1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 static cl::opt<unsigned> 75 UnrollThreshold("unroll-threshold", cl::Hidden, 76 cl::desc("The cost threshold for loop unrolling")); 77 78 static cl::opt<unsigned> UnrollPartialThreshold( 79 "unroll-partial-threshold", cl::Hidden, 80 cl::desc("The cost threshold for partial loop unrolling")); 81 82 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 83 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 84 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 85 "to the threshold when aggressively unrolling a loop due to the " 86 "dynamic cost savings. If completely unrolling a loop will reduce " 87 "the total runtime from X to Y, we boost the loop unroll " 88 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 89 "X/Y). This limit avoids excessive code bloat.")); 90 91 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 92 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 93 cl::desc("Don't allow loop unrolling to simulate more than this number of" 94 "iterations when checking full unroll profitability")); 95 96 static cl::opt<unsigned> UnrollCount( 97 "unroll-count", cl::Hidden, 98 cl::desc("Use this unroll count for all loops including those with " 99 "unroll_count pragma values, for testing purposes")); 100 101 static cl::opt<unsigned> UnrollMaxCount( 102 "unroll-max-count", cl::Hidden, 103 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 104 "testing purposes")); 105 106 static cl::opt<unsigned> UnrollFullMaxCount( 107 "unroll-full-max-count", cl::Hidden, 108 cl::desc( 109 "Set the max unroll count for full unrolling, for testing purposes")); 110 111 static cl::opt<unsigned> UnrollPeelCount( 112 "unroll-peel-count", cl::Hidden, 113 cl::desc("Set the unroll peeling count, for testing purposes")); 114 115 static cl::opt<bool> 116 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 117 cl::desc("Allows loops to be partially unrolled until " 118 "-unroll-threshold loop size is reached.")); 119 120 static cl::opt<bool> UnrollAllowRemainder( 121 "unroll-allow-remainder", cl::Hidden, 122 cl::desc("Allow generation of a loop remainder (extra iterations) " 123 "when unrolling a loop.")); 124 125 static cl::opt<bool> 126 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 127 cl::desc("Unroll loops with run-time trip counts")); 128 129 static cl::opt<unsigned> UnrollMaxUpperBound( 130 "unroll-max-upperbound", cl::init(8), cl::Hidden, 131 cl::desc( 132 "The max of trip count upper bound that is considered in unrolling")); 133 134 static cl::opt<unsigned> PragmaUnrollThreshold( 135 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 136 cl::desc("Unrolled size limit for loops with an unroll(full) or " 137 "unroll_count pragma.")); 138 139 static cl::opt<unsigned> FlatLoopTripCountThreshold( 140 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 141 cl::desc("If the runtime tripcount for the loop is lower than the " 142 "threshold, the loop is considered as flat and will be less " 143 "aggressively unrolled.")); 144 145 static cl::opt<bool> 146 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 147 cl::desc("Allows loops to be peeled when the dynamic " 148 "trip count is known to be low.")); 149 150 static cl::opt<bool> UnrollUnrollRemainder( 151 "unroll-remainder", cl::Hidden, 152 cl::desc("Allow the loop remainder to be unrolled.")); 153 154 // This option isn't ever intended to be enabled, it serves to allow 155 // experiments to check the assumptions about when this kind of revisit is 156 // necessary. 157 static cl::opt<bool> UnrollRevisitChildLoops( 158 "unroll-revisit-child-loops", cl::Hidden, 159 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 160 "This shouldn't typically be needed as child loops (or their " 161 "clones) were already visited.")); 162 163 /// A magic value for use with the Threshold parameter to indicate 164 /// that the loop unroll should be performed regardless of how much 165 /// code expansion would result. 166 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 167 168 /// Gather the various unrolling parameters based on the defaults, compiler 169 /// flags, TTI overrides and user specified parameters. 170 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 171 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 172 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 173 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 174 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 175 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 176 TargetTransformInfo::UnrollingPreferences UP; 177 178 // Set up the defaults 179 UP.Threshold = OptLevel > 2 ? 300 : 150; 180 UP.MaxPercentThresholdBoost = 400; 181 UP.OptSizeThreshold = 0; 182 UP.PartialThreshold = 150; 183 UP.PartialOptSizeThreshold = 0; 184 UP.Count = 0; 185 UP.PeelCount = 0; 186 UP.DefaultUnrollRuntimeCount = 8; 187 UP.MaxCount = std::numeric_limits<unsigned>::max(); 188 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 189 UP.BEInsns = 2; 190 UP.Partial = false; 191 UP.Runtime = false; 192 UP.AllowRemainder = true; 193 UP.UnrollRemainder = false; 194 UP.AllowExpensiveTripCount = false; 195 UP.Force = false; 196 UP.UpperBound = false; 197 UP.AllowPeeling = true; 198 UP.UnrollAndJam = false; 199 UP.UnrollAndJamInnerLoopThreshold = 60; 200 201 // Override with any target specific settings 202 TTI.getUnrollingPreferences(L, SE, UP); 203 204 // Apply size attributes 205 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 206 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 207 if (OptForSize) { 208 UP.Threshold = UP.OptSizeThreshold; 209 UP.PartialThreshold = UP.PartialOptSizeThreshold; 210 UP.MaxPercentThresholdBoost = 100; 211 } 212 213 // Apply any user values specified by cl::opt 214 if (UnrollThreshold.getNumOccurrences() > 0) 215 UP.Threshold = UnrollThreshold; 216 if (UnrollPartialThreshold.getNumOccurrences() > 0) 217 UP.PartialThreshold = UnrollPartialThreshold; 218 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 219 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 220 if (UnrollMaxCount.getNumOccurrences() > 0) 221 UP.MaxCount = UnrollMaxCount; 222 if (UnrollFullMaxCount.getNumOccurrences() > 0) 223 UP.FullUnrollMaxCount = UnrollFullMaxCount; 224 if (UnrollPeelCount.getNumOccurrences() > 0) 225 UP.PeelCount = UnrollPeelCount; 226 if (UnrollAllowPartial.getNumOccurrences() > 0) 227 UP.Partial = UnrollAllowPartial; 228 if (UnrollAllowRemainder.getNumOccurrences() > 0) 229 UP.AllowRemainder = UnrollAllowRemainder; 230 if (UnrollRuntime.getNumOccurrences() > 0) 231 UP.Runtime = UnrollRuntime; 232 if (UnrollMaxUpperBound == 0) 233 UP.UpperBound = false; 234 if (UnrollAllowPeeling.getNumOccurrences() > 0) 235 UP.AllowPeeling = UnrollAllowPeeling; 236 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 237 UP.UnrollRemainder = UnrollUnrollRemainder; 238 239 // Apply user values provided by argument 240 if (UserThreshold.hasValue()) { 241 UP.Threshold = *UserThreshold; 242 UP.PartialThreshold = *UserThreshold; 243 } 244 if (UserCount.hasValue()) 245 UP.Count = *UserCount; 246 if (UserAllowPartial.hasValue()) 247 UP.Partial = *UserAllowPartial; 248 if (UserRuntime.hasValue()) 249 UP.Runtime = *UserRuntime; 250 if (UserUpperBound.hasValue()) 251 UP.UpperBound = *UserUpperBound; 252 if (UserAllowPeeling.hasValue()) 253 UP.AllowPeeling = *UserAllowPeeling; 254 255 return UP; 256 } 257 258 namespace { 259 260 /// A struct to densely store the state of an instruction after unrolling at 261 /// each iteration. 