1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils/LoopSimplify.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include "llvm/Transforms/Utils/UnrollLoop.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <limits> 63 #include <string> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-unroll" 70 71 static cl::opt<unsigned> 72 UnrollThreshold("unroll-threshold", cl::Hidden, 73 cl::desc("The cost threshold for loop unrolling")); 74 75 static cl::opt<unsigned> UnrollPartialThreshold( 76 "unroll-partial-threshold", cl::Hidden, 77 cl::desc("The cost threshold for partial loop unrolling")); 78 79 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 80 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 81 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 82 "to the threshold when aggressively unrolling a loop due to the " 83 "dynamic cost savings. If completely unrolling a loop will reduce " 84 "the total runtime from X to Y, we boost the loop unroll " 85 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 86 "X/Y). This limit avoids excessive code bloat.")); 87 88 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 89 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 90 cl::desc("Don't allow loop unrolling to simulate more than this number of" 91 "iterations when checking full unroll profitability")); 92 93 static cl::opt<unsigned> UnrollCount( 94 "unroll-count", cl::Hidden, 95 cl::desc("Use this unroll count for all loops including those with " 96 "unroll_count pragma values, for testing purposes")); 97 98 static cl::opt<unsigned> UnrollMaxCount( 99 "unroll-max-count", cl::Hidden, 100 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 101 "testing purposes")); 102 103 static cl::opt<unsigned> UnrollFullMaxCount( 104 "unroll-full-max-count", cl::Hidden, 105 cl::desc( 106 "Set the max unroll count for full unrolling, for testing purposes")); 107 108 static cl::opt<unsigned> UnrollPeelCount( 109 "unroll-peel-count", cl::Hidden, 110 cl::desc("Set the unroll peeling count, for testing purposes")); 111 112 static cl::opt<bool> 113 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 114 cl::desc("Allows loops to be partially unrolled until " 115 "-unroll-threshold loop size is reached.")); 116 117 static cl::opt<bool> UnrollAllowRemainder( 118 "unroll-allow-remainder", cl::Hidden, 119 cl::desc("Allow generation of a loop remainder (extra iterations) " 120 "when unrolling a loop.")); 121 122 static cl::opt<bool> 123 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 124 cl::desc("Unroll loops with run-time trip counts")); 125 126 static cl::opt<unsigned> UnrollMaxUpperBound( 127 "unroll-max-upperbound", cl::init(8), cl::Hidden, 128 cl::desc( 129 "The max of trip count upper bound that is considered in unrolling")); 130 131 static cl::opt<unsigned> PragmaUnrollThreshold( 132 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 133 cl::desc("Unrolled size limit for loops with an unroll(full) or " 134 "unroll_count pragma.")); 135 136 static cl::opt<unsigned> FlatLoopTripCountThreshold( 137 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 138 cl::desc("If the runtime tripcount for the loop is lower than the " 139 "threshold, the loop is considered as flat and will be less " 140 "aggressively unrolled.")); 141 142 static cl::opt<bool> 143 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 144 cl::desc("Allows loops to be peeled when the dynamic " 145 "trip count is known to be low.")); 146 147 static cl::opt<bool> UnrollUnrollRemainder( 148 "unroll-remainder", cl::Hidden, 149 cl::desc("Allow the loop remainder to be unrolled.")); 150 151 // This option isn't ever intended to be enabled, it serves to allow 152 // experiments to check the assumptions about when this kind of revisit is 153 // necessary. 154 static cl::opt<bool> UnrollRevisitChildLoops( 155 "unroll-revisit-child-loops", cl::Hidden, 156 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 157 "This shouldn't typically be needed as child loops (or their " 158 "clones) were already visited.")); 159 160 /// A magic value for use with the Threshold parameter to indicate 161 /// that the loop unroll should be performed regardless of how much 162 /// code expansion would result. 163 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 164 165 /// Gather the various unrolling parameters based on the defaults, compiler 166 /// flags, TTI overrides and user specified parameters. 167 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 168 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 169 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 170 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 171 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 172 TargetTransformInfo::UnrollingPreferences UP; 173 174 // Set up the defaults 175 UP.Threshold = OptLevel > 2 ? 300 : 150; 176 UP.MaxPercentThresholdBoost = 400; 177 UP.OptSizeThreshold = 0; 178 UP.PartialThreshold = 150; 179 UP.PartialOptSizeThreshold = 0; 180 UP.Count = 0; 181 UP.PeelCount = 0; 182 UP.DefaultUnrollRuntimeCount = 8; 183 UP.MaxCount = std::numeric_limits<unsigned>::max(); 184 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 185 UP.BEInsns = 2; 186 UP.Partial = false; 187 UP.Runtime = false; 188 UP.AllowRemainder = true; 189 UP.UnrollRemainder = false; 190 UP.AllowExpensiveTripCount = false; 191 UP.Force = false; 192 UP.UpperBound = false; 193 UP.AllowPeeling = true; 194 195 // Override with any target specific settings 196 TTI.getUnrollingPreferences(L, SE, UP); 197 198 // Apply size attributes 199 if (L->getHeader()->getParent()->optForSize()) { 200 UP.Threshold = UP.OptSizeThreshold; 201 UP.PartialThreshold = UP.PartialOptSizeThreshold; 202 } 203 204 // Apply any user values specified by cl::opt 205 if (UnrollThreshold.getNumOccurrences() > 0) 206 UP.Threshold = UnrollThreshold; 207 if (UnrollPartialThreshold.getNumOccurrences() > 0) 208 UP.PartialThreshold = UnrollPartialThreshold; 209 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 210 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 211 if (UnrollMaxCount.getNumOccurrences() > 0) 212 UP.MaxCount = UnrollMaxCount; 213 if (UnrollFullMaxCount.getNumOccurrences() > 0) 214 UP.FullUnrollMaxCount = UnrollFullMaxCount; 215 if (UnrollPeelCount.getNumOccurrences() > 