xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision fc97b6173f2d98f707dc7815f0d44116a8ace9c6)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopPass.h"
31 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils/LoopSimplify.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/UnrollLoop.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <limits>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "loop-unroll"
70 
71 static cl::opt<unsigned>
72     UnrollThreshold("unroll-threshold", cl::Hidden,
73                     cl::desc("The cost threshold for loop unrolling"));
74 
75 static cl::opt<unsigned> UnrollPartialThreshold(
76     "unroll-partial-threshold", cl::Hidden,
77     cl::desc("The cost threshold for partial loop unrolling"));
78 
79 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
80     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
81     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
82              "to the threshold when aggressively unrolling a loop due to the "
83              "dynamic cost savings. If completely unrolling a loop will reduce "
84              "the total runtime from X to Y, we boost the loop unroll "
85              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
86              "X/Y). This limit avoids excessive code bloat."));
87 
88 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
89     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
90     cl::desc("Don't allow loop unrolling to simulate more than this number of"
91              "iterations when checking full unroll profitability"));
92 
93 static cl::opt<unsigned> UnrollCount(
94     "unroll-count", cl::Hidden,
95     cl::desc("Use this unroll count for all loops including those with "
96              "unroll_count pragma values, for testing purposes"));
97 
98 static cl::opt<unsigned> UnrollMaxCount(
99     "unroll-max-count", cl::Hidden,
100     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
101              "testing purposes"));
102 
103 static cl::opt<unsigned> UnrollFullMaxCount(
104     "unroll-full-max-count", cl::Hidden,
105     cl::desc(
106         "Set the max unroll count for full unrolling, for testing purposes"));
107 
108 static cl::opt<unsigned> UnrollPeelCount(
109     "unroll-peel-count", cl::Hidden,
110     cl::desc("Set the unroll peeling count, for testing purposes"));
111 
112 static cl::opt<bool>
113     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
114                        cl::desc("Allows loops to be partially unrolled until "
115                                 "-unroll-threshold loop size is reached."));
116 
117 static cl::opt<bool> UnrollAllowRemainder(
118     "unroll-allow-remainder", cl::Hidden,
119     cl::desc("Allow generation of a loop remainder (extra iterations) "
120              "when unrolling a loop."));
121 
122 static cl::opt<bool>
123     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
124                   cl::desc("Unroll loops with run-time trip counts"));
125 
126 static cl::opt<unsigned> UnrollMaxUpperBound(
127     "unroll-max-upperbound", cl::init(8), cl::Hidden,
128     cl::desc(
129         "The max of trip count upper bound that is considered in unrolling"));
130 
131 static cl::opt<unsigned> PragmaUnrollThreshold(
132     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
133     cl::desc("Unrolled size limit for loops with an unroll(full) or "
134              "unroll_count pragma."));
135 
136 static cl::opt<unsigned> FlatLoopTripCountThreshold(
137     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
138     cl::desc("If the runtime tripcount for the loop is lower than the "
139              "threshold, the loop is considered as flat and will be less "
140              "aggressively unrolled."));
141 
142 static cl::opt<bool>
143     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
144                        cl::desc("Allows loops to be peeled when the dynamic "
145                                 "trip count is known to be low."));
146 
147 static cl::opt<bool> UnrollUnrollRemainder(
148   "unroll-remainder", cl::Hidden,
149   cl::desc("Allow the loop remainder to be unrolled."));
150 
151 // This option isn't ever intended to be enabled, it serves to allow
152 // experiments to check the assumptions about when this kind of revisit is
153 // necessary.
154 static cl::opt<bool> UnrollRevisitChildLoops(
155     "unroll-revisit-child-loops", cl::Hidden,
156     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
157              "This shouldn't typically be needed as child loops (or their "
158              "clones) were already visited."));
159 
160 /// A magic value for use with the Threshold parameter to indicate
161 /// that the loop unroll should be performed regardless of how much
162 /// code expansion would result.
163 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
164 
165 /// Gather the various unrolling parameters based on the defaults, compiler
166 /// flags, TTI overrides and user specified parameters.
