1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Utils/UnrollLoop.h" 37 #include <climits> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 static cl::opt<unsigned> 44 UnrollThreshold("unroll-threshold", cl::Hidden, 45 cl::desc("The baseline cost threshold for loop unrolling")); 46 47 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 48 "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden, 49 cl::desc("The percentage of estimated dynamic cost which must be saved by " 50 "unrolling to allow unrolling up to the max threshold.")); 51 52 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 53 "unroll-dynamic-cost-savings-discount", cl::Hidden, 54 cl::desc("This is the amount discounted from the total unroll cost when " 55 "the unrolled form has a high dynamic cost savings (triggered by " 56 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 57 58 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 59 "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, 60 cl::desc("Don't allow loop unrolling to simulate more than this number of" 61 "iterations when checking full unroll profitability")); 62 63 static cl::opt<unsigned> 64 UnrollCount("unroll-count", cl::Hidden, 65 cl::desc("Use this unroll count for all loops including those with " 66 "unroll_count pragma values, for testing purposes")); 67 68 static cl::opt<unsigned> 69 UnrollMaxCount("unroll-max-count", cl::Hidden, 70 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 71 "testing purposes")); 72 73 static cl::opt<unsigned> 74 UnrollFullMaxCount("unroll-full-max-count", cl::Hidden, 75 cl::desc("Set the max unroll count for full unrolling, for testing purposes")); 76 77 static cl::opt<bool> 78 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 79 cl::desc("Allows loops to be partially unrolled until " 80 "-unroll-threshold loop size is reached.")); 81 82 static cl::opt<bool> 83 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 84 cl::desc("Unroll loops with run-time trip counts")); 85 86 static cl::opt<unsigned> 87 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 88 cl::desc("Unrolled size limit for loops with an unroll(full) or " 89 "unroll_count pragma.")); 90 91 92 /// A magic value for use with the Threshold parameter to indicate 93 /// that the loop unroll should be performed regardless of how much 94 /// code expansion would result. 95 static const unsigned NoThreshold = UINT_MAX; 96 97 /// Default unroll count for loops with run-time trip count if 98 /// -unroll-count is not set 99 static const unsigned DefaultUnrollRuntimeCount = 8; 100 101 /// Gather the various unrolling parameters based on the defaults, compiler 102 /// flags, TTI overrides, pragmas, and user specified parameters. 103 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 104 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 105 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 106 Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, 107 bool PragmaEnableUnroll, unsigned TripCount) { 108 TargetTransformInfo::UnrollingPreferences UP; 109 110 // Set up the defaults 111 UP.Threshold = 150; 112 UP.PercentDynamicCostSavedThreshold = 20; 113 UP.DynamicCostSavingsDiscount = 2000; 114 UP.OptSizeThreshold = 50; 115 UP.PartialThreshold = UP.Threshold; 116 UP.PartialOptSizeThreshold = UP.OptSizeThreshold; 117 UP.Count = 0; 118 UP.MaxCount = UINT_MAX; 119 UP.FullUnrollMaxCount = UINT_MAX; 120 UP.Partial = false; 121 UP.Runtime = false; 122 UP.AllowExpensiveTripCount = false; 123 124 // Override with any target specific settings 125 TTI.getUnrollingPreferences(L, UP); 126 127 // Apply size attributes 128 if (L->getHeader()->getParent()->optForSize()) { 129 UP.Threshold = UP.OptSizeThreshold; 130 UP.PartialThreshold = UP.PartialOptSizeThreshold; 131 } 132 133 // Apply unroll count pragmas 134 if (PragmaCount) 135 UP.Count = PragmaCount; 136 else if (PragmaFullUnroll) 137 UP.Count = TripCount; 138 139 // Apply any user values specified by cl::opt 140 if (UnrollThreshold.getNumOccurrences() > 0) { 141 UP.Threshold = UnrollThreshold; 142 UP.PartialThreshold = UnrollThreshold; 143 } 144 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 145 UP.PercentDynamicCostSavedThreshold = 146 UnrollPercentDynamicCostSavedThreshold; 147 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 148 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 149 if (UnrollCount.getNumOccurrences() > 0) 150 UP.Count = UnrollCount; 151 if (UnrollMaxCount.getNumOccurrences() > 0) 152 