1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 #include "llvm/Transforms/Utils/UnrollLoop.h" 38 #include <climits> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 static cl::opt<unsigned> 46 UnrollThreshold("unroll-threshold", cl::Hidden, 47 cl::desc("The cost threshold for loop unrolling")); 48 49 static cl::opt<unsigned> UnrollPartialThreshold( 50 "unroll-partial-threshold", cl::Hidden, 51 cl::desc("The cost threshold for partial loop unrolling")); 52 53 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 54 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 55 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 56 "to the threshold when aggressively unrolling a loop due to the " 57 "dynamic cost savings. If completely unrolling a loop will reduce " 58 "the total runtime from X to Y, we boost the loop unroll " 59 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 60 "X/Y). This limit avoids excessive code bloat.")); 61 62 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 63 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 64 cl::desc("Don't allow loop unrolling to simulate more than this number of" 65 "iterations when checking full unroll profitability")); 66 67 static cl::opt<unsigned> UnrollCount( 68 "unroll-count", cl::Hidden, 69 cl::desc("Use this unroll count for all loops including those with " 70 "unroll_count pragma values, for testing purposes")); 71 72 static cl::opt<unsigned> UnrollMaxCount( 73 "unroll-max-count", cl::Hidden, 74 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 75 "testing purposes")); 76 77 static cl::opt<unsigned> UnrollFullMaxCount( 78 "unroll-full-max-count", cl::Hidden, 79 cl::desc( 80 "Set the max unroll count for full unrolling, for testing purposes")); 81 82 static cl::opt<bool> 83 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 84 cl::desc("Allows loops to be partially unrolled until " 85 "-unroll-threshold loop size is reached.")); 86 87 static cl::opt<bool> UnrollAllowRemainder( 88 "unroll-allow-remainder", cl::Hidden, 89 cl::desc("Allow generation of a loop remainder (extra iterations) " 90 "when unrolling a loop.")); 91 92 static cl::opt<bool> 93 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 94 cl::desc("Unroll loops with run-time trip counts")); 95 96 static cl::opt<unsigned> UnrollMaxUpperBound( 97 "unroll-max-upperbound", cl::init(8), cl::Hidden, 98 cl::desc( 99 "The max of trip count upper bound that is considered in unrolling")); 100 101 static cl::opt<unsigned> PragmaUnrollThreshold( 102 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 103 cl::desc("Unrolled size limit for loops with an unroll(full) or " 104 "unroll_count pragma.")); 105 106 static cl::opt<unsigned> FlatLoopTripCountThreshold( 107 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 108 cl::desc("If the runtime tripcount for the loop is lower than the " 109 "threshold, the loop is considered as flat and will be less " 110 "aggressively unrolled.")); 111 112 static cl::opt<bool> 113 UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden, 114 cl::desc("Allows loops to be peeled when the dynamic " 115 "trip count is known to be low.")); 116 117 // This option isn't ever intended to be enabled, it serves to allow 118 // experiments to check the assumptions about when this kind of revisit is 119 // necessary. 120 static cl::opt<bool> UnrollRevisitChildLoops( 121 "unroll-revisit-child-loops", cl::Hidden, 122 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 123 "This shouldn't typically be needed as child loops (or their " 124 "clones) were already visited.")); 125 126 /// A magic value for use with the Threshold parameter to indicate 127 /// that the loop unroll should be performed regardless of how much 128 /// code expansion would result. 129 static const unsigned NoThreshold = UINT_MAX; 130 131 /// Gather the various unrolling parameters based on the defaults, compiler 132 /// flags, TTI overrides and user specified parameters. 133 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 134 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 135 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 136 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 137 TargetTransformInfo::UnrollingPreferences UP; 138 139 // Set up the defaults 140 UP.Threshold = 150; 141 UP.MaxPercentThresholdBoost = 400; 142 UP.OptSizeThreshold = 0; 143 UP.PartialThreshold = 150; 144 UP.PartialOptSizeThreshold = 0; 145 UP.Count = 0; 146 UP.PeelCount = 0; 147 UP.DefaultUnrollRuntimeCount = 8; 148 UP.MaxCount = UINT_MAX; 149 UP.FullUnrollMaxCount = UINT_MAX; 150 UP.BEInsns = 2; 151 UP.Partial = false; 152 UP.Runtime = false; 153 UP.AllowRemainder = true; 154 UP.AllowExpensiveTripCount = false; 155 UP.Force = false; 156 UP.UpperBound = false; 157 UP.AllowPeeling = false; 158 159 // Override with any target specific settings 160 TTI.getUnrollingPreferences(L, UP); 161 162 // Apply size attributes 163 if (L->getHeader()->getParent()->optForSize()) { 164 UP.Threshold = UP.OptSizeThreshold; 165 UP.PartialThreshold = UP.PartialOptSizeThreshold; 166 } 167 168 // Apply any user values specified by cl::opt 169 if (UnrollThreshold.getNumOccurrences() > 0) 170 UP.Threshold = UnrollThreshold; 171 if (UnrollPartialThreshold.getNumOccurrences() > 0) 172 UP.PartialThreshold = UnrollPartialThreshold; 173 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 174 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 175 if (UnrollMaxCount.getNumOccurrences() > 0) 176 UP.MaxCount = UnrollMaxCount; 177 if (UnrollFullMaxCount.getNumOccurrences() > 0) 178 UP.FullUnrollMaxCount = UnrollFullMaxCount; 179 if (UnrollAllowPartial.getNumOccurrences() > 0) 180 UP.Partial = UnrollAllowPartial; 181 if (UnrollAllowRemainder.getNumOccurrences() > 