xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision f31eba649422082783a19bb6b373f31f10f55de9)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <limits>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-unroll"
73 
74 static cl::opt<unsigned>
75     UnrollThreshold("unroll-threshold", cl::Hidden,
76                     cl::desc("The cost threshold for loop unrolling"));
77 
78 static cl::opt<unsigned> UnrollPartialThreshold(
79     "unroll-partial-threshold", cl::Hidden,
80     cl::desc("The cost threshold for partial loop unrolling"));
81 
82 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
83     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
84     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
85              "to the threshold when aggressively unrolling a loop due to the "
86              "dynamic cost savings. If completely unrolling a loop will reduce "
87              "the total runtime from X to Y, we boost the loop unroll "
88              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
89              "X/Y). This limit avoids excessive code bloat."));
90 
91 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
92     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
93     cl::desc("Don't allow loop unrolling to simulate more than this number of"
94              "iterations when checking full unroll profitability"));
95 
96 static cl::opt<unsigned> UnrollCount(
97     "unroll-count", cl::Hidden,
98     cl::desc("Use this unroll count for all loops including those with "
99              "unroll_count pragma values, for testing purposes"));
100 
101 static cl::opt<unsigned> UnrollMaxCount(
102     "unroll-max-count", cl::Hidden,
103     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
104              "testing purposes"));
105 
106 static cl::opt<unsigned> UnrollFullMaxCount(
107     "unroll-full-max-count", cl::Hidden,
108     cl::desc(
109         "Set the max unroll count for full unrolling, for testing purposes"));
110 
111 static cl::opt<unsigned> UnrollPeelCount(
112     "unroll-peel-count", cl::Hidden,
113     cl::desc("Set the unroll peeling count, for testing purposes"));
114 
115 static cl::opt<bool>
116     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
117                        cl::desc("Allows loops to be partially unrolled until "
118                                 "-unroll-threshold loop size is reached."));
119 
120 static cl::opt<bool> UnrollAllowRemainder(
121     "unroll-allow-remainder", cl::Hidden,
122     cl::desc("Allow generation of a loop remainder (extra iterations) "
123              "when unrolling a loop."));
124 
125 static cl::opt<bool>
126     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
127                   cl::desc("Unroll loops with run-time trip counts"));
128 
129 static cl::opt<unsigned> UnrollMaxUpperBound(
130     "unroll-max-upperbound", cl::init(8), cl::Hidden,
131     cl::desc(
132         "The max of trip count upper bound that is considered in unrolling"));
133 
134 static cl::opt<unsigned> PragmaUnrollThreshold(
135     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
136     cl::desc("Unrolled size limit for loops with an unroll(full) or "
137              "unroll_count pragma."));
138 
139 static cl::opt<unsigned> FlatLoopTripCountThreshold(
140     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
141     cl::desc("If the runtime tripcount for the loop is lower than the "
142              "threshold, the loop is considered as flat and will be less "
143              "aggressively unrolled."));
144 
145 static cl::opt<bool>
146     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
147                        cl::desc("Allows loops to be peeled when the dynamic "
148                                 "trip count is known to be low."));
149 
150 static cl::opt<bool> UnrollUnrollRemainder(
151   "unroll-remainder", cl::Hidden,
152   cl::desc("Allow the loop remainder to be unrolled."));
153 
154 // This option isn't ever intended to be enabled, it serves to allow
155 // experiments to check the assumptions about when this kind of revisit is
156 // necessary.
157 static cl::opt<bool> UnrollRevisitChildLoops(
158     "unroll-revisit-child-loops", cl::Hidden,
159     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
160              "This shouldn't typically be needed as child loops (or their "
161              "clones) were already visited."));
162 
163 /// A magic value for use with the Threshold parameter to indicate
164 /// that the loop unroll should be performed regardless of how much
165 /// code expansion would result.
166 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
167 
168 /// Gather the various unrolling parameters based on the defaults, compiler
169 /// flags, TTI overrides and user specified parameters.
170 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
171     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
172     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
173     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
174     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
175     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
176   TargetTransformInfo::UnrollingPreferences UP;
177 
178   // Set up the defaults
179   UP.Threshold = OptLevel > 2 ? 300 : 150;
180   UP.MaxPercentThresholdBoost = 400;
181   UP.OptSizeThreshold = 0;
182   UP.PartialThreshold = 150;
183   UP.PartialOptSizeThreshold = 0;
184   UP.Count = 0;
185   UP.PeelCount = 0;
186   UP.DefaultUnrollRuntimeCount = 8;
187   UP.MaxCount = std::numeric_limits<unsigned>::max();
188   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
189   UP.BEInsns = 2;
190   UP.Partial = false;
191   UP.Runtime = false;
192   UP.AllowRemainder = true;
193   UP.UnrollRemainder = false;
194   UP.AllowExpensiveTripCount = false;
195   UP.Force = false;
196   UP.UpperBound = false;
197   UP.AllowPeeling = true;
198   UP.UnrollAndJam = false;
199   UP.UnrollAndJamInnerLoopThreshold = 60;
200 
201   // Override with any target specific settings
202   TTI.getUnrollingPreferences(L, SE, UP);
203 
204   // Apply size attributes
205   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
206                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
207   if (OptForSize) {
208     UP.Threshold = UP.OptSizeThreshold;
209     UP.PartialThreshold = UP.PartialOptSizeThreshold;
210     UP.MaxPercentThresholdBoost = 100;
211   }
212 
213   // Apply any user values specified by cl::opt
214   if (UnrollThreshold.getNumOccurrences() > 0)
215     UP.Threshold = UnrollThreshold;
216   if (UnrollPartialThreshold.getNumOccurrences() > 0)
217     UP.PartialThreshold = UnrollPartialThreshold;
218   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
219     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
220   if (UnrollMaxCount.getNumOccurrences() > 0)
221     UP.MaxCount = UnrollMaxCount;
222   if (UnrollFullMaxCount.getNumOccurrences() > 0)
223     UP.FullUnrollMaxCount = UnrollFullMaxCount;
224   if (UnrollPeelCount.getNumOccurrences() > 0)
225     UP.PeelCount = UnrollPeelCount;
226   if (UnrollAllowPartial.getNumOccurrences() > 0)
227     UP.Partial = UnrollAllowPartial;
228   if (UnrollAllowRemainder.getNumOccurrences() > 0)
229     UP.AllowRemainder = UnrollAllowRemainder;
230   if (UnrollRuntime.getNumOccurrences() > 0)
231     UP.Runtime = UnrollRuntime;
232   if (UnrollMaxUpperBound == 0)
233     UP.UpperBound = false;
234   if (UnrollAllowPeeling.getNumOccurrences() > 0)
235     UP.AllowPeeling = UnrollAllowPeeling;
236   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
237     UP.UnrollRemainder = UnrollUnrollRemainder;
238 
239   // Apply user values provided by argument
240   if (UserThreshold.hasValue()) {
241     UP.Threshold = *UserThreshold;
242     UP.PartialThreshold = *UserThreshold;
243   }
244   if (UserCount.hasValue())
245     UP.Count = *UserCount;
246   if (UserAllowPartial.hasValue())
247     UP.Partial = *UserAllowPartial;
248   if (UserRuntime.hasValue())
249     UP.Runtime = *UserRuntime;
250   if (UserUpperBound.hasValue())
251     UP.UpperBound = *UserUpperBound;
252   if (UserAllowPeeling.hasValue())
253     UP.AllowPeeling = *UserAllowPeeling;
254 
255   return UP;
256 }
257 
258 namespace {
259 
260 /// A struct to densely store the state of an instruction after unrolling at
261 /// each iteration.
