xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision f57cc62abf4d2d5fec91716372d060662d678fc8)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The baseline cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
51     "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden,
52     cl::desc("The percentage of estimated dynamic cost which must be saved by "
53              "unrolling to allow unrolling up to the max threshold."));
54 
55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
56     "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden,
57     cl::desc("This is the amount discounted from the total unroll cost when "
58              "the unrolled form has a high dynamic cost savings (triggered by "
59              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
60 
61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
62     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
63     cl::desc("Don't allow loop unrolling to simulate more than this number of"
64              "iterations when checking full unroll profitability"));
65 
66 static cl::opt<unsigned> UnrollCount(
67     "unroll-count", cl::Hidden,
68     cl::desc("Use this unroll count for all loops including those with "
69              "unroll_count pragma values, for testing purposes"));
70 
71 static cl::opt<unsigned> UnrollMaxCount(
72     "unroll-max-count", cl::Hidden,
73     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
74              "testing purposes"));
75 
76 static cl::opt<unsigned> UnrollFullMaxCount(
77     "unroll-full-max-count", cl::Hidden,
78     cl::desc(
79         "Set the max unroll count for full unrolling, for testing purposes"));
80 
81 static cl::opt<bool>
82     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
83                        cl::desc("Allows loops to be partially unrolled until "
84                                 "-unroll-threshold loop size is reached."));
85 
86 static cl::opt<bool> UnrollAllowRemainder(
87     "unroll-allow-remainder", cl::Hidden,
88     cl::desc("Allow generation of a loop remainder (extra iterations) "
89              "when unrolling a loop."));
90 
91 static cl::opt<bool>
92     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
93                   cl::desc("Unroll loops with run-time trip counts"));
94 
95 static cl::opt<unsigned> PragmaUnrollThreshold(
96     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
97     cl::desc("Unrolled size limit for loops with an unroll(full) or "
98              "unroll_count pragma."));
99 
100 /// A magic value for use with the Threshold parameter to indicate
101 /// that the loop unroll should be performed regardless of how much
102 /// code expansion would result.
103 static const unsigned NoThreshold = UINT_MAX;
104 
105 /// Gather the various unrolling parameters based on the defaults, compiler
106 /// flags, TTI overrides and user specified parameters.
107 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
108     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
109     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
110     Optional<bool> UserRuntime) {
111   TargetTransformInfo::UnrollingPreferences UP;
112 
113   // Set up the defaults
114   UP.Threshold = 150;
115   UP.PercentDynamicCostSavedThreshold = 50;
116   UP.DynamicCostSavingsDiscount = 100;
117   UP.OptSizeThreshold = 0;
118   UP.PartialThreshold = UP.Threshold;
119   UP.PartialOptSizeThreshold = 0;
120   UP.Count = 0;
121   UP.DefaultUnrollRuntimeCount = 8;
122   UP.MaxCount = UINT_MAX;
123   UP.FullUnrollMaxCount = UINT_MAX;
124   UP.Partial = false;
125   UP.Runtime = false;
126   UP.AllowRemainder = true;
127   UP.AllowExpensiveTripCount = false;
128   UP.Force = false;
129 
130   // Override with any target specific settings
131   TTI.getUnrollingPreferences(L, UP);
132 
133   // Apply size attributes
134   if (L->getHeader()->getParent()->optForSize()) {
135     UP.Threshold = UP.OptSizeThreshold;
136     UP.PartialThreshold = UP.PartialOptSizeThreshold;
137   }
138 
139   // Apply any user values specified by cl::opt
140   if (UnrollThreshold.getNumOccurrences() > 0) {
141     UP.Threshold = UnrollThreshold;
142     UP.PartialThreshold = UnrollThreshold;
143   }
144   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
145     UP.PercentDynamicCostSavedThreshold =
146         UnrollPercentDynamicCostSavedThreshold;
147   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
148     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
149   if (UnrollMaxCount.getNumOccurrences() > 0)
150     UP.MaxCount = UnrollMaxCount;
151   if (UnrollFullMaxCount.getNumOccurrences() > 0)
152     UP.FullUnrollMaxCount = UnrollFullMaxCount;
153   if (UnrollAllowPartial.getNumOccurrences() > 0)
154     UP.Partial = UnrollAllowPartial;
155   if (UnrollAllowRemainder.getNumOccurrences() > 0)
156     UP.AllowRemainder = UnrollAllowRemainder;
157   if (UnrollRuntime.getNumOccurrences() > 0)
158     UP.Runtime = UnrollRuntime;
159 
160   // Apply user values provided by argument
161   if (UserThreshold.hasValue()) {
162     UP.Threshold = *UserThreshold;
163     UP.PartialThreshold = *UserThreshold;
164   }
165   if (UserCount.hasValue())
166     UP.Count = *UserCount;
167   if (UserAllowPartial.hasValue())
168     UP.Partial = *UserAllowPartial;
169   if (UserRuntime.hasValue())
170     UP.Runtime = *UserRuntime;
171 
172   return UP;
173 }
174 
175 namespace {
176 /// A struct to densely store the state of an instruction after unrolling at
177 /// each iteration.
