xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision ea8448e3618a1581b5eca39d39bedaa55fede75d)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is somtimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
188     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
189     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
190     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
191   TargetTransformInfo::UnrollingPreferences UP;
192 
193   // Set up the defaults
194   UP.Threshold =
195       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196   UP.MaxPercentThresholdBoost = 400;
197   UP.OptSizeThreshold = UnrollOptSizeThreshold;
198   UP.PartialThreshold = 150;
199   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200   UP.Count = 0;
201   UP.DefaultUnrollRuntimeCount = 8;
202   UP.MaxCount = std::numeric_limits<unsigned>::max();
203   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204   UP.BEInsns = 2;
205   UP.Partial = false;
206   UP.Runtime = false;
207   UP.AllowRemainder = true;
208   UP.UnrollRemainder = false;
209   UP.AllowExpensiveTripCount = false;
210   UP.Force = false;
211   UP.UpperBound = false;
212   UP.UnrollAndJam = false;
213   UP.UnrollAndJamInnerLoopThreshold = 60;
214   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215 
216   // Override with any target specific settings
217   TTI.getUnrollingPreferences(L, SE, UP);
218 
219   // Apply size attributes
220   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
222                                                 PGSOQueryType::IRPass);
223   if (OptForSize) {
224     UP.Threshold = UP.OptSizeThreshold;
225     UP.PartialThreshold = UP.PartialOptSizeThreshold;
226     UP.MaxPercentThresholdBoost = 100;
227   }
228 
229   // Apply any user values specified by cl::opt
230   if (UnrollThreshold.getNumOccurrences() > 0)
231     UP.Threshold = UnrollThreshold;
232   if (UnrollPartialThreshold.getNumOccurrences() > 0)
233     UP.PartialThreshold = UnrollPartialThreshold;
234   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
235     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
236   if (UnrollMaxCount.getNumOccurrences() > 0)
237     UP.MaxCount = UnrollMaxCount;
238   if (UnrollFullMaxCount.getNumOccurrences() > 0)
239     UP.FullUnrollMaxCount = UnrollFullMaxCount;
240   if (UnrollAllowPartial.getNumOccurrences() > 0)
241     UP.Partial = UnrollAllowPartial;
242   if (UnrollAllowRemainder.getNumOccurrences() > 0)
243     UP.AllowRemainder = UnrollAllowRemainder;
244   if (UnrollRuntime.getNumOccurrences() > 0)
245     UP.Runtime = UnrollRuntime;
246   if (UnrollMaxUpperBound == 0)
247     UP.UpperBound = false;
248   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
249     UP.UnrollRemainder = UnrollUnrollRemainder;
250   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
251     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
252 
253   // Apply user values provided by argument
254   if (UserThreshold.hasValue()) {
255     UP.Threshold = *UserThreshold;
256     UP.PartialThreshold = *UserThreshold;
257   }
258   if (UserCount.hasValue())
259     UP.Count = *UserCount;
260   if (UserAllowPartial.hasValue())
261     UP.Partial = *UserAllowPartial;
262   if (UserRuntime.hasValue())
263     UP.Runtime = *UserRuntime;
264   if (UserUpperBound.hasValue())
265     UP.UpperBound = *UserUpperBound;
266   if (UserFullUnrollMaxCount.hasValue())
267     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
268 
269   return UP;
270 }
271 
272 namespace {
273 
274 /// A struct to densely store the state of an instruction after unrolling at
275 /// each iteration.
276 ///
277 /// This is designed to work like a tuple of <Instruction *, int> for the
278 /// purposes of hashing and lookup, but to be able to associate two boolean
279 /// states with each key.
280 struct UnrolledInstState {
281   Instruction *I;
282   int Iteration : 30;
283   unsigned IsFree : 1;
284   unsigned IsCounted : 1;
285 };
286 
287 /// Hashing and equality testing for a set of the instruction states.