262 ///
263 /// This is designed to work like a tuple of <Instruction *, int> for the
264 /// purposes of hashing and lookup, but to be able to associate two boolean
265 /// states with each key.
266 struct UnrolledInstState {
267   Instruction *I;
268   int Iteration : 30;
269   unsigned IsFree : 1;
270   unsigned IsCounted : 1;
271 };
272 
273 /// Hashing and equality testing for a set of the instruction states.
274 struct UnrolledInstStateKeyInfo {
275   using PtrInfo = DenseMapInfo<Instruction *>;
276   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
277 
278   static inline UnrolledInstState getEmptyKey() {
279     return {PtrInfo::getEmptyKey(), 0, 0, 0};
280   }
281 
282   static inline UnrolledInstState getTombstoneKey() {
283     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
284   }
285 
286   static inline unsigned getHashValue(const UnrolledInstState &S) {
287     return PairInfo::getHashValue({S.I, S.Iteration});
288   }
289 
290   static inline bool isEqual(const UnrolledInstState &LHS,
291                              const UnrolledInstState &RHS) {
292     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
293   }
294 };
295 
296 struct EstimatedUnrollCost {
297   /// The estimated cost after unrolling.
298   unsigned UnrolledCost;
299 
300   /// The estimated dynamic cost of executing the instructions in the
301   /// rolled form.
302   unsigned RolledDynamicCost;
303 };
304 
305 } // end anonymous namespace
306 
307 /// Figure out if the loop is worth full unrolling.
308 ///
309 /// Complete loop unrolling can make some loads constant, and we need to know
310 /// if that would expose any further optimization opportunities.  This routine
311 /// estimates this optimization.  It computes cost of unrolled loop
312 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
313 /// dynamic cost we mean that we won't count costs of blocks that are known not
314 /// to be executed (i.e. if we have a branch in the loop and we know that at the
315 /// given iteration its condition would be resolved to true, we won't add up the
316 /// cost of the 'false'-block).
317 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
318 /// the analysis failed (no benefits expected from the unrolling, or the loop is
319 /// too big to analyze), the returned value is None.
320 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
321     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
322     const SmallPtrSetImpl<const Value *> &EphValues,
323     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
324   // We want to be able to scale offsets by the trip count and add more offsets
325   // to them without checking for overflows, and we already don't want to
326   // analyze *massive* trip counts, so we force the max to be reasonably small.
327   assert(UnrollMaxIterationsCountToAnalyze <
328              (unsigned)(std::numeric_limits<int>::max() / 2) &&
329          "The unroll iterations max is too large!");
330 
331   // Only analyze inner loops. We can't properly estimate cost of nested loops
332   // and we won't visit inner loops again anyway.
333   if (!L->empty())
334     return None;
335 
336   // Don't simulate loops with a big or unknown tripcount
337   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
338       TripCount > UnrollMaxIterationsCountToAnalyze)
339     return None;
340 
341   SmallSetVector<BasicBlock *, 16> BBWorklist;
342   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
343   DenseMap<Value *, Constant *> SimplifiedValues;
344   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
345 
346   // The estimated cost of the unrolled form of the loop. We try to estimate
347   // this by simplifying as much as we can while computing the estimate.
348   unsigned UnrolledCost = 0;
349 
350   // We also track the estimated dynamic (that is, actually executed) cost in
351   // the rolled form. This helps identify cases when the savings from unrolling
352   // aren't just exposing dead control flows, but actual reduced dynamic
353   // instructions due to the simplifications which we expect to occur after
354   // unrolling.
355   unsigned RolledDynamicCost = 0;
356 
357   // We track the simplification of each instruction in each iteration. We use
358   // this to recursively merge costs into the unrolled cost on-demand so that
359   // we don't count the cost of any dead code. This is essentially a map from
360   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
361   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
362 
363   // A small worklist used to accumulate cost of instructions from each
364   // observable and reached root in the loop.
365   SmallVector<Instruction *, 16> CostWorklist;
366 
367   // PHI-used worklist used between iterations while accumulating cost.
368   SmallVector<Instruction *, 4> PHIUsedList;
369 
370   // Helper function to accumulate cost for instructions in the loop.
371   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
372     assert(Iteration >= 0 && "Cannot have a negative iteration!");
373     assert(CostWorklist.empty() && "Must start with an empty cost list");
374     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
375     CostWorklist.push_back(&RootI);
376     for (;; --Iteration) {
377       do {
378         Instruction *I = CostWorklist.pop_back_val();
379 
380         // InstCostMap only uses I and Iteration as a key, the other two values
381         // don't matter here.