0) 182 UP.AllowRemainder = UnrollAllowRemainder; 183 if (UnrollRuntime.getNumOccurrences() > 0) 184 UP.Runtime = UnrollRuntime; 185 if (UnrollMaxUpperBound == 0) 186 UP.UpperBound = false; 187 if (UnrollAllowPeeling.getNumOccurrences() > 0) 188 UP.AllowPeeling = UnrollAllowPeeling; 189 190 // Apply user values provided by argument 191 if (UserThreshold.hasValue()) { 192 UP.Threshold = *UserThreshold; 193 UP.PartialThreshold = *UserThreshold; 194 } 195 if (UserCount.hasValue()) 196 UP.Count = *UserCount; 197 if (UserAllowPartial.hasValue()) 198 UP.Partial = *UserAllowPartial; 199 if (UserRuntime.hasValue()) 200 UP.Runtime = *UserRuntime; 201 if (UserUpperBound.hasValue()) 202 UP.UpperBound = *UserUpperBound; 203 204 return UP; 205 } 206 207 namespace { 208 /// A struct to densely store the state of an instruction after unrolling at 209 /// each iteration. 210 /// 211 /// This is designed to work like a tuple of <Instruction *, int> for the 212 /// purposes of hashing and lookup, but to be able to associate two boolean 213 /// states with each key. 214 struct UnrolledInstState { 215 Instruction *I; 216 int Iteration : 30; 217 unsigned IsFree : 1; 218 unsigned IsCounted : 1; 219 }; 220 221 /// Hashing and equality testing for a set of the instruction states. 222 struct UnrolledInstStateKeyInfo { 223 typedef DenseMapInfo<Instruction *> PtrInfo; 224 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 225 static inline UnrolledInstState getEmptyKey() { 226 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 227 } 228 static inline UnrolledInstState getTombstoneKey() { 229 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 230 } 231 static inline unsigned getHashValue(const UnrolledInstState &S) { 232 return PairInfo::getHashValue({S.I, S.Iteration}); 233 } 234 static inline bool isEqual(const UnrolledInstState &LHS, 235 const UnrolledInstState &RHS) { 236 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 237 } 238 }; 239 } 240 241 namespace { 242 struct EstimatedUnrollCost { 243 /// \brief The estimated cost after unrolling. 244 unsigned UnrolledCost; 245 246 /// \brief The estimated dynamic cost of executing the instructions in the 247 /// rolled form. 248 unsigned RolledDynamicCost; 249 }; 250 } 251 252 /// \brief Figure out if the loop is worth full unrolling. 253 /// 254 /// Complete loop unrolling can make some loads constant, and we need to know 255 /// if that would expose any further optimization opportunities. This routine 256 /// estimates this optimization. It computes cost of unrolled loop 257 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 258 /// dynamic cost we mean that we won't count costs of blocks that are known not 259 /// to be executed (i.e. if we have a branch in the loop and we know that at the 260 /// given iteration its condition would be resolved to true, we won't add up the 261 /// cost of the 'false'-block). 262 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 263 /// the analysis failed (no benefits expected from the unrolling, or the loop is 264 /// too big to analyze), the returned value is None. 265 static Optional<EstimatedUnrollCost> 266 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 267 ScalarEvolution &SE, const TargetTransformInfo &TTI, 268 unsigned MaxUnrolledLoopSize) { 269 // We want to be able to scale offsets by the trip count and add more offsets 270 // to them without checking for overflows, and we already don't want to 271 // analyze *massive* trip counts, so we force the max to be reasonably small. 272 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 273 "The unroll iterations max is too large!"); 274 275 // Only analyze inner loops. We can't properly estimate cost of nested loops 276 // and we won't visit inner loops again anyway. 277 if (!L->empty()) 278 return None; 279 280 // Don't simulate loops with a big or unknown tripcount 281 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 282 TripCount > UnrollMaxIterationsCountToAnalyze) 283 return None; 284 285 SmallSetVector<BasicBlock *, 16> BBWorklist; 286 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 287 DenseMap<Value *, Constant *> SimplifiedValues; 288 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 289 290 // The estimated cost of the unrolled form of the loop. We try to estimate 291 // this by simplifying as much as we can while computing the estimate. 292 unsigned UnrolledCost = 0; 293 294 // We also track the estimated dynamic (that is, actually executed) cost in 295 // the rolled form. This helps identify cases when the savings from unrolling 296 // aren't just exposing dead control flows, but actual reduced dynamic 297 // instructions due to the simplifications which we expect to occur after 298 // unrolling. 299 unsigned RolledDynamicCost = 0; 300 301 // We track the simplification of each instruction in each iteration. We use 302 // this to recursively merge costs into the unrolled cost on-demand so that 303 // we don't count the cost of any dead code. This is essentially a map from 304 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 305 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 306 307 // A small worklist used to accumulate cost of instructions from each 308 // observable and reached root in the loop. 309 SmallVector<Instruction *, 16> CostWorklist; 310 311 // PHI-used worklist used between iterations while accumulating cost. 312 SmallVector<Instruction *, 4> PHIUsedList; 313 314 // Helper function to accumulate cost for instructions in the loop. 315 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 316 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 317 assert(CostWorklist.empty() && "Must start with an empty cost list"); 318 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 319 CostWorklist.push_back(&RootI); 320 for (;; --Iteration) { 321 do { 322 Instruction *I = CostWorklist.pop_back_val(); 323 324 // InstCostMap only uses I and Iteration as a key, the other two values 325 // don't matter here. 326 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 327 if (CostIter == InstCostMap.end()) 328 // If an input to a PHI node comes from a dead path through the loop 329 // we may have no cost data for it here. What that actually means is 330 // that it is free. 331 continue; 332 auto &Cost = *CostIter; 333 if (Cost.IsCounted) 334 // Already counted this instruction. 