xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision f0f279291c7ca1a0b2c125f53cd08deafcc9e44f)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Utils/UnrollLoop.h"
37 #include <climits>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-unroll"
42 
43 static cl::opt<unsigned>
44     UnrollThreshold("unroll-threshold", cl::Hidden,
45                     cl::desc("The baseline cost threshold for loop unrolling"));
46 
47 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
48     "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden,
49     cl::desc("The percentage of estimated dynamic cost which must be saved by "
50              "unrolling to allow unrolling up to the max threshold."));
51 
52 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
53     "unroll-dynamic-cost-savings-discount", cl::Hidden,
54     cl::desc("This is the amount discounted from the total unroll cost when "
55              "the unrolled form has a high dynamic cost savings (triggered by "
56              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
57 
58 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
59     "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
60     cl::desc("Don't allow loop unrolling to simulate more than this number of"
61              "iterations when checking full unroll profitability"));
62 
63 static cl::opt<unsigned>
64 UnrollCount("unroll-count", cl::Hidden,
65   cl::desc("Use this unroll count for all loops including those with "
66            "unroll_count pragma values, for testing purposes"));
67 
68 static cl::opt<unsigned>
69 UnrollMaxCount("unroll-max-count", cl::Hidden,
70   cl::desc("Set the max unroll count for partial and runtime unrolling, for"
71            "testing purposes"));
72 
73 static cl::opt<unsigned>
74 UnrollFullMaxCount("unroll-full-max-count", cl::Hidden,
75   cl::desc("Set the max unroll count for full unrolling, for testing purposes"));
76 
77 static cl::opt<bool>
78 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
79   cl::desc("Allows loops to be partially unrolled until "
80            "-unroll-threshold loop size is reached."));
81 
82 static cl::opt<bool>
83 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
84   cl::desc("Unroll loops with run-time trip counts"));
85 
86 static cl::opt<unsigned>
87 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
88   cl::desc("Unrolled size limit for loops with an unroll(full) or "
89            "unroll_count pragma."));
90 
91 
92 /// A magic value for use with the Threshold parameter to indicate
93 /// that the loop unroll should be performed regardless of how much
94 /// code expansion would result.
95 static const unsigned NoThreshold = UINT_MAX;
96 
97 /// Default unroll count for loops with run-time trip count if
98 /// -unroll-count is not set
99 static const unsigned DefaultUnrollRuntimeCount = 8;
100 
101 /// Gather the various unrolling parameters based on the defaults, compiler
102 /// flags, TTI overrides, pragmas, and user specified parameters.
103 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
104     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
105     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
106     Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll,
107     bool PragmaEnableUnroll, unsigned TripCount) {
108   TargetTransformInfo::UnrollingPreferences UP;
109 
110   // Set up the defaults
111   UP.Threshold = 150;
112   UP.PercentDynamicCostSavedThreshold = 20;
113   UP.DynamicCostSavingsDiscount = 2000;
114   UP.OptSizeThreshold = 50;
115   UP.PartialThreshold = UP.Threshold;
116   UP.PartialOptSizeThreshold = UP.OptSizeThreshold;
117   UP.Count = 0;
118   UP.MaxCount = UINT_MAX;
119   UP.FullUnrollMaxCount = UINT_MAX;
120   UP.Partial = false;
121   UP.Runtime = false;
122   UP.AllowExpensiveTripCount = false;
123 
124   // Override with any target specific settings
125   TTI.getUnrollingPreferences(L, UP);
126 
127   // Apply size attributes
128   if (L->getHeader()->getParent()->optForSize()) {
129     UP.Threshold = UP.OptSizeThreshold;
130     UP.PartialThreshold = UP.PartialOptSizeThreshold;
131   }
132 
133   // Apply unroll count pragmas
134   if (PragmaCount)
135     UP.Count = PragmaCount;
136   else if (PragmaFullUnroll)
137     UP.Count = TripCount;
138 
139   // Apply any user values specified by cl::opt
140   if (UnrollThreshold.getNumOccurrences() > 0) {
141     UP.Threshold = UnrollThreshold;
142     UP.PartialThreshold = UnrollThreshold;
143   }
144   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
145     UP.PercentDynamicCostSavedThreshold =
146         UnrollPercentDynamicCostSavedThreshold;
147   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
148     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