0) 216 UP.PeelCount = UnrollPeelCount; 217 if (UnrollAllowPartial.getNumOccurrences() > 0) 218 UP.Partial = UnrollAllowPartial; 219 if (UnrollAllowRemainder.getNumOccurrences() > 0) 220 UP.AllowRemainder = UnrollAllowRemainder; 221 if (UnrollRuntime.getNumOccurrences() > 0) 222 UP.Runtime = UnrollRuntime; 223 if (UnrollMaxUpperBound == 0) 224 UP.UpperBound = false; 225 if (UnrollAllowPeeling.getNumOccurrences() > 0) 226 UP.AllowPeeling = UnrollAllowPeeling; 227 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 228 UP.UnrollRemainder = UnrollUnrollRemainder; 229 230 // Apply user values provided by argument 231 if (UserThreshold.hasValue()) { 232 UP.Threshold = *UserThreshold; 233 UP.PartialThreshold = *UserThreshold; 234 } 235 if (UserCount.hasValue()) 236 UP.Count = *UserCount; 237 if (UserAllowPartial.hasValue()) 238 UP.Partial = *UserAllowPartial; 239 if (UserRuntime.hasValue()) 240 UP.Runtime = *UserRuntime; 241 if (UserUpperBound.hasValue()) 242 UP.UpperBound = *UserUpperBound; 243 if (UserAllowPeeling.hasValue()) 244 UP.AllowPeeling = *UserAllowPeeling; 245 246 return UP; 247 } 248 249 namespace { 250 251 /// A struct to densely store the state of an instruction after unrolling at 252 /// each iteration. 253 /// 254 /// This is designed to work like a tuple of <Instruction *, int> for the 255 /// purposes of hashing and lookup, but to be able to associate two boolean 256 /// states with each key. 257 struct UnrolledInstState { 258 Instruction *I; 259 int Iteration : 30; 260 unsigned IsFree : 1; 261 unsigned IsCounted : 1; 262 }; 263 264 /// Hashing and equality testing for a set of the instruction states. 265 struct UnrolledInstStateKeyInfo { 266 using PtrInfo = DenseMapInfo<Instruction *>; 267 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 268 269 static inline UnrolledInstState getEmptyKey() { 270 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 271 } 272 273 static inline UnrolledInstState getTombstoneKey() { 274 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 275 } 276 277 static inline unsigned getHashValue(const UnrolledInstState &S) { 278 return PairInfo::getHashValue({S.I, S.Iteration}); 279 } 280 281 static inline bool isEqual(const UnrolledInstState &LHS, 282 const UnrolledInstState &RHS) { 283 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 284 } 285 }; 286 287 struct EstimatedUnrollCost { 288 /// \brief The estimated cost after unrolling. 289 unsigned UnrolledCost; 290 291 /// \brief The estimated dynamic cost of executing the instructions in the 292 /// rolled form. 293 unsigned RolledDynamicCost; 294 }; 295 296 } // end anonymous namespace 297 298 /// \brief Figure out if the loop is worth full unrolling. 299 /// 300 /// Complete loop unrolling can make some loads constant, and we need to know 301 /// if that would expose any further optimization opportunities. This routine 302 /// estimates this optimization. It computes cost of unrolled loop 303 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 304 /// dynamic cost we mean that we won't count costs of blocks that are known not 305 /// to be executed (i.e. if we have a branch in the loop and we know that at the 306 /// given iteration its condition would be resolved to true, we won't add up the 307 /// cost of the 'false'-block). 308 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 309 /// the analysis failed (no benefits expected from the unrolling, or the loop is 310 /// too big to analyze), the returned value is None. 311 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 312 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 313 const SmallPtrSetImpl<const Value *> &EphValues, 314 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 315 // We want to be able to scale offsets by the trip count and add more offsets 316 // to them without checking for overflows, and we already don't want to 317 // analyze *massive* trip counts, so we force the max to be reasonably small. 318 assert(UnrollMaxIterationsCountToAnalyze < 319 (unsigned)(std::numeric_limits<int>::max() / 2) && 320 "The unroll iterations max is too large!"); 321 322 // Only analyze inner loops. We can't properly estimate cost of nested loops 323 // and we won't visit inner loops again anyway. 324 if (!L->empty()) 325 return None; 326 327 // Don't simulate loops with a big or unknown tripcount 328 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 329 TripCount > UnrollMaxIterationsCountToAnalyze) 330 return None; 331 332 SmallSetVector<BasicBlock *, 16> BBWorklist; 333 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 334 DenseMap<Value *, Constant *> SimplifiedValues; 335 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 336 337 // The estimated cost of the unrolled form of the loop. We try to estimate 338 // this by simplifying as much as we can while computing the estimate. 339 unsigned UnrolledCost = 0; 340 341 // We also track the estimated dynamic (that is, actually executed) cost in 342 // the rolled form. This helps identify cases when the savings from unrolling 343 // aren't just exposing dead control flows, but actual reduced dynamic 344 // instructions due to the simplifications which we expect to occur after 345 // unrolling. 346 unsigned RolledDynamicCost = 0; 347 348 // We track the simplification of each instruction in each iteration. We use 349 // this to recursively merge costs into the unrolled cost on-demand so that 350 // we don't count the cost of any dead code. This is essentially a map from 351 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 352 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 353 354 // A small worklist used to accumulate cost of instructions from each 355 // observable and reached root in the loop. 356 SmallVector<Instruction *, 16> CostWorklist; 357 358 // PHI-used worklist used between iterations while accumulating cost. 359 SmallVector<Instruction *, 4> PHIUsedList; 360 361 // Helper function to accumulate cost for instructions in the loop. 362 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 363 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 364 assert(CostWorklist.empty() && "Must start with an empty cost list"); 365 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 366 CostWorklist.push_back(&RootI); 367 for (;; --Iteration) { 368 do { 369 Instruction *I = CostWorklist.pop_back_val(); 370 371 // InstCostMap only uses I and Iteration as a key, the other two values 372 // don't matter here. 373 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 374 if (CostIter == InstCostMap.end()) 375 // If an input to a PHI node comes from a dead path through the loop 376 // we may have no cost data for it here. What that actually means is 377 // that it is free. 378 continue; 379 auto &Cost = *CostIter; 380 if (Cost.IsCounted) 381 // Already counted this instruction. 