167 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
168     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
169     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
170     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
171     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
172   TargetTransformInfo::UnrollingPreferences UP;
173 
174   // Set up the defaults
175   UP.Threshold = OptLevel > 2 ? 300 : 150;
176   UP.MaxPercentThresholdBoost = 400;
177   UP.OptSizeThreshold = 0;
178   UP.PartialThreshold = 150;
179   UP.PartialOptSizeThreshold = 0;
180   UP.Count = 0;
181   UP.PeelCount = 0;
182   UP.DefaultUnrollRuntimeCount = 8;
183   UP.MaxCount = std::numeric_limits<unsigned>::max();
184   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
185   UP.BEInsns = 2;
186   UP.Partial = false;
187   UP.Runtime = false;
188   UP.AllowRemainder = true;
189   UP.UnrollRemainder = false;
190   UP.AllowExpensiveTripCount = false;
191   UP.Force = false;
192   UP.UpperBound = false;
193   UP.AllowPeeling = true;
194 
195   // Override with any target specific settings
196   TTI.getUnrollingPreferences(L, SE, UP);
197 
198   // Apply size attributes
199   if (L->getHeader()->getParent()->optForSize()) {
200     UP.Threshold = UP.OptSizeThreshold;
201     UP.PartialThreshold = UP.PartialOptSizeThreshold;
202   }
203 
204   // Apply any user values specified by cl::opt
205   if (UnrollThreshold.getNumOccurrences() > 0)
206     UP.Threshold = UnrollThreshold;
207   if (UnrollPartialThreshold.getNumOccurrences() > 0)
208     UP.PartialThreshold = UnrollPartialThreshold;
209   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
210     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
211   if (UnrollMaxCount.getNumOccurrences() > 0)
212     UP.MaxCount = UnrollMaxCount;
213   if (UnrollFullMaxCount.getNumOccurrences() > 0)
214     UP.FullUnrollMaxCount = UnrollFullMaxCount;
215   if (UnrollPeelCount.getNumOccurrences() > 0)
216     UP.PeelCount = UnrollPeelCount;
217   if (UnrollAllowPartial.getNumOccurrences() > 0)
218     UP.Partial = UnrollAllowPartial;
219   if (UnrollAllowRemainder.getNumOccurrences() > 0)
220     UP.AllowRemainder = UnrollAllowRemainder;
221   if (UnrollRuntime.getNumOccurrences() > 0)
222     UP.Runtime = UnrollRuntime;
223   if (UnrollMaxUpperBound == 0)
224     UP.UpperBound = false;
225   if (UnrollAllowPeeling.getNumOccurrences() > 0)
226     UP.AllowPeeling = UnrollAllowPeeling;
227   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
228     UP.UnrollRemainder = UnrollUnrollRemainder;
229 
230   // Apply user values provided by argument
231   if (UserThreshold.hasValue()) {
232     UP.Threshold = *UserThreshold;
233     UP.PartialThreshold = *UserThreshold;
234   }
235   if (UserCount.hasValue())
236     UP.Count = *UserCount;
237   if (UserAllowPartial.hasValue())
238     UP.Partial = *UserAllowPartial;
239   if (UserRuntime.hasValue())
240     UP.Runtime = *UserRuntime;
241   if (UserUpperBound.hasValue())
242     UP.UpperBound = *UserUpperBound;
243   if (UserAllowPeeling.hasValue())
244     UP.AllowPeeling = *UserAllowPeeling;
245 
246   return UP;
247 }
248 
249 namespace {
250 
251 /// A struct to densely store the state of an instruction after unrolling at
252 /// each iteration.
253 ///
254 /// This is designed to work like a tuple of <Instruction *, int> for the
255 /// purposes of hashing and lookup, but to be able to associate two boolean
256 /// states with each key.
257 struct UnrolledInstState {
258   Instruction *I;
259   int Iteration : 30;
260   unsigned IsFree : 1;
261   unsigned IsCounted : 1;
262 };
263 
264 /// Hashing and equality testing for a set of the instruction states.
265 struct UnrolledInstStateKeyInfo {
266   using PtrInfo = DenseMapInfo<Instruction *>;
267   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
268 
269   static inline UnrolledInstState getEmptyKey() {
270     return {PtrInfo::getEmptyKey(), 0, 0, 0};
271   }
272 
273   static inline UnrolledInstState getTombstoneKey() {
274     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
275   }
276 
277   static inline unsigned getHashValue(const UnrolledInstState &S) {
278     return PairInfo::getHashValue({S.I, S.Iteration});
279   }
280 
281   static inline bool isEqual(const UnrolledInstState &LHS,
282                              const UnrolledInstState &RHS) {
283     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
284   }
285 };
286 
287 struct EstimatedUnrollCost {
288   /// \brief The estimated cost after unrolling.
289   unsigned UnrolledCost;
290 
291   /// \brief The estimated dynamic cost of executing the instructions in the
292   /// rolled form.
293   unsigned RolledDynamicCost;
294 };
295 
296 } // end anonymous namespace
297 
298 /// \brief Figure out if the loop is worth full unrolling.
299 ///
300 /// Complete loop unrolling can make some loads constant, and we need to know
301 /// if that would expose any further optimization opportunities.  This routine
302 /// estimates this optimization.  It computes cost of unrolled loop
303 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
304 /// dynamic cost we mean that we won't count costs of blocks that are known not
305 /// to be executed (i.e. if we have a branch in the loop and we know that at the
306 /// given iteration its condition would be resolved to true, we won't add up the
307 /// cost of the 'false'-block).
308 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
309 /// the analysis failed (no benefits expected from the unrolling, or the loop is
310 /// too big to analyze), the returned value is None.
311 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
312     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
313     const SmallPtrSetImpl<const Value *> &EphValues,
314     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
315   // We want to be able to scale offsets by the trip count and add more offsets
316   // to them without checking for overflows, and we already don't want to
317   // analyze *massive* trip counts, so we force the max to be reasonably small.
318   assert(UnrollMaxIterationsCountToAnalyze <
319              (unsigned)(std::numeric_limits<int>::max() / 2) &&
320          "The unroll iterations max is too large!");
321 
322   // Only analyze inner loops. We can't properly estimate cost of nested loops
323   // and we won't visit inner loops again anyway.
324   if (!L->empty())
325     return None;
326 
327   // Don't simulate loops with a big or unknown tripcount
328   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
329       TripCount > UnrollMaxIterationsCountToAnalyze)
330     return None;
331 
332   SmallSetVector<BasicBlock *, 16> BBWorklist;
333   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
334   DenseMap<Value *, Constant *> SimplifiedValues;
335   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
336 
337   // The estimated cost of the unrolled form of the loop. We try to estimate
338   // this by simplifying as much as we can while computing the estimate.
339   unsigned UnrolledCost = 0;
340 
341   // We also track the estimated dynamic (that is, actually executed) cost in
342   // the rolled form. This helps identify cases when the savings from unrolling
343   // aren't just exposing dead control flows, but actual reduced dynamic
344   // instructions due to the simplifications which we expect to occur after
345   // unrolling.
346   unsigned RolledDynamicCost = 0;
347 
348   // We track the simplification of each instruction in each iteration. We use
349   // this to recursively merge costs into the unrolled cost on-demand so that
350   // we don't count the cost of any dead code. This is essentially a map from
351   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
352   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
353 
354   // A small worklist used to accumulate cost of instructions from each
355   // observable and reached root in the loop.