178 ///
179 /// This is designed to work like a tuple of <Instruction *, int> for the
180 /// purposes of hashing and lookup, but to be able to associate two boolean
181 /// states with each key.
182 struct UnrolledInstState {
183   Instruction *I;
184   int Iteration : 30;
185   unsigned IsFree : 1;
186   unsigned IsCounted : 1;
187 };
188 
189 /// Hashing and equality testing for a set of the instruction states.
190 struct UnrolledInstStateKeyInfo {
191   typedef DenseMapInfo<Instruction *> PtrInfo;
192   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
193   static inline UnrolledInstState getEmptyKey() {
194     return {PtrInfo::getEmptyKey(), 0, 0, 0};
195   }
196   static inline UnrolledInstState getTombstoneKey() {
197     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
198   }
199   static inline unsigned getHashValue(const UnrolledInstState &S) {
200     return PairInfo::getHashValue({S.I, S.Iteration});
201   }
202   static inline bool isEqual(const UnrolledInstState &LHS,
203                              const UnrolledInstState &RHS) {
204     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
205   }
206 };
207 }
208 
209 namespace {
210 struct EstimatedUnrollCost {
211   /// \brief The estimated cost after unrolling.
212   int UnrolledCost;
213 
214   /// \brief The estimated dynamic cost of executing the instructions in the
215   /// rolled form.
216   int RolledDynamicCost;
217 };
218 }
219 
220 /// \brief Figure out if the loop is worth full unrolling.
221 ///
222 /// Complete loop unrolling can make some loads constant, and we need to know
223 /// if that would expose any further optimization opportunities.  This routine
224 /// estimates this optimization.  It computes cost of unrolled loop
225 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
226 /// dynamic cost we mean that we won't count costs of blocks that are known not
227 /// to be executed (i.e. if we have a branch in the loop and we know that at the
228 /// given iteration its condition would be resolved to true, we won't add up the
229 /// cost of the 'false'-block).
230 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
231 /// the analysis failed (no benefits expected from the unrolling, or the loop is
232 /// too big to analyze), the returned value is None.
233 static Optional<EstimatedUnrollCost>
234 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
235                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
236                       int MaxUnrolledLoopSize) {
237   // We want to be able to scale offsets by the trip count and add more offsets
238   // to them without checking for overflows, and we already don't want to
239   // analyze *massive* trip counts, so we force the max to be reasonably small.
240   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
241          "The unroll iterations max is too large!");
242 
243   // Only analyze inner loops. We can't properly estimate cost of nested loops
244   // and we won't visit inner loops again anyway.
245   if (!L->empty())
246     return None;
247 
248   // Don't simulate loops with a big or unknown tripcount
249   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
250       TripCount > UnrollMaxIterationsCountToAnalyze)
251     return None;
252 
253   SmallSetVector<BasicBlock *, 16> BBWorklist;
254   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
255   DenseMap<Value *, Constant *> SimplifiedValues;
256   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
257 
258   // The estimated cost of the unrolled form of the loop. We try to estimate
259   // this by simplifying as much as we can while computing the estimate.
260   int UnrolledCost = 0;
261 
262   // We also track the estimated dynamic (that is, actually executed) cost in
263   // the rolled form. This helps identify cases when the savings from unrolling
264   // aren't just exposing dead control flows, but actual reduced dynamic
265   // instructions due to the simplifications which we expect to occur after
266   // unrolling.
267   int RolledDynamicCost = 0;
268 
269   // We track the simplification of each instruction in each iteration. We use
270   // this to recursively merge costs into the unrolled cost on-demand so that
271   // we don't count the cost of any dead code. This is essentially a map from
272   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
273   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
274 
275   // A small worklist used to accumulate cost of instructions from each
276   // observable and reached root in the loop.
277   SmallVector<Instruction *, 16> CostWorklist;
278 
279   // PHI-used worklist used between iterations while accumulating cost.
280   SmallVector<Instruction *, 4> PHIUsedList;
281 
282   // Helper function to accumulate cost for instructions in the loop.
283   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
284     assert(Iteration >= 0 && "Cannot have a negative iteration!");
285     assert(CostWorklist.empty() && "Must start with an empty cost list");
286     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
287     CostWorklist.push_back(&RootI);
288     for (;; --Iteration) {
289       do {
290         Instruction *I = CostWorklist.pop_back_val();
291 
292         // InstCostMap only uses I and Iteration as a key, the other two values
293         // don't matter here.