335 continue; 336 337 // Mark that we are counting the cost of this instruction now. 338 Cost.IsCounted = true; 339 340 // If this is a PHI node in the loop header, just add it to the PHI set. 341 if (auto *PhiI = dyn_cast<PHINode>(I)) 342 if (PhiI->getParent() == L->getHeader()) { 343 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 344 "inherently simplify during unrolling."); 345 if (Iteration == 0) 346 continue; 347 348 // Push the incoming value from the backedge into the PHI used list 349 // if it is an in-loop instruction. We'll use this to populate the 350 // cost worklist for the next iteration (as we count backwards). 351 if (auto *OpI = dyn_cast<Instruction>( 352 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 353 if (L->contains(OpI)) 354 PHIUsedList.push_back(OpI); 355 continue; 356 } 357 358 // First accumulate the cost of this instruction. 359 if (!Cost.IsFree) { 360 UnrolledCost += TTI.getUserCost(I); 361 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 362 << "): "); 363 DEBUG(I->dump()); 364 } 365 366 // We must count the cost of every operand which is not free, 367 // recursively. If we reach a loop PHI node, simply add it to the set 368 // to be considered on the next iteration (backwards!). 369 for (Value *Op : I->operands()) { 370 // Check whether this operand is free due to being a constant or 371 // outside the loop. 372 auto *OpI = dyn_cast<Instruction>(Op); 373 if (!OpI || !L->contains(OpI)) 374 continue; 375 376 // Otherwise accumulate its cost. 377 CostWorklist.push_back(OpI); 378 } 379 } while (!CostWorklist.empty()); 380 381 if (PHIUsedList.empty()) 382 // We've exhausted the search. 383 break; 384 385 assert(Iteration > 0 && 386 "Cannot track PHI-used values past the first iteration!"); 387 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 388 PHIUsedList.clear(); 389 } 390 }; 391 392 // Ensure that we don't violate the loop structure invariants relied on by 393 // this analysis. 394 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 395 assert(L->isLCSSAForm(DT) && 396 "Must have loops in LCSSA form to track live-out values."); 397 398 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 399 400 // Simulate execution of each iteration of the loop counting instructions, 401 // which would be simplified. 402 // Since the same load will take different values on different iterations, 403 // we literally have to go through all loop's iterations. 404 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 405 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 406 407 // Prepare for the iteration by collecting any simplified entry or backedge 408 // inputs. 409 for (Instruction &I : *L->getHeader()) { 410 auto *PHI = dyn_cast<PHINode>(&I); 411 if (!PHI) 412 break; 413 414 // The loop header PHI nodes must have exactly two input: one from the 415 // loop preheader and one from the loop latch. 416 assert( 417 PHI->getNumIncomingValues() == 2 && 418 "Must have an incoming value only for the preheader and the latch."); 419 420 Value *V = PHI->getIncomingValueForBlock( 421 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 422 Constant *C = dyn_cast<Constant>(V); 423 if (Iteration != 0 && !C) 424 C = SimplifiedValues.lookup(V); 425 if (C) 426 SimplifiedInputValues.push_back({PHI, C}); 427 } 428 429 // Now clear and re-populate the map for the next iteration. 430 SimplifiedValues.clear(); 431 while (!SimplifiedInputValues.empty()) 432 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 433 434 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 435 436 BBWorklist.clear(); 437 BBWorklist.insert(L->getHeader()); 438 // Note that we *must not* cache the size, this loop grows the worklist. 439 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 440 BasicBlock *BB = BBWorklist[Idx]; 441 442 // Visit all instructions in the given basic block and try to simplify 443 // it. We don't change the actual IR, just count optimization 444 // opportunities. 445 for (Instruction &I : *BB) { 446 if (isa<DbgInfoIntrinsic>(I)) 447 continue; 448 449 // Track this instruction's expected baseline cost when executing the 450 // rolled loop form. 451 RolledDynamicCost += TTI.getUserCost(&I); 452 453 // Visit the instruction to analyze its loop cost after unrolling, 454 // and if the visitor returns true, mark the instruction as free after 455 // unrolling and continue. 