262 /// 263 /// This is designed to work like a tuple of <Instruction *, int> for the 264 /// purposes of hashing and lookup, but to be able to associate two boolean 265 /// states with each key. 266 struct UnrolledInstState { 267 Instruction *I; 268 int Iteration : 30; 269 unsigned IsFree : 1; 270 unsigned IsCounted : 1; 271 }; 272 273 /// Hashing and equality testing for a set of the instruction states. 274 struct UnrolledInstStateKeyInfo { 275 using PtrInfo = DenseMapInfo<Instruction *>; 276 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 277 278 static inline UnrolledInstState getEmptyKey() { 279 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 280 } 281 282 static inline UnrolledInstState getTombstoneKey() { 283 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 284 } 285 286 static inline unsigned getHashValue(const UnrolledInstState &S) { 287 return PairInfo::getHashValue({S.I, S.Iteration}); 288 } 289 290 static inline bool isEqual(const UnrolledInstState &LHS, 291 const UnrolledInstState &RHS) { 292 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 293 } 294 }; 295 296 struct EstimatedUnrollCost { 297 /// The estimated cost after unrolling. 298 unsigned UnrolledCost; 299 300 /// The estimated dynamic cost of executing the instructions in the 301 /// rolled form. 302 unsigned RolledDynamicCost; 303 }; 304 305 } // end anonymous namespace 306 307 /// Figure out if the loop is worth full unrolling. 308 /// 309 /// Complete loop unrolling can make some loads constant, and we need to know 310 /// if that would expose any further optimization opportunities. This routine 311 /// estimates this optimization. It computes cost of unrolled loop 312 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 313 /// dynamic cost we mean that we won't count costs of blocks that are known not 314 /// to be executed (i.e. if we have a branch in the loop and we know that at the 315 /// given iteration its condition would be resolved to true, we won't add up the 316 /// cost of the 'false'-block). 317 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 318 /// the analysis failed (no benefits expected from the unrolling, or the loop is 319 /// too big to analyze), the returned value is None. 320 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 321 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 322 const SmallPtrSetImpl<const Value *> &EphValues, 323 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 324 // We want to be able to scale offsets by the trip count and add more offsets 325 // to them without checking for overflows, and we already don't want to 326 // analyze *massive* trip counts, so we force the max to be reasonably small. 327 assert(UnrollMaxIterationsCountToAnalyze < 328 (unsigned)(std::numeric_limits<int>::max() / 2) && 329 "The unroll iterations max is too large!"); 330 331 // Only analyze inner loops. We can't properly estimate cost of nested loops 332 // and we won't visit inner loops again anyway. 333 if (!L->empty()) 334 return None; 335 336 // Don't simulate loops with a big or unknown tripcount 337 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 338 TripCount > UnrollMaxIterationsCountToAnalyze) 339 return None; 340 341 SmallSetVector<BasicBlock *, 16> BBWorklist; 342 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 343 DenseMap<Value *, Constant *> SimplifiedValues; 344 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 345 346 // The estimated cost of the unrolled form of the loop. We try to estimate 347 // this by simplifying as much as we can while computing the estimate. 348 unsigned UnrolledCost = 0; 349 350 // We also track the estimated dynamic (that is, actually executed) cost in 351 // the rolled form. This helps identify cases when the savings from unrolling 352 // aren't just exposing dead control flows, but actual reduced dynamic 353 // instructions due to the simplifications which we expect to occur after 354 // unrolling. 355 unsigned RolledDynamicCost = 0; 356 357 // We track the simplification of each instruction in each iteration. We use 358 // this to recursively merge costs into the unrolled cost on-demand so that 359 // we don't count the cost of any dead code. This is essentially a map from 360 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 361 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 362 363 // A small worklist used to accumulate cost of instructions from each 364 // observable and reached root in the loop. 365 SmallVector<Instruction *, 16> CostWorklist; 366 367 // PHI-used worklist used between iterations while accumulating cost. 368 SmallVector<Instruction *, 4> PHIUsedList; 369 370 // Helper function to accumulate cost for instructions in the loop. 371 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 372 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 373 assert(CostWorklist.empty() && "Must start with an empty cost list"); 374 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 375 CostWorklist.push_back(&RootI); 376 for (;; --Iteration) { 377 do { 378 Instruction *I = CostWorklist.pop_back_val(); 379 380 // InstCostMap only uses I and Iteration as a key, the other two values 381 // don't matter here. 382 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 383 if (CostIter == InstCostMap.end()) 384 // If an input to a PHI node comes from a dead path through the loop 385 // we may have no cost data for it here. What that actually means is 386 // that it is free. 387 continue; 388 auto &Cost = *CostIter; 389 if (Cost.IsCounted) 390 // Already counted this instruction. 