop contains a convergent " 1094 "instruction), so unroll count must divide the trip " 1095 "multiple, " 1096 << TripMultiple << ". Reducing unroll count from " << OrigCount 1097 << " to " << UP.Count << ".\n"); 1098 1099 using namespace ore; 1100 1101 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1102 ORE->emit([&]() { 1103 return OptimizationRemarkMissed(DEBUG_TYPE, 1104 "DifferentUnrollCountFromDirected", 1105 L->getStartLoc(), L->getHeader()) 1106 << "Unable to unroll loop the number of times directed by " 1107 "unroll_count pragma because remainder loop is restricted " 1108 "(that could architecture specific or because the loop " 1109 "contains a convergent instruction) and so must have an " 1110 "unroll " 1111 "count that divides the loop trip multiple of " 1112 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1113 << NV("UnrollCount", UP.Count) << " time(s)."; 1114 }); 1115 } 1116 1117 if (UP.Count > UP.MaxCount) 1118 UP.Count = UP.MaxCount; 1119 1120 if (MaxTripCount && UP.Count > MaxTripCount) 1121 UP.Count = MaxTripCount; 1122 1123 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1124 << "\n"); 1125 if (UP.Count < 2) 1126 UP.Count = 0; 1127 return ExplicitUnroll; 1128 } 1129 1130 static LoopUnrollResult 1131 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1132 const TargetTransformInfo &TTI, AssumptionCache &AC, 1133 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1134 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1135 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, 1136 std::optional<unsigned> ProvidedCount, 1137 std::optional<unsigned> ProvidedThreshold, 1138 std::optional<bool> ProvidedAllowPartial, 1139 std::optional<bool> ProvidedRuntime, 1140 std::optional<bool> ProvidedUpperBound, 1141 std::optional<bool> ProvidedAllowPeeling, 1142 std::optional<bool> ProvidedAllowProfileBasedPeeling, 1143 std::optional<unsigned> ProvidedFullUnrollMaxCount) { 1144 1145 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1146 << L->getHeader()->getParent()->getName() << "] Loop %" 1147 << L->getHeader()->getName() << "\n"); 1148 TransformationMode TM = hasUnrollTransformation(L); 1149 if (TM & TM_Disable) 1150 return LoopUnrollResult::Unmodified; 1151 1152 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1153 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1154 // automatic unrolling from interfering with the user requested 1155 // transformation. 1156 Loop *ParentL = L->getParentLoop(); 1157 if (ParentL != nullptr && 1158 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1159 hasUnrollTransformation(L) != TM_ForcedByUser) { 1160 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1161 << " llvm.loop.unroll_and_jam.\n"); 1162 return LoopUnrollResult::Unmodified; 1163 } 1164 1165 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1166 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1167 // unrolling from interfering with the user requested transformation. 1168 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1169 hasUnrollTransformation(L) != TM_ForcedByUser) { 1170 LLVM_DEBUG( 1171 dbgs() 1172 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1173 return LoopUnrollResult::Unmodified; 1174 } 1175 1176 if (!L->isLoopSimplifyForm()) { 1177 LLVM_DEBUG( 1178 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1179 return LoopUnrollResult::Unmodified; 1180 } 1181 1182 // When automatic unrolling is disabled, do not unroll unless overridden for 1183 // this loop. 1184 if (OnlyWhenForced && !(TM & TM_Enable)) 1185 return LoopUnrollResult::Unmodified; 1186 1187 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1188 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1189 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1190 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1191 ProvidedFullUnrollMaxCount); 1192 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1193 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1194 1195 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1196 // as threshold later on. 1197 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1198 !OptForSize) 1199 return LoopUnrollResult::Unmodified; 1200 1201 SmallPtrSet<const Value *, 32> EphValues; 1202 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1203 1204 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); 1205 if (!UCE.canUnroll()) { 1206 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions" 1207 << " which cannot be duplicated or have invalid cost.