294         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
295         if (CostIter == InstCostMap.end())
296           // If an input to a PHI node comes from a dead path through the loop
297           // we may have no cost data for it here. What that actually means is
298           // that it is free.
299           continue;
300         auto &Cost = *CostIter;
301         if (Cost.IsCounted)
302           // Already counted this instruction.
303           continue;
304 
305         // Mark that we are counting the cost of this instruction now.
306         Cost.IsCounted = true;
307 
308         // If this is a PHI node in the loop header, just add it to the PHI set.
309         if (auto *PhiI = dyn_cast<PHINode>(I))
310           if (PhiI->getParent() == L->getHeader()) {
311             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
312                                   "inherently simplify during unrolling.");
313             if (Iteration == 0)
314               continue;
315 
316             // Push the incoming value from the backedge into the PHI used list
317             // if it is an in-loop instruction. We'll use this to populate the
318             // cost worklist for the next iteration (as we count backwards).
319             if (auto *OpI = dyn_cast<Instruction>(
320                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
321               if (L->contains(OpI))
322                 PHIUsedList.push_back(OpI);
323             continue;
324           }
325 
326         // First accumulate the cost of this instruction.
327         if (!Cost.IsFree) {
328           UnrolledCost += TTI.getUserCost(I);
329           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
330                        << "): ");
331           DEBUG(I->dump());
332         }
333 
334         // We must count the cost of every operand which is not free,
335         // recursively. If we reach a loop PHI node, simply add it to the set
336         // to be considered on the next iteration (backwards!).
337         for (Value *Op : I->operands()) {
338           // Check whether this operand is free due to being a constant or
339           // outside the loop.
340           auto *OpI = dyn_cast<Instruction>(Op);
341           if (!OpI || !L->contains(OpI))
342             continue;
343 
344           // Otherwise accumulate its cost.
345           CostWorklist.push_back(OpI);
346         }
347       } while (!CostWorklist.empty());
348 
349       if (PHIUsedList.empty())
350         // We've exhausted the search.
351         break;
352 
353       assert(Iteration > 0 &&
354              "Cannot track PHI-used values past the first iteration!");
355       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
356       PHIUsedList.clear();
357     }
358   };
359 
360   // Ensure that we don't violate the loop structure invariants relied on by
361   // this analysis.
362   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
363   assert(L->isLCSSAForm(DT) &&
364          "Must have loops in LCSSA form to track live-out values.");
365 
366   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
367 
368   // Simulate execution of each iteration of the loop counting instructions,
369   // which would be simplified.
370   // Since the same load will take different values on different iterations,
371   // we literally have to go through all loop's iterations.
372   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
373     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
374 
375     // Prepare for the iteration by collecting any simplified entry or backedge
376     // inputs.
377     for (Instruction &I : *L->getHeader()) {
378       auto *PHI = dyn_cast<PHINode>(&I);
379       if (!PHI)
380         break;
381 
382       // The loop header PHI nodes must have exactly two input: one from the
383       // loop preheader and one from the loop latch.
384       assert(
385           PHI->getNumIncomingValues() == 2 &&
386           "Must have an incoming value only for the preheader and the latch.");
387 
388       Value *V = PHI->getIncomingValueForBlock(
389           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
390       Constant *C = dyn_cast<Constant>(V);
391       if (Iteration != 0 && !C)
392         C = SimplifiedValues.lookup(V);
393       if (C)
394         SimplifiedInputValues.push_back({PHI, C});
395     }
396 
397     // Now clear and re-populate the map for the next iteration.
398     SimplifiedValues.clear();
399     while (!SimplifiedInputValues.empty())
400       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
401 
402     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
403 
404     BBWorklist.clear();
405     BBWorklist.insert(L->getHeader());
406     // Note that we *must not* cache the size, this loop grows the worklist.
407     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
408       BasicBlock *BB = BBWorklist[Idx];
409 
410       // Visit all instructions in the given basic block and try to simplify
411       // it.  We don't change the actual IR, just count optimization
412       // opportunities.
413       for (Instruction &I : *BB) {
414         // Track this instruction's expected baseline cost when executing the
415         // rolled loop form.
416         RolledDynamicCost += TTI.getUserCost(&I);
417 
418         // Visit the instruction to analyze its loop cost after unrolling,
419         // and if the visitor returns true, mark the instruction as free after
420         // unrolling and continue.
421         bool IsFree = Analyzer.visit(I);
422         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
423                                            (unsigned)IsFree,
424                                            /*IsCounted*/ false}).second;
425         (void)Inserted;
426         assert(Inserted && "Cannot have a state for an unvisited instruction!");
427 
428         if (IsFree)
429           continue;
430 
431         // Can't properly model a cost of a call.