382         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
383         if (CostIter == InstCostMap.end())
384           // If an input to a PHI node comes from a dead path through the loop
385           // we may have no cost data for it here. What that actually means is
386           // that it is free.
387           continue;
388         auto &Cost = *CostIter;
389         if (Cost.IsCounted)
390           // Already counted this instruction.
391           continue;
392 
393         // Mark that we are counting the cost of this instruction now.
394         Cost.IsCounted = true;
395 
396         // If this is a PHI node in the loop header, just add it to the PHI set.
397         if (auto *PhiI = dyn_cast<PHINode>(I))
398           if (PhiI->getParent() == L->getHeader()) {
399             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
400                                   "inherently simplify during unrolling.");
401             if (Iteration == 0)
402               continue;
403 
404             // Push the incoming value from the backedge into the PHI used list
405             // if it is an in-loop instruction. We'll use this to populate the
406             // cost worklist for the next iteration (as we count backwards).
407             if (auto *OpI = dyn_cast<Instruction>(
408                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
409               if (L->contains(OpI))
410                 PHIUsedList.push_back(OpI);
411             continue;
412           }
413 
414         // First accumulate the cost of this instruction.
415         if (!Cost.IsFree) {
416           UnrolledCost += TTI.getUserCost(I);
417           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
418                             << Iteration << "): ");
419           LLVM_DEBUG(I->dump());
420         }
421 
422         // We must count the cost of every operand which is not free,
423         // recursively. If we reach a loop PHI node, simply add it to the set
424         // to be considered on the next iteration (backwards!).
425         for (Value *Op : I->operands()) {
426           // Check whether this operand is free due to being a constant or
427           // outside the loop.
428           auto *OpI = dyn_cast<Instruction>(Op);
429           if (!OpI || !L->contains(OpI))
430             continue;
431 
432           // Otherwise accumulate its cost.
433           CostWorklist.push_back(OpI);
434         }
435       } while (!CostWorklist.empty());
436 
437       if (PHIUsedList.empty())
438         // We've exhausted the search.
439         break;
440 
441       assert(Iteration > 0 &&
442              "Cannot track PHI-used values past the first iteration!");
443       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
444       PHIUsedList.clear();
445     }
446   };
447 
448   // Ensure that we don't violate the loop structure invariants relied on by
449   // this analysis.
450   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
451   assert(L->isLCSSAForm(DT) &&
452          "Must have loops in LCSSA form to track live-out values.");
453 
454   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
455 
456   // Simulate execution of each iteration of the loop counting instructions,
457   // which would be simplified.
458   // Since the same load will take different values on different iterations,
459   // we literally have to go through all loop's iterations.
460   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
461     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
462 
463     // Prepare for the iteration by collecting any simplified entry or backedge
464     // inputs.
465     for (Instruction &I : *L->getHeader()) {
466       auto *PHI = dyn_cast<PHINode>(&I);
467       if (!PHI)
468         break;
469 
470       // The loop header PHI nodes must have exactly two input: one from the
471       // loop preheader and one from the loop latch.
472       assert(
473           PHI->getNumIncomingValues() == 2 &&
474           "Must have an incoming value only for the preheader and the latch.");
475 
476       Value *V = PHI->getIncomingValueForBlock(
477           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
478       Constant *C = dyn_cast<Constant>(V);
479       if (Iteration != 0 && !C)
480         C = SimplifiedValues.lookup(V);
481       if (C)
482         SimplifiedInputValues.push_back({PHI, C});
483     }
484 
485     // Now clear and re-populate the map for the next iteration.
486     SimplifiedValues.clear();
487     while (!SimplifiedInputValues.empty())
488       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
489 
490     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
491 
492     BBWorklist.clear();
493     BBWorklist.insert(L->getHeader());
494     // Note that we *must not* cache the size, this loop grows the worklist.
495     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
496       BasicBlock *BB = BBWorklist[Idx];
497 
498       // Visit all instructions in the given basic block and try to simplify
499       // it.  We don't change the actual IR, just count optimization
500       // opportunities.
501       for (Instruction &I : *BB) {
502         // These won't get into the final code - don't even try calculating the
503         // cost for them.
504         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
505           continue;
506 
507         // Track this instruction's expected baseline cost when executing the
508         // rolled loop form.
509         RolledDynamicCost += TTI.getUserCost(&I);
510 
511         // Visit the instruction to analyze its loop cost after unrolling,
512         // and if the visitor returns true, mark the instruction as free after
513         // unrolling and continue.
514         bool IsFree = Analyzer.visit(I);
515         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
516                                            (unsigned)IsFree,
517                                            /*IsCounted*/ false}).second;
518         (void)Inserted;
519         assert(Inserted && "Cannot have a state for an unvisited instruction!");
520 
521         if (IsFree)
522           continue;
523 
524         // Can't properly model a cost of a call.
525         // FIXME: With a proper cost model we should be able to do it.
526         if (auto *CI = dyn_cast<CallInst>(&I)) {
527           const Function *Callee = CI->getCalledFunction();
528           if (!Callee || TTI.isLoweredToCall(Callee)) {
529             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
530             return None;
531           }
532         }
533 
534         // If the instruction might have a side-effect recursively account for
535         // the cost of it and all the instructions leading up to it.
536         if (I.mayHaveSideEffects())
537           AddCostRecursively(I, Iteration);
538 
539         // If unrolled body turns out to be too big, bail out.
540         if (UnrolledCost > MaxUnrolledLoopSize) {
541           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
542                             << "  UnrolledCost: " << UnrolledCost
543                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
544                             << "\n");
545           return None;
546         }
547       }
548 
549       Instruction *TI = BB->getTerminator();
550 
551       // Add in the live successors by first checking whether we have terminator
552       // that may be simplified based on the values simplified by this call.