149   if (UnrollCount.getNumOccurrences() > 0)
150     UP.Count = UnrollCount;
151   if (UnrollMaxCount.getNumOccurrences() > 0)
152     UP.MaxCount = UnrollMaxCount;
153   if (UnrollFullMaxCount.getNumOccurrences() > 0)
154     UP.FullUnrollMaxCount = UnrollFullMaxCount;
155   if (UnrollAllowPartial.getNumOccurrences() > 0)
156     UP.Partial = UnrollAllowPartial;
157   if (UnrollRuntime.getNumOccurrences() > 0)
158     UP.Runtime = UnrollRuntime;
159 
160   // Apply user values provided by argument
161   if (UserThreshold.hasValue()) {
162     UP.Threshold = *UserThreshold;
163     UP.PartialThreshold = *UserThreshold;
164   }
165   if (UserCount.hasValue())
166     UP.Count = *UserCount;
167   if (UserAllowPartial.hasValue())
168     UP.Partial = *UserAllowPartial;
169   if (UserRuntime.hasValue())
170     UP.Runtime = *UserRuntime;
171 
172   if (PragmaCount > 0 ||
173       ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) {
174     // If the loop has an unrolling pragma, we want to be more aggressive with
175     // unrolling limits. Set thresholds to at least the PragmaTheshold value
176     // which is larger than the default limits.
177     if (UP.Threshold != NoThreshold)
178       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
179     if (UP.PartialThreshold != NoThreshold)
180       UP.PartialThreshold =
181           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
182   }
183 
184   return UP;
185 }
186 
187 namespace {
188 struct EstimatedUnrollCost {
189   /// \brief The estimated cost after unrolling.
190   int UnrolledCost;
191 
192   /// \brief The estimated dynamic cost of executing the instructions in the
193   /// rolled form.
194   int RolledDynamicCost;
195 };
196 }
197 
198 /// \brief Figure out if the loop is worth full unrolling.
199 ///
200 /// Complete loop unrolling can make some loads constant, and we need to know
201 /// if that would expose any further optimization opportunities.  This routine
202 /// estimates this optimization.  It computes cost of unrolled loop
203 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
204 /// dynamic cost we mean that we won't count costs of blocks that are known not
205 /// to be executed (i.e. if we have a branch in the loop and we know that at the
206 /// given iteration its condition would be resolved to true, we won't add up the
207 /// cost of the 'false'-block).
208 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
209 /// the analysis failed (no benefits expected from the unrolling, or the loop is
210 /// too big to analyze), the returned value is None.
211 static Optional<EstimatedUnrollCost>
212 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
213                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
214                       int MaxUnrolledLoopSize) {
215   // We want to be able to scale offsets by the trip count and add more offsets
216   // to them without checking for overflows, and we already don't want to
217   // analyze *massive* trip counts, so we force the max to be reasonably small.
218   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
219          "The unroll iterations max is too large!");
220 
221   // Don't simulate loops with a big or unknown tripcount
222   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
223       TripCount > UnrollMaxIterationsCountToAnalyze)
224     return None;
225 
226   SmallSetVector<BasicBlock *, 16> BBWorklist;
227   DenseMap<Value *, Constant *> SimplifiedValues;
228   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
229 
230   // The estimated cost of the unrolled form of the loop. We try to estimate
231   // this by simplifying as much as we can while computing the estimate.
232   int UnrolledCost = 0;
233   // We also track the estimated dynamic (that is, actually executed) cost in
234   // the rolled form. This helps identify cases when the savings from unrolling
235   // aren't just exposing dead control flows, but actual reduced dynamic
236   // instructions due to the simplifications which we expect to occur after
237   // unrolling.
238   int RolledDynamicCost = 0;
239 
240   // Ensure that we don't violate the loop structure invariants relied on by
241   // this analysis.
242   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
243   assert(L->isLCSSAForm(DT) &&
244          "Must have loops in LCSSA form to track live-out values.");
245 
246   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
247 
248   // Simulate execution of each iteration of the loop counting instructions,
249   // which would be simplified.
250   // Since the same load will take different values on different iterations,
251   // we literally have to go through all loop's iterations.