UP.MaxCount = UnrollMaxCount; 153 if (UnrollFullMaxCount.getNumOccurrences() > 0) 154 UP.FullUnrollMaxCount = UnrollFullMaxCount; 155 if (UnrollAllowPartial.getNumOccurrences() > 0) 156 UP.Partial = UnrollAllowPartial; 157 if (UnrollRuntime.getNumOccurrences() > 0) 158 UP.Runtime = UnrollRuntime; 159 160 // Apply user values provided by argument 161 if (UserThreshold.hasValue()) { 162 UP.Threshold = *UserThreshold; 163 UP.PartialThreshold = *UserThreshold; 164 } 165 if (UserCount.hasValue()) 166 UP.Count = *UserCount; 167 if (UserAllowPartial.hasValue()) 168 UP.Partial = *UserAllowPartial; 169 if (UserRuntime.hasValue()) 170 UP.Runtime = *UserRuntime; 171 172 if (PragmaCount > 0 || 173 ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { 174 // If the loop has an unrolling pragma, we want to be more aggressive with 175 // unrolling limits. Set thresholds to at least the PragmaTheshold value 176 // which is larger than the default limits. 177 if (UP.Threshold != NoThreshold) 178 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 179 if (UP.PartialThreshold != NoThreshold) 180 UP.PartialThreshold = 181 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 182 } 183 184 return UP; 185 } 186 187 namespace { 188 struct EstimatedUnrollCost { 189 /// \brief The estimated cost after unrolling. 190 int UnrolledCost; 191 192 /// \brief The estimated dynamic cost of executing the instructions in the 193 /// rolled form. 194 int RolledDynamicCost; 195 }; 196 } 197 198 /// \brief Figure out if the loop is worth full unrolling. 199 /// 200 /// Complete loop unrolling can make some loads constant, and we need to know 201 /// if that would expose any further optimization opportunities. This routine 202 /// estimates this optimization. It computes cost of unrolled loop 203 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 204 /// dynamic cost we mean that we won't count costs of blocks that are known not 205 /// to be executed (i.e. if we have a branch in the loop and we know that at the 206 /// given iteration its condition would be resolved to true, we won't add up the 207 /// cost of the 'false'-block). 208 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 209 /// the analysis failed (no benefits expected from the unrolling, or the loop is 210 /// too big to analyze), the returned value is None. 211 static Optional<EstimatedUnrollCost> 212 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 213 ScalarEvolution &SE, const TargetTransformInfo &TTI, 214 int MaxUnrolledLoopSize) { 215 // We want to be able to scale offsets by the trip count and add more offsets 216 // to them without checking for overflows, and we already don't want to 217 // analyze *massive* trip counts, so we force the max to be reasonably small. 218 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 219 "The unroll iterations max is too large!"); 220 221 // Don't simulate loops with a big or unknown tripcount 222 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 223 TripCount > UnrollMaxIterationsCountToAnalyze) 224 return None; 225 226 SmallSetVector<BasicBlock *, 16> BBWorklist; 227 DenseMap<Value *, Constant *> SimplifiedValues; 228 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 229 230 // The estimated cost of the unrolled form of the loop. We try to estimate 231 // this by simplifying as much as we can while computing the estimate. 232 int UnrolledCost = 0; 233 // We also track the estimated dynamic (that is, actually executed) cost in 234 // the rolled form. This helps identify cases when the savings from unrolling 235 // aren't just exposing dead control flows, but actual reduced dynamic 236 // instructions due to the simplifications which we expect to occur after 237 // unrolling. 238 int RolledDynamicCost = 0; 239 240 // Ensure that we don't violate the loop structure invariants relied on by 241 // this analysis. 242 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 243 assert(L->isLCSSAForm(DT) && 244 "Must have loops in LCSSA form to track live-out values."); 245 246 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 247 248 // Simulate execution of each iteration of the loop counting instructions, 249 // which would be simplified. 250 // Since the same load will take different values on different iterations, 251 // we literally have to go through all loop's iterations. 252 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 253 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 254 255 // Prepare for the iteration by collecting any simplified entry or backedge 256 // inputs. 