288 struct UnrolledInstStateKeyInfo {
289   using PtrInfo = DenseMapInfo<Instruction *>;
290   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
291 
292   static inline UnrolledInstState getEmptyKey() {
293     return {PtrInfo::getEmptyKey(), 0, 0, 0};
294   }
295 
296   static inline UnrolledInstState getTombstoneKey() {
297     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
298   }
299 
300   static inline unsigned getHashValue(const UnrolledInstState &S) {
301     return PairInfo::getHashValue({S.I, S.Iteration});
302   }
303 
304   static inline bool isEqual(const UnrolledInstState &LHS,
305                              const UnrolledInstState &RHS) {
306     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
307   }
308 };
309 
310 struct EstimatedUnrollCost {
311   /// The estimated cost after unrolling.
312   unsigned UnrolledCost;
313 
314   /// The estimated dynamic cost of executing the instructions in the
315   /// rolled form.
316   unsigned RolledDynamicCost;
317 };
318 
319 } // end anonymous namespace
320 
321 /// Figure out if the loop is worth full unrolling.
322 ///
323 /// Complete loop unrolling can make some loads constant, and we need to know
324 /// if that would expose any further optimization opportunities.  This routine
325 /// estimates this optimization.  It computes cost of unrolled loop
326 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
327 /// dynamic cost we mean that we won't count costs of blocks that are known not
328 /// to be executed (i.e. if we have a branch in the loop and we know that at the
329 /// given iteration its condition would be resolved to true, we won't add up the
330 /// cost of the 'false'-block).
331 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
332 /// the analysis failed (no benefits expected from the unrolling, or the loop is
333 /// too big to analyze), the returned value is None.
334 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
335     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
336     const SmallPtrSetImpl<const Value *> &EphValues,
337     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
338     unsigned MaxIterationsCountToAnalyze) {
339   // We want to be able to scale offsets by the trip count and add more offsets
340   // to them without checking for overflows, and we already don't want to
341   // analyze *massive* trip counts, so we force the max to be reasonably small.
342   assert(MaxIterationsCountToAnalyze <
343              (unsigned)(std::numeric_limits<int>::max() / 2) &&
344          "The unroll iterations max is too large!");
345 
346   // Only analyze inner loops. We can't properly estimate cost of nested loops
347   // and we won't visit inner loops again anyway.
348   if (!L->empty())
349     return None;
350 
351   // Don't simulate loops with a big or unknown tripcount
352   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
353     return None;
354 
355   SmallSetVector<BasicBlock *, 16> BBWorklist;
356   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
357   DenseMap<Value *, Constant *> SimplifiedValues;
358   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
359 
360   // The estimated cost of the unrolled form of the loop. We try to estimate
361   // this by simplifying as much as we can while computing the estimate.
362   unsigned UnrolledCost = 0;
363 
364   // We also track the estimated dynamic (that is, actually executed) cost in
365   // the rolled form. This helps identify cases when the savings from unrolling
366   // aren't just exposing dead control flows, but actual reduced dynamic
367   // instructions due to the simplifications which we expect to occur after
368   // unrolling.
369   unsigned RolledDynamicCost = 0;
370 
371   // We track the simplification of each instruction in each iteration. We use
372   // this to recursively merge costs into the unrolled cost on-demand so that
373   // we don't count the cost of any dead code. This is essentially a map from
374   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
375   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
376 
377   // A small worklist used to accumulate cost of instructions from each
378   // observable and reached root in the loop.
379   SmallVector<Instruction *, 16> CostWorklist;
380 
381   // PHI-used worklist used between iterations while accumulating cost.
382   SmallVector<Instruction *, 4> PHIUsedList;
383 
384   // Helper function to accumulate cost for instructions in the loop.
385   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
386     assert(Iteration >= 0 && "Cannot have a negative iteration!");
387     assert(CostWorklist.empty() && "Must start with an empty cost list");
388     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
389     CostWorklist.push_back(&RootI);
390     TargetTransformInfo::TargetCostKind CostKind =
391       RootI.getFunction()->hasMinSize() ?
392       TargetTransformInfo::TCK_CodeSize :
393       TargetTransformInfo::TCK_SizeAndLatency;
394     for (;; --Iteration) {
395       do {
396         Instruction *I = CostWorklist.pop_back_val();
397 
398         // InstCostMap only uses I and Iteration as a key, the other two values
399         // don't matter here.