252   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
253     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
254 
255     // Prepare for the iteration by collecting any simplified entry or backedge
256     // inputs.
257     for (Instruction &I : *L->getHeader()) {
258       auto *PHI = dyn_cast<PHINode>(&I);
259       if (!PHI)
260         break;
261 
262       // The loop header PHI nodes must have exactly two input: one from the
263       // loop preheader and one from the loop latch.
264       assert(
265           PHI->getNumIncomingValues() == 2 &&
266           "Must have an incoming value only for the preheader and the latch.");
267 
268       Value *V = PHI->getIncomingValueForBlock(
269           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
270       Constant *C = dyn_cast<Constant>(V);
271       if (Iteration != 0 && !C)
272         C = SimplifiedValues.lookup(V);
273       if (C)
274         SimplifiedInputValues.push_back({PHI, C});
275     }
276 
277     // Now clear and re-populate the map for the next iteration.
278     SimplifiedValues.clear();
279     while (!SimplifiedInputValues.empty())
280       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
281 
282     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
283 
284     BBWorklist.clear();
285     BBWorklist.insert(L->getHeader());
286     // Note that we *must not* cache the size, this loop grows the worklist.
287     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
288       BasicBlock *BB = BBWorklist[Idx];
289 
290       // Visit all instructions in the given basic block and try to simplify
291       // it.  We don't change the actual IR, just count optimization
292       // opportunities.
293       for (Instruction &I : *BB) {
294         int InstCost = TTI.getUserCost(&I);
295 
296         // Visit the instruction to analyze its loop cost after unrolling,
297         // and if the visitor returns false, include this instruction in the
298         // unrolled cost.
299         if (!Analyzer.visit(I))
300           UnrolledCost += InstCost;
301         else {
302           DEBUG(dbgs() << "  " << I
303                        << " would be simplified if loop is unrolled.\n");
304           (void)0;
305         }
306 
307         // Also track this instructions expected cost when executing the rolled
308         // loop form.
309         RolledDynamicCost += InstCost;
310 
311         // If unrolled body turns out to be too big, bail out.
312         if (UnrolledCost > MaxUnrolledLoopSize) {
313           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
314                        << "  UnrolledCost: " << UnrolledCost
315                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
316                        << "\n");
317           return None;
318         }
319       }
320 
321       TerminatorInst *TI = BB->getTerminator();
322 
323       // Add in the live successors by first checking whether we have terminator
324       // that may be simplified based on the values simplified by this call.
325       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
326         if (BI->isConditional()) {
327           if (Constant *SimpleCond =
328                   SimplifiedValues.lookup(BI->getCondition())) {
329             BasicBlock *Succ = nullptr;
330             // Just take the first successor if condition is undef
331             if (isa<UndefValue>(SimpleCond))
332               Succ = BI->getSuccessor(0);
333             else
334               Succ = BI->getSuccessor(
335                   cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
336             if (L->contains(Succ))
337               BBWorklist.insert(Succ);
338             continue;
339           }
340         }
341       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
342         if (Constant *SimpleCond =
343                 SimplifiedValues.lookup(SI->getCondition())) {
344           BasicBlock *Succ = nullptr;
345           // Just take the first successor if condition is undef
346           if (isa<UndefValue>(SimpleCond))
347             Succ = SI->getSuccessor(0);
348           else
349             Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
350                        .getCaseSuccessor();
351           if (L->contains(Succ))
352             BBWorklist.insert(Succ);
353           continue;
354         }
355       }
356 
357       // Add BB's successors to the worklist.
358       for (BasicBlock *Succ : successors(BB))
359         if (L->contains(Succ))
360           BBWorklist.insert(Succ);
361     }
362 
363     // If we found no optimization opportunities on the first iteration, we
364     // won't find them on later ones too.
365     if (UnrolledCost == RolledDynamicCost) {
366       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
367                    << "  UnrolledCost: " << UnrolledCost << "\n");
368       return None;
369     }
370   }
371   DEBUG(dbgs() << "Analysis finished:\n"
372                << "UnrolledCost: " << UnrolledCost << ", "
373                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
374   return {{UnrolledCost, RolledDynamicCost}};
375 }
376 
377 /// ApproximateLoopSize - Approximate the size of the loop.