432         // FIXME: With a proper cost model we should be able to do it.
433         if(isa<CallInst>(&I))
434           return None;
435 
436         // If the instruction might have a side-effect recursively account for
437         // the cost of it and all the instructions leading up to it.
438         if (I.mayHaveSideEffects())
439           AddCostRecursively(I, Iteration);
440 
441         // If unrolled body turns out to be too big, bail out.
442         if (UnrolledCost > MaxUnrolledLoopSize) {
443           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
444                        << "  UnrolledCost: " << UnrolledCost
445                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
446                        << "\n");
447           return None;
448         }
449       }
450 
451       TerminatorInst *TI = BB->getTerminator();
452 
453       // Add in the live successors by first checking whether we have terminator
454       // that may be simplified based on the values simplified by this call.
455       BasicBlock *KnownSucc = nullptr;
456       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
457         if (BI->isConditional()) {
458           if (Constant *SimpleCond =
459                   SimplifiedValues.lookup(BI->getCondition())) {
460             // Just take the first successor if condition is undef
461             if (isa<UndefValue>(SimpleCond))
462               KnownSucc = BI->getSuccessor(0);
463             else if (ConstantInt *SimpleCondVal =
464                          dyn_cast<ConstantInt>(SimpleCond))
465               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
466           }
467         }
468       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
469         if (Constant *SimpleCond =
470                 SimplifiedValues.lookup(SI->getCondition())) {
471           // Just take the first successor if condition is undef
472           if (isa<UndefValue>(SimpleCond))
473             KnownSucc = SI->getSuccessor(0);
474           else if (ConstantInt *SimpleCondVal =
475                        dyn_cast<ConstantInt>(SimpleCond))
476             KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
477         }
478       }
479       if (KnownSucc) {
480         if (L->contains(KnownSucc))
481           BBWorklist.insert(KnownSucc);
482         else
483           ExitWorklist.insert({BB, KnownSucc});
484         continue;
485       }
486 
487       // Add BB's successors to the worklist.
488       for (BasicBlock *Succ : successors(BB))
489         if (L->contains(Succ))
490           BBWorklist.insert(Succ);
491         else
492           ExitWorklist.insert({BB, Succ});
493       AddCostRecursively(*TI, Iteration);
494     }
495 
496     // If we found no optimization opportunities on the first iteration, we
497     // won't find them on later ones too.
498     if (UnrolledCost == RolledDynamicCost) {
499       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
500                    << "  UnrolledCost: " << UnrolledCost << "\n");
501       return None;
502     }
503   }
504 
505   while (!ExitWorklist.empty()) {
506     BasicBlock *ExitingBB, *ExitBB;
507     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
508 
509     for (Instruction &I : *ExitBB) {
510       auto *PN = dyn_cast<PHINode>(&I);
511       if (!PN)
512         break;
513 
514       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
515       if (auto *OpI = dyn_cast<Instruction>(Op))
516         if (L->contains(OpI))
517           AddCostRecursively(*OpI, TripCount - 1);
518     }
519   }
520 
521   DEBUG(dbgs() << "Analysis finished:\n"
522                << "UnrolledCost: " << UnrolledCost << ", "
523                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
524   return {{UnrolledCost, RolledDynamicCost}};
525 }
526 
527 /// ApproximateLoopSize - Approximate the size of the loop.
528 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
529                                     bool &NotDuplicatable, bool &Convergent,
530                                     const TargetTransformInfo &TTI,
531                                     AssumptionCache *AC) {
532   SmallPtrSet<const Value *, 32> EphValues;
533   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
534 
535   CodeMetrics Metrics;
536   for (BasicBlock *BB : L->blocks())
537     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
538   NumCalls = Metrics.NumInlineCandidates;
539   NotDuplicatable = Metrics.notDuplicatable;
540   Convergent = Metrics.convergent;
541 
542   unsigned LoopSize = Metrics.NumInsts;
543 
544   // Don't allow an estimate of size zero.  This would allows unrolling of loops
545   // with huge iteration counts, which is a compile time problem even if it's
546   // not a problem for code quality. Also, the code using this size may assume
547   // that each loop has at least three instructions (likely a conditional
548   // branch, a comparison feeding that branch, and some kind of loop increment
549   // feeding that comparison instruction).
550   LoopSize = std::max(LoopSize, 3u);
551 
552   return LoopSize;
553 }
554 
555 // Returns the loop hint metadata node with the given name (for example,
556 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
557 // returned.
558 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
559   if (MDNode *LoopID = L->getLoopID())
560     return GetUnrollMetadata(LoopID, Name);
561   return nullptr;
562 }
563 
564 // Returns true if the loop has an unroll(full) pragma.