391 continue; 392 393 // Mark that we are counting the cost of this instruction now. 394 Cost.IsCounted = true; 395 396 // If this is a PHI node in the loop header, just add it to the PHI set. 397 if (auto *PhiI = dyn_cast<PHINode>(I)) 398 if (PhiI->getParent() == L->getHeader()) { 399 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 400 "inherently simplify during unrolling."); 401 if (Iteration == 0) 402 continue; 403 404 // Push the incoming value from the backedge into the PHI used list 405 // if it is an in-loop instruction. We'll use this to populate the 406 // cost worklist for the next iteration (as we count backwards). 407 if (auto *OpI = dyn_cast<Instruction>( 408 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 409 if (L->contains(OpI)) 410 PHIUsedList.push_back(OpI); 411 continue; 412 } 413 414 // First accumulate the cost of this instruction. 415 if (!Cost.IsFree) { 416 UnrolledCost += TTI.getUserCost(I); 417 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 418 << Iteration << "): "); 419 LLVM_DEBUG(I->dump()); 420 } 421 422 // We must count the cost of every operand which is not free, 423 // recursively. If we reach a loop PHI node, simply add it to the set 424 // to be considered on the next iteration (backwards!). 425 for (Value *Op : I->operands()) { 426 // Check whether this operand is free due to being a constant or 427 // outside the loop. 428 auto *OpI = dyn_cast<Instruction>(Op); 429 if (!OpI || !L->contains(OpI)) 430 continue; 431 432 // Otherwise accumulate its cost. 433 CostWorklist.push_back(OpI); 434 } 435 } while (!CostWorklist.empty()); 436 437 if (PHIUsedList.empty()) 438 // We've exhausted the search. 439 break; 440 441 assert(Iteration > 0 && 442 "Cannot track PHI-used values past the first iteration!"); 443 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 444 PHIUsedList.clear(); 445 } 446 }; 447 448 // Ensure that we don't violate the loop structure invariants relied on by 449 // this analysis. 450 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 451 assert(L->isLCSSAForm(DT) && 452 "Must have loops in LCSSA form to track live-out values."); 453 454 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 455 456 // Simulate execution of each iteration of the loop counting instructions, 457 // which would be simplified. 458 // Since the same load will take different values on different iterations, 459 // we literally have to go through all loop's iterations. 460 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 461 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 462 463 // Prepare for the iteration by collecting any simplified entry or backedge 464 // inputs. 465 for (Instruction &I : *L->getHeader()) { 466 auto *PHI = dyn_cast<PHINode>(&I); 467 if (!PHI) 468 break; 469 470 // The loop header PHI nodes must have exactly two input: one from the 471 // loop preheader and one from the loop latch. 472 assert( 473 PHI->getNumIncomingValues() == 2 && 474 "Must have an incoming value only for the preheader and the latch."); 475 476 Value *V = PHI->getIncomingValueForBlock( 477 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 478 Constant *C = dyn_cast<Constant>(V); 479 if (Iteration != 0 && !C) 480 C = SimplifiedValues.lookup(V); 481 if (C) 482 SimplifiedInputValues.push_back({PHI, C}); 483 } 484 485 // Now clear and re-populate the map for the next iteration. 486 SimplifiedValues.clear(); 487 while (!SimplifiedInputValues.empty()) 488 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 489 490 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 491 492 BBWorklist.clear(); 493 BBWorklist.insert(L->getHeader()); 494 // Note that we *must not* cache the size, this loop grows the worklist. 495 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 496 BasicBlock *BB = BBWorklist[Idx]; 497 498 // Visit all instructions in the given basic block and try to simplify 499 // it. We don't change the actual IR, just count optimization 500 // opportunities. 501 for (Instruction &I : *BB) { 502 // These won't get into the final code - don't even try calculating the 503 // cost for them. 504 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 505 continue; 506 507 // Track this instruction's expected baseline cost when executing the 508 // rolled loop form. 509 RolledDynamicCost += TTI.getUserCost(&I); 510 511 // Visit the instruction to analyze its loop cost after unrolling, 512 // and if the visitor returns true, mark the instruction as free after 513 // unrolling and continue. 514 bool IsFree = Analyzer.visit(I); 515 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 516 (unsigned)IsFree, 517 /*IsCounted*/ false}).second; 518 (void)Inserted; 519 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 520 521 if (IsFree) 522 continue; 523 524 // Can't properly model a cost of a call. 525 // FIXME: With a proper cost model we should be able to do it. 526 if (auto *CI = dyn_cast<CallInst>(&I)) { 527 const Function *Callee = CI->getCalledFunction(); 528 if (!Callee || TTI.isLoweredToCall(Callee)) { 529 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 530 return None; 531 } 532 } 533 534 // If the instruction might have a side-effect recursively account for 535 // the cost of it and all the instructions leading up to it. 536 if (I.mayHaveSideEffects()) 537 AddCostRecursively(I, Iteration); 538 539 // If unrolled body turns out to be too big, bail out. 540 if (UnrolledCost > MaxUnrolledLoopSize) { 541 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 542 << " UnrolledCost: " << UnrolledCost 543 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 544 << "\n"); 545 return None; 546 } 547 } 548 549 Instruction *TI = BB->getTerminator(); 550 551 // Add in the live successors by first checking whether we have terminator 552 // that may be simplified based on the values simplified by this call. 553 BasicBlock *KnownSucc = nullptr; 554 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 555 if (BI->isConditional()) { 556 if (Constant *SimpleCond = 557 SimplifiedValues.lookup(BI->getCondition())) { 558 // Just take the first successor if condition is undef 559 if (isa<UndefValue>(SimpleCond)) 560 KnownSucc = BI->getSuccessor(0); 561 else if (ConstantInt *SimpleCondVal = 562 dyn_cast<ConstantInt>(SimpleCond)) 563 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 564 } 565 } 566 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 567 if (Constant *SimpleCond = 568 SimplifiedValues.lookup(SI->getCondition())) { 569 // Just take the first successor if condition is undef 570 if (isa<UndefValue>(SimpleCond)) 571 KnownSucc = SI->getSuccessor(0); 572 else if (ConstantInt *SimpleCondVal = 573 dyn_cast<ConstantInt>(SimpleCond)) 574 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 575 } 576 } 577 if (KnownSucc) { 578 if (L->contains(KnownSucc)) 579 BBWorklist.insert(KnownSucc); 580 else 581 ExitWorklist.insert({BB, KnownSucc}); 582 continue; 583 } 584 585 // Add BB's successors to the worklist. 