456 bool IsFree = Analyzer.visit(I); 457 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 458 (unsigned)IsFree, 459 /*IsCounted*/ false}).second; 460 (void)Inserted; 461 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 462 463 if (IsFree) 464 continue; 465 466 // Can't properly model a cost of a call. 467 // FIXME: With a proper cost model we should be able to do it. 468 if(isa<CallInst>(&I)) 469 return None; 470 471 // If the instruction might have a side-effect recursively account for 472 // the cost of it and all the instructions leading up to it. 473 if (I.mayHaveSideEffects()) 474 AddCostRecursively(I, Iteration); 475 476 // If unrolled body turns out to be too big, bail out. 477 if (UnrolledCost > MaxUnrolledLoopSize) { 478 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 479 << " UnrolledCost: " << UnrolledCost 480 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 481 << "\n"); 482 return None; 483 } 484 } 485 486 TerminatorInst *TI = BB->getTerminator(); 487 488 // Add in the live successors by first checking whether we have terminator 489 // that may be simplified based on the values simplified by this call. 490 BasicBlock *KnownSucc = nullptr; 491 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 492 if (BI->isConditional()) { 493 if (Constant *SimpleCond = 494 SimplifiedValues.lookup(BI->getCondition())) { 495 // Just take the first successor if condition is undef 496 if (isa<UndefValue>(SimpleCond)) 497 KnownSucc = BI->getSuccessor(0); 498 else if (ConstantInt *SimpleCondVal = 499 dyn_cast<ConstantInt>(SimpleCond)) 500 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 501 } 502 } 503 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 504 if (Constant *SimpleCond = 505 SimplifiedValues.lookup(SI->getCondition())) { 506 // Just take the first successor if condition is undef 507 if (isa<UndefValue>(SimpleCond)) 508 KnownSucc = SI->getSuccessor(0); 509 else if (ConstantInt *SimpleCondVal = 510 dyn_cast<ConstantInt>(SimpleCond)) 511 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 512 } 513 } 514 if (KnownSucc) { 515 if (L->contains(KnownSucc)) 516 BBWorklist.insert(KnownSucc); 517 else 518 ExitWorklist.insert({BB, KnownSucc}); 519 continue; 520 } 521 522 // Add BB's successors to the worklist. 523 for (BasicBlock *Succ : successors(BB)) 524 if (L->contains(Succ)) 525 BBWorklist.insert(Succ); 526 else 527 ExitWorklist.insert({BB, Succ}); 528 AddCostRecursively(*TI, Iteration); 529 } 530 531 // If we found no optimization opportunities on the first iteration, we 532 // won't find them on later ones too. 533 if (UnrolledCost == RolledDynamicCost) { 534 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 535 << " UnrolledCost: " << UnrolledCost << "\n"); 536 return None; 537 } 538 } 539 540 while (!ExitWorklist.empty()) { 541 BasicBlock *ExitingBB, *ExitBB; 542 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 543 544 for (Instruction &I : *ExitBB) { 545 auto *PN = dyn_cast<PHINode>(&I); 546 if (!PN) 547 break; 548 549 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 550 if (auto *OpI = dyn_cast<Instruction>(Op)) 551 if (L->contains(OpI)) 552 AddCostRecursively(*OpI, TripCount - 1); 553 } 554 } 555 556 DEBUG(dbgs() << "Analysis finished:\n" 557 << "UnrolledCost: " << UnrolledCost << ", " 558 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 559 return {{UnrolledCost, RolledDynamicCost}}; 560 } 561 562 /// ApproximateLoopSize - Approximate the size of the loop. 563 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 564 bool &NotDuplicatable, bool &Convergent, 565 const TargetTransformInfo &TTI, 566 AssumptionCache *AC, unsigned BEInsns) { 567 SmallPtrSet<const Value *, 32> EphValues; 568 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 569 570 CodeMetrics Metrics; 571 for (BasicBlock *BB : L->blocks()) 572 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 573 NumCalls = Metrics.NumInlineCandidates; 574 NotDuplicatable = Metrics.notDuplicatable; 575 Convergent = Metrics.convergent; 576 577 unsigned LoopSize = Metrics.NumInsts; 578 579 // Don't allow an estimate of size zero. This would allows unrolling of loops 580 // with huge iteration counts, which is a compile time problem even if it's 581 // not a problem for code quality. Also, the code using this size may assume 582 // that each loop has at least three instructions (likely a conditional 583 // branch, a comparison feeding that branch, and some kind of loop increment 584 // feeding that comparison instruction). 585 LoopSize = std::max(LoopSize, BEInsns + 1); 586 587 return LoopSize; 588 } 589 590 // Returns the loop hint metadata node with the given name (for example, 591 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 592 // returned. 593 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 594 if (MDNode *LoopID = L->getLoopID()) 595 return GetUnrollMetadata(LoopID, Name); 596 return nullptr; 597 } 598 599 // Returns true if the loop has an unroll(full) pragma. 600 static bool HasUnrollFullPragma(const Loop *L) { 601 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 602 } 603 604 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 605 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 606 static bool HasUnrollEnablePragma(const Loop *L) { 607 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 608 } 609 610 // Returns true if the loop has an unroll(disable) pragma. 611 static bool HasUnrollDisablePragma(const Loop *L) { 612 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 613 } 614 615 // Returns true if the loop has an runtime unroll(disable) pragma. 616 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 617 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 618 } 619 620 // If loop has an unroll_count pragma return the (necessarily 621 // positive) value from the pragma. Otherwise return 0. 622 static unsigned UnrollCountPragmaValue(const Loop *L) { 623 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 624 if (MD) { 625 assert(MD->getNumOperands() == 2 && 626 "Unroll count hint metadata should have two operands."); 627 unsigned Count = 628 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 629 assert(Count >= 1 && "Unroll count must be positive."); 630 return Count; 631 } 632 return 0; 633 } 634 635 // Remove existing unroll metadata and add unroll disable metadata to 636 // indicate the loop has already been unrolled. This prevents a loop 637 // from being unrolled more than is directed by a pragma if the loop 638 // unrolling pass is run more than once (which it generally is). 