356   SmallVector<Instruction *, 16> CostWorklist;
357 
358   // PHI-used worklist used between iterations while accumulating cost.
359   SmallVector<Instruction *, 4> PHIUsedList;
360 
361   // Helper function to accumulate cost for instructions in the loop.
362   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
363     assert(Iteration >= 0 && "Cannot have a negative iteration!");
364     assert(CostWorklist.empty() && "Must start with an empty cost list");
365     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
366     CostWorklist.push_back(&RootI);
367     for (;; --Iteration) {
368       do {
369         Instruction *I = CostWorklist.pop_back_val();
370 
371         // InstCostMap only uses I and Iteration as a key, the other two values
372         // don't matter here.
373         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
374         if (CostIter == InstCostMap.end())
375           // If an input to a PHI node comes from a dead path through the loop
376           // we may have no cost data for it here. What that actually means is
377           // that it is free.
378           continue;
379         auto &Cost = *CostIter;
380         if (Cost.IsCounted)
381           // Already counted this instruction.
382           continue;
383 
384         // Mark that we are counting the cost of this instruction now.
385         Cost.IsCounted = true;
386 
387         // If this is a PHI node in the loop header, just add it to the PHI set.
388         if (auto *PhiI = dyn_cast<PHINode>(I))
389           if (PhiI->getParent() == L->getHeader()) {
390             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
391                                   "inherently simplify during unrolling.");
392             if (Iteration == 0)
393               continue;
394 
395             // Push the incoming value from the backedge into the PHI used list
396             // if it is an in-loop instruction. We'll use this to populate the
397             // cost worklist for the next iteration (as we count backwards).
398             if (auto *OpI = dyn_cast<Instruction>(
399                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
400               if (L->contains(OpI))
401                 PHIUsedList.push_back(OpI);
402             continue;
403           }
404 
405         // First accumulate the cost of this instruction.
406         if (!Cost.IsFree) {
407           UnrolledCost += TTI.getUserCost(I);
408           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
409                        << "): ");
410           DEBUG(I->dump());
411         }
412 
413         // We must count the cost of every operand which is not free,
414         // recursively. If we reach a loop PHI node, simply add it to the set
415         // to be considered on the next iteration (backwards!).
416         for (Value *Op : I->operands()) {
417           // Check whether this operand is free due to being a constant or
418           // outside the loop.
419           auto *OpI = dyn_cast<Instruction>(Op);
420           if (!OpI || !L->contains(OpI))
421             continue;
422 
423           // Otherwise accumulate its cost.
424           CostWorklist.push_back(OpI);
425         }
426       } while (!CostWorklist.empty());
427 
428       if (PHIUsedList.empty())
429         // We've exhausted the search.
430         break;
431 
432       assert(Iteration > 0 &&
433              "Cannot track PHI-used values past the first iteration!");
434       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
435       PHIUsedList.clear();
436     }
437   };
438 
439   // Ensure that we don't violate the loop structure invariants relied on by
440   // this analysis.
441   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
442   assert(L->isLCSSAForm(DT) &&
443          "Must have loops in LCSSA form to track live-out values.");
444 
445   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
446 
447   // Simulate execution of each iteration of the loop counting instructions,
448   // which would be simplified.
449   // Since the same load will take different values on different iterations,
450   // we literally have to go through all loop's iterations.
451   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
452     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
453 
454     // Prepare for the iteration by collecting any simplified entry or backedge
455     // inputs.
456     for (Instruction &I : *L->getHeader()) {
457       auto *PHI = dyn_cast<PHINode>(&I);
458       if (!PHI)
459         break;
460 
461       // The loop header PHI nodes must have exactly two input: one from the
462       // loop preheader and one from the loop latch.
463       assert(
464           PHI->getNumIncomingValues() == 2 &&
465           "Must have an incoming value only for the preheader and the latch.");
466 
467       Value *V = PHI->getIncomingValueForBlock(
468           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
469       Constant *C = dyn_cast<Constant>(V);
470       if (Iteration != 0 && !C)
471         C = SimplifiedValues.lookup(V);
472       if (C)
473         SimplifiedInputValues.push_back({PHI, C});
474     }
475 
476     // Now clear and re-populate the map for the next iteration.
477     SimplifiedValues.clear();
478     while (!SimplifiedInputValues.empty())
479       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
480 
481     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
482 
483     BBWorklist.clear();
484     BBWorklist.insert(L->getHeader());
485     // Note that we *must not* cache the size, this loop grows the worklist.
486     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
487       BasicBlock *BB = BBWorklist[Idx];
488 
489       // Visit all instructions in the given basic block and try to simplify
490       // it.  We don't change the actual IR, just count optimization
491       // opportunities.
492       for (Instruction &I : *BB) {
493         // These won't get into the final code - don't even try calculating the
494         // cost for them.
495         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
496           continue;
497 
498         // Track this instruction's expected baseline cost when executing the
499         // rolled loop form.
500         RolledDynamicCost += TTI.getUserCost(&I);
501 
502         // Visit the instruction to analyze its loop cost after unrolling,
503         // and if the visitor returns true, mark the instruction as free after
504         // unrolling and continue.
505         bool IsFree = Analyzer.visit(I);
506         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
507                                            (unsigned)IsFree,
508                                            /*IsCounted*/ false}).second;
509         (void)Inserted;
510         assert(Inserted && "Cannot have a state for an unvisited instruction!");
511 
512         if (IsFree)
513           continue;
514 
515         // Can't properly model a cost of a call.
516         // FIXME: With a proper cost model we should be able to do it.