378 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
379                                     bool &NotDuplicatable, bool &Convergent,
380                                     const TargetTransformInfo &TTI,
381                                     AssumptionCache *AC) {
382   SmallPtrSet<const Value *, 32> EphValues;
383   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
384 
385   CodeMetrics Metrics;
386   for (BasicBlock *BB : L->blocks())
387     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
388   NumCalls = Metrics.NumInlineCandidates;
389   NotDuplicatable = Metrics.notDuplicatable;
390   Convergent = Metrics.convergent;
391 
392   unsigned LoopSize = Metrics.NumInsts;
393 
394   // Don't allow an estimate of size zero.  This would allows unrolling of loops
395   // with huge iteration counts, which is a compile time problem even if it's
396   // not a problem for code quality. Also, the code using this size may assume
397   // that each loop has at least three instructions (likely a conditional
398   // branch, a comparison feeding that branch, and some kind of loop increment
399   // feeding that comparison instruction).
400   LoopSize = std::max(LoopSize, 3u);
401 
402   return LoopSize;
403 }
404 
405 // Returns the loop hint metadata node with the given name (for example,
406 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
407 // returned.
408 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
409   if (MDNode *LoopID = L->getLoopID())
410     return GetUnrollMetadata(LoopID, Name);
411   return nullptr;
412 }
413 
414 // Returns true if the loop has an unroll(full) pragma.
415 static bool HasUnrollFullPragma(const Loop *L) {
416   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
417 }
418 
419 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
420 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
421 static bool HasUnrollEnablePragma(const Loop *L) {
422   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
423 }
424 
425 // Returns true if the loop has an unroll(disable) pragma.
426 static bool HasUnrollDisablePragma(const Loop *L) {
427   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
428 }
429 
430 // Returns true if the loop has an runtime unroll(disable) pragma.
431 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
432   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
433 }
434 
435 // If loop has an unroll_count pragma return the (necessarily
436 // positive) value from the pragma.  Otherwise return 0.
437 static unsigned UnrollCountPragmaValue(const Loop *L) {
438   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
439   if (MD) {
440     assert(MD->getNumOperands() == 2 &&
441            "Unroll count hint metadata should have two operands.");
442     unsigned Count =
443         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
444     assert(Count >= 1 && "Unroll count must be positive.");
445     return Count;
446   }
447   return 0;
448 }
449 
450 // Remove existing unroll metadata and add unroll disable metadata to
451 // indicate the loop has already been unrolled.  This prevents a loop
452 // from being unrolled more than is directed by a pragma if the loop
453 // unrolling pass is run more than once (which it generally is).
454 static void SetLoopAlreadyUnrolled(Loop *L) {
455   MDNode *LoopID = L->getLoopID();
456   if (!LoopID) return;
457 
458   // First remove any existing loop unrolling metadata.
459   SmallVector<Metadata *, 4> MDs;
460   // Reserve first location for self reference to the LoopID metadata node.
461   MDs.push_back(nullptr);
462   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
463     bool IsUnrollMetadata = false;
464     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
465     if (MD) {
466       const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
467       IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
468     }
469     if (!IsUnrollMetadata)
470       MDs.push_back(LoopID->getOperand(i));
471   }
472 
473   // Add unroll(disable) metadata to disable future unrolling.
474   LLVMContext &Context = L->getHeader()->getContext();
475   SmallVector<Metadata *, 1> DisableOperands;
476   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
477   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
478   MDs.push_back(DisableNode);
479 
480   MDNode *NewLoopID = MDNode::get(Context, MDs);
481   // Set operand 0 to refer to the loop id itself.
482   NewLoopID->replaceOperandWith(0, NewLoopID);
483   L->setLoopID(NewLoopID);
484 }
485 
486 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
487                                 unsigned PercentDynamicCostSavedThreshold,
488                                 unsigned DynamicCostSavingsDiscount,
489                                 uint64_t UnrolledCost,
490                                 uint64_t RolledDynamicCost) {
491   if (Threshold == NoThreshold) {
492     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
493     return true;
494   }
495 
496   if (UnrolledCost <= Threshold) {
497     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
498                  << UnrolledCost << "<" << Threshold << "\n");
499     return true;
500   }
501 
502   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
503   assert(RolledDynamicCost >= UnrolledCost &&
504          "Cannot have a higher unrolled cost than a rolled cost!");
505 
506   // Compute the percentage of the dynamic cost in the rolled form that is
507   // saved when unrolled. If unrolling dramatically reduces the estimated
508   // dynamic cost of the loop, we use a higher threshold to allow more
509   // unrolling.