382 continue; 383 384 // Mark that we are counting the cost of this instruction now. 385 Cost.IsCounted = true; 386 387 // If this is a PHI node in the loop header, just add it to the PHI set. 388 if (auto *PhiI = dyn_cast<PHINode>(I)) 389 if (PhiI->getParent() == L->getHeader()) { 390 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 391 "inherently simplify during unrolling."); 392 if (Iteration == 0) 393 continue; 394 395 // Push the incoming value from the backedge into the PHI used list 396 // if it is an in-loop instruction. We'll use this to populate the 397 // cost worklist for the next iteration (as we count backwards). 398 if (auto *OpI = dyn_cast<Instruction>( 399 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 400 if (L->contains(OpI)) 401 PHIUsedList.push_back(OpI); 402 continue; 403 } 404 405 // First accumulate the cost of this instruction. 406 if (!Cost.IsFree) { 407 UnrolledCost += TTI.getUserCost(I); 408 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 409 << "): "); 410 DEBUG(I->dump()); 411 } 412 413 // We must count the cost of every operand which is not free, 414 // recursively. If we reach a loop PHI node, simply add it to the set 415 // to be considered on the next iteration (backwards!). 416 for (Value *Op : I->operands()) { 417 // Check whether this operand is free due to being a constant or 418 // outside the loop. 419 auto *OpI = dyn_cast<Instruction>(Op); 420 if (!OpI || !L->contains(OpI)) 421 continue; 422 423 // Otherwise accumulate its cost. 424 CostWorklist.push_back(OpI); 425 } 426 } while (!CostWorklist.empty()); 427 428 if (PHIUsedList.empty()) 429 // We've exhausted the search. 430 break; 431 432 assert(Iteration > 0 && 433 "Cannot track PHI-used values past the first iteration!"); 434 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 435 PHIUsedList.clear(); 436 } 437 }; 438 439 // Ensure that we don't violate the loop structure invariants relied on by 440 // this analysis. 441 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 442 assert(L->isLCSSAForm(DT) && 443 "Must have loops in LCSSA form to track live-out values."); 444 445 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 446 447 // Simulate execution of each iteration of the loop counting instructions, 448 // which would be simplified. 449 // Since the same load will take different values on different iterations, 450 // we literally have to go through all loop's iterations. 451 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 452 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 453 454 // Prepare for the iteration by collecting any simplified entry or backedge 455 // inputs. 456 for (Instruction &I : *L->getHeader()) { 457 auto *PHI = dyn_cast<PHINode>(&I); 458 if (!PHI) 459 break; 460 461 // The loop header PHI nodes must have exactly two input: one from the 462 // loop preheader and one from the loop latch. 463 assert( 464 PHI->getNumIncomingValues() == 2 && 465 "Must have an incoming value only for the preheader and the latch."); 466 467 Value *V = PHI->getIncomingValueForBlock( 468 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 469 Constant *C = dyn_cast<Constant>(V); 470 if (Iteration != 0 && !C) 471 C = SimplifiedValues.lookup(V); 472 if (C) 473 SimplifiedInputValues.push_back({PHI, C}); 474 } 475 476 // Now clear and re-populate the map for the next iteration. 477 SimplifiedValues.clear(); 478 while (!SimplifiedInputValues.empty()) 479 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 480 481 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 482 483 BBWorklist.clear(); 484 BBWorklist.insert(L->getHeader()); 485 // Note that we *must not* cache the size, this loop grows the worklist. 486 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 487 BasicBlock *BB = BBWorklist[Idx]; 488 489 // Visit all instructions in the given basic block and try to simplify 490 // it. We don't change the actual IR, just count optimization 491 // opportunities. 492 for (Instruction &I : *BB) { 493 // These won't get into the final code - don't even try calculating the 494 // cost for them. 495 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 496 continue; 497 498 // Track this instruction's expected baseline cost when executing the 499 // rolled loop form. 500 RolledDynamicCost += TTI.getUserCost(&I); 501 502 // Visit the instruction to analyze its loop cost after unrolling, 503 // and if the visitor returns true, mark the instruction as free after 504 // unrolling and continue. 505 bool IsFree = Analyzer.visit(I); 506 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 507 (unsigned)IsFree, 508 /*IsCounted*/ false}).second; 509 (void)Inserted; 510 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 511 512 if (IsFree) 513 continue; 514 515 // Can't properly model a cost of a call. 516 // FIXME: With a proper cost model we should be able to do it. 517 if(isa<CallInst>(&I)) 518 return None; 519 520 // If the instruction might have a side-effect recursively account for 521 // the cost of it and all the instructions leading up to it. 522 if (I.mayHaveSideEffects()) 523 AddCostRecursively(I, Iteration); 524 525 // If unrolled body turns out to be too big, bail out. 526 if (UnrolledCost > MaxUnrolledLoopSize) { 527 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 528 << " UnrolledCost: " << UnrolledCost 529 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 530 << "\n"); 531 return None; 532 } 533 } 534 535 TerminatorInst *TI = BB->getTerminator(); 536 537 // Add in the live successors by first checking whether we have terminator 538 // that may be simplified based on the values simplified by this call. 539 BasicBlock *KnownSucc = nullptr; 540 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 