517         if(isa<CallInst>(&I))
518           return None;
519 
520         // If the instruction might have a side-effect recursively account for
521         // the cost of it and all the instructions leading up to it.
522         if (I.mayHaveSideEffects())
523           AddCostRecursively(I, Iteration);
524 
525         // If unrolled body turns out to be too big, bail out.
526         if (UnrolledCost > MaxUnrolledLoopSize) {
527           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
528                        << "  UnrolledCost: " << UnrolledCost
529                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
530                        << "\n");
531           return None;
532         }
533       }
534 
535       TerminatorInst *TI = BB->getTerminator();
536 
537       // Add in the live successors by first checking whether we have terminator
538       // that may be simplified based on the values simplified by this call.
539       BasicBlock *KnownSucc = nullptr;
540       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
541         if (BI->isConditional()) {
542           if (Constant *SimpleCond =
543                   SimplifiedValues.lookup(BI->getCondition())) {
544             // Just take the first successor if condition is undef
545             if (isa<UndefValue>(SimpleCond))
546               KnownSucc = BI->getSuccessor(0);
547             else if (ConstantInt *SimpleCondVal =
548                          dyn_cast<ConstantInt>(SimpleCond))
549               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
550           }
551         }
552       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
553         if (Constant *SimpleCond =
554                 SimplifiedValues.lookup(SI->getCondition())) {
555           // Just take the first successor if condition is undef
556           if (isa<UndefValue>(SimpleCond))
557             KnownSucc = SI->getSuccessor(0);
558           else if (ConstantInt *SimpleCondVal =
559                        dyn_cast<ConstantInt>(SimpleCond))
560             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
561         }
562       }
563       if (KnownSucc) {
564         if (L->contains(KnownSucc))
565           BBWorklist.insert(KnownSucc);
566         else
567           ExitWorklist.insert({BB, KnownSucc});
568         continue;
569       }
570 
571       // Add BB's successors to the worklist.
572       for (BasicBlock *Succ : successors(BB))
573         if (L->contains(Succ))
574           BBWorklist.insert(Succ);
575         else
576           ExitWorklist.insert({BB, Succ});
577       AddCostRecursively(*TI, Iteration);
578     }
579 
580     // If we found no optimization opportunities on the first iteration, we
581     // won't find them on later ones too.
582     if (UnrolledCost == RolledDynamicCost) {
583       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
584                    << "  UnrolledCost: " << UnrolledCost << "\n");
585       return None;
586     }
587   }
588 
589   while (!ExitWorklist.empty()) {
590     BasicBlock *ExitingBB, *ExitBB;
591     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
592 
593     for (Instruction &I : *ExitBB) {
594       auto *PN = dyn_cast<PHINode>(&I);
595       if (!PN)
596         break;
597 
598       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
599       if (auto *OpI = dyn_cast<Instruction>(Op))
600         if (L->contains(OpI))
601           AddCostRecursively(*OpI, TripCount - 1);
602     }
603   }
604 
605   DEBUG(dbgs() << "Analysis finished:\n"
606                << "UnrolledCost: " << UnrolledCost << ", "
607                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
608   return {{UnrolledCost, RolledDynamicCost}};
609 }
610 
611 /// ApproximateLoopSize - Approximate the size of the loop.
612 static unsigned
613 ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable,
614                     bool &Convergent, const TargetTransformInfo &TTI,
615                     const SmallPtrSetImpl<const Value *> &EphValues,
616                     unsigned BEInsns) {
617   CodeMetrics Metrics;
618   for (BasicBlock *BB : L->blocks())
619     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
620   NumCalls = Metrics.NumInlineCandidates;
621   NotDuplicatable = Metrics.notDuplicatable;
622   Convergent = Metrics.convergent;
623 
624   unsigned LoopSize = Metrics.NumInsts;
625 
626   // Don't allow an estimate of size zero.  This would allows unrolling of loops
627   // with huge iteration counts, which is a compile time problem even if it's
628   // not a problem for code quality. Also, the code using this size may assume
629   // that each loop has at least three instructions (likely a conditional
630   // branch, a comparison feeding that branch, and some kind of loop increment
631   // feeding that comparison instruction).
632   LoopSize = std::max(LoopSize, BEInsns + 1);
633 
634   return LoopSize;
635 }
636 
637 // Returns the loop hint metadata node with the given name (for example,
638 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
639 // returned.
640 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
641   if (MDNode *LoopID = L->getLoopID())
642     return GetUnrollMetadata(LoopID, Name);
643   return nullptr;
644 }
645 
646 // Returns true if the loop has an unroll(full) pragma.
647 static bool HasUnrollFullPragma(const Loop *L) {
648   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
649 }
650 
651 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
652 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
653 static bool HasUnrollEnablePragma(const Loop *L) {
654   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
655 }
656 
657 // Returns true if the loop has an unroll(disable) pragma.
658 static bool HasUnrollDisablePragma(const Loop *L) {
659   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
660 }
661 
662 // Returns true if the loop has an runtime unroll(disable) pragma.
663 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
664   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
665 }
666 
667 // If loop has an unroll_count pragma return the (necessarily
668 // positive) value from the pragma.  Otherwise return 0.
669 static unsigned UnrollCountPragmaValue(const Loop *L) {
670   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
671   if (MD) {
672     assert(MD->getNumOperands() == 2 &&
673            "Unroll count hint metadata should have two operands.");
674     unsigned Count =
675         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
676     assert(Count >= 1 && "Unroll count must be positive.");
677     return Count;
678   }
679   return 0;
680 }
681 
682 // Computes the boosting factor for complete unrolling.
683 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
684 // be beneficial to fully unroll the loop even if unrolledcost is large. We
685 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
686 // the unroll threshold.