\n"); 1208 return LoopUnrollResult::Unmodified; 1209 } 1210 1211 unsigned LoopSize = UCE.getRolledLoopSize(); 1212 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1213 1214 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1215 // later), to (fully) unroll loops, if it does not increase code size. 1216 if (OptForSize) 1217 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1218 1219 if (UCE.NumInlineCandidates != 0) { 1220 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1221 return LoopUnrollResult::Unmodified; 1222 } 1223 1224 // Find the smallest exact trip count for any exit. This is an upper bound 1225 // on the loop trip count, but an exit at an earlier iteration is still 1226 // possible. An unroll by the smallest exact trip count guarantees that all 1227 // branches relating to at least one exit can be eliminated. This is unlike 1228 // the max trip count, which only guarantees that the backedge can be broken. 1229 unsigned TripCount = 0; 1230 unsigned TripMultiple = 1; 1231 SmallVector<BasicBlock *, 8> ExitingBlocks; 1232 L->getExitingBlocks(ExitingBlocks); 1233 for (BasicBlock *ExitingBlock : ExitingBlocks) 1234 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1235 if (!TripCount || TC < TripCount) 1236 TripCount = TripMultiple = TC; 1237 1238 if (!TripCount) { 1239 // If no exact trip count is known, determine the trip multiple of either 1240 // the loop latch or the single exiting block. 1241 // TODO: Relax for multiple exits. 1242 BasicBlock *ExitingBlock = L->getLoopLatch(); 1243 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1244 ExitingBlock = L->getExitingBlock(); 1245 if (ExitingBlock) 1246 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1247 } 1248 1249 // If the loop contains a convergent operation, the prelude we'd add 1250 // to do the first few instructions before we hit the unrolled loop 1251 // is unsafe -- it adds a control-flow dependency to the convergent 1252 // operation. Therefore restrict remainder loop (try unrolling without). 1253 // 1254 // TODO: This is quite conservative. In practice, convergent_op() 1255 // is likely to be called unconditionally in the loop. In this 1256 // case, the program would be ill-formed (on most architectures) 1257 // unless n were the same on all threads in a thread group. 1258 // Assuming n is the same on all threads, any kind of unrolling is 1259 // safe. But currently llvm's notion of convergence isn't powerful 1260 // enough to express this. 1261 if (UCE.Convergent) 1262 UP.AllowRemainder = false; 1263 1264 // Try to find the trip count upper bound if we cannot find the exact trip 1265 // count. 1266 unsigned MaxTripCount = 0; 1267 bool MaxOrZero = false; 1268 if (!TripCount) { 1269 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1270 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1271 } 1272 1273 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1274 // fully unroll the loop. 1275 bool UseUpperBound = false; 1276 bool IsCountSetExplicitly = computeUnrollCount( 1277 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, 1278 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); 1279 if (!UP.Count) 1280 return LoopUnrollResult::Unmodified; 1281 1282 if (PP.PeelCount) { 1283 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1284 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1285 << " with iteration count " << PP.PeelCount << "!\n"); 1286 ORE.emit([&]() { 1287 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1288 L->getHeader()) 1289 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1290 << " iterations"; 1291 }); 1292 1293 ValueToValueMapTy VMap; 1294 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) { 1295 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1296 // If the loop was peeled, we already "used up" the profile information 1297 // we had, so we don't want to unroll or peel again. 1298 if (PP.PeelProfiledIterations) 1299 L->setLoopAlreadyUnrolled(); 1300 return LoopUnrollResult::PartiallyUnrolled; 1301 } 1302 return LoopUnrollResult::Unmodified; 1303 } 1304 1305 // Do not attempt partial/runtime unrolling in FullLoopUnrolling 1306 if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { 1307 LLVM_DEBUG( 1308 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n"); 1309 return LoopUnrollResult::Unmodified; 1310 } 1311 1312 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1313 // However, we only want to actually perform it if we don't know the trip 1314 // count and the unroll count doesn't divide the known trip multiple. 1315 // TODO: This decision should probably be pushed up into 1316 // computeUnrollCount(). 1317 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1318 1319 // Save loop properties before it is transformed. 