541 if (BI->isConditional()) { 542 if (Constant *SimpleCond = 543 SimplifiedValues.lookup(BI->getCondition())) { 544 // Just take the first successor if condition is undef 545 if (isa<UndefValue>(SimpleCond)) 546 KnownSucc = BI->getSuccessor(0); 547 else if (ConstantInt *SimpleCondVal = 548 dyn_cast<ConstantInt>(SimpleCond)) 549 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 550 } 551 } 552 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 553 if (Constant *SimpleCond = 554 SimplifiedValues.lookup(SI->getCondition())) { 555 // Just take the first successor if condition is undef 556 if (isa<UndefValue>(SimpleCond)) 557 KnownSucc = SI->getSuccessor(0); 558 else if (ConstantInt *SimpleCondVal = 559 dyn_cast<ConstantInt>(SimpleCond)) 560 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 561 } 562 } 563 if (KnownSucc) { 564 if (L->contains(KnownSucc)) 565 BBWorklist.insert(KnownSucc); 566 else 567 ExitWorklist.insert({BB, KnownSucc}); 568 continue; 569 } 570 571 // Add BB's successors to the worklist. 572 for (BasicBlock *Succ : successors(BB)) 573 if (L->contains(Succ)) 574 BBWorklist.insert(Succ); 575 else 576 ExitWorklist.insert({BB, Succ}); 577 AddCostRecursively(*TI, Iteration); 578 } 579 580 // If we found no optimization opportunities on the first iteration, we 581 // won't find them on later ones too. 582 if (UnrolledCost == RolledDynamicCost) { 583 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 584 << " UnrolledCost: " << UnrolledCost << "\n"); 585 return None; 586 } 587 } 588 589 while (!ExitWorklist.empty()) { 590 BasicBlock *ExitingBB, *ExitBB; 591 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 592 593 for (Instruction &I : *ExitBB) { 594 auto *PN = dyn_cast<PHINode>(&I); 595 if (!PN) 596 break; 597 598 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 599 if (auto *OpI = dyn_cast<Instruction>(Op)) 600 if (L->contains(OpI)) 601 AddCostRecursively(*OpI, TripCount - 1); 602 } 603 } 604 605 DEBUG(dbgs() << "Analysis finished:\n" 606 << "UnrolledCost: " << UnrolledCost << ", " 607 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 608 return {{UnrolledCost, RolledDynamicCost}}; 609 } 610 611 /// ApproximateLoopSize - Approximate the size of the loop. 612 static unsigned 613 ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, 614 bool &Convergent, const TargetTransformInfo &TTI, 615 const SmallPtrSetImpl<const Value *> &EphValues, 616 unsigned BEInsns) { 617 CodeMetrics Metrics; 618 for (BasicBlock *BB : L->blocks()) 619 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 620 NumCalls = Metrics.NumInlineCandidates; 621 NotDuplicatable = Metrics.notDuplicatable; 622 Convergent = Metrics.convergent; 623 624 unsigned LoopSize = Metrics.NumInsts; 625 626 // Don't allow an estimate of size zero. This would allows unrolling of loops 627 // with huge iteration counts, which is a compile time problem even if it's 628 // not a problem for code quality. Also, the code using this size may assume 629 // that each loop has at least three instructions (likely a conditional 630 // branch, a comparison feeding that branch, and some kind of loop increment 631 // feeding that comparison instruction). 632 LoopSize = std::max(LoopSize, BEInsns + 1); 633 634 return LoopSize; 635 } 636 637 // Returns the loop hint metadata node with the given name (for example, 638 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 639 // returned. 640 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 641 if (MDNode *LoopID = L->getLoopID()) 642 return GetUnrollMetadata(LoopID, Name); 643 return nullptr; 644 } 645 646 // Returns true if the loop has an unroll(full) pragma. 647 static bool HasUnrollFullPragma(const Loop *L) { 648 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 649 } 650 651 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 652 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 653 static bool HasUnrollEnablePragma(const Loop *L) { 654 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 655 } 656 657 // Returns true if the loop has an unroll(disable) pragma. 658 static bool HasUnrollDisablePragma(const Loop *L) { 659 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 660 } 661 662 // Returns true if the loop has an runtime unroll(disable) pragma. 663 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 664 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 665 } 666 667 // If loop has an unroll_count pragma return the (necessarily 668 // positive) value from the pragma. Otherwise return 0. 669 static unsigned UnrollCountPragmaValue(const Loop *L) { 670 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 671 if (MD) { 672 assert(MD->getNumOperands() == 2 && 673 "Unroll count hint metadata should have two operands."); 674 unsigned Count = 675 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 676 assert(Count >= 1 && "Unroll count must be positive."); 677 return Count; 678 } 679 return 0; 680 } 681 682 // Computes the boosting factor for complete unrolling. 683 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 684 // be beneficial to fully unroll the loop even if unrolledcost is large. We 685 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 686 // the unroll threshold. 687 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 688 unsigned MaxPercentThresholdBoost) { 689 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 690 return 100; 691 else if (Cost.UnrolledCost != 0) 692 // The boosting factor is RolledDynamicCost / UnrolledCost 693 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 694 MaxPercentThresholdBoost); 695 else 696 return MaxPercentThresholdBoost; 697 } 698 699 // Returns loop size estimation for unrolled loop. 700 static uint64_t getUnrolledLoopSize( 701 unsigned LoopSize, 702 TargetTransformInfo::UnrollingPreferences &UP) { 703 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 704 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 705 } 706 707 // Returns true if unroll count was set explicitly. 708 // Calculates unroll count and writes it to UP.Count. 709 static bool computeUnrollCount( 710 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 711 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 712 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 713 unsigned &TripMultiple, unsigned LoopSize, 714 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 715 // Check for explicit Count. 