639 static void SetLoopAlreadyUnrolled(Loop *L) { 640 MDNode *LoopID = L->getLoopID(); 641 // First remove any existing loop unrolling metadata. 642 SmallVector<Metadata *, 4> MDs; 643 // Reserve first location for self reference to the LoopID metadata node. 644 MDs.push_back(nullptr); 645 646 if (LoopID) { 647 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 648 bool IsUnrollMetadata = false; 649 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 650 if (MD) { 651 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 652 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 653 } 654 if (!IsUnrollMetadata) 655 MDs.push_back(LoopID->getOperand(i)); 656 } 657 } 658 659 // Add unroll(disable) metadata to disable future unrolling. 660 LLVMContext &Context = L->getHeader()->getContext(); 661 SmallVector<Metadata *, 1> DisableOperands; 662 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 663 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 664 MDs.push_back(DisableNode); 665 666 MDNode *NewLoopID = MDNode::get(Context, MDs); 667 // Set operand 0 to refer to the loop id itself. 668 NewLoopID->replaceOperandWith(0, NewLoopID); 669 L->setLoopID(NewLoopID); 670 } 671 672 // Computes the boosting factor for complete unrolling. 673 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 674 // be beneficial to fully unroll the loop even if unrolledcost is large. We 675 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 676 // the unroll threshold. 677 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 678 unsigned MaxPercentThresholdBoost) { 679 if (Cost.RolledDynamicCost >= UINT_MAX / 100) 680 return 100; 681 else if (Cost.UnrolledCost != 0) 682 // The boosting factor is RolledDynamicCost / UnrolledCost 683 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 684 MaxPercentThresholdBoost); 685 else 686 return MaxPercentThresholdBoost; 687 } 688 689 // Returns loop size estimation for unrolled loop. 690 static uint64_t getUnrolledLoopSize( 691 unsigned LoopSize, 692 TargetTransformInfo::UnrollingPreferences &UP) { 693 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 694 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 695 } 696 697 // Returns true if unroll count was set explicitly. 698 // Calculates unroll count and writes it to UP.Count. 699 static bool computeUnrollCount( 700 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 701 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 702 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 703 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 704 // Check for explicit Count. 705 // 1st priority is unroll count set by "unroll-count" option. 706 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 707 if (UserUnrollCount) { 708 UP.Count = UnrollCount; 709 UP.AllowExpensiveTripCount = true; 710 UP.Force = true; 711 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 712 return true; 713 } 714 715 // 2nd priority is unroll count set by pragma. 716 unsigned PragmaCount = UnrollCountPragmaValue(L); 717 if (PragmaCount > 0) { 718 UP.Count = PragmaCount; 719 UP.Runtime = true; 720 UP.AllowExpensiveTripCount = true; 721 UP.Force = true; 722 if (UP.AllowRemainder && 723 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 724 return true; 725 } 726 bool PragmaFullUnroll = HasUnrollFullPragma(L); 727 if (PragmaFullUnroll && TripCount != 0) { 728 UP.Count = TripCount; 729 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 730 return false; 731 } 732 733 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 734 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 735 PragmaEnableUnroll || UserUnrollCount; 736 737 if (ExplicitUnroll && TripCount != 0) { 738 // If the loop has an unrolling pragma, we want to be more aggressive with 739 // unrolling limits. Set thresholds to at least the PragmaThreshold value 740 // which is larger than the default limits. 741 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 742 UP.PartialThreshold = 743 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 744 } 745 746 // 3rd priority is full unroll count. 747 // Full unroll makes sense only when TripCount or its upper bound could be 748 // statically calculated. 749 // Also we need to check if we exceed FullUnrollMaxCount. 750 // If using the upper bound to unroll, TripMultiple should be set to 1 because 751 // we do not know when loop may exit. 752 // MaxTripCount and ExactTripCount cannot both be non zero since we only 753 // compute the former when the latter is zero. 754 unsigned ExactTripCount = TripCount; 755 assert((ExactTripCount == 0 || MaxTripCount == 0) && 756 "ExtractTripCound and MaxTripCount cannot both be non zero."); 757 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 758 UP.Count = FullUnrollTripCount; 759 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 760 // When computing the unrolled size, note that BEInsns are not replicated 761 // like the rest of the loop body. 762 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 763 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 764 TripCount = FullUnrollTripCount; 765 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 766 return ExplicitUnroll; 767 } else { 768 // The loop isn't that small, but we still can fully unroll it if that 769 // helps to remove a significant number of instructions. 770 // To check that, run additional analysis on the loop. 771 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 772 L, FullUnrollTripCount, DT, *SE, TTI, 773 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 774 unsigned Boost = 775 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 776 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 777 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 778 TripCount = FullUnrollTripCount; 779 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 780 return ExplicitUnroll; 781 } 782 } 783 } 784 } 785 786 // 4rd priority is partial unrolling. 