553       BasicBlock *KnownSucc = nullptr;
554       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
555         if (BI->isConditional()) {
556           if (Constant *SimpleCond =
557                   SimplifiedValues.lookup(BI->getCondition())) {
558             // Just take the first successor if condition is undef
559             if (isa<UndefValue>(SimpleCond))
560               KnownSucc = BI->getSuccessor(0);
561             else if (ConstantInt *SimpleCondVal =
562                          dyn_cast<ConstantInt>(SimpleCond))
563               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
564           }
565         }
566       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
567         if (Constant *SimpleCond =
568                 SimplifiedValues.lookup(SI->getCondition())) {
569           // Just take the first successor if condition is undef
570           if (isa<UndefValue>(SimpleCond))
571             KnownSucc = SI->getSuccessor(0);
572           else if (ConstantInt *SimpleCondVal =
573                        dyn_cast<ConstantInt>(SimpleCond))
574             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
575         }
576       }
577       if (KnownSucc) {
578         if (L->contains(KnownSucc))
579           BBWorklist.insert(KnownSucc);
580         else
581           ExitWorklist.insert({BB, KnownSucc});
582         continue;
583       }
584 
585       // Add BB's successors to the worklist.
586       for (BasicBlock *Succ : successors(BB))
587         if (L->contains(Succ))
588           BBWorklist.insert(Succ);
589         else
590           ExitWorklist.insert({BB, Succ});
591       AddCostRecursively(*TI, Iteration);
592     }
593 
594     // If we found no optimization opportunities on the first iteration, we
595     // won't find them on later ones too.
596     if (UnrolledCost == RolledDynamicCost) {
597       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
598                         << "  UnrolledCost: " << UnrolledCost << "\n");
599       return None;
600     }
601   }
602 
603   while (!ExitWorklist.empty()) {
604     BasicBlock *ExitingBB, *ExitBB;
605     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
606 
607     for (Instruction &I : *ExitBB) {
608       auto *PN = dyn_cast<PHINode>(&I);
609       if (!PN)
610         break;
611 
612       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
613       if (auto *OpI = dyn_cast<Instruction>(Op))
614         if (L->contains(OpI))
615           AddCostRecursively(*OpI, TripCount - 1);
616     }
617   }
618 
619   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
620                     << "UnrolledCost: " << UnrolledCost << ", "
621                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
622   return {{UnrolledCost, RolledDynamicCost}};
623 }
624 
625 /// ApproximateLoopSize - Approximate the size of the loop.
626 unsigned llvm::ApproximateLoopSize(
627     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
628     const TargetTransformInfo &TTI,
629     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
630   CodeMetrics Metrics;
631   for (BasicBlock *BB : L->blocks())
632     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
633   NumCalls = Metrics.NumInlineCandidates;
634   NotDuplicatable = Metrics.notDuplicatable;
635   Convergent = Metrics.convergent;
636 
637   unsigned LoopSize = Metrics.NumInsts;
638 
639   // Don't allow an estimate of size zero.  This would allows unrolling of loops
640   // with huge iteration counts, which is a compile time problem even if it's
641   // not a problem for code quality. Also, the code using this size may assume
642   // that each loop has at least three instructions (likely a conditional
643   // branch, a comparison feeding that branch, and some kind of loop increment
644   // feeding that comparison instruction).
645   LoopSize = std::max(LoopSize, BEInsns + 1);
646 
647   return LoopSize;
648 }
649 
650 // Returns the loop hint metadata node with the given name (for example,
651 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
652 // returned.
653 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
654   if (MDNode *LoopID = L->getLoopID())
655     return GetUnrollMetadata(LoopID, Name);
656   return nullptr;
657 }
658 
659 // Returns true if the loop has an unroll(full) pragma.
660 static bool HasUnrollFullPragma(const Loop *L) {
661   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
662 }
663 
664 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
665 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
666 static bool HasUnrollEnablePragma(const Loop *L) {
667   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
668 }
669 
670 // Returns true if the loop has an runtime unroll(disable) pragma.
671 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
672   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
673 }
674 
675 // If loop has an unroll_count pragma return the (necessarily
676 // positive) value from the pragma.  Otherwise return 0.
677 static unsigned UnrollCountPragmaValue(const Loop *L) {
678   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
679   if (MD) {
680     assert(MD->getNumOperands() == 2 &&
681            "Unroll count hint metadata should have two operands.");
682     unsigned Count =
683         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
684     assert(Count >= 1 && "Unroll count must be positive.");
685     return Count;
686   }
687   return 0;
688 }
689 
690 // Computes the boosting factor for complete unrolling.
691 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
692 // be beneficial to fully unroll the loop even if unrolledcost is large. We
693 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
694 // the unroll threshold.
695 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
696                                             unsigned MaxPercentThresholdBoost) {
697   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
698     return 100;
699   else if (Cost.UnrolledCost != 0)
700     // The boosting factor is RolledDynamicCost / UnrolledCost
701     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
702                     MaxPercentThresholdBoost);
703   else
704     return MaxPercentThresholdBoost;
705 }
706 
707 // Returns loop size estimation for unrolled loop.
708 static uint64_t getUnrolledLoopSize(
709     unsigned LoopSize,
710     TargetTransformInfo::UnrollingPreferences &UP) {
711   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
712   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
713 }
714 
715 // Returns true if unroll count was set explicitly.
716 // Calculates unroll count and writes it to UP.Count.
717 // Unless IgnoreUser is true, will also use metadata and command-line options
718 // that are specific to to the LoopUnroll pass (which, for instance, are
719 // irrelevant for the LoopUnrollAndJam pass).
720 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
721 // many LoopUnroll-specific options. The shared functionality should be
722 // refactored into it own function.
723 bool llvm::computeUnrollCount(
724     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
725     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
726     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
727     unsigned &TripMultiple, unsigned LoopSize,
728     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
729 
730   // Check for explicit Count.
731   // 1st priority is unroll count set by "unroll-count" option.
732   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
733   if (UserUnrollCount) {
734     UP.Count = UnrollCount;
735     UP.AllowExpensiveTripCount = true;
736     UP.Force = true;
737     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
738       return true;
739   }
740 
741   // 2nd priority is unroll count set by pragma.