716 // 1st priority is unroll count set by "unroll-count" option. 717 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 718 if (UserUnrollCount) { 719 UP.Count = UnrollCount; 720 UP.AllowExpensiveTripCount = true; 721 UP.Force = true; 722 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 723 return true; 724 } 725 726 // 2nd priority is unroll count set by pragma. 727 unsigned PragmaCount = UnrollCountPragmaValue(L); 728 if (PragmaCount > 0) { 729 UP.Count = PragmaCount; 730 UP.Runtime = true; 731 UP.AllowExpensiveTripCount = true; 732 UP.Force = true; 733 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 734 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 735 return true; 736 } 737 bool PragmaFullUnroll = HasUnrollFullPragma(L); 738 if (PragmaFullUnroll && TripCount != 0) { 739 UP.Count = TripCount; 740 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 741 return false; 742 } 743 744 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 745 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 746 PragmaEnableUnroll || UserUnrollCount; 747 748 if (ExplicitUnroll && TripCount != 0) { 749 // If the loop has an unrolling pragma, we want to be more aggressive with 750 // unrolling limits. Set thresholds to at least the PragmaThreshold value 751 // which is larger than the default limits. 752 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 753 UP.PartialThreshold = 754 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 755 } 756 757 // 3rd priority is full unroll count. 758 // Full unroll makes sense only when TripCount or its upper bound could be 759 // statically calculated. 760 // Also we need to check if we exceed FullUnrollMaxCount. 761 // If using the upper bound to unroll, TripMultiple should be set to 1 because 762 // we do not know when loop may exit. 763 // MaxTripCount and ExactTripCount cannot both be non zero since we only 764 // compute the former when the latter is zero. 765 unsigned ExactTripCount = TripCount; 766 assert((ExactTripCount == 0 || MaxTripCount == 0) && 767 "ExtractTripCound and MaxTripCount cannot both be non zero."); 768 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 769 UP.Count = FullUnrollTripCount; 770 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 771 // When computing the unrolled size, note that BEInsns are not replicated 772 // like the rest of the loop body. 773 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 774 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 775 TripCount = FullUnrollTripCount; 776 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 777 return ExplicitUnroll; 778 } else { 779 // The loop isn't that small, but we still can fully unroll it if that 780 // helps to remove a significant number of instructions. 781 // To check that, run additional analysis on the loop. 782 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 783 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 784 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 785 unsigned Boost = 786 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 787 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 788 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 789 TripCount = FullUnrollTripCount; 790 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 791 return ExplicitUnroll; 792 } 793 } 794 } 795 } 796 797 // 4th priority is loop peeling 798 computePeelCount(L, LoopSize, UP, TripCount, SE); 799 if (UP.PeelCount) { 800 UP.Runtime = false; 801 UP.Count = 1; 802 return ExplicitUnroll; 803 } 804 805 // 5th priority is partial unrolling. 806 // Try partial unroll only when TripCount could be staticaly calculated. 807 if (TripCount) { 808 UP.Partial |= ExplicitUnroll; 809 if (!UP.Partial) { 810 DEBUG(dbgs() << " will not try to unroll partially because " 811 << "-unroll-allow-partial not given\n"); 812 UP.Count = 0; 813 return false; 814 } 815 if (UP.Count == 0) 816 UP.Count = TripCount; 817 if (UP.PartialThreshold != NoThreshold) { 818 // Reduce unroll count to be modulo of TripCount for partial unrolling. 819 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 820 UP.Count = 821 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 822 (LoopSize - UP.BEInsns); 823 if (UP.Count > UP.MaxCount) 824 UP.Count = UP.MaxCount; 825 while (UP.Count != 0 && TripCount % UP.Count != 0) 826 UP.Count--; 827 if (UP.AllowRemainder && UP.Count <= 1) { 828 // If there is no Count that is modulo of TripCount, set Count to 829 // largest power-of-two factor that satisfies the threshold limit. 830 // As we'll create fixup loop, do the type of unrolling only if 831 // remainder loop is allowed. 832 UP.Count = UP.DefaultUnrollRuntimeCount; 833 while (UP.Count != 0 && 834 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 835 UP.Count >>= 1; 836 } 837 if (UP.Count < 2) { 838 if (PragmaEnableUnroll) 839 ORE->emit([&]() { 840 return OptimizationRemarkMissed(DEBUG_TYPE, 841 "UnrollAsDirectedTooLarge", 842 L->getStartLoc(), L->getHeader()) 843 << "Unable to unroll loop as directed by unroll(enable) " 844 "pragma " 845 "because unrolled size is too large."; 846 }); 847 UP.Count = 0; 848 } 849 } else { 850 UP.Count = TripCount; 851 } 852 if (UP.Count > UP.MaxCount) 853 UP.Count = UP.MaxCount; 854 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 855 UP.Count != TripCount) 856 ORE->emit([&]() { 857 return OptimizationRemarkMissed(DEBUG_TYPE, 858 "FullUnrollAsDirectedTooLarge", 859 L->getStartLoc(), L->getHeader()) 860 << "Unable to fully unroll loop as directed by unroll pragma " 861 "because " 862 "unrolled size is too large."; 863 }); 864 return ExplicitUnroll; 865 } 866 assert(TripCount == 0 && 867 "All cases when TripCount is constant should be covered here."); 868 if (PragmaFullUnroll) 869 ORE->emit([&]() { 870 return OptimizationRemarkMissed( 871 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 872 L->getStartLoc(), L->getHeader()) 873 << "Unable to fully unroll loop as directed by unroll(full) " 874 "pragma " 875 "because loop has a runtime trip count."; 876 }); 877 878 // 6th priority is runtime unrolling. 879 // Don't unroll a runtime trip count loop when it is disabled. 