586 for (BasicBlock *Succ : successors(BB)) 587 if (L->contains(Succ)) 588 BBWorklist.insert(Succ); 589 else 590 ExitWorklist.insert({BB, Succ}); 591 AddCostRecursively(*TI, Iteration); 592 } 593 594 // If we found no optimization opportunities on the first iteration, we 595 // won't find them on later ones too. 596 if (UnrolledCost == RolledDynamicCost) { 597 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 598 << " UnrolledCost: " << UnrolledCost << "\n"); 599 return None; 600 } 601 } 602 603 while (!ExitWorklist.empty()) { 604 BasicBlock *ExitingBB, *ExitBB; 605 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 606 607 for (Instruction &I : *ExitBB) { 608 auto *PN = dyn_cast<PHINode>(&I); 609 if (!PN) 610 break; 611 612 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 613 if (auto *OpI = dyn_cast<Instruction>(Op)) 614 if (L->contains(OpI)) 615 AddCostRecursively(*OpI, TripCount - 1); 616 } 617 } 618 619 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 620 << "UnrolledCost: " << UnrolledCost << ", " 621 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 622 return {{UnrolledCost, RolledDynamicCost}}; 623 } 624 625 /// ApproximateLoopSize - Approximate the size of the loop. 626 unsigned llvm::ApproximateLoopSize( 627 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 628 const TargetTransformInfo &TTI, 629 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 630 CodeMetrics Metrics; 631 for (BasicBlock *BB : L->blocks()) 632 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 633 NumCalls = Metrics.NumInlineCandidates; 634 NotDuplicatable = Metrics.notDuplicatable; 635 Convergent = Metrics.convergent; 636 637 unsigned LoopSize = Metrics.NumInsts; 638 639 // Don't allow an estimate of size zero. This would allows unrolling of loops 640 // with huge iteration counts, which is a compile time problem even if it's 641 // not a problem for code quality. Also, the code using this size may assume 642 // that each loop has at least three instructions (likely a conditional 643 // branch, a comparison feeding that branch, and some kind of loop increment 644 // feeding that comparison instruction). 645 LoopSize = std::max(LoopSize, BEInsns + 1); 646 647 return LoopSize; 648 } 649 650 // Returns the loop hint metadata node with the given name (for example, 651 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 652 // returned. 653 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 654 if (MDNode *LoopID = L->getLoopID()) 655 return GetUnrollMetadata(LoopID, Name); 656 return nullptr; 657 } 658 659 // Returns true if the loop has an unroll(full) pragma. 660 static bool HasUnrollFullPragma(const Loop *L) { 661 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 662 } 663 664 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 665 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 666 static bool HasUnrollEnablePragma(const Loop *L) { 667 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 668 } 669 670 // Returns true if the loop has an runtime unroll(disable) pragma. 671 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 672 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 673 } 674 675 // If loop has an unroll_count pragma return the (necessarily 676 // positive) value from the pragma. Otherwise return 0. 677 static unsigned UnrollCountPragmaValue(const Loop *L) { 678 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 679 if (MD) { 680 assert(MD->getNumOperands() == 2 && 681 "Unroll count hint metadata should have two operands."); 682 unsigned Count = 683 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 684 assert(Count >= 1 && "Unroll count must be positive."); 685 return Count; 686 } 687 return 0; 688 } 689 690 // Computes the boosting factor for complete unrolling. 691 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 692 // be beneficial to fully unroll the loop even if unrolledcost is large. We 693 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 694 // the unroll threshold. 695 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 696 unsigned MaxPercentThresholdBoost) { 697 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 698 return 100; 699 else if (Cost.UnrolledCost != 0) 700 // The boosting factor is RolledDynamicCost / UnrolledCost 701 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 702 MaxPercentThresholdBoost); 703 else 704 return MaxPercentThresholdBoost; 705 } 706 707 // Returns loop size estimation for unrolled loop. 708 static uint64_t getUnrolledLoopSize( 709 unsigned LoopSize, 710 TargetTransformInfo::UnrollingPreferences &UP) { 711 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 712 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 713 } 714 715 // Returns true if unroll count was set explicitly. 716 // Calculates unroll count and writes it to UP.Count. 717 // Unless IgnoreUser is true, will also use metadata and command-line options 718 // that are specific to to the LoopUnroll pass (which, for instance, are 719 // irrelevant for the LoopUnrollAndJam pass). 720 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 721 // many LoopUnroll-specific options. The shared functionality should be 722 // refactored into it own function. 723 bool llvm::computeUnrollCount( 724 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 725 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 726 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 727 unsigned &TripMultiple, unsigned LoopSize, 728 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 729 730 // Check for explicit Count. 731 // 1st priority is unroll count set by "unroll-count" option. 732 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 733 if (UserUnrollCount) { 734 UP.Count = UnrollCount; 735 UP.AllowExpensiveTripCount = true; 736 UP.Force = true; 737 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 738 return true; 739 } 740 741 // 2nd priority is unroll count set by pragma. 742 unsigned PragmaCount = UnrollCountPragmaValue(L); 743 if (PragmaCount > 0) { 744 UP.Count = PragmaCount; 745 UP.Runtime = true; 746 UP.AllowExpensiveTripCount = true; 747 UP.Force = true; 748 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 749 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 750 return true; 751 } 752 bool PragmaFullUnroll = HasUnrollFullPragma(L); 753 if (PragmaFullUnroll && TripCount != 0) { 754 UP.Count = TripCount; 755 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 756 return false; 757 } 758 759 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 760 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 761 PragmaEnableUnroll || UserUnrollCount; 762 763 if (ExplicitUnroll && TripCount != 0) { 764 // If the loop has an unrolling pragma, we want to be more aggressive with 765 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 766 // value which is larger than the default limits. 