565 static bool HasUnrollFullPragma(const Loop *L) {
566   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
567 }
568 
569 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
570 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
571 static bool HasUnrollEnablePragma(const Loop *L) {
572   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
573 }
574 
575 // Returns true if the loop has an unroll(disable) pragma.
576 static bool HasUnrollDisablePragma(const Loop *L) {
577   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
578 }
579 
580 // Returns true if the loop has an runtime unroll(disable) pragma.
581 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
582   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
583 }
584 
585 // If loop has an unroll_count pragma return the (necessarily
586 // positive) value from the pragma.  Otherwise return 0.
587 static unsigned UnrollCountPragmaValue(const Loop *L) {
588   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
589   if (MD) {
590     assert(MD->getNumOperands() == 2 &&
591            "Unroll count hint metadata should have two operands.");
592     unsigned Count =
593         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
594     assert(Count >= 1 && "Unroll count must be positive.");
595     return Count;
596   }
597   return 0;
598 }
599 
600 // Remove existing unroll metadata and add unroll disable metadata to
601 // indicate the loop has already been unrolled.  This prevents a loop
602 // from being unrolled more than is directed by a pragma if the loop
603 // unrolling pass is run more than once (which it generally is).
604 static void SetLoopAlreadyUnrolled(Loop *L) {
605   MDNode *LoopID = L->getLoopID();
606   // First remove any existing loop unrolling metadata.
607   SmallVector<Metadata *, 4> MDs;
608   // Reserve first location for self reference to the LoopID metadata node.
609   MDs.push_back(nullptr);
610 
611   if (LoopID) {
612     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
613       bool IsUnrollMetadata = false;
614       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
615       if (MD) {
616         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
617         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
618       }
619       if (!IsUnrollMetadata)
620         MDs.push_back(LoopID->getOperand(i));
621     }
622   }
623 
624   // Add unroll(disable) metadata to disable future unrolling.
625   LLVMContext &Context = L->getHeader()->getContext();
626   SmallVector<Metadata *, 1> DisableOperands;
627   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
628   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
629   MDs.push_back(DisableNode);
630 
631   MDNode *NewLoopID = MDNode::get(Context, MDs);
632   // Set operand 0 to refer to the loop id itself.
633   NewLoopID->replaceOperandWith(0, NewLoopID);
634   L->setLoopID(NewLoopID);
635 }
636 
637 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
638                                 unsigned PercentDynamicCostSavedThreshold,
639                                 unsigned DynamicCostSavingsDiscount,
640                                 uint64_t UnrolledCost,
641                                 uint64_t RolledDynamicCost) {
642   if (Threshold == NoThreshold) {
643     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
644     return true;
645   }
646 
647   if (UnrolledCost <= Threshold) {
648     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
649                  << UnrolledCost << "<=" << Threshold << "\n");
650     return true;
651   }
652 
653   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
654   assert(RolledDynamicCost >= UnrolledCost &&
655          "Cannot have a higher unrolled cost than a rolled cost!");
656 
657   // Compute the percentage of the dynamic cost in the rolled form that is
658   // saved when unrolled. If unrolling dramatically reduces the estimated
659   // dynamic cost of the loop, we use a higher threshold to allow more
660   // unrolling.
661   unsigned PercentDynamicCostSaved =
662       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
663 
664   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
665       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
666           (int64_t)Threshold) {
667     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
668                     "expected dynamic cost by "
669                  << PercentDynamicCostSaved << "% (threshold: "
670                  << PercentDynamicCostSavedThreshold << "%)\n"
671                  << "  and the unrolled cost (" << UnrolledCost
672                  << ") is less than the max threshold ("
673                  << DynamicCostSavingsDiscount << ").\n");
674     return true;
675   }
676 
677   DEBUG(dbgs() << "  Too large to fully unroll:\n");
678   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
679   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
680   DEBUG(dbgs() << "    Percent cost saved threshold: "
681                << PercentDynamicCostSavedThreshold << "%\n");
682   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
683   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
684   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
685                << "\n");
686   return false;
687 }
688 
689 // Returns true if unroll count was set explicitly.
690 // Calculates unroll count and writes it to UP.Count.
691 static bool computeUnrollCount(Loop *L, const TargetTransformInfo &TTI,
692                                DominatorTree &DT, LoopInfo *LI,
693                                ScalarEvolution *SE,
694                                OptimizationRemarkEmitter *ORE,
695                                unsigned TripCount, unsigned TripMultiple,
696                                unsigned LoopSize,
697                                TargetTransformInfo::UnrollingPreferences &UP) {
698   // BEInsns represents number of instructions optimized when "back edge"
699   // becomes "fall through" in unrolled loop.
700   // For now we count a conditional branch on a backedge and a comparison
701   // feeding it.