687 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
688                                             unsigned MaxPercentThresholdBoost) {
689   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
690     return 100;
691   else if (Cost.UnrolledCost != 0)
692     // The boosting factor is RolledDynamicCost / UnrolledCost
693     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
694                     MaxPercentThresholdBoost);
695   else
696     return MaxPercentThresholdBoost;
697 }
698 
699 // Returns loop size estimation for unrolled loop.
700 static uint64_t getUnrolledLoopSize(
701     unsigned LoopSize,
702     TargetTransformInfo::UnrollingPreferences &UP) {
703   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
704   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
705 }
706 
707 // Returns true if unroll count was set explicitly.
708 // Calculates unroll count and writes it to UP.Count.
709 static bool computeUnrollCount(
710     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
711     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
712     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
713     unsigned &TripMultiple, unsigned LoopSize,
714     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
715   // Check for explicit Count.
716   // 1st priority is unroll count set by "unroll-count" option.
717   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
718   if (UserUnrollCount) {
719     UP.Count = UnrollCount;
720     UP.AllowExpensiveTripCount = true;
721     UP.Force = true;
722     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
723       return true;
724   }
725 
726   // 2nd priority is unroll count set by pragma.
727   unsigned PragmaCount = UnrollCountPragmaValue(L);
728   if (PragmaCount > 0) {
729     UP.Count = PragmaCount;
730     UP.Runtime = true;
731     UP.AllowExpensiveTripCount = true;
732     UP.Force = true;
733     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
734         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
735       return true;
736   }
737   bool PragmaFullUnroll = HasUnrollFullPragma(L);
738   if (PragmaFullUnroll && TripCount != 0) {
739     UP.Count = TripCount;
740     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
741       return false;
742   }
743 
744   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
745   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
746                         PragmaEnableUnroll || UserUnrollCount;
747 
748   if (ExplicitUnroll && TripCount != 0) {
749     // If the loop has an unrolling pragma, we want to be more aggressive with
750     // unrolling limits. Set thresholds to at least the PragmaThreshold value
751     // which is larger than the default limits.
752     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
753     UP.PartialThreshold =
754         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
755   }
756 
757   // 3rd priority is full unroll count.
758   // Full unroll makes sense only when TripCount or its upper bound could be
759   // statically calculated.
760   // Also we need to check if we exceed FullUnrollMaxCount.
761   // If using the upper bound to unroll, TripMultiple should be set to 1 because
762   // we do not know when loop may exit.
763   // MaxTripCount and ExactTripCount cannot both be non zero since we only
764   // compute the former when the latter is zero.
765   unsigned ExactTripCount = TripCount;
766   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
767          "ExtractTripCound and MaxTripCount cannot both be non zero.");
768   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
769   UP.Count = FullUnrollTripCount;
770   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
771     // When computing the unrolled size, note that BEInsns are not replicated
772     // like the rest of the loop body.
773     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
774       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
775       TripCount = FullUnrollTripCount;
776       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
777       return ExplicitUnroll;
778     } else {
779       // The loop isn't that small, but we still can fully unroll it if that
780       // helps to remove a significant number of instructions.
781       // To check that, run additional analysis on the loop.
782       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
783               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
784               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
785         unsigned Boost =
786             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
787         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
788           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
789           TripCount = FullUnrollTripCount;
790           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
791           return ExplicitUnroll;
792         }
793       }
794     }
795   }
796 
797   // 4th priority is loop peeling
798   computePeelCount(L, LoopSize, UP, TripCount, SE);
799   if (UP.PeelCount) {
800     UP.Runtime = false;
801     UP.Count = 1;
802     return ExplicitUnroll;
803   }
804 
805   // 5th priority is partial unrolling.
806   // Try partial unroll only when TripCount could be staticaly calculated.
807   if (TripCount) {
808     UP.Partial |= ExplicitUnroll;
809     if (!UP.Partial) {
810       DEBUG(dbgs() << "  will not try to unroll partially because "
811                    << "-unroll-allow-partial not given\n");
812       UP.Count = 0;
813       return false;
814     }
815     if (UP.Count == 0)
816       UP.Count = TripCount;
817     if (UP.PartialThreshold != NoThreshold) {
818       // Reduce unroll count to be modulo of TripCount for partial unrolling.
819       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
820         UP.Count =
821             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
822             (LoopSize - UP.BEInsns);
823       if (UP.Count > UP.MaxCount)
824         UP.Count = UP.MaxCount;
825       while (UP.Count != 0 && TripCount % UP.Count != 0)
826         UP.Count--;
827       if (UP.AllowRemainder && UP.Count <= 1) {
828         // If there is no Count that is modulo of TripCount, set Count to
829         // largest power-of-two factor that satisfies the threshold limit.
830         // As we'll create fixup loop, do the type of unrolling only if
831         // remainder loop is allowed.
832         UP.Count = UP.DefaultUnrollRuntimeCount;
833         while (UP.Count != 0 &&
834                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
835           UP.Count >>= 1;
836       }
837       if (UP.Count < 2) {
838         if (PragmaEnableUnroll)
839           ORE->emit([&]() {
840             return OptimizationRemarkMissed(DEBUG_TYPE,
841                                             "UnrollAsDirectedTooLarge",
842                                             L->getStartLoc(), L->getHeader())
843                    << "Unable to unroll loop as directed by unroll(enable) "
844                       "pragma "
845                       "because unrolled size is too large.";
846           });
847         UP.Count = 0;
848       }
849     } else {
850       UP.Count = TripCount;
851     }
852     if (UP.Count > UP.MaxCount)
853       UP.Count = UP.MaxCount;
854     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
855         UP.Count != TripCount)
856       ORE->emit([&]() {
857         return OptimizationRemarkMissed(DEBUG_TYPE,
858                                         "FullUnrollAsDirectedTooLarge",
859                                         L->getStartLoc(), L->getHeader())
860                << "Unable to fully unroll loop as directed by unroll pragma "
861                   "because "
862                   "unrolled size is too large.";
863       });
864     return ExplicitUnroll;
865   }
866   assert(TripCount == 0 &&
867          "All cases when TripCount is constant should be covered here.");
868   if (PragmaFullUnroll)
869     ORE->emit([&]() {
870       return OptimizationRemarkMissed(
871                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
872                  L->getStartLoc(), L->getHeader())
873              << "Unable to fully unroll loop as directed by unroll(full) "
874                 "pragma "
875                 "because loop has a runtime trip count.";
876     });
877 
878   // 6th priority is runtime unrolling.