400         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
401         if (CostIter == InstCostMap.end())
402           // If an input to a PHI node comes from a dead path through the loop
403           // we may have no cost data for it here. What that actually means is
404           // that it is free.
405           continue;
406         auto &Cost = *CostIter;
407         if (Cost.IsCounted)
408           // Already counted this instruction.
409           continue;
410 
411         // Mark that we are counting the cost of this instruction now.
412         Cost.IsCounted = true;
413 
414         // If this is a PHI node in the loop header, just add it to the PHI set.
415         if (auto *PhiI = dyn_cast<PHINode>(I))
416           if (PhiI->getParent() == L->getHeader()) {
417             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
418                                   "inherently simplify during unrolling.");
419             if (Iteration == 0)
420               continue;
421 
422             // Push the incoming value from the backedge into the PHI used list
423             // if it is an in-loop instruction. We'll use this to populate the
424             // cost worklist for the next iteration (as we count backwards).
425             if (auto *OpI = dyn_cast<Instruction>(
426                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
427               if (L->contains(OpI))
428                 PHIUsedList.push_back(OpI);
429             continue;
430           }
431 
432         // First accumulate the cost of this instruction.
433         if (!Cost.IsFree) {
434           UnrolledCost += TTI.getUserCost(I, CostKind);
435           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
436                             << Iteration << "): ");
437           LLVM_DEBUG(I->dump());
438         }
439 
440         // We must count the cost of every operand which is not free,
441         // recursively. If we reach a loop PHI node, simply add it to the set
442         // to be considered on the next iteration (backwards!).
443         for (Value *Op : I->operands()) {
444           // Check whether this operand is free due to being a constant or
445           // outside the loop.
446           auto *OpI = dyn_cast<Instruction>(Op);
447           if (!OpI || !L->contains(OpI))
448             continue;
449 
450           // Otherwise accumulate its cost.
451           CostWorklist.push_back(OpI);
452         }
453       } while (!CostWorklist.empty());
454 
455       if (PHIUsedList.empty())
456         // We've exhausted the search.
457         break;
458 
459       assert(Iteration > 0 &&
460              "Cannot track PHI-used values past the first iteration!");
461       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
462       PHIUsedList.clear();
463     }
464   };
465 
466   // Ensure that we don't violate the loop structure invariants relied on by
467   // this analysis.
468   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
469   assert(L->isLCSSAForm(DT) &&
470          "Must have loops in LCSSA form to track live-out values.");
471 
472   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
473 
474   TargetTransformInfo::TargetCostKind CostKind =
475     L->getHeader()->getParent()->hasMinSize() ?
476     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
477   // Simulate execution of each iteration of the loop counting instructions,
478   // which would be simplified.
479   // Since the same load will take different values on different iterations,
480   // we literally have to go through all loop's iterations.
481   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
482     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
483 
484     // Prepare for the iteration by collecting any simplified entry or backedge
485     // inputs.
486     for (Instruction &I : *L->getHeader()) {
487       auto *PHI = dyn_cast<PHINode>(&I);
488       if (!PHI)
489         break;
490 
491       // The loop header PHI nodes must have exactly two input: one from the
492       // loop preheader and one from the loop latch.
493       assert(
494           PHI->getNumIncomingValues() == 2 &&
495           "Must have an incoming value only for the preheader and the latch.");
496 
497       Value *V = PHI->getIncomingValueForBlock(
498           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
499       Constant *C = dyn_cast<Constant>(V);
500       if (Iteration != 0 && !C)
501         C = SimplifiedValues.lookup(V);
502       if (C)
503         SimplifiedInputValues.push_back({PHI, C});
504     }
505 
506     // Now clear and re-populate the map for the next iteration.
507     SimplifiedValues.clear();
508     while (!SimplifiedInputValues.empty())
509       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
510 
511     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
512 
513     BBWorklist.clear();
514     BBWorklist.insert(L->getHeader());
515     // Note that we *must not* cache the size, this loop grows the worklist.
516     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
517       BasicBlock *BB = BBWorklist[Idx];
518 
519       // Visit all instructions in the given basic block and try to simplify
520       // it.  We don't change the actual IR, just count optimization
521       // opportunities.