742   unsigned PragmaCount = UnrollCountPragmaValue(L);
743   if (PragmaCount > 0) {
744     UP.Count = PragmaCount;
745     UP.Runtime = true;
746     UP.AllowExpensiveTripCount = true;
747     UP.Force = true;
748     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
749         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
750       return true;
751   }
752   bool PragmaFullUnroll = HasUnrollFullPragma(L);
753   if (PragmaFullUnroll && TripCount != 0) {
754     UP.Count = TripCount;
755     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
756       return false;
757   }
758 
759   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
760   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
761                         PragmaEnableUnroll || UserUnrollCount;
762 
763   if (ExplicitUnroll && TripCount != 0) {
764     // If the loop has an unrolling pragma, we want to be more aggressive with
765     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
766     // value which is larger than the default limits.
767     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
768     UP.PartialThreshold =
769         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
770   }
771 
772   // 3rd priority is full unroll count.
773   // Full unroll makes sense only when TripCount or its upper bound could be
774   // statically calculated.
775   // Also we need to check if we exceed FullUnrollMaxCount.
776   // If using the upper bound to unroll, TripMultiple should be set to 1 because
777   // we do not know when loop may exit.
778   // MaxTripCount and ExactTripCount cannot both be non zero since we only
779   // compute the former when the latter is zero.
780   unsigned ExactTripCount = TripCount;
781   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
782          "ExtractTripCount and MaxTripCount cannot both be non zero.");
783   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
784   UP.Count = FullUnrollTripCount;
785   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
786     // When computing the unrolled size, note that BEInsns are not replicated
787     // like the rest of the loop body.
788     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
789       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
790       TripCount = FullUnrollTripCount;
791       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
792       return ExplicitUnroll;
793     } else {
794       // The loop isn't that small, but we still can fully unroll it if that
795       // helps to remove a significant number of instructions.
796       // To check that, run additional analysis on the loop.
797       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
798               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
799               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
800         unsigned Boost =
801             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
802         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
803           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
804           TripCount = FullUnrollTripCount;
805           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
806           return ExplicitUnroll;
807         }
808       }
809     }
810   }
811 
812   // 4th priority is loop peeling.
813   computePeelCount(L, LoopSize, UP, TripCount, SE);
814   if (UP.PeelCount) {
815     UP.Runtime = false;
816     UP.Count = 1;
817     return ExplicitUnroll;
818   }
819 
820   // 5th priority is partial unrolling.
821   // Try partial unroll only when TripCount could be statically calculated.
822   if (TripCount) {
823     UP.Partial |= ExplicitUnroll;
824     if (!UP.Partial) {
825       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
826                         << "-unroll-allow-partial not given\n");
827       UP.Count = 0;
828       return false;
829     }
830     if (UP.Count == 0)
831       UP.Count = TripCount;
832     if (UP.PartialThreshold != NoThreshold) {
833       // Reduce unroll count to be modulo of TripCount for partial unrolling.
834       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
835         UP.Count =
836             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
837             (LoopSize - UP.BEInsns);
838       if (UP.Count > UP.MaxCount)
839         UP.Count = UP.MaxCount;
840       while (UP.Count != 0 && TripCount % UP.Count != 0)
841         UP.Count--;
842       if (UP.AllowRemainder && UP.Count <= 1) {
843         // If there is no Count that is modulo of TripCount, set Count to
844         // largest power-of-two factor that satisfies the threshold limit.
845         // As we'll create fixup loop, do the type of unrolling only if
846         // remainder loop is allowed.
847         UP.Count = UP.DefaultUnrollRuntimeCount;
848         while (UP.Count != 0 &&
849                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
850           UP.Count >>= 1;
851       }
852       if (UP.Count < 2) {
853         if (PragmaEnableUnroll)
854           ORE->emit([&]() {
855             return OptimizationRemarkMissed(DEBUG_TYPE,
856                                             "UnrollAsDirectedTooLarge",
857                                             L->getStartLoc(), L->getHeader())
858                    << "Unable to unroll loop as directed by unroll(enable) "
859                       "pragma "
860                       "because unrolled size is too large.";
861           });
862         UP.Count = 0;
863       }
864     } else {
865       UP.Count = TripCount;
866     }
867     if (UP.Count > UP.MaxCount)
868       UP.Count = UP.MaxCount;
869     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
870         UP.Count != TripCount)
871       ORE->emit([&]() {
872         return OptimizationRemarkMissed(DEBUG_TYPE,
873                                         "FullUnrollAsDirectedTooLarge",
874                                         L->getStartLoc(), L->getHeader())
875                << "Unable to fully unroll loop as directed by unroll pragma "
876                   "because "
877                   "unrolled size is too large.";
878       });
879     return ExplicitUnroll;
880   }
881   assert(TripCount == 0 &&
882          "All cases when TripCount is constant should be covered here.");
883   if (PragmaFullUnroll)
884     ORE->emit([&]() {
885       return OptimizationRemarkMissed(
886                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
887                  L->getStartLoc(), L->getHeader())
888              << "Unable to fully unroll loop as directed by unroll(full) "
889                 "pragma "
890                 "because loop has a runtime trip count.";
891     });
892 
893   // 6th priority is runtime unrolling.
894   // Don't unroll a runtime trip count loop when it is disabled.
895   if (HasRuntimeUnrollDisablePragma(L)) {
896     UP.Count = 0;
897     return false;
898   }
899 
900   // Check if the runtime trip count is too small when profile is available.
901   if (L->getHeader()->getParent()->hasProfileData()) {
902     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
903       if (*ProfileTripCount < FlatLoopTripCountThreshold)
904         return false;
905       else
906         UP.AllowExpensiveTripCount = true;
907     }
908   }
909 
910   // Reduce count based on the type of unrolling and the threshold values.
911   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
912   if (!UP.Runtime) {
913     LLVM_DEBUG(
914         dbgs() << "  will not try to unroll loop with runtime trip count "
915                << "-unroll-runtime not given\n");
916     UP.Count = 0;
917     return false;
918   }
919   if (UP.Count == 0)
920     UP.Count = UP.DefaultUnrollRuntimeCount;
921 
922   // Reduce unroll count to be the largest power-of-two factor of
923   // the original count which satisfies the threshold limit.