767 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 768 UP.PartialThreshold = 769 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 770 } 771 772 // 3rd priority is full unroll count. 773 // Full unroll makes sense only when TripCount or its upper bound could be 774 // statically calculated. 775 // Also we need to check if we exceed FullUnrollMaxCount. 776 // If using the upper bound to unroll, TripMultiple should be set to 1 because 777 // we do not know when loop may exit. 778 // MaxTripCount and ExactTripCount cannot both be non zero since we only 779 // compute the former when the latter is zero. 780 unsigned ExactTripCount = TripCount; 781 assert((ExactTripCount == 0 || MaxTripCount == 0) && 782 "ExtractTripCount and MaxTripCount cannot both be non zero."); 783 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 784 UP.Count = FullUnrollTripCount; 785 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 786 // When computing the unrolled size, note that BEInsns are not replicated 787 // like the rest of the loop body. 788 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 789 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 790 TripCount = FullUnrollTripCount; 791 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 792 return ExplicitUnroll; 793 } else { 794 // The loop isn't that small, but we still can fully unroll it if that 795 // helps to remove a significant number of instructions. 796 // To check that, run additional analysis on the loop. 797 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 798 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 799 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 800 unsigned Boost = 801 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 802 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 803 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 804 TripCount = FullUnrollTripCount; 805 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 806 return ExplicitUnroll; 807 } 808 } 809 } 810 } 811 812 // 4th priority is loop peeling. 813 computePeelCount(L, LoopSize, UP, TripCount, SE); 814 if (UP.PeelCount) { 815 UP.Runtime = false; 816 UP.Count = 1; 817 return ExplicitUnroll; 818 } 819 820 // 5th priority is partial unrolling. 821 // Try partial unroll only when TripCount could be statically calculated. 822 if (TripCount) { 823 UP.Partial |= ExplicitUnroll; 824 if (!UP.Partial) { 825 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 826 << "-unroll-allow-partial not given\n"); 827 UP.Count = 0; 828 return false; 829 } 830 if (UP.Count == 0) 831 UP.Count = TripCount; 832 if (UP.PartialThreshold != NoThreshold) { 833 // Reduce unroll count to be modulo of TripCount for partial unrolling. 834 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 835 UP.Count = 836 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 837 (LoopSize - UP.BEInsns); 838 if (UP.Count > UP.MaxCount) 839 UP.Count = UP.MaxCount; 840 while (UP.Count != 0 && TripCount % UP.Count != 0) 841 UP.Count--; 842 if (UP.AllowRemainder && UP.Count <= 1) { 843 // If there is no Count that is modulo of TripCount, set Count to 844 // largest power-of-two factor that satisfies the threshold limit. 845 // As we'll create fixup loop, do the type of unrolling only if 846 // remainder loop is allowed. 847 UP.Count = UP.DefaultUnrollRuntimeCount; 848 while (UP.Count != 0 && 849 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 850 UP.Count >>= 1; 851 } 852 if (UP.Count < 2) { 853 if (PragmaEnableUnroll) 854 ORE->emit([&]() { 855 return OptimizationRemarkMissed(DEBUG_TYPE, 856 "UnrollAsDirectedTooLarge", 857 L->getStartLoc(), L->getHeader()) 858 << "Unable to unroll loop as directed by unroll(enable) " 859 "pragma " 860 "because unrolled size is too large."; 861 }); 862 UP.Count = 0; 863 } 864 } else { 865 UP.Count = TripCount; 866 } 867 if (UP.Count > UP.MaxCount) 868 UP.Count = UP.MaxCount; 869 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 870 UP.Count != TripCount) 871 ORE->emit([&]() { 872 return OptimizationRemarkMissed(DEBUG_TYPE, 873 "FullUnrollAsDirectedTooLarge", 874 L->getStartLoc(), L->getHeader()) 875 << "Unable to fully unroll loop as directed by unroll pragma " 876 "because " 877 "unrolled size is too large."; 878 }); 879 return ExplicitUnroll; 880 } 881 assert(TripCount == 0 && 882 "All cases when TripCount is constant should be covered here."); 883 if (PragmaFullUnroll) 884 ORE->emit([&]() { 885 return OptimizationRemarkMissed( 886 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 887 L->getStartLoc(), L->getHeader()) 888 << "Unable to fully unroll loop as directed by unroll(full) " 889 "pragma " 890 "because loop has a runtime trip count."; 891 }); 892 893 // 6th priority is runtime unrolling. 894 // Don't unroll a runtime trip count loop when it is disabled. 895 if (HasRuntimeUnrollDisablePragma(L)) { 896 UP.Count = 0; 897 return false; 898 } 899 900 // Check if the runtime trip count is too small when profile is available. 901 if (L->getHeader()->getParent()->hasProfileData()) { 902 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 903 if (*ProfileTripCount < FlatLoopTripCountThreshold) 904 return false; 905 else 906 UP.AllowExpensiveTripCount = true; 907 } 908 } 909 910 // Reduce count based on the type of unrolling and the threshold values. 911 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 912 if (!UP.Runtime) { 913 LLVM_DEBUG( 914 dbgs() << " will not try to unroll loop with runtime trip count " 915 << "-unroll-runtime not given\n"); 916 UP.Count = 0; 917 return false; 918 } 919 if (UP.Count == 0) 920 UP.Count = UP.DefaultUnrollRuntimeCount; 921 922 // Reduce unroll count to be the largest power-of-two factor of 923 // the original count which satisfies the threshold limit. 924 while (UP.Count != 0 && 925 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 926 UP.Count >>= 1; 927 928 #ifndef NDEBUG 929 unsigned OrigCount = UP.Count; 930 #endif 931 932 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 933 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 934 UP.Count >>= 1; 935 LLVM_DEBUG( 936 dbgs() << "Remainder loop is restricted (that could architecture " 937 "specific or because the loop contains a convergent " 938 "instruction), so unroll count must divide the trip " 939 "multiple, " 940 << TripMultiple << ". Reducing unroll count from " << OrigCount 941 << " to " << UP.Count << ".