1320 MDNode *OrigLoopID = L->getLoopID(); 1321 1322 // Unroll the loop. 1323 Loop *RemainderLoop = nullptr; 1324 LoopUnrollResult UnrollResult = UnrollLoop( 1325 L, 1326 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1327 UP.UnrollRemainder, ForgetAllSCEV}, 1328 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1329 if (UnrollResult == LoopUnrollResult::Unmodified) 1330 return LoopUnrollResult::Unmodified; 1331 1332 if (RemainderLoop) { 1333 std::optional<MDNode *> RemainderLoopID = 1334 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1335 LLVMLoopUnrollFollowupRemainder}); 1336 if (RemainderLoopID) 1337 RemainderLoop->setLoopID(*RemainderLoopID); 1338 } 1339 1340 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1341 std::optional<MDNode *> NewLoopID = 1342 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1343 LLVMLoopUnrollFollowupUnrolled}); 1344 if (NewLoopID) { 1345 L->setLoopID(*NewLoopID); 1346 1347 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1348 // explicitly. 1349 return UnrollResult; 1350 } 1351 } 1352 1353 // If loop has an unroll count pragma or unrolled by explicitly set count 1354 // mark loop as unrolled to prevent unrolling beyond that requested. 1355 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1356 L->setLoopAlreadyUnrolled(); 1357 1358 return UnrollResult; 1359 } 1360 1361 namespace { 1362 1363 class LoopUnroll : public LoopPass { 1364 public: 1365 static char ID; // Pass ID, replacement for typeid 1366 1367 int OptLevel; 1368 1369 /// If false, use a cost model to determine whether unrolling of a loop is 1370 /// profitable. If true, only loops that explicitly request unrolling via 1371 /// metadata are considered. All other loops are skipped. 1372 bool OnlyWhenForced; 1373 1374 /// If false, when SCEV is invalidated, only forget everything in the 1375 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1376 /// Otherwise, forgetAllLoops and rebuild when needed next. 1377 bool ForgetAllSCEV; 1378 1379 std::optional<unsigned> ProvidedCount; 1380 std::optional<unsigned> ProvidedThreshold; 1381 std::optional<bool> ProvidedAllowPartial; 1382 std::optional<bool> ProvidedRuntime; 1383 std::optional<bool> ProvidedUpperBound; 1384 std::optional<bool> ProvidedAllowPeeling; 1385 std::optional<bool> ProvidedAllowProfileBasedPeeling; 1386 std::optional<unsigned> ProvidedFullUnrollMaxCount; 1387 1388 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1389 bool ForgetAllSCEV = false, 1390 std::optional<unsigned> Threshold = std::nullopt, 1391 std::optional<unsigned> Count = std::nullopt, 1392 std::optional<bool> AllowPartial = std::nullopt, 1393 std::optional<bool> Runtime = std::nullopt, 1394 std::optional<bool> UpperBound = std::nullopt, 1395 std::optional<bool> AllowPeeling = std::nullopt, 1396 std::optional<bool> AllowProfileBasedPeeling = std::nullopt, 1397 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) 1398 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1399 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1400 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1401 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1402 ProvidedAllowPeeling(AllowPeeling), 1403 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1404 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1405 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1406 } 1407 1408 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1409 if (skipLoop(L)) 1410 return false; 1411 1412 Function &F = *L->getHeader()->getParent(); 1413 1414 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1415 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1416 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1417 const TargetTransformInfo &TTI = 1418 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1419 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1420 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1421 // pass. Function analyses need to be preserved across loop transformations 1422 // but ORE cannot be preserved (see comment before the pass definition). 1423 OptimizationRemarkEmitter ORE(&F); 1424 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1425 1426 LoopUnrollResult Result = tryToUnrollLoop( 1427 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1428 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, 1429 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1430 ProvidedUpperBound, ProvidedAllowPeeling, 1431 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); 1432 1433 if (Result == LoopUnrollResult::FullyUnrolled) 1434 LPM.markLoopAsDeleted(*L); 1435 1436 return Result != LoopUnrollResult::Unmodified; 1437 } 1438 1439 /// This transformation requires natural loop information & requires that 1440 /// loop preheaders be inserted into the CFG... 1441 void getAnalysisUsage(AnalysisUsage &AU) const override { 1442 AU.addRequired<AssumptionCacheTracker>(); 1443 AU.addRequired<TargetTransformInfoWrapperPass>(); 1444 // FIXME: Loop passes are required to preserve domtree, and for now we just 1445 // recreate dom info if anything gets unrolled. 