880 if (HasRuntimeUnrollDisablePragma(L)) { 881 UP.Count = 0; 882 return false; 883 } 884 885 // Check if the runtime trip count is too small when profile is available. 886 if (L->getHeader()->getParent()->hasProfileData()) { 887 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 888 if (*ProfileTripCount < FlatLoopTripCountThreshold) 889 return false; 890 else 891 UP.AllowExpensiveTripCount = true; 892 } 893 } 894 895 // Reduce count based on the type of unrolling and the threshold values. 896 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 897 if (!UP.Runtime) { 898 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 899 << "-unroll-runtime not given\n"); 900 UP.Count = 0; 901 return false; 902 } 903 if (UP.Count == 0) 904 UP.Count = UP.DefaultUnrollRuntimeCount; 905 906 // Reduce unroll count to be the largest power-of-two factor of 907 // the original count which satisfies the threshold limit. 908 while (UP.Count != 0 && 909 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 910 UP.Count >>= 1; 911 912 #ifndef NDEBUG 913 unsigned OrigCount = UP.Count; 914 #endif 915 916 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 917 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 918 UP.Count >>= 1; 919 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 920 "specific or because the loop contains a convergent " 921 "instruction), so unroll count must divide the trip " 922 "multiple, " 923 << TripMultiple << ". Reducing unroll count from " 924 << OrigCount << " to " << UP.Count << ".\n"); 925 926 using namespace ore; 927 928 if (PragmaCount > 0 && !UP.AllowRemainder) 929 ORE->emit([&]() { 930 return OptimizationRemarkMissed(DEBUG_TYPE, 931 "DifferentUnrollCountFromDirected", 932 L->getStartLoc(), L->getHeader()) 933 << "Unable to unroll loop the number of times directed by " 934 "unroll_count pragma because remainder loop is restricted " 935 "(that could architecture specific or because the loop " 936 "contains a convergent instruction) and so must have an " 937 "unroll " 938 "count that divides the loop trip multiple of " 939 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 940 << NV("UnrollCount", UP.Count) << " time(s)."; 941 }); 942 } 943 944 if (UP.Count > UP.MaxCount) 945 UP.Count = UP.MaxCount; 946 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 947 if (UP.Count < 2) 948 UP.Count = 0; 949 return ExplicitUnroll; 950 } 951 952 static LoopUnrollResult tryToUnrollLoop( 953 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 954 const TargetTransformInfo &TTI, AssumptionCache &AC, 955 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 956 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 957 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 958 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 959 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 960 << "] Loop %" << L->getHeader()->getName() << "\n"); 961 if (HasUnrollDisablePragma(L)) 962 return LoopUnrollResult::Unmodified; 963 if (!L->isLoopSimplifyForm()) { 964 DEBUG( 965 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 966 return LoopUnrollResult::Unmodified; 967 } 968 969 unsigned NumInlineCandidates; 970 bool NotDuplicatable; 971 bool Convergent; 972 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 973 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 974 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 975 ProvidedAllowPeeling); 976 // Exit early if unrolling is disabled. 977 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 978 return LoopUnrollResult::Unmodified; 979 980 SmallPtrSet<const Value *, 32> EphValues; 981 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 982 983 unsigned LoopSize = 984 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 985 TTI, EphValues, UP.BEInsns); 986 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 987 if (NotDuplicatable) { 988 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 989 << " instructions.\n"); 990 return LoopUnrollResult::Unmodified; 991 } 992 if (NumInlineCandidates != 0) { 993 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 994 return LoopUnrollResult::Unmodified; 995 } 996 997 // Find trip count and trip multiple if count is not available 998 unsigned TripCount = 0; 999 unsigned MaxTripCount = 0; 1000 unsigned TripMultiple = 1; 1001 // If there are multiple exiting blocks but one of them is the latch, use the 1002 // latch for the trip count estimation. Otherwise insist on a single exiting 1003 // block for the trip count estimation. 1004 BasicBlock *ExitingBlock = L->getLoopLatch(); 1005 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1006 ExitingBlock = L->getExitingBlock(); 1007 if (ExitingBlock) { 1008 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1009 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1010 } 1011 1012 // If the loop contains a convergent operation, the prelude we'd add 1013 // to do the first few instructions before we hit the unrolled loop 1014 // is unsafe -- it adds a control-flow dependency to the convergent 1015 // operation. Therefore restrict remainder loop (try unrollig without). 1016 // 1017 // TODO: This is quite conservative. In practice, convergent_op() 1018 // is likely to be called unconditionally in the loop. In this 1019 // case, the program would be ill-formed (on most architectures) 1020 // unless n were the same on all threads in a thread group. 1021 // Assuming n is the same on all threads, any kind of unrolling is 1022 // safe. But currently llvm's notion of convergence isn't powerful 1023 // enough to express this. 1024 if (Convergent) 1025 UP.AllowRemainder = false; 1026 1027 // Try to find the trip count upper bound if we cannot find the exact trip 1028 // count. 1029 bool MaxOrZero = false; 1030 if (!TripCount) { 1031 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1032 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1033 // We can unroll by the upper bound amount if it's generally allowed or if 1034 // we know that the loop is executed either the upper bound or zero times. 1035 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1036 // loop tests remains the same compared to the non-unrolled version, whereas 1037 // the generic upper bound unrolling keeps all but the last loop test so the 1038 // number of loop tests goes up which may end up being worse on targets with 1039 // constriained branch predictor resources so is controlled by an option.) 