924   while (UP.Count != 0 &&
925          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
926     UP.Count >>= 1;
927 
928 #ifndef NDEBUG
929   unsigned OrigCount = UP.Count;
930 #endif
931 
932   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
933     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
934       UP.Count >>= 1;
935     LLVM_DEBUG(
936         dbgs() << "Remainder loop is restricted (that could architecture "
937                   "specific or because the loop contains a convergent "
938                   "instruction), so unroll count must divide the trip "
939                   "multiple, "
940                << TripMultiple << ".  Reducing unroll count from " << OrigCount
941                << " to " << UP.Count << ".\n");
942 
943     using namespace ore;
944 
945     if (PragmaCount > 0 && !UP.AllowRemainder)
946       ORE->emit([&]() {
947         return OptimizationRemarkMissed(DEBUG_TYPE,
948                                         "DifferentUnrollCountFromDirected",
949                                         L->getStartLoc(), L->getHeader())
950                << "Unable to unroll loop the number of times directed by "
951                   "unroll_count pragma because remainder loop is restricted "
952                   "(that could architecture specific or because the loop "
953                   "contains a convergent instruction) and so must have an "
954                   "unroll "
955                   "count that divides the loop trip multiple of "
956                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
957                << NV("UnrollCount", UP.Count) << " time(s).";
958       });
959   }
960 
961   if (UP.Count > UP.MaxCount)
962     UP.Count = UP.MaxCount;
963   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
964                     << "\n");
965   if (UP.Count < 2)
966     UP.Count = 0;
967   return ExplicitUnroll;
968 }
969 
970 static LoopUnrollResult tryToUnrollLoop(
971     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
972     const TargetTransformInfo &TTI, AssumptionCache &AC,
973     OptimizationRemarkEmitter &ORE,
974     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975     bool PreserveLCSSA, int OptLevel,
976     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
977     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
978     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
979     Optional<bool> ProvidedAllowPeeling) {
980   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
981                     << L->getHeader()->getParent()->getName() << "] Loop %"
982                     << L->getHeader()->getName() << "\n");
983   TransformationMode TM = hasUnrollTransformation(L);
984   if (TM & TM_Disable)
985     return LoopUnrollResult::Unmodified;
986   if (!L->isLoopSimplifyForm()) {
987     LLVM_DEBUG(
988         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
989     return LoopUnrollResult::Unmodified;
990   }
991 
992   // When automtatic unrolling is disabled, do not unroll unless overridden for
993   // this loop.
994   if (OnlyWhenForced && !(TM & TM_Enable))
995     return LoopUnrollResult::Unmodified;
996 
997   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
998   unsigned NumInlineCandidates;
999   bool NotDuplicatable;
1000   bool Convergent;
1001   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1002       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1003       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1004       ProvidedAllowPeeling);
1005 
1006   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1007   // as threshold later on.
1008   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1009       !OptForSize)
1010     return LoopUnrollResult::Unmodified;
1011 
1012   SmallPtrSet<const Value *, 32> EphValues;
1013   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1014 
1015   unsigned LoopSize =
1016       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1017                           TTI, EphValues, UP.BEInsns);
1018   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1019   if (NotDuplicatable) {
1020     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1021                       << " instructions.\n");
1022     return LoopUnrollResult::Unmodified;
1023   }
1024 
1025   // When optimizing for size, use LoopSize as threshold, to (fully) unroll
1026   // loops, if it does not increase code size.
1027   if (OptForSize)
1028     UP.Threshold = std::max(UP.Threshold, LoopSize);
1029 
1030   if (NumInlineCandidates != 0) {
1031     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1032     return LoopUnrollResult::Unmodified;
1033   }
1034 
1035   // Find trip count and trip multiple if count is not available
1036   unsigned TripCount = 0;
1037   unsigned MaxTripCount = 0;
1038   unsigned TripMultiple = 1;
1039   // If there are multiple exiting blocks but one of them is the latch, use the
1040   // latch for the trip count estimation. Otherwise insist on a single exiting
1041   // block for the trip count estimation.
1042   BasicBlock *ExitingBlock = L->getLoopLatch();
1043   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1044     ExitingBlock = L->getExitingBlock();
1045   if (ExitingBlock) {
1046     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1047     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1048   }
1049 
1050   // If the loop contains a convergent operation, the prelude we'd add
1051   // to do the first few instructions before we hit the unrolled loop
1052   // is unsafe -- it adds a control-flow dependency to the convergent
1053   // operation.  Therefore restrict remainder loop (try unrollig without).
1054   //
1055   // TODO: This is quite conservative.  In practice, convergent_op()
1056   // is likely to be called unconditionally in the loop.  In this
1057   // case, the program would be ill-formed (on most architectures)
1058   // unless n were the same on all threads in a thread group.
1059   // Assuming n is the same on all threads, any kind of unrolling is
1060   // safe.  But currently llvm's notion of convergence isn't powerful
1061   // enough to express this.
1062   if (Convergent)
1063     UP.AllowRemainder = false;
1064 
1065   // Try to find the trip count upper bound if we cannot find the exact trip
1066   // count.
1067   bool MaxOrZero = false;
1068   if (!TripCount) {
1069     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1070     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1071     // We can unroll by the upper bound amount if it's generally allowed or if
1072     // we know that the loop is executed either the upper bound or zero times.
1073     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1074     // loop tests remains the same compared to the non-unrolled version, whereas
1075     // the generic upper bound unrolling keeps all but the last loop test so the
1076     // number of loop tests goes up which may end up being worse on targets with
1077     // constrained branch predictor resources so is controlled by an option.)
1078     // In addition we only unroll small upper bounds.
1079     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1080       MaxTripCount = 0;
1081     }
1082   }
1083 
1084   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1085   // fully unroll the loop.