522       for (Instruction &I : *BB) {
523         // These won't get into the final code - don't even try calculating the
524         // cost for them.
525         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
526           continue;
527 
528         // Track this instruction's expected baseline cost when executing the
529         // rolled loop form.
530         RolledDynamicCost += TTI.getUserCost(&I, CostKind);
531 
532         // Visit the instruction to analyze its loop cost after unrolling,
533         // and if the visitor returns true, mark the instruction as free after
534         // unrolling and continue.
535         bool IsFree = Analyzer.visit(I);
536         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
537                                            (unsigned)IsFree,
538                                            /*IsCounted*/ false}).second;
539         (void)Inserted;
540         assert(Inserted && "Cannot have a state for an unvisited instruction!");
541 
542         if (IsFree)
543           continue;
544 
545         // Can't properly model a cost of a call.
546         // FIXME: With a proper cost model we should be able to do it.
547         if (auto *CI = dyn_cast<CallInst>(&I)) {
548           const Function *Callee = CI->getCalledFunction();
549           if (!Callee || TTI.isLoweredToCall(Callee)) {
550             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
551             return None;
552           }
553         }
554 
555         // If the instruction might have a side-effect recursively account for
556         // the cost of it and all the instructions leading up to it.
557         if (I.mayHaveSideEffects())
558           AddCostRecursively(I, Iteration);
559 
560         // If unrolled body turns out to be too big, bail out.
561         if (UnrolledCost > MaxUnrolledLoopSize) {
562           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
563                             << "  UnrolledCost: " << UnrolledCost
564                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
565                             << "\n");
566           return None;
567         }
568       }
569 
570       Instruction *TI = BB->getTerminator();
571 
572       // Add in the live successors by first checking whether we have terminator
573       // that may be simplified based on the values simplified by this call.
574       BasicBlock *KnownSucc = nullptr;
575       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
576         if (BI->isConditional()) {
577           if (Constant *SimpleCond =
578                   SimplifiedValues.lookup(BI->getCondition())) {
579             // Just take the first successor if condition is undef
580             if (isa<UndefValue>(SimpleCond))
581               KnownSucc = BI->getSuccessor(0);
582             else if (ConstantInt *SimpleCondVal =
583                          dyn_cast<ConstantInt>(SimpleCond))
584               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
585           }
586         }
587       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
588         if (Constant *SimpleCond =
589                 SimplifiedValues.lookup(SI->getCondition())) {
590           // Just take the first successor if condition is undef
591           if (isa<UndefValue>(SimpleCond))
592             KnownSucc = SI->getSuccessor(0);
593           else if (ConstantInt *SimpleCondVal =
594                        dyn_cast<ConstantInt>(SimpleCond))
595             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
596         }
597       }
598       if (KnownSucc) {
599         if (L->contains(KnownSucc))
600           BBWorklist.insert(KnownSucc);
601         else
602           ExitWorklist.insert({BB, KnownSucc});
603         continue;
604       }
605 
606       // Add BB's successors to the worklist.
607       for (BasicBlock *Succ : successors(BB))
608         if (L->contains(Succ))
609           BBWorklist.insert(Succ);
610         else
611           ExitWorklist.insert({BB, Succ});
612       AddCostRecursively(*TI, Iteration);
613     }
614 
615     // If we found no optimization opportunities on the first iteration, we
616     // won't find them on later ones too.
617     if (UnrolledCost == RolledDynamicCost) {
618       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
619                         << "  UnrolledCost: " << UnrolledCost << "\n");
620       return None;
621     }
622   }
623 
624   while (!ExitWorklist.empty()) {
625     BasicBlock *ExitingBB, *ExitBB;
626     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
627 
628     for (Instruction &I : *ExitBB) {
629       auto *PN = dyn_cast<PHINode>(&I);
630       if (!PN)
631         break;
632 
633       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
634       if (auto *OpI = dyn_cast<Instruction>(Op))
635         if (L->contains(OpI))
636           AddCostRecursively(*OpI, TripCount - 1);
637     }
638   }
639 
640   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
641                     << "UnrolledCost: " << UnrolledCost << ", "
642                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
643   return {{UnrolledCost, RolledDynamicCost}};
644 }
645 
646 /// ApproximateLoopSize - Approximate the size of the loop.