1040 // In addition we only unroll small upper bounds. 1041 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1042 MaxTripCount = 0; 1043 } 1044 } 1045 1046 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1047 // fully unroll the loop. 1048 bool UseUpperBound = false; 1049 bool IsCountSetExplicitly = computeUnrollCount( 1050 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1051 TripMultiple, LoopSize, UP, UseUpperBound); 1052 if (!UP.Count) 1053 return LoopUnrollResult::Unmodified; 1054 // Unroll factor (Count) must be less or equal to TripCount. 1055 if (TripCount && UP.Count > TripCount) 1056 UP.Count = TripCount; 1057 1058 // Unroll the loop. 1059 LoopUnrollResult UnrollResult = UnrollLoop( 1060 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1061 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1062 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA); 1063 if (UnrollResult == LoopUnrollResult::Unmodified) 1064 return LoopUnrollResult::Unmodified; 1065 1066 // If loop has an unroll count pragma or unrolled by explicitly set count 1067 // mark loop as unrolled to prevent unrolling beyond that requested. 1068 // If the loop was peeled, we already "used up" the profile information 1069 // we had, so we don't want to unroll or peel again. 1070 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1071 (IsCountSetExplicitly || UP.PeelCount)) 1072 L->setLoopAlreadyUnrolled(); 1073 1074 return UnrollResult; 1075 } 1076 1077 namespace { 1078 1079 class LoopUnroll : public LoopPass { 1080 public: 1081 static char ID; // Pass ID, replacement for typeid 1082 1083 int OptLevel; 1084 Optional<unsigned> ProvidedCount; 1085 Optional<unsigned> ProvidedThreshold; 1086 Optional<bool> ProvidedAllowPartial; 1087 Optional<bool> ProvidedRuntime; 1088 Optional<bool> ProvidedUpperBound; 1089 Optional<bool> ProvidedAllowPeeling; 1090 1091 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1092 Optional<unsigned> Count = None, 1093 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1094 Optional<bool> UpperBound = None, 1095 Optional<bool> AllowPeeling = None) 1096 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1097 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1098 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1099 ProvidedAllowPeeling(AllowPeeling) { 1100 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1101 } 1102 1103 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1104 if (skipLoop(L)) 1105 return false; 1106 1107 Function &F = *L->getHeader()->getParent(); 1108 1109 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1110 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1111 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1112 const TargetTransformInfo &TTI = 1113 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1114 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1115 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1116 // pass. Function analyses need to be preserved across loop transformations 1117 // but ORE cannot be preserved (see comment before the pass definition). 1118 OptimizationRemarkEmitter ORE(&F); 1119 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1120 1121 LoopUnrollResult Result = tryToUnrollLoop( 1122 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount, 1123 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1124 ProvidedUpperBound, ProvidedAllowPeeling); 1125 1126 if (Result == LoopUnrollResult::FullyUnrolled) 1127 LPM.markLoopAsDeleted(*L); 1128 1129 return Result != LoopUnrollResult::Unmodified; 1130 } 1131 1132 /// This transformation requires natural loop information & requires that 1133 /// loop preheaders be inserted into the CFG... 1134 void getAnalysisUsage(AnalysisUsage &AU) const override { 1135 AU.addRequired<AssumptionCacheTracker>(); 1136 AU.addRequired<TargetTransformInfoWrapperPass>(); 1137 // FIXME: Loop passes are required to preserve domtree, and for now we just 1138 // recreate dom info if anything gets unrolled. 1139 getLoopAnalysisUsage(AU); 1140 } 1141 }; 1142 1143 } // end anonymous namespace 1144 1145 char LoopUnroll::ID = 0; 1146 1147 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1148 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1149 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1150 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1151 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1152 1153 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1154 int AllowPartial, int Runtime, int UpperBound, 1155 int AllowPeeling) { 1156 // TODO: It would make more sense for this function to take the optionals 1157 // directly, but that's dangerous since it would silently break out of tree 1158 // callers. 1159 return new LoopUnroll( 1160 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1161 Count == -1 ? None : Optional<unsigned>(Count), 1162 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1163 Runtime == -1 ? None : Optional<bool>(Runtime), 1164 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1165 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1166 } 1167 1168 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1169 return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1170 } 1171 1172 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1173 LoopStandardAnalysisResults &AR, 1174 LPMUpdater &Updater) { 1175 const auto &FAM = 1176 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1177 Function *F = L.getHeader()->getParent(); 1178 1179 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1180 // FIXME: This should probably be optional rather than required. 1181 if (!ORE) 1182 report_fatal_error( 1183 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1184 "cached at a higher level"); 1185 1186 // Keep track of the previous loop structure so we can identify new loops 1187 // created by unrolling. 