257 for (Instruction &I : *L->getHeader()) { 258 auto *PHI = dyn_cast<PHINode>(&I); 259 if (!PHI) 260 break; 261 262 // The loop header PHI nodes must have exactly two input: one from the 263 // loop preheader and one from the loop latch. 264 assert( 265 PHI->getNumIncomingValues() == 2 && 266 "Must have an incoming value only for the preheader and the latch."); 267 268 Value *V = PHI->getIncomingValueForBlock( 269 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 270 Constant *C = dyn_cast<Constant>(V); 271 if (Iteration != 0 && !C) 272 C = SimplifiedValues.lookup(V); 273 if (C) 274 SimplifiedInputValues.push_back({PHI, C}); 275 } 276 277 // Now clear and re-populate the map for the next iteration. 278 SimplifiedValues.clear(); 279 while (!SimplifiedInputValues.empty()) 280 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 281 282 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 283 284 BBWorklist.clear(); 285 BBWorklist.insert(L->getHeader()); 286 // Note that we *must not* cache the size, this loop grows the worklist. 287 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 288 BasicBlock *BB = BBWorklist[Idx]; 289 290 // Visit all instructions in the given basic block and try to simplify 291 // it. We don't change the actual IR, just count optimization 292 // opportunities. 293 for (Instruction &I : *BB) { 294 int InstCost = TTI.getUserCost(&I); 295 296 // Visit the instruction to analyze its loop cost after unrolling, 297 // and if the visitor returns false, include this instruction in the 298 // unrolled cost. 299 if (!Analyzer.visit(I)) 300 UnrolledCost += InstCost; 301 else { 302 DEBUG(dbgs() << " " << I 303 << " would be simplified if loop is unrolled.\n"); 304 (void)0; 305 } 306 307 // Also track this instructions expected cost when executing the rolled 308 // loop form. 309 RolledDynamicCost += InstCost; 310 311 // If unrolled body turns out to be too big, bail out. 312 if (UnrolledCost > MaxUnrolledLoopSize) { 313 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 314 << " UnrolledCost: " << UnrolledCost 315 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 316 << "\n"); 317 return None; 318 } 319 } 320 321 TerminatorInst *TI = BB->getTerminator(); 322 323 // Add in the live successors by first checking whether we have terminator 324 // that may be simplified based on the values simplified by this call. 325 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 326 if (BI->isConditional()) { 327 if (Constant *SimpleCond = 328 SimplifiedValues.lookup(BI->getCondition())) { 329 BasicBlock *Succ = nullptr; 330 // Just take the first successor if condition is undef 331 if (isa<UndefValue>(SimpleCond)) 332 Succ = BI->getSuccessor(0); 333 else 334 Succ = BI->getSuccessor( 335 cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0); 336 if (L->contains(Succ)) 337 BBWorklist.insert(Succ); 338 continue; 339 } 340 } 341 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 342 if (Constant *SimpleCond = 343 SimplifiedValues.lookup(SI->getCondition())) { 344 BasicBlock *Succ = nullptr; 345 // Just take the first successor if condition is undef 346 if (isa<UndefValue>(SimpleCond)) 347 Succ = SI->getSuccessor(0); 348 else 349 Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond)) 350 .getCaseSuccessor(); 351 if (L->contains(Succ)) 352 BBWorklist.insert(Succ); 353 continue; 354 } 355 } 356 357 // Add BB's successors to the worklist. 358 for (BasicBlock *Succ : successors(BB)) 359 if (L->contains(Succ)) 360 BBWorklist.insert(Succ); 361 } 362 363 // If we found no optimization opportunities on the first iteration, we 364 // won't find them on later ones too. 365 if (UnrolledCost == RolledDynamicCost) { 366 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 367 << " UnrolledCost: " << UnrolledCost << "\n"); 368 return None; 369 } 370 } 371 DEBUG(dbgs() << "Analysis finished:\n" 372 << "UnrolledCost: " << UnrolledCost << ", " 373 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 374 return {{UnrolledCost, RolledDynamicCost}}; 375 } 376 377 /// ApproximateLoopSize - Approximate the size of the loop. 378 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 379 bool &NotDuplicatable, bool &Convergent, 380 const TargetTransformInfo &TTI, 381 AssumptionCache *AC) { 382 SmallPtrSet<const Value *, 32> EphValues; 383 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 384 385 CodeMetrics Metrics; 386 for (BasicBlock *BB : L->blocks()) 387 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 388 NumCalls = Metrics.NumInlineCandidates; 389 NotDuplicatable = Metrics.notDuplicatable; 390 Convergent = Metrics.convergent; 391 392 unsigned LoopSize = Metrics.NumInsts; 393 394 // Don't allow an estimate of size zero. This would allows unrolling of loops 395 // with huge iteration counts, which is a compile time problem even if it's 396 // not a problem for code quality. Also, the code using this size may assume 397 // that each loop has at least three instructions (likely a conditional 398 // branch, a comparison feeding that branch, and some kind of loop increment 399 // feeding that comparison instruction). 