647 unsigned llvm::ApproximateLoopSize(
648     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
649     const TargetTransformInfo &TTI,
650     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
651   CodeMetrics Metrics;
652   for (BasicBlock *BB : L->blocks())
653     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
654   NumCalls = Metrics.NumInlineCandidates;
655   NotDuplicatable = Metrics.notDuplicatable;
656   Convergent = Metrics.convergent;
657 
658   unsigned LoopSize = Metrics.NumInsts;
659 
660   // Don't allow an estimate of size zero.  This would allows unrolling of loops
661   // with huge iteration counts, which is a compile time problem even if it's
662   // not a problem for code quality. Also, the code using this size may assume
663   // that each loop has at least three instructions (likely a conditional
664   // branch, a comparison feeding that branch, and some kind of loop increment
665   // feeding that comparison instruction).
666   LoopSize = std::max(LoopSize, BEInsns + 1);
667 
668   return LoopSize;
669 }
670 
671 // Returns the loop hint metadata node with the given name (for example,
672 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
673 // returned.
674 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
675   if (MDNode *LoopID = L->getLoopID())
676     return GetUnrollMetadata(LoopID, Name);
677   return nullptr;
678 }
679 
680 // Returns true if the loop has an unroll(full) pragma.
681 static bool hasUnrollFullPragma(const Loop *L) {
682   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
683 }
684 
685 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
686 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
687 static bool hasUnrollEnablePragma(const Loop *L) {
688   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
689 }
690 
691 // Returns true if the loop has an runtime unroll(disable) pragma.
692 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
693   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
694 }
695 
696 // If loop has an unroll_count pragma return the (necessarily
697 // positive) value from the pragma.  Otherwise return 0.
698 static unsigned unrollCountPragmaValue(const Loop *L) {
699   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
700   if (MD) {
701     assert(MD->getNumOperands() == 2 &&
702            "Unroll count hint metadata should have two operands.");
703     unsigned Count =
704         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
705     assert(Count >= 1 && "Unroll count must be positive.");
706     return Count;
707   }
708   return 0;
709 }
710 
711 // Computes the boosting factor for complete unrolling.
712 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
713 // be beneficial to fully unroll the loop even if unrolledcost is large. We
714 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
715 // the unroll threshold.
716 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
717                                             unsigned MaxPercentThresholdBoost) {
718   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
719     return 100;
720   else if (Cost.UnrolledCost != 0)
721     // The boosting factor is RolledDynamicCost / UnrolledCost
722     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
723                     MaxPercentThresholdBoost);
724   else
725     return MaxPercentThresholdBoost;
726 }
727 
728 // Returns loop size estimation for unrolled loop.
729 static uint64_t getUnrolledLoopSize(
730     unsigned LoopSize,
731     TargetTransformInfo::UnrollingPreferences &UP) {
732   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
733   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
734 }
735 
736 // Returns true if unroll count was set explicitly.
737 // Calculates unroll count and writes it to UP.Count.
738 // Unless IgnoreUser is true, will also use metadata and command-line options
739 // that are specific to to the LoopUnroll pass (which, for instance, are
740 // irrelevant for the LoopUnrollAndJam pass).
741 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
742 // many LoopUnroll-specific options. The shared functionality should be
743 // refactored into it own function.
744 bool llvm::computeUnrollCount(
745     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
746     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
747     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
748     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
749     TargetTransformInfo::UnrollingPreferences &UP,
750     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
751 
752   // Check for explicit Count.
753   // 1st priority is unroll count set by "unroll-count" option.
754   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
755   if (UserUnrollCount) {
756     UP.Count = UnrollCount;
757     UP.AllowExpensiveTripCount = true;
758     UP.Force = true;
759     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
760       return true;
761   }
762 
763   // 2nd priority is unroll count set by pragma.