1446 getLoopAnalysisUsage(AU); 1447 } 1448 }; 1449 1450 } // end anonymous namespace 1451 1452 char LoopUnroll::ID = 0; 1453 1454 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1455 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1456 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1457 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1458 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1459 1460 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1461 bool ForgetAllSCEV, int Threshold, int Count, 1462 int AllowPartial, int Runtime, int UpperBound, 1463 int AllowPeeling) { 1464 // TODO: It would make more sense for this function to take the optionals 1465 // directly, but that's dangerous since it would silently break out of tree 1466 // callers. 1467 return new LoopUnroll( 1468 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1469 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), 1470 Count == -1 ? std::nullopt : std::optional<unsigned>(Count), 1471 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), 1472 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), 1473 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), 1474 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); 1475 } 1476 1477 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1478 LoopStandardAnalysisResults &AR, 1479 LPMUpdater &Updater) { 1480 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1481 // pass. Function analyses need to be preserved across loop transformations 1482 // but ORE cannot be preserved (see comment before the pass definition). 1483 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1484 1485 // Keep track of the previous loop structure so we can identify new loops 1486 // created by unrolling. 1487 Loop *ParentL = L.getParentLoop(); 1488 SmallPtrSet<Loop *, 4> OldLoops; 1489 if (ParentL) 1490 OldLoops.insert(ParentL->begin(), ParentL->end()); 1491 else 1492 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1493 1494 std::string LoopName = std::string(L.getName()); 1495 1496 bool Changed = 1497 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1498 /*BFI*/ nullptr, /*PSI*/ nullptr, 1499 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, 1500 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt, 1501 /*Threshold*/ std::nullopt, /*AllowPartial*/ false, 1502 /*Runtime*/ false, /*UpperBound*/ false, 1503 /*AllowPeeling*/ true, 1504 /*AllowProfileBasedPeeling*/ false, 1505 /*FullUnrollMaxCount*/ std::nullopt) != 1506 LoopUnrollResult::Unmodified; 1507 if (!Changed) 1508 return PreservedAnalyses::all(); 1509 1510 // The parent must not be damaged by unrolling! 1511 #ifndef NDEBUG 1512 if (ParentL) 1513 ParentL->verifyLoop(); 1514 #endif 1515 1516 // Unrolling can do several things to introduce new loops into a loop nest: 1517 // - Full unrolling clones child loops within the current loop but then 1518 // removes the current loop making all of the children appear to be new 1519 // sibling loops. 1520 // 1521 // When a new loop appears as a sibling loop after fully unrolling, 1522 // its nesting structure has fundamentally changed and we want to revisit 1523 // it to reflect that. 1524 // 1525 // When unrolling has removed the current loop, we need to tell the 1526 // infrastructure that it is gone. 1527 // 1528 // Finally, we support a debugging/testing mode where we revisit child loops 1529 // as well. These are not expected to require further optimizations as either 1530 // they or the loop they were cloned from have been directly visited already. 1531 // But the debugging mode allows us to check this assumption. 1532 bool IsCurrentLoopValid = false; 1533 SmallVector<Loop *, 4> SibLoops; 1534 if (ParentL) 1535 SibLoops.append(ParentL->begin(), ParentL->end()); 1536 else 1537 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1538 erase_if(SibLoops, [&](Loop *SibLoop) { 1539 if (SibLoop == &L) { 1540 IsCurrentLoopValid = true; 1541 return true; 1542 } 1543 1544 // Otherwise erase the loop from the list if it was in the old loops. 1545 return OldLoops.contains(SibLoop); 1546 }); 1547 Updater.addSiblingLoops(SibLoops); 1548 1549 if (!IsCurrentLoopValid) { 1550 Updater.markLoopAsDeleted(L, LoopName); 1551 } else { 1552 // We can only walk child loops if the current loop remained valid. 1553 if (UnrollRevisitChildLoops) { 1554 // Walk *all* of the child loops. 