787 // Try partial unroll only when TripCount could be staticaly calculated. 788 if (TripCount) { 789 UP.Partial |= ExplicitUnroll; 790 if (!UP.Partial) { 791 DEBUG(dbgs() << " will not try to unroll partially because " 792 << "-unroll-allow-partial not given\n"); 793 UP.Count = 0; 794 return false; 795 } 796 if (UP.Count == 0) 797 UP.Count = TripCount; 798 if (UP.PartialThreshold != NoThreshold) { 799 // Reduce unroll count to be modulo of TripCount for partial unrolling. 800 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 801 UP.Count = 802 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 803 (LoopSize - UP.BEInsns); 804 if (UP.Count > UP.MaxCount) 805 UP.Count = UP.MaxCount; 806 while (UP.Count != 0 && TripCount % UP.Count != 0) 807 UP.Count--; 808 if (UP.AllowRemainder && UP.Count <= 1) { 809 // If there is no Count that is modulo of TripCount, set Count to 810 // largest power-of-two factor that satisfies the threshold limit. 811 // As we'll create fixup loop, do the type of unrolling only if 812 // remainder loop is allowed. 813 UP.Count = UP.DefaultUnrollRuntimeCount; 814 while (UP.Count != 0 && 815 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 816 UP.Count >>= 1; 817 } 818 if (UP.Count < 2) { 819 if (PragmaEnableUnroll) 820 ORE->emit( 821 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 822 L->getStartLoc(), L->getHeader()) 823 << "Unable to unroll loop as directed by unroll(enable) pragma " 824 "because unrolled size is too large."); 825 UP.Count = 0; 826 } 827 } else { 828 UP.Count = TripCount; 829 } 830 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 831 UP.Count != TripCount) 832 ORE->emit( 833 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 834 L->getStartLoc(), L->getHeader()) 835 << "Unable to fully unroll loop as directed by unroll pragma because " 836 "unrolled size is too large."); 837 return ExplicitUnroll; 838 } 839 assert(TripCount == 0 && 840 "All cases when TripCount is constant should be covered here."); 841 if (PragmaFullUnroll) 842 ORE->emit( 843 OptimizationRemarkMissed(DEBUG_TYPE, 844 "CantFullUnrollAsDirectedRuntimeTripCount", 845 L->getStartLoc(), L->getHeader()) 846 << "Unable to fully unroll loop as directed by unroll(full) pragma " 847 "because loop has a runtime trip count."); 848 849 // 5th priority is loop peeling 850 computePeelCount(L, LoopSize, UP); 851 if (UP.PeelCount) { 852 UP.Runtime = false; 853 UP.Count = 1; 854 return ExplicitUnroll; 855 } 856 857 // 6th priority is runtime unrolling. 858 // Don't unroll a runtime trip count loop when it is disabled. 859 if (HasRuntimeUnrollDisablePragma(L)) { 860 UP.Count = 0; 861 return false; 862 } 863 864 // Check if the runtime trip count is too small when profile is available. 865 if (L->getHeader()->getParent()->getEntryCount()) { 866 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 867 if (*ProfileTripCount < FlatLoopTripCountThreshold) 868 return false; 869 else 870 UP.AllowExpensiveTripCount = true; 871 } 872 } 873 874 // Reduce count based on the type of unrolling and the threshold values. 875 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 876 if (!UP.Runtime) { 877 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 878 << "-unroll-runtime not given\n"); 879 UP.Count = 0; 880 return false; 881 } 882 if (UP.Count == 0) 883 UP.Count = UP.DefaultUnrollRuntimeCount; 884 885 // Reduce unroll count to be the largest power-of-two factor of 886 // the original count which satisfies the threshold limit. 887 while (UP.Count != 0 && 888 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 889 UP.Count >>= 1; 890 891 #ifndef NDEBUG 892 unsigned OrigCount = UP.Count; 893 #endif 894 895 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 896 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 897 UP.Count >>= 1; 898 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 899 "specific or because the loop contains a convergent " 900 "instruction), so unroll count must divide the trip " 901 "multiple, " 902 << TripMultiple << ". Reducing unroll count from " 903 << OrigCount << " to " << UP.Count << ".\n"); 904 using namespace ore; 905 if (PragmaCount > 0 && !UP.AllowRemainder) 906 ORE->emit( 907 OptimizationRemarkMissed(DEBUG_TYPE, 908 "DifferentUnrollCountFromDirected", 909 L->getStartLoc(), L->getHeader()) 910 << "Unable to unroll loop the number of times directed by " 911 "unroll_count pragma because remainder loop is restricted " 912 "(that could architecture specific or because the loop " 913 "contains a convergent instruction) and so must have an unroll " 914 "count that divides the loop trip multiple of " 915 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 916 << NV("UnrollCount", UP.Count) << " time(s)."); 917 } 918 919 if (UP.Count > UP.MaxCount) 920 UP.Count = UP.MaxCount; 921 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 922 if (UP.Count < 2) 923 UP.Count = 0; 924 return ExplicitUnroll; 925 } 926 927 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 928 ScalarEvolution *SE, const TargetTransformInfo &TTI, 929 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 930 bool PreserveLCSSA, 931 Optional<unsigned> ProvidedCount, 932 Optional<unsigned> ProvidedThreshold, 933 Optional<bool> ProvidedAllowPartial, 934 Optional<bool> ProvidedRuntime, 935 Optional<bool> ProvidedUpperBound) { 936 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 937 << "] Loop %" << L->getHeader()->getName() << "\n"); 938 if (HasUnrollDisablePragma(L)) 939 return false; 940 if (!L->isLoopSimplifyForm()) { 941 DEBUG( 942 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 943 return false; 944 } 945 946 unsigned NumInlineCandidates; 947 bool NotDuplicatable; 948 bool Convergent; 949 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 950 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 951 ProvidedRuntime, ProvidedUpperBound); 952 // Exit early if unrolling is disabled. 