879   // Don't unroll a runtime trip count loop when it is disabled.
880   if (HasRuntimeUnrollDisablePragma(L)) {
881     UP.Count = 0;
882     return false;
883   }
884 
885   // Check if the runtime trip count is too small when profile is available.
886   if (L->getHeader()->getParent()->hasProfileData()) {
887     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
888       if (*ProfileTripCount < FlatLoopTripCountThreshold)
889         return false;
890       else
891         UP.AllowExpensiveTripCount = true;
892     }
893   }
894 
895   // Reduce count based on the type of unrolling and the threshold values.
896   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
897   if (!UP.Runtime) {
898     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
899                  << "-unroll-runtime not given\n");
900     UP.Count = 0;
901     return false;
902   }
903   if (UP.Count == 0)
904     UP.Count = UP.DefaultUnrollRuntimeCount;
905 
906   // Reduce unroll count to be the largest power-of-two factor of
907   // the original count which satisfies the threshold limit.
908   while (UP.Count != 0 &&
909          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
910     UP.Count >>= 1;
911 
912 #ifndef NDEBUG
913   unsigned OrigCount = UP.Count;
914 #endif
915 
916   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
917     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
918       UP.Count >>= 1;
919     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
920                     "specific or because the loop contains a convergent "
921                     "instruction), so unroll count must divide the trip "
922                     "multiple, "
923                  << TripMultiple << ".  Reducing unroll count from "
924                  << OrigCount << " to " << UP.Count << ".\n");
925 
926     using namespace ore;
927 
928     if (PragmaCount > 0 && !UP.AllowRemainder)
929       ORE->emit([&]() {
930         return OptimizationRemarkMissed(DEBUG_TYPE,
931                                         "DifferentUnrollCountFromDirected",
932                                         L->getStartLoc(), L->getHeader())
933                << "Unable to unroll loop the number of times directed by "
934                   "unroll_count pragma because remainder loop is restricted "
935                   "(that could architecture specific or because the loop "
936                   "contains a convergent instruction) and so must have an "
937                   "unroll "
938                   "count that divides the loop trip multiple of "
939                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
940                << NV("UnrollCount", UP.Count) << " time(s).";
941       });
942   }
943 
944   if (UP.Count > UP.MaxCount)
945     UP.Count = UP.MaxCount;
946   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
947   if (UP.Count < 2)
948     UP.Count = 0;
949   return ExplicitUnroll;
950 }
951 
952 static LoopUnrollResult tryToUnrollLoop(
953     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
954     const TargetTransformInfo &TTI, AssumptionCache &AC,
955     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
956     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
957     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
958     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
959   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
960                << "] Loop %" << L->getHeader()->getName() << "\n");
961   if (HasUnrollDisablePragma(L))
962     return LoopUnrollResult::Unmodified;
963   if (!L->isLoopSimplifyForm()) {
964     DEBUG(
965         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
966     return LoopUnrollResult::Unmodified;
967   }
968 
969   unsigned NumInlineCandidates;
970   bool NotDuplicatable;
971   bool Convergent;
972   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
973       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
974       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
975       ProvidedAllowPeeling);
976   // Exit early if unrolling is disabled.
977   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
978     return LoopUnrollResult::Unmodified;
979 
980   SmallPtrSet<const Value *, 32> EphValues;
981   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
982 
983   unsigned LoopSize =
984       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
985                           TTI, EphValues, UP.BEInsns);
986   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
987   if (NotDuplicatable) {
988     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
989                  << " instructions.\n");
990     return LoopUnrollResult::Unmodified;
991   }
992   if (NumInlineCandidates != 0) {
993     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
994     return LoopUnrollResult::Unmodified;
995   }
996 
997   // Find trip count and trip multiple if count is not available
998   unsigned TripCount = 0;
999   unsigned MaxTripCount = 0;
1000   unsigned TripMultiple = 1;
1001   // If there are multiple exiting blocks but one of them is the latch, use the
1002   // latch for the trip count estimation. Otherwise insist on a single exiting
1003   // block for the trip count estimation.
1004   BasicBlock *ExitingBlock = L->getLoopLatch();
1005   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1006     ExitingBlock = L->getExitingBlock();
1007   if (ExitingBlock) {
1008     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1009     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1010   }
1011 
1012   // If the loop contains a convergent operation, the prelude we'd add
1013   // to do the first few instructions before we hit the unrolled loop
1014   // is unsafe -- it adds a control-flow dependency to the convergent
1015   // operation.  Therefore restrict remainder loop (try unrollig without).
1016   //
1017   // TODO: This is quite conservative.  In practice, convergent_op()
1018   // is likely to be called unconditionally in the loop.  In this
1019   // case, the program would be ill-formed (on most architectures)
1020   // unless n were the same on all threads in a thread group.
1021   // Assuming n is the same on all threads, any kind of unrolling is
1022   // safe.  But currently llvm's notion of convergence isn't powerful
1023   // enough to express this.