510   unsigned PercentDynamicCostSaved =
511       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
512 
513   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
514       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
515           (int64_t)Threshold) {
516     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
517                     "expected dynamic cost by " << PercentDynamicCostSaved
518                  << "% (threshold: " << PercentDynamicCostSavedThreshold
519                  << "%)\n"
520                  << "  and the unrolled cost (" << UnrolledCost
521                  << ") is less than the max threshold ("
522                  << DynamicCostSavingsDiscount << ").\n");
523     return true;
524   }
525 
526   DEBUG(dbgs() << "  Too large to fully unroll:\n");
527   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
528   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
529   DEBUG(dbgs() << "    Percent cost saved threshold: "
530                << PercentDynamicCostSavedThreshold << "%\n");
531   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
532   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
533   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
534                << "\n");
535   return false;
536 }
537 
538 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
539                             ScalarEvolution *SE, const TargetTransformInfo &TTI,
540                             AssumptionCache &AC, bool PreserveLCSSA,
541                             Optional<unsigned> ProvidedCount,
542                             Optional<unsigned> ProvidedThreshold,
543                             Optional<bool> ProvidedAllowPartial,
544                             Optional<bool> ProvidedRuntime) {
545   BasicBlock *Header = L->getHeader();
546   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
547         << "] Loop %" << Header->getName() << "\n");
548 
549   if (HasUnrollDisablePragma(L)) {
550     return false;
551   }
552   bool PragmaFullUnroll = HasUnrollFullPragma(L);
553   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
554   unsigned PragmaCount = UnrollCountPragmaValue(L);
555   bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
556 
557   // Find trip count and trip multiple if count is not available
558   unsigned TripCount = 0;
559   unsigned TripMultiple = 1;
560   // If there are multiple exiting blocks but one of them is the latch, use the
561   // latch for the trip count estimation. Otherwise insist on a single exiting
562   // block for the trip count estimation.
563   BasicBlock *ExitingBlock = L->getLoopLatch();
564   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
565     ExitingBlock = L->getExitingBlock();
566   if (ExitingBlock) {
567     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
568     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
569   }
570 
571   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
572       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
573       ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll,
574       TripCount);
575 
576   unsigned Count = UP.Count;
577   bool CountSetExplicitly = Count != 0;
578   // Use a heuristic count if we didn't set anything explicitly.
579   if (!CountSetExplicitly)
580     Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount;
581   if (TripCount && Count > TripCount)
582     Count = TripCount;
583   Count = std::min(Count, UP.FullUnrollMaxCount);
584 
585   unsigned NumInlineCandidates;
586   bool NotDuplicatable;
587   bool Convergent;
588   unsigned LoopSize = ApproximateLoopSize(
589       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
590   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
591 
592   // When computing the unrolled size, note that the conditional branch on the
593   // backedge and the comparison feeding it are not replicated like the rest of
594   // the loop body (which is why 2 is subtracted).
595   uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
596   if (NotDuplicatable) {
597     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
598                  << " instructions.\n");
599     return false;
600   }
601   if (NumInlineCandidates != 0) {
602     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
603     return false;
604   }
605 
606   // Given Count, TripCount and thresholds determine the type of
607   // unrolling which is to be performed.
608   enum { Full = 0, Partial = 1, Runtime = 2 };
609   int Unrolling;
610   if (TripCount && Count == TripCount) {
611     Unrolling = Partial;
612     // If the loop is really small, we don't need to run an expensive analysis.
613     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
614                             UnrolledSize, UnrolledSize)) {
615       Unrolling = Full;
616     } else {
617       // The loop isn't that small, but we still can fully unroll it if that
618       // helps to remove a significant number of instructions.
619       // To check that, run additional analysis on the loop.