\n"); 942 943 using namespace ore; 944 945 if (PragmaCount > 0 && !UP.AllowRemainder) 946 ORE->emit([&]() { 947 return OptimizationRemarkMissed(DEBUG_TYPE, 948 "DifferentUnrollCountFromDirected", 949 L->getStartLoc(), L->getHeader()) 950 << "Unable to unroll loop the number of times directed by " 951 "unroll_count pragma because remainder loop is restricted " 952 "(that could architecture specific or because the loop " 953 "contains a convergent instruction) and so must have an " 954 "unroll " 955 "count that divides the loop trip multiple of " 956 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 957 << NV("UnrollCount", UP.Count) << " time(s)."; 958 }); 959 } 960 961 if (UP.Count > UP.MaxCount) 962 UP.Count = UP.MaxCount; 963 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 964 << "\n"); 965 if (UP.Count < 2) 966 UP.Count = 0; 967 return ExplicitUnroll; 968 } 969 970 static LoopUnrollResult tryToUnrollLoop( 971 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 972 const TargetTransformInfo &TTI, AssumptionCache &AC, 973 OptimizationRemarkEmitter &ORE, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 bool PreserveLCSSA, int OptLevel, 976 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 977 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 978 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 979 Optional<bool> ProvidedAllowPeeling) { 980 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 981 << L->getHeader()->getParent()->getName() << "] Loop %" 982 << L->getHeader()->getName() << "\n"); 983 TransformationMode TM = hasUnrollTransformation(L); 984 if (TM & TM_Disable) 985 return LoopUnrollResult::Unmodified; 986 if (!L->isLoopSimplifyForm()) { 987 LLVM_DEBUG( 988 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 989 return LoopUnrollResult::Unmodified; 990 } 991 992 // When automtatic unrolling is disabled, do not unroll unless overridden for 993 // this loop. 994 if (OnlyWhenForced && !(TM & TM_Enable)) 995 return LoopUnrollResult::Unmodified; 996 997 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 998 unsigned NumInlineCandidates; 999 bool NotDuplicatable; 1000 bool Convergent; 1001 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1002 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1003 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1004 ProvidedAllowPeeling); 1005 1006 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1007 // as threshold later on. 1008 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1009 !OptForSize) 1010 return LoopUnrollResult::Unmodified; 1011 1012 SmallPtrSet<const Value *, 32> EphValues; 1013 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1014 1015 unsigned LoopSize = 1016 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1017 TTI, EphValues, UP.BEInsns); 1018 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1019 if (NotDuplicatable) { 1020 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1021 << " instructions.\n"); 1022 return LoopUnrollResult::Unmodified; 1023 } 1024 1025 // When optimizing for size, use LoopSize as threshold, to (fully) unroll 1026 // loops, if it does not increase code size. 1027 if (OptForSize) 1028 UP.Threshold = std::max(UP.Threshold, LoopSize); 1029 1030 if (NumInlineCandidates != 0) { 1031 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1032 return LoopUnrollResult::Unmodified; 1033 } 1034 1035 // Find trip count and trip multiple if count is not available 1036 unsigned TripCount = 0; 1037 unsigned MaxTripCount = 0; 1038 unsigned TripMultiple = 1; 1039 // If there are multiple exiting blocks but one of them is the latch, use the 1040 // latch for the trip count estimation. Otherwise insist on a single exiting 1041 // block for the trip count estimation. 1042 BasicBlock *ExitingBlock = L->getLoopLatch(); 1043 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1044 ExitingBlock = L->getExitingBlock(); 1045 if (ExitingBlock) { 1046 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1047 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1048 } 1049 1050 // If the loop contains a convergent operation, the prelude we'd add 1051 // to do the first few instructions before we hit the unrolled loop 1052 // is unsafe -- it adds a control-flow dependency to the convergent 1053 // operation. Therefore restrict remainder loop (try unrollig without). 1054 // 1055 // TODO: This is quite conservative. In practice, convergent_op() 1056 // is likely to be called unconditionally in the loop. In this 1057 // case, the program would be ill-formed (on most architectures) 1058 // unless n were the same on all threads in a thread group. 1059 // Assuming n is the same on all threads, any kind of unrolling is 1060 // safe. But currently llvm's notion of convergence isn't powerful 1061 // enough to express this. 1062 if (Convergent) 1063 UP.AllowRemainder = false; 1064 1065 // Try to find the trip count upper bound if we cannot find the exact trip 1066 // count. 1067 bool MaxOrZero = false; 1068 if (!TripCount) { 1069 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1070 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1071 // We can unroll by the upper bound amount if it's generally allowed or if 1072 // we know that the loop is executed either the upper bound or zero times. 1073 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1074 // loop tests remains the same compared to the non-unrolled version, whereas 1075 // the generic upper bound unrolling keeps all but the last loop test so the 1076 // number of loop tests goes up which may end up being worse on targets with 1077 // constrained branch predictor resources so is controlled by an option.) 1078 // In addition we only unroll small upper bounds. 1079 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1080 MaxTripCount = 0; 1081 } 1082 } 1083 1084 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1085 // fully unroll the loop. 1086 bool UseUpperBound = false; 1087 bool IsCountSetExplicitly = computeUnrollCount( 1088 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1089 TripMultiple, LoopSize, UP, UseUpperBound); 1090 if (!UP.Count) 1091 return LoopUnrollResult::Unmodified; 1092 // Unroll factor (Count) must be less or equal to TripCount. 1093 if (TripCount && UP.Count > TripCount) 1094 UP.Count = TripCount; 1095 1096 // Save loop properties before it is transformed. 