764   unsigned PragmaCount = unrollCountPragmaValue(L);
765   if (PragmaCount > 0) {
766     UP.Count = PragmaCount;
767     UP.Runtime = true;
768     UP.AllowExpensiveTripCount = true;
769     UP.Force = true;
770     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
771         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
772       return true;
773   }
774   bool PragmaFullUnroll = hasUnrollFullPragma(L);
775   if (PragmaFullUnroll && TripCount != 0) {
776     UP.Count = TripCount;
777     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
778       return false;
779   }
780 
781   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
782   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
783                         PragmaEnableUnroll || UserUnrollCount;
784 
785   if (ExplicitUnroll && TripCount != 0) {
786     // If the loop has an unrolling pragma, we want to be more aggressive with
787     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
788     // value which is larger than the default limits.
789     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
790     UP.PartialThreshold =
791         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
792   }
793 
794   // 3rd priority is full unroll count.
795   // Full unroll makes sense only when TripCount or its upper bound could be
796   // statically calculated.
797   // Also we need to check if we exceed FullUnrollMaxCount.
798   // If using the upper bound to unroll, TripMultiple should be set to 1 because
799   // we do not know when loop may exit.
800 
801   // We can unroll by the upper bound amount if it's generally allowed or if
802   // we know that the loop is executed either the upper bound or zero times.
803   // (MaxOrZero unrolling keeps only the first loop test, so the number of
804   // loop tests remains the same compared to the non-unrolled version, whereas
805   // the generic upper bound unrolling keeps all but the last loop test so the
806   // number of loop tests goes up which may end up being worse on targets with
807   // constrained branch predictor resources so is controlled by an option.)
808   // In addition we only unroll small upper bounds.
809   unsigned FullUnrollMaxTripCount = MaxTripCount;
810   if (!(UP.UpperBound || MaxOrZero) ||
811       FullUnrollMaxTripCount > UnrollMaxUpperBound)
812     FullUnrollMaxTripCount = 0;
813 
814   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
815   // compute the former when the latter is zero.
816   unsigned ExactTripCount = TripCount;
817   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
818          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
819 
820   unsigned FullUnrollTripCount =
821       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
822   UP.Count = FullUnrollTripCount;
823   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
824     // When computing the unrolled size, note that BEInsns are not replicated
825     // like the rest of the loop body.
826     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
827       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
828       TripCount = FullUnrollTripCount;
829       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
830       return ExplicitUnroll;
831     } else {
832       // The loop isn't that small, but we still can fully unroll it if that
833       // helps to remove a significant number of instructions.
834       // To check that, run additional analysis on the loop.
835       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
836               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
837               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
838               UP.MaxIterationsCountToAnalyze)) {
839         unsigned Boost =
840             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
841         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
842           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
843           TripCount = FullUnrollTripCount;
844           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
845           return ExplicitUnroll;
846         }
847       }
848     }
849   }
850 
851   // 4th priority is loop peeling.
852   computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
853   if (PP.PeelCount) {
854     UP.Runtime = false;
855     UP.Count = 1;
856     return ExplicitUnroll;
857   }
858 
859   // 5th priority is partial unrolling.
860   // Try partial unroll only when TripCount could be statically calculated.
861   if (TripCount) {
862     UP.Partial |= ExplicitUnroll;
863     if (!UP.Partial) {
864       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
865                         << "-unroll-allow-partial not given\n");
866       UP.Count = 0;
867       return false;
868     }
869     if (UP.Count == 0)
870       UP.Count = TripCount;
871     if (UP.PartialThreshold != NoThreshold) {
872       // Reduce unroll count to be modulo of TripCount for partial unrolling.
873       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
874         UP.Count =
875             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
876             (LoopSize - UP.BEInsns);
877       if (UP.Count > UP.MaxCount)
878         UP.Count = UP.MaxCount;
879       while (UP.Count != 0 && TripCount % UP.Count != 0)
880         UP.Count--;
881       if (UP.AllowRemainder && UP.Count <= 1) {
882         // If there is no Count that is modulo of TripCount, set Count to
883         // largest power-of-two factor that satisfies the threshold limit.
884         // As we'll create fixup loop, do the type of unrolling only if
885         // remainder loop is allowed.