400 LoopSize = std::max(LoopSize, 3u); 401 402 return LoopSize; 403 } 404 405 // Returns the loop hint metadata node with the given name (for example, 406 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 407 // returned. 408 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 409 if (MDNode *LoopID = L->getLoopID()) 410 return GetUnrollMetadata(LoopID, Name); 411 return nullptr; 412 } 413 414 // Returns true if the loop has an unroll(full) pragma. 415 static bool HasUnrollFullPragma(const Loop *L) { 416 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 417 } 418 419 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 420 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 421 static bool HasUnrollEnablePragma(const Loop *L) { 422 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 423 } 424 425 // Returns true if the loop has an unroll(disable) pragma. 426 static bool HasUnrollDisablePragma(const Loop *L) { 427 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 428 } 429 430 // Returns true if the loop has an runtime unroll(disable) pragma. 431 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 432 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 433 } 434 435 // If loop has an unroll_count pragma return the (necessarily 436 // positive) value from the pragma. Otherwise return 0. 437 static unsigned UnrollCountPragmaValue(const Loop *L) { 438 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 439 if (MD) { 440 assert(MD->getNumOperands() == 2 && 441 "Unroll count hint metadata should have two operands."); 442 unsigned Count = 443 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 444 assert(Count >= 1 && "Unroll count must be positive."); 445 return Count; 446 } 447 return 0; 448 } 449 450 // Remove existing unroll metadata and add unroll disable metadata to 451 // indicate the loop has already been unrolled. This prevents a loop 452 // from being unrolled more than is directed by a pragma if the loop 453 // unrolling pass is run more than once (which it generally is). 454 static void SetLoopAlreadyUnrolled(Loop *L) { 455 MDNode *LoopID = L->getLoopID(); 456 if (!LoopID) return; 457 458 // First remove any existing loop unrolling metadata. 459 SmallVector<Metadata *, 4> MDs; 460 // Reserve first location for self reference to the LoopID metadata node. 461 MDs.push_back(nullptr); 462 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 463 bool IsUnrollMetadata = false; 464 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 465 if (MD) { 466 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 467 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 468 } 469 if (!IsUnrollMetadata) 470 MDs.push_back(LoopID->getOperand(i)); 471 } 472 473 // Add unroll(disable) metadata to disable future unrolling. 474 LLVMContext &Context = L->getHeader()->getContext(); 475 SmallVector<Metadata *, 1> DisableOperands; 476 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 477 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 478 MDs.push_back(DisableNode); 479 480 MDNode *NewLoopID = MDNode::get(Context, MDs); 481 // Set operand 0 to refer to the loop id itself. 482 NewLoopID->replaceOperandWith(0, NewLoopID); 483 L->setLoopID(NewLoopID); 484 } 485 486 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 487 unsigned PercentDynamicCostSavedThreshold, 488 unsigned DynamicCostSavingsDiscount, 489 uint64_t UnrolledCost, 490 uint64_t RolledDynamicCost) { 491 if (Threshold == NoThreshold) { 492 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 493 return true; 494 } 495 496 if (UnrolledCost <= Threshold) { 497 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 498 << UnrolledCost << "<" << Threshold << "\n"); 499 return true; 500 } 501 502 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 503 assert(RolledDynamicCost >= UnrolledCost && 504 "Cannot have a higher unrolled cost than a rolled cost!"); 505 506 // Compute the percentage of the dynamic cost in the rolled form that is 507 // saved when unrolled. If unrolling dramatically reduces the estimated 508 // dynamic cost of the loop, we use a higher threshold to allow more 509 // unrolling. 