702   unsigned BEInsns = 2;
703   // Check for explicit Count.
704   // 1st priority is unroll count set by "unroll-count" option.
705   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
706   if (UserUnrollCount) {
707     UP.Count = UnrollCount;
708     UP.AllowExpensiveTripCount = true;
709     UP.Force = true;
710     if (UP.AllowRemainder &&
711         (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold)
712       return true;
713   }
714 
715   // 2nd priority is unroll count set by pragma.
716   unsigned PragmaCount = UnrollCountPragmaValue(L);
717   if (PragmaCount > 0) {
718     UP.Count = PragmaCount;
719     UP.Runtime = true;
720     UP.AllowExpensiveTripCount = true;
721     UP.Force = true;
722     if (UP.AllowRemainder &&
723         (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
724       return true;
725   }
726   bool PragmaFullUnroll = HasUnrollFullPragma(L);
727   if (PragmaFullUnroll && TripCount != 0) {
728     UP.Count = TripCount;
729     if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
730       return false;
731   }
732 
733   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
734   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
735                         PragmaEnableUnroll || UserUnrollCount;
736 
737   uint64_t UnrolledSize;
738 
739   if (ExplicitUnroll && TripCount != 0) {
740     // If the loop has an unrolling pragma, we want to be more aggressive with
741     // unrolling limits. Set thresholds to at least the PragmaThreshold value
742     // which is larger than the default limits.
743     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
744     UP.PartialThreshold =
745         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
746   }
747 
748   // 3rd priority is full unroll count.
749   // Full unroll make sense only when TripCount could be staticaly calculated.
750   // Also we need to check if we exceed FullUnrollMaxCount.
751   if (TripCount && TripCount <= UP.FullUnrollMaxCount) {
752     // When computing the unrolled size, note that BEInsns are not replicated
753     // like the rest of the loop body.
754     UnrolledSize = (uint64_t)(LoopSize - BEInsns) * TripCount + BEInsns;
755     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
756                             UnrolledSize, UnrolledSize)) {
757       UP.Count = TripCount;
758       return ExplicitUnroll;
759     } else {
760       // The loop isn't that small, but we still can fully unroll it if that
761       // helps to remove a significant number of instructions.
762       // To check that, run additional analysis on the loop.
763       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
764               L, TripCount, DT, *SE, TTI,
765               UP.Threshold + UP.DynamicCostSavingsDiscount))
766         if (canUnrollCompletely(L, UP.Threshold,
767                                 UP.PercentDynamicCostSavedThreshold,
768                                 UP.DynamicCostSavingsDiscount,
769                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
770           UP.Count = TripCount;
771           return ExplicitUnroll;
772         }
773     }
774   }
775 
776   // 4rd priority is partial unrolling.
777   // Try partial unroll only when TripCount could be staticaly calculated.
778   if (TripCount) {
779     if (UP.Count == 0)
780       UP.Count = TripCount;
781     UP.Partial |= ExplicitUnroll;
782     if (!UP.Partial) {
783       DEBUG(dbgs() << "  will not try to unroll partially because "
784                    << "-unroll-allow-partial not given\n");
785       UP.Count = 0;
786       return false;
787     }
788     if (UP.PartialThreshold != NoThreshold) {
789       // Reduce unroll count to be modulo of TripCount for partial unrolling.
790       UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns;
791       if (UnrolledSize > UP.PartialThreshold)
792         UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) /
793                    (LoopSize - BEInsns);
794       if (UP.Count > UP.MaxCount)
795         UP.Count = UP.MaxCount;
796       while (UP.Count != 0 && TripCount % UP.Count != 0)
797         UP.Count--;
798       if (UP.AllowRemainder && UP.Count <= 1) {
799         // If there is no Count that is modulo of TripCount, set Count to
800         // largest power-of-two factor that satisfies the threshold limit.
801         // As we'll create fixup loop, do the type of unrolling only if
802         // remainder loop is allowed.
803         UP.Count = UP.DefaultUnrollRuntimeCount;
804         UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
805         while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
806           UP.Count >>= 1;
807           UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
808         }
809       }
810       if (UP.Count < 2) {
811         if (PragmaEnableUnroll)
812           ORE->emit(
813               OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
814                                        L->getStartLoc(), L->getHeader())
815               << "Unable to unroll loop as directed by unroll(enable) pragma "
816                  "because unrolled size is too large.");
817         UP.Count = 0;
818       }
819     } else {
820       UP.Count = TripCount;
821     }
822     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
823         UP.Count != TripCount)
824       ORE->emit(
825           OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
826                                    L->getStartLoc(), L->getHeader())
827           << "Unable to fully unroll loop as directed by unroll pragma because "
828              "unrolled size is too large.");
829     return ExplicitUnroll;
830   }
831   assert(TripCount == 0 &&
832          "All cases when TripCount is constant should be covered here.");
833   if (PragmaFullUnroll)
834     ORE->emit(
835         OptimizationRemarkMissed(DEBUG_TYPE,
836                                  "CantFullUnrollAsDirectedRuntimeTripCount",
837                                  L->getStartLoc(), L->getHeader())
838         << "Unable to fully unroll loop as directed by unroll(full) pragma "
839            "because loop has a runtime trip count.");
840 
841   // 5th priority is runtime unrolling.