1188 Loop *ParentL = L.getParentLoop(); 1189 SmallPtrSet<Loop *, 4> OldLoops; 1190 if (ParentL) 1191 OldLoops.insert(ParentL->begin(), ParentL->end()); 1192 else 1193 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1194 1195 std::string LoopName = L.getName(); 1196 1197 bool Changed = 1198 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1199 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1200 /*Threshold*/ None, /*AllowPartial*/ false, 1201 /*Runtime*/ false, /*UpperBound*/ false, 1202 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1203 if (!Changed) 1204 return PreservedAnalyses::all(); 1205 1206 // The parent must not be damaged by unrolling! 1207 #ifndef NDEBUG 1208 if (ParentL) 1209 ParentL->verifyLoop(); 1210 #endif 1211 1212 // Unrolling can do several things to introduce new loops into a loop nest: 1213 // - Full unrolling clones child loops within the current loop but then 1214 // removes the current loop making all of the children appear to be new 1215 // sibling loops. 1216 // 1217 // When a new loop appears as a sibling loop after fully unrolling, 1218 // its nesting structure has fundamentally changed and we want to revisit 1219 // it to reflect that. 1220 // 1221 // When unrolling has removed the current loop, we need to tell the 1222 // infrastructure that it is gone. 1223 // 1224 // Finally, we support a debugging/testing mode where we revisit child loops 1225 // as well. These are not expected to require further optimizations as either 1226 // they or the loop they were cloned from have been directly visited already. 1227 // But the debugging mode allows us to check this assumption. 1228 bool IsCurrentLoopValid = false; 1229 SmallVector<Loop *, 4> SibLoops; 1230 if (ParentL) 1231 SibLoops.append(ParentL->begin(), ParentL->end()); 1232 else 1233 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1234 erase_if(SibLoops, [&](Loop *SibLoop) { 1235 if (SibLoop == &L) { 1236 IsCurrentLoopValid = true; 1237 return true; 1238 } 1239 1240 // Otherwise erase the loop from the list if it was in the old loops. 1241 return OldLoops.count(SibLoop) != 0; 1242 }); 1243 Updater.addSiblingLoops(SibLoops); 1244 1245 if (!IsCurrentLoopValid) { 1246 Updater.markLoopAsDeleted(L, LoopName); 1247 } else { 1248 // We can only walk child loops if the current loop remained valid. 1249 if (UnrollRevisitChildLoops) { 1250 // Walk *all* of the child loops. 1251 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1252 Updater.addChildLoops(ChildLoops); 1253 } 1254 } 1255 1256 return getLoopPassPreservedAnalyses(); 1257 } 1258 1259 template <typename RangeT> 1260 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1261 SmallVector<Loop *, 8> Worklist; 1262 // We use an internal worklist to build up the preorder traversal without 1263 // recursion. 1264 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1265 1266 for (Loop *RootL : Loops) { 1267 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1268 assert(PreOrderWorklist.empty() && 1269 "Must start with an empty preorder walk worklist."); 1270 PreOrderWorklist.push_back(RootL); 1271 do { 1272 Loop *L = PreOrderWorklist.pop_back_val(); 1273 PreOrderWorklist.append(L->begin(), L->end()); 1274 PreOrderLoops.push_back(L); 1275 } while (!PreOrderWorklist.empty()); 1276 1277 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1278 PreOrderLoops.clear(); 1279 } 1280 return Worklist; 1281 } 1282 1283 PreservedAnalyses LoopUnrollPass::run(Function &F, 1284 FunctionAnalysisManager &AM) { 1285 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1286 auto &LI = AM.getResult<LoopAnalysis>(F); 1287 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1288 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1289 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1290 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1291 1292 LoopAnalysisManager *LAM = nullptr; 1293 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1294 LAM = &LAMProxy->getManager(); 1295 1296 const ModuleAnalysisManager &MAM = 1297 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1298 ProfileSummaryInfo *PSI = 1299 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1300 1301 bool Changed = false; 1302 1303 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1304 // Since simplification may add new inner loops, it has to run before the 1305 // legality and profitability checks. This means running the loop unroller 1306 // will simplify all loops, regardless of whether anything end up being 1307 // unrolled. 1308 for (auto &L : LI) { 1309 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1310 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1311 } 1312 1313 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1314 1315 while (!Worklist.empty()) { 1316 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1317 // from back to front so that we work forward across the CFG, which 1318 // for unrolling is only needed to get optimization remarks emitted in 1319 // a forward order. 1320 Loop &L = *Worklist.pop_back_val(); 1321 #ifndef NDEBUG 1322 Loop *ParentL = L.getParentLoop(); 1323 #endif 1324 1325 // The API here is quite complex to call, but there are only two interesting 1326 // states we support: partial and full (or "simple") unrolling. However, to 1327 // enable these things we actually pass "None" in for the optional to avoid 1328 // providing an explicit choice. 1329 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1330 AllowPeeling; 1331 // Check if the profile summary indicates that the profiled application 1332 // has a huge working set size, in which case we disable peeling to avoid 1333 // bloating it further. 1334 if (PSI && PSI->hasHugeWorkingSetSize()) 1335 AllowPeeling = false; 1336 std::string LoopName = L.getName(); 1337 LoopUnrollResult Result = 1338 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1339 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1340 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1341 UpperBoundParam, AllowPeeling); 1342 Changed |= Result != LoopUnrollResult::Unmodified; 1343 1344 // The parent must not be damaged by unrolling! 1345 #ifndef NDEBUG 1346 if (Result != LoopUnrollResult::Unmodified && ParentL) 1347 ParentL->verifyLoop(); 1348 #endif 1349 1350 // Clear any cached analysis results for L if we removed it completely. 1351 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1352 LAM->clear(L, LoopName); 1353 } 1354 1355 if (!Changed) 1356 return PreservedAnalyses::all(); 1357 1358 return getLoopPassPreservedAnalyses(); 1359 } 1360