620       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
621               L, TripCount, DT, *SE, TTI,
622               UP.Threshold + UP.DynamicCostSavingsDiscount))
623         if (canUnrollCompletely(L, UP.Threshold,
624                                 UP.PercentDynamicCostSavedThreshold,
625                                 UP.DynamicCostSavingsDiscount,
626                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
627           Unrolling = Full;
628         }
629     }
630   } else if (TripCount && Count < TripCount) {
631     Unrolling = Partial;
632   } else {
633     Unrolling = Runtime;
634   }
635 
636   // Reduce count based on the type of unrolling and the threshold values.
637   unsigned OriginalCount = Count;
638   bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime;
639   // Don't unroll a runtime trip count loop with unroll full pragma.
640   if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
641     AllowRuntime = false;
642   }
643   bool DecreasedCountDueToConvergence = false;
644   if (Unrolling == Partial) {
645     bool AllowPartial = PragmaEnableUnroll || UP.Partial;
646     if (!AllowPartial && !CountSetExplicitly) {
647       DEBUG(dbgs() << "  will not try to unroll partially because "
648                    << "-unroll-allow-partial not given\n");
649       return false;
650     }
651     if (UP.PartialThreshold != NoThreshold && Count > 1) {
652       // Reduce unroll count to be modulo of TripCount for partial unrolling.
653       if (UnrolledSize > UP.PartialThreshold)
654         Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2);
655       if (Count > UP.MaxCount)
656         Count = UP.MaxCount;
657       while (Count != 0 && TripCount % Count != 0)
658         Count--;
659       if (AllowRuntime && Count <= 1) {
660         // If there is no Count that is modulo of TripCount, set Count to
661         // largest power-of-two factor that satisfies the threshold limit.
662         // As we'll create fixup loop, do the type of unrolling only if
663         // runtime unrolling is allowed.
664         Count = DefaultUnrollRuntimeCount;
665         UnrolledSize = (LoopSize - 2) * Count + 2;
666         while (Count != 0 && UnrolledSize > UP.PartialThreshold) {
667           Count >>= 1;
668           UnrolledSize = (LoopSize - 2) * Count + 2;
669         }
670       }
671     }
672   } else if (Unrolling == Runtime) {
673     if (!AllowRuntime && !CountSetExplicitly) {
674       DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
675                    << "-unroll-runtime not given\n");
676       return false;
677     }
678 
679     // Reduce unroll count to be the largest power-of-two factor of
680     // the original count which satisfies the threshold limit.
681     while (Count != 0 && UnrolledSize > UP.PartialThreshold) {
682       Count >>= 1;
683       UnrolledSize = (LoopSize-2) * Count + 2;
684     }
685 
686     if (Count > UP.MaxCount)
687       Count = UP.MaxCount;
688 
689     // If the loop contains a convergent operation, the prelude we'd add
690     // to do the first few instructions before we hit the unrolled loop
691     // is unsafe -- it adds a control-flow dependency to the convergent
692     // operation.  Therefore Count must divide TripMultiple.
693     //
694     // TODO: This is quite conservative.  In practice, convergent_op()
695     // is likely to be called unconditionally in the loop.  In this
696     // case, the program would be ill-formed (on most architectures)
697     // unless n were the same on all threads in a thread group.
698     // Assuming n is the same on all threads, any kind of unrolling is
699     // safe.  But currently llvm's notion of convergence isn't powerful
700     // enough to express this.
701     unsigned OrigCount = Count;
702     while (Convergent && Count != 0 && TripMultiple % Count != 0) {
703       DecreasedCountDueToConvergence = true;
704       Count >>= 1;
705     }
706     if (OrigCount > Count) {
707       DEBUG(dbgs() << "  loop contains a convergent instruction, so unroll "
708                       "count must divide the trip multiple, "
709                    << TripMultiple << ".  Reducing unroll count from "
710                    << OrigCount << " to " << Count << ".\n");
711     }
712     DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
713   }
714 
715   if (HasPragma) {
716     // Emit optimization remarks if we are unable to unroll the loop
717     // as directed by a pragma.