842   // Don't unroll a runtime trip count loop when it is disabled.
843   if (HasRuntimeUnrollDisablePragma(L)) {
844     UP.Count = 0;
845     return false;
846   }
847   // Reduce count based on the type of unrolling and the threshold values.
848   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
849   if (!UP.Runtime) {
850     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
851                  << "-unroll-runtime not given\n");
852     UP.Count = 0;
853     return false;
854   }
855   if (UP.Count == 0)
856     UP.Count = UP.DefaultUnrollRuntimeCount;
857   UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
858 
859   // Reduce unroll count to be the largest power-of-two factor of
860   // the original count which satisfies the threshold limit.
861   while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
862     UP.Count >>= 1;
863     UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
864   }
865 
866 #ifndef NDEBUG
867   unsigned OrigCount = UP.Count;
868 #endif
869 
870   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
871     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
872       UP.Count >>= 1;
873     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
874                     "specific or because the loop contains a convergent "
875                     "instruction), so unroll count must divide the trip "
876                     "multiple, "
877                  << TripMultiple << ".  Reducing unroll count from "
878                  << OrigCount << " to " << UP.Count << ".\n");
879     using namespace ore;
880     if (PragmaCount > 0 && !UP.AllowRemainder)
881       ORE->emit(
882           OptimizationRemarkMissed(DEBUG_TYPE,
883                                    "DifferentUnrollCountFromDirected",
884                                    L->getStartLoc(), L->getHeader())
885           << "Unable to unroll loop the number of times directed by "
886              "unroll_count pragma because remainder loop is restricted "
887              "(that could architecture specific or because the loop "
888              "contains a convergent instruction) and so must have an unroll "
889              "count that divides the loop trip multiple of "
890           << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
891           << NV("UnrollCount", UP.Count) << " time(s).");
892   }
893 
894   if (UP.Count > UP.MaxCount)
895     UP.Count = UP.MaxCount;
896   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
897   if (UP.Count < 2)
898     UP.Count = 0;
899   return ExplicitUnroll;
900 }
901 
902 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
903                             ScalarEvolution *SE, const TargetTransformInfo &TTI,
904                             AssumptionCache &AC, OptimizationRemarkEmitter &ORE,
905                             bool PreserveLCSSA,
906                             Optional<unsigned> ProvidedCount,
907                             Optional<unsigned> ProvidedThreshold,
908                             Optional<bool> ProvidedAllowPartial,
909                             Optional<bool> ProvidedRuntime) {
910   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
911                << "] Loop %" << L->getHeader()->getName() << "\n");
912   if (HasUnrollDisablePragma(L)) {
913     return false;
914   }
915 
916   unsigned NumInlineCandidates;
917   bool NotDuplicatable;
918   bool Convergent;
919   unsigned LoopSize = ApproximateLoopSize(
920       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
921   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
922   if (NotDuplicatable) {
923     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
924                  << " instructions.\n");
925     return false;
926   }
927   if (NumInlineCandidates != 0) {
928     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
929     return false;
930   }
931   if (!L->isLoopSimplifyForm()) {
932     DEBUG(
933         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
934     return false;
935   }
936 
937   // Find trip count and trip multiple if count is not available
938   unsigned TripCount = 0;
939   unsigned TripMultiple = 1;
940   // If there are multiple exiting blocks but one of them is the latch, use the
941   // latch for the trip count estimation. Otherwise insist on a single exiting
942   // block for the trip count estimation.
943   BasicBlock *ExitingBlock = L->getLoopLatch();
944   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
945     ExitingBlock = L->getExitingBlock();
946   if (ExitingBlock) {
947     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
948     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
949   }
950 
951   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
952       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
953       ProvidedRuntime);
954 
955   // Exit early if unrolling is disabled.
956   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
957     return false;
958 
959   // If the loop contains a convergent operation, the prelude we'd add
960   // to do the first few instructions before we hit the unrolled loop
961   // is unsafe -- it adds a control-flow dependency to the convergent
962   // operation.  Therefore restrict remainder loop (try unrollig without).
963   //
964   // TODO: This is quite conservative.  In practice, convergent_op()
965   // is likely to be called unconditionally in the loop.  In this
966   // case, the program would be ill-formed (on most architectures)
967   // unless n were the same on all threads in a thread group.