1086   bool UseUpperBound = false;
1087   bool IsCountSetExplicitly = computeUnrollCount(
1088       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1089       TripMultiple, LoopSize, UP, UseUpperBound);
1090   if (!UP.Count)
1091     return LoopUnrollResult::Unmodified;
1092   // Unroll factor (Count) must be less or equal to TripCount.
1093   if (TripCount && UP.Count > TripCount)
1094     UP.Count = TripCount;
1095 
1096   // Save loop properties before it is transformed.
1097   MDNode *OrigLoopID = L->getLoopID();
1098 
1099   // Unroll the loop.
1100   Loop *RemainderLoop = nullptr;
1101   LoopUnrollResult UnrollResult = UnrollLoop(
1102       L,
1103       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1104        UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1105        ForgetAllSCEV},
1106       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1107   if (UnrollResult == LoopUnrollResult::Unmodified)
1108     return LoopUnrollResult::Unmodified;
1109 
1110   if (RemainderLoop) {
1111     Optional<MDNode *> RemainderLoopID =
1112         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1113                                         LLVMLoopUnrollFollowupRemainder});
1114     if (RemainderLoopID.hasValue())
1115       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1116   }
1117 
1118   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1119     Optional<MDNode *> NewLoopID =
1120         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1121                                         LLVMLoopUnrollFollowupUnrolled});
1122     if (NewLoopID.hasValue()) {
1123       L->setLoopID(NewLoopID.getValue());
1124 
1125       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1126       // explicitly.
1127       return UnrollResult;
1128     }
1129   }
1130 
1131   // If loop has an unroll count pragma or unrolled by explicitly set count
1132   // mark loop as unrolled to prevent unrolling beyond that requested.
1133   // If the loop was peeled, we already "used up" the profile information
1134   // we had, so we don't want to unroll or peel again.
1135   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1136       (IsCountSetExplicitly || UP.PeelCount))
1137     L->setLoopAlreadyUnrolled();
1138 
1139   return UnrollResult;
1140 }
1141 
1142 namespace {
1143 
1144 class LoopUnroll : public LoopPass {
1145 public:
1146   static char ID; // Pass ID, replacement for typeid
1147 
1148   int OptLevel;
1149 
1150   /// If false, use a cost model to determine whether unrolling of a loop is
1151   /// profitable. If true, only loops that explicitly request unrolling via
1152   /// metadata are considered. All other loops are skipped.
1153   bool OnlyWhenForced;
1154 
1155   /// If false, when SCEV is invalidated, only forget everything in the
1156   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1157   /// Otherwise, forgetAllLoops and rebuild when needed next.
1158   bool ForgetAllSCEV;
1159 
1160   Optional<unsigned> ProvidedCount;
1161   Optional<unsigned> ProvidedThreshold;
1162   Optional<bool> ProvidedAllowPartial;
1163   Optional<bool> ProvidedRuntime;
1164   Optional<bool> ProvidedUpperBound;
1165   Optional<bool> ProvidedAllowPeeling;
1166 
1167   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1168              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1169              Optional<unsigned> Count = None,
1170              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1171              Optional<bool> UpperBound = None,
1172              Optional<bool> AllowPeeling = None)
1173       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1174         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1175         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1176         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1177         ProvidedAllowPeeling(AllowPeeling) {
1178     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1179   }
1180 
1181   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1182     if (skipLoop(L))
1183       return false;
1184 
1185     Function &F = *L->getHeader()->getParent();
1186 
1187     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1188     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1189     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1190     const TargetTransformInfo &TTI =
1191         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1192     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1193     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1194     // pass.  Function analyses need to be preserved across loop transformations
1195     // but ORE cannot be preserved (see comment before the pass definition).
1196     OptimizationRemarkEmitter ORE(&F);
1197     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1198 
1199     LoopUnrollResult Result = tryToUnrollLoop(
1200         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr,
1201         PreserveLCSSA, OptLevel, OnlyWhenForced,
1202         ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial,
1203         ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling);
1204 
1205     if (Result == LoopUnrollResult::FullyUnrolled)
1206       LPM.markLoopAsDeleted(*L);
1207 
1208     return Result != LoopUnrollResult::Unmodified;
1209   }
1210 
1211   /// This transformation requires natural loop information & requires that
1212   /// loop preheaders be inserted into the CFG...
1213   void getAnalysisUsage(AnalysisUsage &AU) const override {
1214     AU.addRequired<AssumptionCacheTracker>();
1215     AU.addRequired<TargetTransformInfoWrapperPass>();
1216     // FIXME: Loop passes are required to preserve domtree, and for now we just
1217     // recreate dom info if anything gets unrolled.
1218     getLoopAnalysisUsage(AU);
1219   }
1220 };
1221 
1222 } // end anonymous namespace
1223 
1224 char LoopUnroll::ID = 0;
1225 
1226 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1227 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1228 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1230 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1231 
1232 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1233                                  bool ForgetAllSCEV, int Threshold, int Count,
1234                                  int AllowPartial, int Runtime, int UpperBound,
1235                                  int AllowPeeling) {
1236   // TODO: It would make more sense for this function to take the optionals
1237   // directly, but that's dangerous since it would silently break out of tree
1238   // callers.
1239   return new LoopUnroll(
1240       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1241       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1242       Count == -1 ? None : Optional<unsigned>(Count),
1243       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1244       Runtime == -1 ? None : Optional<bool>(Runtime),
1245       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1246       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1247 }
1248 
1249 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1250                                        bool ForgetAllSCEV) {
1251   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1252                               0, 0, 0, 0);
1253 }
1254 
1255 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1256                                           LoopStandardAnalysisResults &AR,
1257                                           LPMUpdater &Updater) {
1258   const auto &FAM =
1259       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1260   Function *F = L.getHeader()->getParent();
1261 
1262   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1263   // FIXME: This should probably be optional rather than required.
1264   if (!ORE)
1265     report_fatal_error(
1266         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1267         "cached at a higher level");
1268 
1269   // Keep track of the previous loop structure so we can identify new loops
1270   // created by unrolling.