718     DebugLoc LoopLoc = L->getStartLoc();
719     Function *F = Header->getParent();
720     LLVMContext &Ctx = F->getContext();
721     if (PragmaCount > 0 && DecreasedCountDueToConvergence) {
722       emitOptimizationRemarkMissed(
723           Ctx, DEBUG_TYPE, *F, LoopLoc,
724           Twine("Unable to unroll loop the number of times directed by "
725                 "unroll_count pragma because the loop contains a convergent "
726                 "instruction, and so must have an unroll count that divides "
727                 "the loop trip multiple of ") +
728               Twine(TripMultiple) + ".  Unrolling instead " + Twine(Count) +
729               " time(s).");
730     } else if ((PragmaCount > 0) && Count != OriginalCount) {
731       emitOptimizationRemarkMissed(
732           Ctx, DEBUG_TYPE, *F, LoopLoc,
733           "Unable to unroll loop the number of times directed by "
734           "unroll_count pragma because unrolled size is too large.");
735     } else if (PragmaFullUnroll && !TripCount) {
736       emitOptimizationRemarkMissed(
737           Ctx, DEBUG_TYPE, *F, LoopLoc,
738           "Unable to fully unroll loop as directed by unroll(full) pragma "
739           "because loop has a runtime trip count.");
740     } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
741       emitOptimizationRemarkMissed(
742           Ctx, DEBUG_TYPE, *F, LoopLoc,
743           "Unable to unroll loop as directed by unroll(enable) pragma because "
744           "unrolled size is too large.");
745     } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
746                Count != TripCount) {
747       emitOptimizationRemarkMissed(
748           Ctx, DEBUG_TYPE, *F, LoopLoc,
749           "Unable to fully unroll loop as directed by unroll pragma because "
750           "unrolled size is too large.");
751     }
752   }
753 
754   if (Unrolling != Full && Count < 2) {
755     // Partial unrolling by 1 is a nop.  For full unrolling, a factor
756     // of 1 makes sense because loop control can be eliminated.
757     return false;
758   }
759 
760   // Unroll the loop.
761   if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
762                   TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA))
763     return false;
764 
765   // If loop has an unroll count pragma mark loop as unrolled to prevent
766   // unrolling beyond that requested by the pragma.
767   if (HasPragma && PragmaCount != 0)
768     SetLoopAlreadyUnrolled(L);
769   return true;
770 }
771 
772 namespace {
773 class LoopUnroll : public LoopPass {
774 public:
775   static char ID; // Pass ID, replacement for typeid
776   LoopUnroll(Optional<unsigned> Threshold = None,
777              Optional<unsigned> Count = None,
778              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
779       : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold),
780         ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) {
781     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
782   }
783 
784   Optional<unsigned> ProvidedCount;
785   Optional<unsigned> ProvidedThreshold;
786   Optional<bool> ProvidedAllowPartial;
787   Optional<bool> ProvidedRuntime;
788 
789   bool runOnLoop(Loop *L, LPPassManager &) override {
790     if (skipLoop(L))
791       return false;
792 
793     Function &F = *L->getHeader()->getParent();
794 
795     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
796     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
797     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
798     const TargetTransformInfo &TTI =
799         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
800     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
801     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
802 
803     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount,
804                            ProvidedThreshold, ProvidedAllowPartial,
805                            ProvidedRuntime);
806   }
807 
808   /// This transformation requires natural loop information & requires that
809   /// loop preheaders be inserted into the CFG...
810   ///
811   void getAnalysisUsage(AnalysisUsage &AU) const override {
812     AU.addRequired<AssumptionCacheTracker>();
813     AU.addRequired<TargetTransformInfoWrapperPass>();
814     // FIXME: Loop passes are required to preserve domtree, and for now we just
815     // recreate dom info if anything gets unrolled.
816     getLoopAnalysisUsage(AU);
817   }
818 };
819 }
820 
821 char LoopUnroll::ID = 0;
822 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
823 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
824 INITIALIZE_PASS_DEPENDENCY(LoopPass)
825 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
826 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
827 
828 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
829                                  int Runtime) {
830   // TODO: It would make more sense for this function to take the optionals
831   // directly, but that's dangerous since it would silently break out of tree
832   // callers.
833   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
834                         Count == -1 ? None : Optional<unsigned>(Count),
835                         AllowPartial == -1 ? None
836                                            : Optional<bool>(AllowPartial),
837                         Runtime == -1 ? None : Optional<bool>(Runtime));
838 }
839 
840 Pass *llvm::createSimpleLoopUnrollPass() {
841   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
842 }
843