1097 MDNode *OrigLoopID = L->getLoopID(); 1098 1099 // Unroll the loop. 1100 Loop *RemainderLoop = nullptr; 1101 LoopUnrollResult UnrollResult = UnrollLoop( 1102 L, 1103 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1104 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1105 ForgetAllSCEV}, 1106 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1107 if (UnrollResult == LoopUnrollResult::Unmodified) 1108 return LoopUnrollResult::Unmodified; 1109 1110 if (RemainderLoop) { 1111 Optional<MDNode *> RemainderLoopID = 1112 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1113 LLVMLoopUnrollFollowupRemainder}); 1114 if (RemainderLoopID.hasValue()) 1115 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1116 } 1117 1118 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1119 Optional<MDNode *> NewLoopID = 1120 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1121 LLVMLoopUnrollFollowupUnrolled}); 1122 if (NewLoopID.hasValue()) { 1123 L->setLoopID(NewLoopID.getValue()); 1124 1125 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1126 // explicitly. 1127 return UnrollResult; 1128 } 1129 } 1130 1131 // If loop has an unroll count pragma or unrolled by explicitly set count 1132 // mark loop as unrolled to prevent unrolling beyond that requested. 1133 // If the loop was peeled, we already "used up" the profile information 1134 // we had, so we don't want to unroll or peel again. 1135 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1136 (IsCountSetExplicitly || UP.PeelCount)) 1137 L->setLoopAlreadyUnrolled(); 1138 1139 return UnrollResult; 1140 } 1141 1142 namespace { 1143 1144 class LoopUnroll : public LoopPass { 1145 public: 1146 static char ID; // Pass ID, replacement for typeid 1147 1148 int OptLevel; 1149 1150 /// If false, use a cost model to determine whether unrolling of a loop is 1151 /// profitable. If true, only loops that explicitly request unrolling via 1152 /// metadata are considered. All other loops are skipped. 1153 bool OnlyWhenForced; 1154 1155 /// If false, when SCEV is invalidated, only forget everything in the 1156 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1157 /// Otherwise, forgetAllLoops and rebuild when needed next. 1158 bool ForgetAllSCEV; 1159 1160 Optional<unsigned> ProvidedCount; 1161 Optional<unsigned> ProvidedThreshold; 1162 Optional<bool> ProvidedAllowPartial; 1163 Optional<bool> ProvidedRuntime; 1164 Optional<bool> ProvidedUpperBound; 1165 Optional<bool> ProvidedAllowPeeling; 1166 1167 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1168 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1169 Optional<unsigned> Count = None, 1170 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1171 Optional<bool> UpperBound = None, 1172 Optional<bool> AllowPeeling = None) 1173 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1174 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1175 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1176 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1177 ProvidedAllowPeeling(AllowPeeling) { 1178 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1179 } 1180 1181 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1182 if (skipLoop(L)) 1183 return false; 1184 1185 Function &F = *L->getHeader()->getParent(); 1186 1187 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1188 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1189 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1190 const TargetTransformInfo &TTI = 1191 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1192 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1193 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1194 // pass. Function analyses need to be preserved across loop transformations 1195 // but ORE cannot be preserved (see comment before the pass definition). 1196 OptimizationRemarkEmitter ORE(&F); 1197 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1198 1199 LoopUnrollResult Result = tryToUnrollLoop( 1200 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, 1201 PreserveLCSSA, OptLevel, OnlyWhenForced, 1202 ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1203 ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling); 1204 1205 if (Result == LoopUnrollResult::FullyUnrolled) 1206 LPM.markLoopAsDeleted(*L); 1207 1208 return Result != LoopUnrollResult::Unmodified; 1209 } 1210 1211 /// This transformation requires natural loop information & requires that 1212 /// loop preheaders be inserted into the CFG... 1213 void getAnalysisUsage(AnalysisUsage &AU) const override { 1214 AU.addRequired<AssumptionCacheTracker>(); 1215 AU.addRequired<TargetTransformInfoWrapperPass>(); 1216 // FIXME: Loop passes are required to preserve domtree, and for now we just 1217 // recreate dom info if anything gets unrolled. 1218 getLoopAnalysisUsage(AU); 1219 } 1220 }; 1221 1222 } // end anonymous namespace 1223 1224 char LoopUnroll::ID = 0; 1225 1226 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1227 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1228 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1230 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1231 1232 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1233 bool ForgetAllSCEV, int Threshold, int Count, 1234 int AllowPartial, int Runtime, int UpperBound, 1235 int AllowPeeling) { 1236 // TODO: It would make more sense for this function to take the optionals 1237 // directly, but that's dangerous since it would silently break out of tree 1238 // callers. 1239 return new LoopUnroll( 1240 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1241 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1242 Count == -1 ? None : Optional<unsigned>(Count), 1243 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1244 Runtime == -1 ? None : Optional<bool>(Runtime), 1245 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1246 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1247 } 1248 1249 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1250 bool ForgetAllSCEV) { 1251 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1252 0, 0, 0, 0); 1253 } 1254 1255 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1256 LoopStandardAnalysisResults &AR, 1257 LPMUpdater &Updater) { 1258 const auto &FAM = 1259 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1260 Function *F = L.getHeader()->getParent(); 1261 1262 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1263 // FIXME: This should probably be optional rather than required. 1264 if (!ORE) 1265 report_fatal_error( 1266 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1267 "cached at a higher level"); 1268 1269 // Keep track of the previous loop structure so we can identify new loops 1270 // created by unrolling. 