1271   Loop *ParentL = L.getParentLoop();
1272   SmallPtrSet<Loop *, 4> OldLoops;
1273   if (ParentL)
1274     OldLoops.insert(ParentL->begin(), ParentL->end());
1275   else
1276     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1277 
1278   std::string LoopName = L.getName();
1279 
1280   bool Changed =
1281       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1282                       /*BFI*/ nullptr, /*PSI*/ nullptr,
1283                       /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
1284                       /*ForgetAllSCEV*/ false, /*Count*/ None,
1285                       /*Threshold*/ None, /*AllowPartial*/ false,
1286                       /*Runtime*/ false, /*UpperBound*/ false,
1287                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1288   if (!Changed)
1289     return PreservedAnalyses::all();
1290 
1291   // The parent must not be damaged by unrolling!
1292 #ifndef NDEBUG
1293   if (ParentL)
1294     ParentL->verifyLoop();
1295 #endif
1296 
1297   // Unrolling can do several things to introduce new loops into a loop nest:
1298   // - Full unrolling clones child loops within the current loop but then
1299   //   removes the current loop making all of the children appear to be new
1300   //   sibling loops.
1301   //
1302   // When a new loop appears as a sibling loop after fully unrolling,
1303   // its nesting structure has fundamentally changed and we want to revisit
1304   // it to reflect that.
1305   //
1306   // When unrolling has removed the current loop, we need to tell the
1307   // infrastructure that it is gone.
1308   //
1309   // Finally, we support a debugging/testing mode where we revisit child loops
1310   // as well. These are not expected to require further optimizations as either
1311   // they or the loop they were cloned from have been directly visited already.
1312   // But the debugging mode allows us to check this assumption.
1313   bool IsCurrentLoopValid = false;
1314   SmallVector<Loop *, 4> SibLoops;
1315   if (ParentL)
1316     SibLoops.append(ParentL->begin(), ParentL->end());
1317   else
1318     SibLoops.append(AR.LI.begin(), AR.LI.end());
1319   erase_if(SibLoops, [&](Loop *SibLoop) {
1320     if (SibLoop == &L) {
1321       IsCurrentLoopValid = true;
1322       return true;
1323     }
1324 
1325     // Otherwise erase the loop from the list if it was in the old loops.
1326     return OldLoops.count(SibLoop) != 0;
1327   });
1328   Updater.addSiblingLoops(SibLoops);
1329 
1330   if (!IsCurrentLoopValid) {
1331     Updater.markLoopAsDeleted(L, LoopName);
1332   } else {
1333     // We can only walk child loops if the current loop remained valid.
1334     if (UnrollRevisitChildLoops) {
1335       // Walk *all* of the child loops.
1336       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1337       Updater.addChildLoops(ChildLoops);
1338     }
1339   }
1340 
1341   return getLoopPassPreservedAnalyses();
1342 }
1343 
1344 template <typename RangeT>
1345 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1346   SmallVector<Loop *, 8> Worklist;
1347   // We use an internal worklist to build up the preorder traversal without
1348   // recursion.
1349   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1350 
1351   for (Loop *RootL : Loops) {
1352     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1353     assert(PreOrderWorklist.empty() &&
1354            "Must start with an empty preorder walk worklist.");
1355     PreOrderWorklist.push_back(RootL);
1356     do {
1357       Loop *L = PreOrderWorklist.pop_back_val();
1358       PreOrderWorklist.append(L->begin(), L->end());
1359       PreOrderLoops.push_back(L);
1360     } while (!PreOrderWorklist.empty());
1361 
1362     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1363     PreOrderLoops.clear();
1364   }
1365   return Worklist;
1366 }
1367 
1368 PreservedAnalyses LoopUnrollPass::run(Function &F,
1369                                       FunctionAnalysisManager &AM) {
1370   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1371   auto &LI = AM.getResult<LoopAnalysis>(F);
1372   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1373   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1374   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1375   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1376 
1377   LoopAnalysisManager *LAM = nullptr;
1378   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1379     LAM = &LAMProxy->getManager();
1380 
1381   const ModuleAnalysisManager &MAM =
1382       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1383   ProfileSummaryInfo *PSI =
1384       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1385   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1386       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1387 
1388   bool Changed = false;
1389 
1390   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1391   // Since simplification may add new inner loops, it has to run before the
1392   // legality and profitability checks. This means running the loop unroller
1393   // will simplify all loops, regardless of whether anything end up being
1394   // unrolled.
1395   for (auto &L : LI) {
1396     Changed |=
1397         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1398     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1399   }
1400 
1401   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1402 
1403   while (!Worklist.empty()) {
1404     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1405     // from back to front so that we work forward across the CFG, which
1406     // for unrolling is only needed to get optimization remarks emitted in
1407     // a forward order.
1408     Loop &L = *Worklist.pop_back_val();
1409 #ifndef NDEBUG
1410     Loop *ParentL = L.getParentLoop();
1411 #endif
1412 
1413     // Check if the profile summary indicates that the profiled application
1414     // has a huge working set size, in which case we disable peeling to avoid
1415     // bloating it further.
1416     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1417     if (PSI && PSI->hasHugeWorkingSetSize())
1418       LocalAllowPeeling = false;
1419     std::string LoopName = L.getName();
1420     // The API here is quite complex to call and we allow to select some
1421     // flavors of unrolling during construction time (by setting UnrollOpts).
1422     LoopUnrollResult Result = tryToUnrollLoop(
1423         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1424         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1425         /*ForgetAllSCEV*/ false, /*Count*/ None,
1426         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1427         UnrollOpts.AllowUpperBound, LocalAllowPeeling);
1428     Changed |= Result != LoopUnrollResult::Unmodified;
1429 
1430     // The parent must not be damaged by unrolling!
1431 #ifndef NDEBUG
1432     if (Result != LoopUnrollResult::Unmodified && ParentL)
1433       ParentL->verifyLoop();
1434 #endif
1435 
1436     // Clear any cached analysis results for L if we removed it completely.
1437     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1438       LAM->clear(L, LoopName);
1439   }
1440 
1441   if (!Changed)
1442     return PreservedAnalyses::all();
1443 
1444   return getLoopPassPreservedAnalyses();
1445 }
1446