1024   if (Convergent)
1025     UP.AllowRemainder = false;
1026 
1027   // Try to find the trip count upper bound if we cannot find the exact trip
1028   // count.
1029   bool MaxOrZero = false;
1030   if (!TripCount) {
1031     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1032     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1033     // We can unroll by the upper bound amount if it's generally allowed or if
1034     // we know that the loop is executed either the upper bound or zero times.
1035     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1036     // loop tests remains the same compared to the non-unrolled version, whereas
1037     // the generic upper bound unrolling keeps all but the last loop test so the
1038     // number of loop tests goes up which may end up being worse on targets with
1039     // constriained branch predictor resources so is controlled by an option.)
1040     // In addition we only unroll small upper bounds.
1041     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1042       MaxTripCount = 0;
1043     }
1044   }
1045 
1046   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1047   // fully unroll the loop.
1048   bool UseUpperBound = false;
1049   bool IsCountSetExplicitly = computeUnrollCount(
1050       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1051       TripMultiple, LoopSize, UP, UseUpperBound);
1052   if (!UP.Count)
1053     return LoopUnrollResult::Unmodified;
1054   // Unroll factor (Count) must be less or equal to TripCount.
1055   if (TripCount && UP.Count > TripCount)
1056     UP.Count = TripCount;
1057 
1058   // Unroll the loop.
1059   LoopUnrollResult UnrollResult = UnrollLoop(
1060       L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1061       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1062       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA);
1063   if (UnrollResult == LoopUnrollResult::Unmodified)
1064     return LoopUnrollResult::Unmodified;
1065 
1066   // If loop has an unroll count pragma or unrolled by explicitly set count
1067   // mark loop as unrolled to prevent unrolling beyond that requested.
1068   // If the loop was peeled, we already "used up" the profile information
1069   // we had, so we don't want to unroll or peel again.
1070   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1071       (IsCountSetExplicitly || UP.PeelCount))
1072     L->setLoopAlreadyUnrolled();
1073 
1074   return UnrollResult;
1075 }
1076 
1077 namespace {
1078 
1079 class LoopUnroll : public LoopPass {
1080 public:
1081   static char ID; // Pass ID, replacement for typeid
1082 
1083   int OptLevel;
1084   Optional<unsigned> ProvidedCount;
1085   Optional<unsigned> ProvidedThreshold;
1086   Optional<bool> ProvidedAllowPartial;
1087   Optional<bool> ProvidedRuntime;
1088   Optional<bool> ProvidedUpperBound;
1089   Optional<bool> ProvidedAllowPeeling;
1090 
1091   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1092              Optional<unsigned> Count = None,
1093              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1094              Optional<bool> UpperBound = None,
1095              Optional<bool> AllowPeeling = None)
1096       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1097         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1098         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1099         ProvidedAllowPeeling(AllowPeeling) {
1100     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1101   }
1102 
1103   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1104     if (skipLoop(L))
1105       return false;
1106 
1107     Function &F = *L->getHeader()->getParent();
1108 
1109     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1110     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1111     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1112     const TargetTransformInfo &TTI =
1113         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1114     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1115     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1116     // pass.  Function analyses need to be preserved across loop transformations
1117     // but ORE cannot be preserved (see comment before the pass definition).
1118     OptimizationRemarkEmitter ORE(&F);
1119     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1120 
1121     LoopUnrollResult Result = tryToUnrollLoop(
1122         L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount,
1123         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1124         ProvidedUpperBound, ProvidedAllowPeeling);
1125 
1126     if (Result == LoopUnrollResult::FullyUnrolled)
1127       LPM.markLoopAsDeleted(*L);
1128 
1129     return Result != LoopUnrollResult::Unmodified;
1130   }
1131 
1132   /// This transformation requires natural loop information & requires that
1133   /// loop preheaders be inserted into the CFG...
1134   void getAnalysisUsage(AnalysisUsage &AU) const override {
1135     AU.addRequired<AssumptionCacheTracker>();
1136     AU.addRequired<TargetTransformInfoWrapperPass>();
1137     // FIXME: Loop passes are required to preserve domtree, and for now we just
1138     // recreate dom info if anything gets unrolled.
1139     getLoopAnalysisUsage(AU);
1140   }
1141 };
1142 
1143 } // end anonymous namespace
1144 
1145 char LoopUnroll::ID = 0;
1146 
1147 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1148 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1149 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1150 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1151 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1152 
1153 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1154                                  int AllowPartial, int Runtime, int UpperBound,
1155                                  int AllowPeeling) {
1156   // TODO: It would make more sense for this function to take the optionals
1157   // directly, but that's dangerous since it would silently break out of tree
1158   // callers.
1159   return new LoopUnroll(
1160       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1161       Count == -1 ? None : Optional<unsigned>(Count),
1162       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1163       Runtime == -1 ? None : Optional<bool>(Runtime),
1164       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1165       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1166 }
1167 
1168 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1169   return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1170 }
1171 
1172 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1173                                           LoopStandardAnalysisResults &AR,
1174                                           LPMUpdater &Updater) {
1175   const auto &FAM =
1176       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1177   Function *F = L.getHeader()->getParent();
1178 
1179   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1180   // FIXME: This should probably be optional rather than required.
1181   if (!ORE)
1182     report_fatal_error(
1183         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1184         "cached at a higher level");
1185 
1186   // Keep track of the previous loop structure so we can identify new loops
1187   // created by unrolling.