953 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 954 return false; 955 unsigned LoopSize = ApproximateLoopSize( 956 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 957 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 958 if (NotDuplicatable) { 959 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 960 << " instructions.\n"); 961 return false; 962 } 963 if (NumInlineCandidates != 0) { 964 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 965 return false; 966 } 967 968 // Find trip count and trip multiple if count is not available 969 unsigned TripCount = 0; 970 unsigned MaxTripCount = 0; 971 unsigned TripMultiple = 1; 972 // If there are multiple exiting blocks but one of them is the latch, use the 973 // latch for the trip count estimation. Otherwise insist on a single exiting 974 // block for the trip count estimation. 975 BasicBlock *ExitingBlock = L->getLoopLatch(); 976 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 977 ExitingBlock = L->getExitingBlock(); 978 if (ExitingBlock) { 979 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 980 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 981 } 982 983 // If the loop contains a convergent operation, the prelude we'd add 984 // to do the first few instructions before we hit the unrolled loop 985 // is unsafe -- it adds a control-flow dependency to the convergent 986 // operation. Therefore restrict remainder loop (try unrollig without). 987 // 988 // TODO: This is quite conservative. In practice, convergent_op() 989 // is likely to be called unconditionally in the loop. In this 990 // case, the program would be ill-formed (on most architectures) 991 // unless n were the same on all threads in a thread group. 992 // Assuming n is the same on all threads, any kind of unrolling is 993 // safe. But currently llvm's notion of convergence isn't powerful 994 // enough to express this. 995 if (Convergent) 996 UP.AllowRemainder = false; 997 998 // Try to find the trip count upper bound if we cannot find the exact trip 999 // count. 1000 bool MaxOrZero = false; 1001 if (!TripCount) { 1002 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1003 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1004 // We can unroll by the upper bound amount if it's generally allowed or if 1005 // we know that the loop is executed either the upper bound or zero times. 1006 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1007 // loop tests remains the same compared to the non-unrolled version, whereas 1008 // the generic upper bound unrolling keeps all but the last loop test so the 1009 // number of loop tests goes up which may end up being worse on targets with 1010 // constriained branch predictor resources so is controlled by an option.) 1011 // In addition we only unroll small upper bounds. 1012 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1013 MaxTripCount = 0; 1014 } 1015 } 1016 1017 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1018 // fully unroll the loop. 1019 bool UseUpperBound = false; 1020 bool IsCountSetExplicitly = 1021 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1022 TripMultiple, LoopSize, UP, UseUpperBound); 1023 if (!UP.Count) 1024 return false; 1025 // Unroll factor (Count) must be less or equal to TripCount. 1026 if (TripCount && UP.Count > TripCount) 1027 UP.Count = TripCount; 1028 1029 // Unroll the loop. 1030 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1031 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1032 TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE, 1033 PreserveLCSSA)) 1034 return false; 1035 1036 // If loop has an unroll count pragma or unrolled by explicitly set count 1037 // mark loop as unrolled to prevent unrolling beyond that requested. 1038 // If the loop was peeled, we already "used up" the profile information 1039 // we had, so we don't want to unroll or peel again. 1040 if (IsCountSetExplicitly || UP.PeelCount) 1041 SetLoopAlreadyUnrolled(L); 1042 1043 return true; 1044 } 1045 1046 namespace { 1047 class LoopUnroll : public LoopPass { 1048 public: 1049 static char ID; // Pass ID, replacement for typeid 1050 LoopUnroll(Optional<unsigned> Threshold = None, 1051 Optional<unsigned> Count = None, 1052 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1053 Optional<bool> UpperBound = None) 1054 : LoopPass(ID), ProvidedCount(std::move(Count)), 1055 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1056 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1057 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1058 } 1059 1060 Optional<unsigned> ProvidedCount; 1061 Optional<unsigned> ProvidedThreshold; 1062 Optional<bool> ProvidedAllowPartial; 1063 Optional<bool> ProvidedRuntime; 1064 Optional<bool> ProvidedUpperBound; 1065 1066 bool runOnLoop(Loop *L, LPPassManager &) override { 1067 if (skipLoop(L)) 1068 return false; 1069 1070 Function &F = *L->getHeader()->getParent(); 1071 1072 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1073 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1074 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1075 const TargetTransformInfo &TTI = 1076 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1077 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1078 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1079 // pass. Function analyses need to be preserved across loop transformations 1080 // but ORE cannot be preserved (see comment before the pass definition). 