510 unsigned PercentDynamicCostSaved = 511 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 512 513 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 514 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 515 (int64_t)Threshold) { 516 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 517 "expected dynamic cost by " << PercentDynamicCostSaved 518 << "% (threshold: " << PercentDynamicCostSavedThreshold 519 << "%)\n" 520 << " and the unrolled cost (" << UnrolledCost 521 << ") is less than the max threshold (" 522 << DynamicCostSavingsDiscount << ").\n"); 523 return true; 524 } 525 526 DEBUG(dbgs() << " Too large to fully unroll:\n"); 527 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 528 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 529 DEBUG(dbgs() << " Percent cost saved threshold: " 530 << PercentDynamicCostSavedThreshold << "%\n"); 531 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 532 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 533 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 534 << "\n"); 535 return false; 536 } 537 538 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 539 ScalarEvolution *SE, const TargetTransformInfo &TTI, 540 AssumptionCache &AC, bool PreserveLCSSA, 541 Optional<unsigned> ProvidedCount, 542 Optional<unsigned> ProvidedThreshold, 543 Optional<bool> ProvidedAllowPartial, 544 Optional<bool> ProvidedRuntime) { 545 BasicBlock *Header = L->getHeader(); 546 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 547 << "] Loop %" << Header->getName() << "\n"); 548 549 if (HasUnrollDisablePragma(L)) { 550 return false; 551 } 552 bool PragmaFullUnroll = HasUnrollFullPragma(L); 553 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 554 unsigned PragmaCount = UnrollCountPragmaValue(L); 555 bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; 556 557 // Find trip count and trip multiple if count is not available 558 unsigned TripCount = 0; 559 unsigned TripMultiple = 1; 560 // If there are multiple exiting blocks but one of them is the latch, use the 561 // latch for the trip count estimation. Otherwise insist on a single exiting 562 // block for the trip count estimation. 563 BasicBlock *ExitingBlock = L->getLoopLatch(); 564 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 565 ExitingBlock = L->getExitingBlock(); 566 if (ExitingBlock) { 567 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 568 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 569 } 570 571 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 572 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 573 ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, 574 TripCount); 575 576 unsigned Count = UP.Count; 577 bool CountSetExplicitly = Count != 0; 578 // Use a heuristic count if we didn't set anything explicitly. 579 if (!CountSetExplicitly) 580 Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; 581 if (TripCount && Count > TripCount) 582 Count = TripCount; 583 Count = std::min(Count, UP.FullUnrollMaxCount); 584 585 unsigned NumInlineCandidates; 586 bool NotDuplicatable; 587 bool Convergent; 588 unsigned LoopSize = ApproximateLoopSize( 589 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 590 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 591 592 // When computing the unrolled size, note that the conditional branch on the 593 // backedge and the comparison feeding it are not replicated like the rest of 594 // the loop body (which is why 2 is subtracted). 595 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; 596 if (NotDuplicatable) { 597 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 598 << " instructions.\n"); 599 return false; 600 } 601 if (NumInlineCandidates != 0) { 602 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 603 return false; 604 } 605 606 // Given Count, TripCount and thresholds determine the type of 607 // unrolling which is to be performed. 608 enum { Full = 0, Partial = 1, Runtime = 2 }; 609 int Unrolling; 610 if (TripCount && Count == TripCount) { 611 Unrolling = Partial; 612 // If the loop is really small, we don't need to run an expensive analysis. 