1271 Loop *ParentL = L.getParentLoop(); 1272 SmallPtrSet<Loop *, 4> OldLoops; 1273 if (ParentL) 1274 OldLoops.insert(ParentL->begin(), ParentL->end()); 1275 else 1276 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1277 1278 std::string LoopName = L.getName(); 1279 1280 bool Changed = 1281 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1282 /*BFI*/ nullptr, /*PSI*/ nullptr, 1283 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced, 1284 /*ForgetAllSCEV*/ false, /*Count*/ None, 1285 /*Threshold*/ None, /*AllowPartial*/ false, 1286 /*Runtime*/ false, /*UpperBound*/ false, 1287 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1288 if (!Changed) 1289 return PreservedAnalyses::all(); 1290 1291 // The parent must not be damaged by unrolling! 1292 #ifndef NDEBUG 1293 if (ParentL) 1294 ParentL->verifyLoop(); 1295 #endif 1296 1297 // Unrolling can do several things to introduce new loops into a loop nest: 1298 // - Full unrolling clones child loops within the current loop but then 1299 // removes the current loop making all of the children appear to be new 1300 // sibling loops. 1301 // 1302 // When a new loop appears as a sibling loop after fully unrolling, 1303 // its nesting structure has fundamentally changed and we want to revisit 1304 // it to reflect that. 1305 // 1306 // When unrolling has removed the current loop, we need to tell the 1307 // infrastructure that it is gone. 1308 // 1309 // Finally, we support a debugging/testing mode where we revisit child loops 1310 // as well. These are not expected to require further optimizations as either 1311 // they or the loop they were cloned from have been directly visited already. 1312 // But the debugging mode allows us to check this assumption. 1313 bool IsCurrentLoopValid = false; 1314 SmallVector<Loop *, 4> SibLoops; 1315 if (ParentL) 1316 SibLoops.append(ParentL->begin(), ParentL->end()); 1317 else 1318 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1319 erase_if(SibLoops, [&](Loop *SibLoop) { 1320 if (SibLoop == &L) { 1321 IsCurrentLoopValid = true; 1322 return true; 1323 } 1324 1325 // Otherwise erase the loop from the list if it was in the old loops. 1326 return OldLoops.count(SibLoop) != 0; 1327 }); 1328 Updater.addSiblingLoops(SibLoops); 1329 1330 if (!IsCurrentLoopValid) { 1331 Updater.markLoopAsDeleted(L, LoopName); 1332 } else { 1333 // We can only walk child loops if the current loop remained valid. 1334 if (UnrollRevisitChildLoops) { 1335 // Walk *all* of the child loops. 1336 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1337 Updater.addChildLoops(ChildLoops); 1338 } 1339 } 1340 1341 return getLoopPassPreservedAnalyses(); 1342 } 1343 1344 template <typename RangeT> 1345 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1346 SmallVector<Loop *, 8> Worklist; 1347 // We use an internal worklist to build up the preorder traversal without 1348 // recursion. 1349 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1350 1351 for (Loop *RootL : Loops) { 1352 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1353 assert(PreOrderWorklist.empty() && 1354 "Must start with an empty preorder walk worklist."); 1355 PreOrderWorklist.push_back(RootL); 1356 do { 1357 Loop *L = PreOrderWorklist.pop_back_val(); 1358 PreOrderWorklist.append(L->begin(), L->end()); 1359 PreOrderLoops.push_back(L); 1360 } while (!PreOrderWorklist.empty()); 1361 1362 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1363 PreOrderLoops.clear(); 1364 } 1365 return Worklist; 1366 } 1367 1368 PreservedAnalyses LoopUnrollPass::run(Function &F, 1369 FunctionAnalysisManager &AM) { 1370 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1371 auto &LI = AM.getResult<LoopAnalysis>(F); 1372 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1373 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1374 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1375 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1376 1377 LoopAnalysisManager *LAM = nullptr; 1378 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1379 LAM = &LAMProxy->getManager(); 1380 1381 const ModuleAnalysisManager &MAM = 1382 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1383 ProfileSummaryInfo *PSI = 1384 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1385 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1386 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1387 1388 bool Changed = false; 1389 1390 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1391 // Since simplification may add new inner loops, it has to run before the 1392 // legality and profitability checks. This means running the loop unroller 1393 // will simplify all loops, regardless of whether anything end up being 1394 // unrolled. 1395 for (auto &L : LI) { 1396 Changed |= 1397 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1398 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1399 } 1400 1401 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1402 1403 while (!Worklist.empty()) { 1404 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1405 // from back to front so that we work forward across the CFG, which 1406 // for unrolling is only needed to get optimization remarks emitted in 1407 // a forward order. 1408 Loop &L = *Worklist.pop_back_val(); 1409 #ifndef NDEBUG 1410 Loop *ParentL = L.getParentLoop(); 1411 #endif 1412 1413 // Check if the profile summary indicates that the profiled application 1414 // has a huge working set size, in which case we disable peeling to avoid 1415 // bloating it further. 1416 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1417 if (PSI && PSI->hasHugeWorkingSetSize()) 1418 LocalAllowPeeling = false; 1419 std::string LoopName = L.getName(); 1420 // The API here is quite complex to call and we allow to select some 1421 // flavors of unrolling during construction time (by setting UnrollOpts). 1422 LoopUnrollResult Result = tryToUnrollLoop( 1423 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1424 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1425 /*ForgetAllSCEV*/ false, /*Count*/ None, 1426 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1427 UnrollOpts.AllowUpperBound, LocalAllowPeeling); 1428 Changed |= Result != LoopUnrollResult::Unmodified; 1429 1430 // The parent must not be damaged by unrolling! 1431 #ifndef NDEBUG 1432 if (Result != LoopUnrollResult::Unmodified && ParentL) 1433 ParentL->verifyLoop(); 1434 #endif 1435 1436 // Clear any cached analysis results for L if we removed it completely. 1437 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1438 LAM->clear(L, LoopName); 1439 } 1440 1441 if (!Changed) 1442 return PreservedAnalyses::all(); 1443 1444 return getLoopPassPreservedAnalyses(); 1445 } 1446