1081 OptimizationRemarkEmitter ORE(&F); 1082 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1083 1084 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1085 ProvidedCount, ProvidedThreshold, 1086 ProvidedAllowPartial, ProvidedRuntime, 1087 ProvidedUpperBound); 1088 } 1089 1090 /// This transformation requires natural loop information & requires that 1091 /// loop preheaders be inserted into the CFG... 1092 /// 1093 void getAnalysisUsage(AnalysisUsage &AU) const override { 1094 AU.addRequired<AssumptionCacheTracker>(); 1095 AU.addRequired<TargetTransformInfoWrapperPass>(); 1096 // FIXME: Loop passes are required to preserve domtree, and for now we just 1097 // recreate dom info if anything gets unrolled. 1098 getLoopAnalysisUsage(AU); 1099 } 1100 }; 1101 } 1102 1103 char LoopUnroll::ID = 0; 1104 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1105 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1106 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1107 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1108 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1109 1110 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1111 int Runtime, int UpperBound) { 1112 // TODO: It would make more sense for this function to take the optionals 1113 // directly, but that's dangerous since it would silently break out of tree 1114 // callers. 1115 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1116 Count == -1 ? None : Optional<unsigned>(Count), 1117 AllowPartial == -1 ? None 1118 : Optional<bool>(AllowPartial), 1119 Runtime == -1 ? None : Optional<bool>(Runtime), 1120 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1121 } 1122 1123 Pass *llvm::createSimpleLoopUnrollPass() { 1124 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1125 } 1126 1127 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1128 LoopStandardAnalysisResults &AR, 1129 LPMUpdater &Updater) { 1130 const auto &FAM = 1131 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1132 Function *F = L.getHeader()->getParent(); 1133 1134 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1135 // FIXME: This should probably be optional rather than required. 1136 if (!ORE) 1137 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1138 "cached at a higher level"); 1139 1140 // Keep track of the previous loop structure so we can identify new loops 1141 // created by unrolling. 1142 Loop *ParentL = L.getParentLoop(); 1143 SmallPtrSet<Loop *, 4> OldLoops; 1144 if (ParentL) 1145 OldLoops.insert(ParentL->begin(), ParentL->end()); 1146 else 1147 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1148 1149 // The API here is quite complex to call, but there are only two interesting 1150 // states we support: partial and full (or "simple") unrolling. However, to 1151 // enable these things we actually pass "None" in for the optional to avoid 1152 // providing an explicit choice. 1153 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam; 1154 if (!AllowPartialUnrolling) 1155 AllowPartialParam = RuntimeParam = UpperBoundParam = false; 1156 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, &AR.SE, AR.TTI, AR.AC, *ORE, 1157 /*PreserveLCSSA*/ true, /*Count*/ None, 1158 /*Threshold*/ None, AllowPartialParam, 1159 RuntimeParam, UpperBoundParam); 1160 if (!Changed) 1161 return PreservedAnalyses::all(); 1162 1163 // The parent must not be damaged by unrolling! 1164 #ifndef NDEBUG 1165 if (ParentL) 1166 ParentL->verifyLoop(); 1167 #endif 1168 1169 // Unrolling can do several things to introduce new loops into a loop nest: 1170 // - Partial unrolling clones child loops within the current loop. If it 1171 // uses a remainder, then it can also create any number of sibling loops. 1172 // - Full unrolling clones child loops within the current loop but then 1173 // removes the current loop making all of the children appear to be new 1174 // sibling loops. 1175 // - Loop peeling can directly introduce new sibling loops by peeling one 1176 // iteration. 1177 // 1178 // When a new loop appears as a sibling loop, either from peeling an 1179 // iteration or fully unrolling, its nesting structure has fundamentally 1180 // changed and we want to revisit it to reflect that. 1181 // 1182 // When unrolling has removed the current loop, we need to tell the 1183 // infrastructure that it is gone. 1184 // 1185 // Finally, we support a debugging/testing mode where we revisit child loops 1186 // as well. These are not expected to require further optimizations as either 1187 // they or the loop they were cloned from have been directly visited already. 1188 // But the debugging mode allows us to check this assumption. 1189 bool IsCurrentLoopValid = false; 1190 SmallVector<Loop *, 4> SibLoops; 1191 if (ParentL) 1192 SibLoops.append(ParentL->begin(), ParentL->end()); 1193 else 1194 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1195 erase_if(SibLoops, [&](Loop *SibLoop) { 1196 if (SibLoop == &L) { 1197 IsCurrentLoopValid = true; 1198 return true; 1199 } 1200 1201 // Otherwise erase the loop from the list if it was in the old loops. 1202 return OldLoops.count(SibLoop) != 0; 1203 }); 1204 Updater.addSiblingLoops(SibLoops); 1205 1206 if (!IsCurrentLoopValid) { 1207 Updater.markLoopAsDeleted(L); 1208 } else { 1209 // We can only walk child loops if the current loop remained valid. 1210 if (UnrollRevisitChildLoops) { 1211 // Walk *all* of the child loops. This is a highly speculative mode 1212 // anyways so look for any simplifications that arose from partial 1213 // unrolling or peeling off of iterations. 1214 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1215 Updater.addChildLoops(ChildLoops); 1216 } 1217 } 1218 1219 return getLoopPassPreservedAnalyses(); 1220 } 1221