613 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 614 UnrolledSize, UnrolledSize)) { 615 Unrolling = Full; 616 } else { 617 // The loop isn't that small, but we still can fully unroll it if that 618 // helps to remove a significant number of instructions. 619 // To check that, run additional analysis on the loop. 620 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 621 L, TripCount, DT, *SE, TTI, 622 UP.Threshold + UP.DynamicCostSavingsDiscount)) 623 if (canUnrollCompletely(L, UP.Threshold, 624 UP.PercentDynamicCostSavedThreshold, 625 UP.DynamicCostSavingsDiscount, 626 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 627 Unrolling = Full; 628 } 629 } 630 } else if (TripCount && Count < TripCount) { 631 Unrolling = Partial; 632 } else { 633 Unrolling = Runtime; 634 } 635 636 // Reduce count based on the type of unrolling and the threshold values. 637 unsigned OriginalCount = Count; 638 bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; 639 // Don't unroll a runtime trip count loop with unroll full pragma. 640 if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { 641 AllowRuntime = false; 642 } 643 bool DecreasedCountDueToConvergence = false; 644 if (Unrolling == Partial) { 645 bool AllowPartial = PragmaEnableUnroll || UP.Partial; 646 if (!AllowPartial && !CountSetExplicitly) { 647 DEBUG(dbgs() << " will not try to unroll partially because " 648 << "-unroll-allow-partial not given\n"); 649 return false; 650 } 651 if (UP.PartialThreshold != NoThreshold && Count > 1) { 652 // Reduce unroll count to be modulo of TripCount for partial unrolling. 653 if (UnrolledSize > UP.PartialThreshold) 654 Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); 655 if (Count > UP.MaxCount) 656 Count = UP.MaxCount; 657 while (Count != 0 && TripCount % Count != 0) 658 Count--; 659 if (AllowRuntime && Count <= 1) { 660 // If there is no Count that is modulo of TripCount, set Count to 661 // largest power-of-two factor that satisfies the threshold limit. 662 // As we'll create fixup loop, do the type of unrolling only if 663 // runtime unrolling is allowed. 664 Count = DefaultUnrollRuntimeCount; 665 UnrolledSize = (LoopSize - 2) * Count + 2; 666 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 667 Count >>= 1; 668 UnrolledSize = (LoopSize - 2) * Count + 2; 669 } 670 } 671 } 672 } else if (Unrolling == Runtime) { 673 if (!AllowRuntime && !CountSetExplicitly) { 674 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 675 << "-unroll-runtime not given\n"); 676 return false; 677 } 678 679 // Reduce unroll count to be the largest power-of-two factor of 680 // the original count which satisfies the threshold limit. 681 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 682 Count >>= 1; 683 UnrolledSize = (LoopSize-2) * Count + 2; 684 } 685 686 if (Count > UP.MaxCount) 687 Count = UP.MaxCount; 688 689 // If the loop contains a convergent operation, the prelude we'd add 690 // to do the first few instructions before we hit the unrolled loop 691 // is unsafe -- it adds a control-flow dependency to the convergent 692 // operation. Therefore Count must divide TripMultiple. 693 // 694 // TODO: This is quite conservative. In practice, convergent_op() 695 // is likely to be called unconditionally in the loop. In this 696 // case, the program would be ill-formed (on most architectures) 697 // unless n were the same on all threads in a thread group. 698 // Assuming n is the same on all threads, any kind of unrolling is 699 // safe. But currently llvm's notion of convergence isn't powerful 700 // enough to express this. 701 unsigned OrigCount = Count; 702 while (Convergent && Count != 0 && TripMultiple % Count != 0) { 703 DecreasedCountDueToConvergence = true; 704 Count >>= 1; 705 } 706 if (OrigCount > Count) { 707 DEBUG(dbgs() << " loop contains a convergent instruction, so unroll " 708 "count must divide the trip multiple, " 709 << TripMultiple << ". Reducing unroll count from " 710 << OrigCount << " to " << Count << ".\n"); 711 } 712 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 713 } 714 715 if (HasPragma) { 716 // Emit optimization remarks if we are unable to unroll the loop 717 // as directed by a pragma. 