968   // Assuming n is the same on all threads, any kind of unrolling is
969   // safe.  But currently llvm's notion of convergence isn't powerful
970   // enough to express this.
971   if (Convergent)
972     UP.AllowRemainder = false;
973 
974   bool IsCountSetExplicitly = computeUnrollCount(
975       L, TTI, DT, LI, SE, &ORE, TripCount, TripMultiple, LoopSize, UP);
976   if (!UP.Count)
977     return false;
978   // Unroll factor (Count) must be less or equal to TripCount.
979   if (TripCount && UP.Count > TripCount)
980     UP.Count = TripCount;
981 
982   // Unroll the loop.
983   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
984                   UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC,
985                   &ORE, PreserveLCSSA))
986     return false;
987 
988   // If loop has an unroll count pragma or unrolled by explicitly set count
989   // mark loop as unrolled to prevent unrolling beyond that requested.
990   if (IsCountSetExplicitly)
991     SetLoopAlreadyUnrolled(L);
992   return true;
993 }
994 
995 namespace {
996 class LoopUnroll : public LoopPass {
997 public:
998   static char ID; // Pass ID, replacement for typeid
999   LoopUnroll(Optional<unsigned> Threshold = None,
1000              Optional<unsigned> Count = None,
1001              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
1002       : LoopPass(ID), ProvidedCount(std::move(Count)),
1003         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1004         ProvidedRuntime(Runtime) {
1005     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1006   }
1007 
1008   Optional<unsigned> ProvidedCount;
1009   Optional<unsigned> ProvidedThreshold;
1010   Optional<bool> ProvidedAllowPartial;
1011   Optional<bool> ProvidedRuntime;
1012 
1013   bool runOnLoop(Loop *L, LPPassManager &) override {
1014     if (skipLoop(L))
1015       return false;
1016 
1017     Function &F = *L->getHeader()->getParent();
1018 
1019     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1020     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1021     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1022     const TargetTransformInfo &TTI =
1023         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1024     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1025     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1026     // pass.  Function analyses need to be preserved across loop transformations
1027     // but ORE cannot be preserved (see comment before the pass definition).
1028     OptimizationRemarkEmitter ORE(&F);
1029     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1030 
1031     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA,
1032                            ProvidedCount, ProvidedThreshold,
1033                            ProvidedAllowPartial, ProvidedRuntime);
1034   }
1035 
1036   /// This transformation requires natural loop information & requires that
1037   /// loop preheaders be inserted into the CFG...
1038   ///
1039   void getAnalysisUsage(AnalysisUsage &AU) const override {
1040     AU.addRequired<AssumptionCacheTracker>();
1041     AU.addRequired<TargetTransformInfoWrapperPass>();
1042     // FIXME: Loop passes are required to preserve domtree, and for now we just
1043     // recreate dom info if anything gets unrolled.
1044     getLoopAnalysisUsage(AU);
1045   }
1046 };
1047 }
1048 
1049 char LoopUnroll::ID = 0;
1050 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1051 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1052 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1053 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1054 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1055 
1056 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
1057                                  int Runtime) {
1058   // TODO: It would make more sense for this function to take the optionals
1059   // directly, but that's dangerous since it would silently break out of tree
1060   // callers.
1061   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
1062                         Count == -1 ? None : Optional<unsigned>(Count),
1063                         AllowPartial == -1 ? None
1064                                            : Optional<bool>(AllowPartial),
1065                         Runtime == -1 ? None : Optional<bool>(Runtime));
1066 }
1067 
1068 Pass *llvm::createSimpleLoopUnrollPass() {
1069   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
1070 }
1071 
1072 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) {
1073   const auto &FAM =
1074       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
1075   Function *F = L.getHeader()->getParent();
1076 
1077 
1078   DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
1079   LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F);
1080   ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
1081   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
1082   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
1083   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1084   if (!DT)
1085     report_fatal_error("LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level");
1086   if (!LI)
1087     report_fatal_error("LoopUnrollPass: LoopAnalysis not cached at a higher level");
1088   if (!SE)
1089     report_fatal_error("LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level");
1090   if (!TTI)
1091     report_fatal_error("LoopUnrollPass: TargetIRAnalysis not cached at a higher level");
1092   if (!AC)
1093     report_fatal_error("LoopUnrollPass: AssumptionAnalysis not cached at a higher level");
1094   if (!ORE)
1095     report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not "
1096                        "cached at a higher level");
1097 
1098   bool Changed = tryToUnrollLoop(
1099       &L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, ProvidedCount,
1100       ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime);
1101 
1102   if (!Changed)
1103     return PreservedAnalyses::all();
1104   return getLoopPassPreservedAnalyses();
1105 }
1106