1555 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1556 Updater.addChildLoops(ChildLoops); 1557 } 1558 } 1559 1560 return getLoopPassPreservedAnalyses(); 1561 } 1562 1563 PreservedAnalyses LoopUnrollPass::run(Function &F, 1564 FunctionAnalysisManager &AM) { 1565 auto &LI = AM.getResult<LoopAnalysis>(F); 1566 // There are no loops in the function. Return before computing other expensive 1567 // analyses. 1568 if (LI.empty()) 1569 return PreservedAnalyses::all(); 1570 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1571 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1572 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1573 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1574 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1575 1576 LoopAnalysisManager *LAM = nullptr; 1577 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1578 LAM = &LAMProxy->getManager(); 1579 1580 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1581 ProfileSummaryInfo *PSI = 1582 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1583 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1584 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1585 1586 bool Changed = false; 1587 1588 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1589 // Since simplification may add new inner loops, it has to run before the 1590 // legality and profitability checks. This means running the loop unroller 1591 // will simplify all loops, regardless of whether anything end up being 1592 // unrolled. 1593 for (const auto &L : LI) { 1594 Changed |= 1595 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1596 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1597 } 1598 1599 // Add the loop nests in the reverse order of LoopInfo. See method 1600 // declaration. 1601 SmallPriorityWorklist<Loop *, 4> Worklist; 1602 appendLoopsToWorklist(LI, Worklist); 1603 1604 while (!Worklist.empty()) { 1605 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1606 // from back to front so that we work forward across the CFG, which 1607 // for unrolling is only needed to get optimization remarks emitted in 1608 // a forward order. 1609 Loop &L = *Worklist.pop_back_val(); 1610 #ifndef NDEBUG 1611 Loop *ParentL = L.getParentLoop(); 1612 #endif 1613 1614 // Check if the profile summary indicates that the profiled application 1615 // has a huge working set size, in which case we disable peeling to avoid 1616 // bloating it further. 1617 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1618 if (PSI && PSI->hasHugeWorkingSetSize()) 1619 LocalAllowPeeling = false; 1620 std::string LoopName = std::string(L.getName()); 1621 // The API here is quite complex to call and we allow to select some 1622 // flavors of unrolling during construction time (by setting UnrollOpts). 1623 LoopUnrollResult Result = tryToUnrollLoop( 1624 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1625 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, 1626 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV, 1627 /*Count*/ std::nullopt, 1628 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial, 1629 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1630 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1631 Changed |= Result != LoopUnrollResult::Unmodified; 1632 1633 // The parent must not be damaged by unrolling! 1634 #ifndef NDEBUG 1635 if (Result != LoopUnrollResult::Unmodified && ParentL) 1636 ParentL->verifyLoop(); 1637 #endif 1638 1639 // Clear any cached analysis results for L if we removed it completely. 1640 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1641 LAM->clear(L, LoopName); 1642 } 1643 1644 if (!Changed) 1645 return PreservedAnalyses::all(); 1646 1647 return getLoopPassPreservedAnalyses(); 1648 } 1649 1650 void LoopUnrollPass::printPipeline( 1651 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1652 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1653 OS, MapClassName2PassName); 1654 OS << '<'; 1655 if (UnrollOpts.AllowPartial != std::nullopt) 1656 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;"; 1657 if (UnrollOpts.AllowPeeling != std::nullopt) 1658 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;"; 1659 if (UnrollOpts.AllowRuntime != std::nullopt) 1660 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;"; 1661 if (UnrollOpts.AllowUpperBound != std::nullopt) 1662 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;"; 1663 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) 1664 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-") 1665 << "profile-peeling;"; 1666 if (UnrollOpts.FullUnrollMaxCount != std::nullopt) 1667 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; 1668 OS << 'O' << UnrollOpts.OptLevel; 1669 OS << '>'; 1670 } 1671