718 DebugLoc LoopLoc = L->getStartLoc(); 719 Function *F = Header->getParent(); 720 LLVMContext &Ctx = F->getContext(); 721 if (PragmaCount > 0 && DecreasedCountDueToConvergence) { 722 emitOptimizationRemarkMissed( 723 Ctx, DEBUG_TYPE, *F, LoopLoc, 724 Twine("Unable to unroll loop the number of times directed by " 725 "unroll_count pragma because the loop contains a convergent " 726 "instruction, and so must have an unroll count that divides " 727 "the loop trip multiple of ") + 728 Twine(TripMultiple) + ". Unrolling instead " + Twine(Count) + 729 " time(s)."); 730 } else if ((PragmaCount > 0) && Count != OriginalCount) { 731 emitOptimizationRemarkMissed( 732 Ctx, DEBUG_TYPE, *F, LoopLoc, 733 "Unable to unroll loop the number of times directed by " 734 "unroll_count pragma because unrolled size is too large."); 735 } else if (PragmaFullUnroll && !TripCount) { 736 emitOptimizationRemarkMissed( 737 Ctx, DEBUG_TYPE, *F, LoopLoc, 738 "Unable to fully unroll loop as directed by unroll(full) pragma " 739 "because loop has a runtime trip count."); 740 } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { 741 emitOptimizationRemarkMissed( 742 Ctx, DEBUG_TYPE, *F, LoopLoc, 743 "Unable to unroll loop as directed by unroll(enable) pragma because " 744 "unrolled size is too large."); 745 } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 746 Count != TripCount) { 747 emitOptimizationRemarkMissed( 748 Ctx, DEBUG_TYPE, *F, LoopLoc, 749 "Unable to fully unroll loop as directed by unroll pragma because " 750 "unrolled size is too large."); 751 } 752 } 753 754 if (Unrolling != Full && Count < 2) { 755 // Partial unrolling by 1 is a nop. For full unrolling, a factor 756 // of 1 makes sense because loop control can be eliminated. 757 return false; 758 } 759 760 // Unroll the loop. 761 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 762 TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) 763 return false; 764 765 // If loop has an unroll count pragma mark loop as unrolled to prevent 766 // unrolling beyond that requested by the pragma. 767 if (HasPragma && PragmaCount != 0) 768 SetLoopAlreadyUnrolled(L); 769 return true; 770 } 771 772 namespace { 773 class LoopUnroll : public LoopPass { 774 public: 775 static char ID; // Pass ID, replacement for typeid 776 LoopUnroll(Optional<unsigned> Threshold = None, 777 Optional<unsigned> Count = None, 778 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) 779 : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold), 780 ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) { 781 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 782 } 783 784 Optional<unsigned> ProvidedCount; 785 Optional<unsigned> ProvidedThreshold; 786 Optional<bool> ProvidedAllowPartial; 787 Optional<bool> ProvidedRuntime; 788 789 bool runOnLoop(Loop *L, LPPassManager &) override { 790 if (skipLoop(L)) 791 return false; 792 793 Function &F = *L->getHeader()->getParent(); 794 795 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 796 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 797 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 798 const TargetTransformInfo &TTI = 799 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 800 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 801 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 802 803 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, 804 ProvidedThreshold, ProvidedAllowPartial, 805 ProvidedRuntime); 806 } 807 808 /// This transformation requires natural loop information & requires that 809 /// loop preheaders be inserted into the CFG... 810 /// 811 void getAnalysisUsage(AnalysisUsage &AU) const override { 812 AU.addRequired<AssumptionCacheTracker>(); 813 AU.addRequired<TargetTransformInfoWrapperPass>(); 814 // FIXME: Loop passes are required to preserve domtree, and for now we just 815 // recreate dom info if anything gets unrolled. 816 getLoopAnalysisUsage(AU); 817 } 818 }; 819 } 820 821 char LoopUnroll::ID = 0; 822 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 823 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 824 INITIALIZE_PASS_DEPENDENCY(LoopPass) 825 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 826 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 827 828 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 829 int Runtime) { 830 // TODO: It would make more sense for this function to take the optionals 831 // directly, but that's dangerous since it would silently break out of tree 832 // callers. 833 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 834 Count == -1 ? None : Optional<unsigned>(Count), 835 AllowPartial == -1 ? None 836 : Optional<bool>(AllowPartial), 837 Runtime == -1 ? None : Optional<bool>(Runtime)); 838 } 839 840 Pass *llvm::createSimpleLoopUnrollPass() { 841 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 842 } 843