1188   Loop *ParentL = L.getParentLoop();
1189   SmallPtrSet<Loop *, 4> OldLoops;
1190   if (ParentL)
1191     OldLoops.insert(ParentL->begin(), ParentL->end());
1192   else
1193     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1194 
1195   std::string LoopName = L.getName();
1196 
1197   bool Changed =
1198       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1199                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1200                       /*Threshold*/ None, /*AllowPartial*/ false,
1201                       /*Runtime*/ false, /*UpperBound*/ false,
1202                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1203   if (!Changed)
1204     return PreservedAnalyses::all();
1205 
1206   // The parent must not be damaged by unrolling!
1207 #ifndef NDEBUG
1208   if (ParentL)
1209     ParentL->verifyLoop();
1210 #endif
1211 
1212   // Unrolling can do several things to introduce new loops into a loop nest:
1213   // - Full unrolling clones child loops within the current loop but then
1214   //   removes the current loop making all of the children appear to be new
1215   //   sibling loops.
1216   //
1217   // When a new loop appears as a sibling loop after fully unrolling,
1218   // its nesting structure has fundamentally changed and we want to revisit
1219   // it to reflect that.
1220   //
1221   // When unrolling has removed the current loop, we need to tell the
1222   // infrastructure that it is gone.
1223   //
1224   // Finally, we support a debugging/testing mode where we revisit child loops
1225   // as well. These are not expected to require further optimizations as either
1226   // they or the loop they were cloned from have been directly visited already.
1227   // But the debugging mode allows us to check this assumption.
1228   bool IsCurrentLoopValid = false;
1229   SmallVector<Loop *, 4> SibLoops;
1230   if (ParentL)
1231     SibLoops.append(ParentL->begin(), ParentL->end());
1232   else
1233     SibLoops.append(AR.LI.begin(), AR.LI.end());
1234   erase_if(SibLoops, [&](Loop *SibLoop) {
1235     if (SibLoop == &L) {
1236       IsCurrentLoopValid = true;
1237       return true;
1238     }
1239 
1240     // Otherwise erase the loop from the list if it was in the old loops.
1241     return OldLoops.count(SibLoop) != 0;
1242   });
1243   Updater.addSiblingLoops(SibLoops);
1244 
1245   if (!IsCurrentLoopValid) {
1246     Updater.markLoopAsDeleted(L, LoopName);
1247   } else {
1248     // We can only walk child loops if the current loop remained valid.
1249     if (UnrollRevisitChildLoops) {
1250       // Walk *all* of the child loops.
1251       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1252       Updater.addChildLoops(ChildLoops);
1253     }
1254   }
1255 
1256   return getLoopPassPreservedAnalyses();
1257 }
1258 
1259 template <typename RangeT>
1260 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1261   SmallVector<Loop *, 8> Worklist;
1262   // We use an internal worklist to build up the preorder traversal without
1263   // recursion.
1264   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1265 
1266   for (Loop *RootL : Loops) {
1267     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1268     assert(PreOrderWorklist.empty() &&
1269            "Must start with an empty preorder walk worklist.");
1270     PreOrderWorklist.push_back(RootL);
1271     do {
1272       Loop *L = PreOrderWorklist.pop_back_val();
1273       PreOrderWorklist.append(L->begin(), L->end());
1274       PreOrderLoops.push_back(L);
1275     } while (!PreOrderWorklist.empty());
1276 
1277     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1278     PreOrderLoops.clear();
1279   }
1280   return Worklist;
1281 }
1282 
1283 PreservedAnalyses LoopUnrollPass::run(Function &F,
1284                                       FunctionAnalysisManager &AM) {
1285   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1286   auto &LI = AM.getResult<LoopAnalysis>(F);
1287   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1288   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1289   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1290   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1291 
1292   LoopAnalysisManager *LAM = nullptr;
1293   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1294     LAM = &LAMProxy->getManager();
1295 
1296   const ModuleAnalysisManager &MAM =
1297       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1298   ProfileSummaryInfo *PSI =
1299       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1300 
1301   bool Changed = false;
1302 
1303   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1304   // Since simplification may add new inner loops, it has to run before the
1305   // legality and profitability checks. This means running the loop unroller
1306   // will simplify all loops, regardless of whether anything end up being
1307   // unrolled.
1308   for (auto &L : LI) {
1309     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1310     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1311   }
1312 
1313   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1314 
1315   while (!Worklist.empty()) {
1316     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1317     // from back to front so that we work forward across the CFG, which
1318     // for unrolling is only needed to get optimization remarks emitted in
1319     // a forward order.
1320     Loop &L = *Worklist.pop_back_val();
1321 #ifndef NDEBUG
1322     Loop *ParentL = L.getParentLoop();
1323 #endif
1324 
1325     // The API here is quite complex to call, but there are only two interesting
1326     // states we support: partial and full (or "simple") unrolling. However, to
1327     // enable these things we actually pass "None" in for the optional to avoid
1328     // providing an explicit choice.
1329     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1330         AllowPeeling;
1331     // Check if the profile summary indicates that the profiled application
1332     // has a huge working set size, in which case we disable peeling to avoid
1333     // bloating it further.
1334     if (PSI && PSI->hasHugeWorkingSetSize())
1335       AllowPeeling = false;
1336     std::string LoopName = L.getName();
1337     LoopUnrollResult Result =
1338         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1339                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1340                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1341                         UpperBoundParam, AllowPeeling);
1342     Changed |= Result != LoopUnrollResult::Unmodified;
1343 
1344     // The parent must not be damaged by unrolling!
1345 #ifndef NDEBUG
1346     if (Result != LoopUnrollResult::Unmodified && ParentL)
1347       ParentL->verifyLoop();
1348 #endif
1349 
1350     // Clear any cached analysis results for L if we removed it completely.
1351     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1352       LAM->clear(L, LoopName);
1353   }
1354 
1355   if (!Changed)
1356     return PreservedAnalyses::all();
1357 
1358   return getLoopPassPreservedAnalyses();
1359 }
1360