886         UP.Count = UP.DefaultUnrollRuntimeCount;
887         while (UP.Count != 0 &&
888                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
889           UP.Count >>= 1;
890       }
891       if (UP.Count < 2) {
892         if (PragmaEnableUnroll)
893           ORE->emit([&]() {
894             return OptimizationRemarkMissed(DEBUG_TYPE,
895                                             "UnrollAsDirectedTooLarge",
896                                             L->getStartLoc(), L->getHeader())
897                    << "Unable to unroll loop as directed by unroll(enable) "
898                       "pragma "
899                       "because unrolled size is too large.";
900           });
901         UP.Count = 0;
902       }
903     } else {
904       UP.Count = TripCount;
905     }
906     if (UP.Count > UP.MaxCount)
907       UP.Count = UP.MaxCount;
908     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
909         UP.Count != TripCount)
910       ORE->emit([&]() {
911         return OptimizationRemarkMissed(DEBUG_TYPE,
912                                         "FullUnrollAsDirectedTooLarge",
913                                         L->getStartLoc(), L->getHeader())
914                << "Unable to fully unroll loop as directed by unroll pragma "
915                   "because "
916                   "unrolled size is too large.";
917       });
918     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
919                       << "\n");
920     return ExplicitUnroll;
921   }
922   assert(TripCount == 0 &&
923          "All cases when TripCount is constant should be covered here.");
924   if (PragmaFullUnroll)
925     ORE->emit([&]() {
926       return OptimizationRemarkMissed(
927                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
928                  L->getStartLoc(), L->getHeader())
929              << "Unable to fully unroll loop as directed by unroll(full) "
930                 "pragma "
931                 "because loop has a runtime trip count.";
932     });
933 
934   // 6th priority is runtime unrolling.
935   // Don't unroll a runtime trip count loop when it is disabled.
936   if (hasRuntimeUnrollDisablePragma(L)) {
937     UP.Count = 0;
938     return false;
939   }
940 
941   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
942   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
943     UP.Count = 0;
944     return false;
945   }
946 
947   // Check if the runtime trip count is too small when profile is available.
948   if (L->getHeader()->getParent()->hasProfileData()) {
949     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
950       if (*ProfileTripCount < FlatLoopTripCountThreshold)
951         return false;
952       else
953         UP.AllowExpensiveTripCount = true;
954     }
955   }
956 
957   // Reduce count based on the type of unrolling and the threshold values.
958   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
959   if (!UP.Runtime) {
960     LLVM_DEBUG(
961         dbgs() << "  will not try to unroll loop with runtime trip count "
962                << "-unroll-runtime not given\n");
963     UP.Count = 0;
964     return false;
965   }
966   if (UP.Count == 0)
967     UP.Count = UP.DefaultUnrollRuntimeCount;
968 
969   // Reduce unroll count to be the largest power-of-two factor of
970   // the original count which satisfies the threshold limit.
971   while (UP.Count != 0 &&
972          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
973     UP.Count >>= 1;
974 
975 #ifndef NDEBUG
976   unsigned OrigCount = UP.Count;
977 #endif
978 
979   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
980     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
981       UP.Count >>= 1;
982     LLVM_DEBUG(
983         dbgs() << "Remainder loop is restricted (that could architecture "
984                   "specific or because the loop contains a convergent "
985                   "instruction), so unroll count must divide the trip "
986                   "multiple, "
987                << TripMultiple << ".  Reducing unroll count from " << OrigCount
988                << " to " << UP.Count << ".\n");
989 
990     using namespace ore;
991 
992     if (PragmaCount > 0 && !UP.AllowRemainder)
993       ORE->emit([&]() {
994         return OptimizationRemarkMissed(DEBUG_TYPE,
995                                         "DifferentUnrollCountFromDirected",
996                                         L->getStartLoc(), L->getHeader())
997                << "Unable to unroll loop the number of times directed by "
998                   "unroll_count pragma because remainder loop is restricted "
999                   "(that could architecture specific or because the loop "
1000                   "contains a convergent instruction) and so must have an "
1001                   "unroll "
1002                   "count that divides the loop trip multiple of "
1003                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1004                << NV("UnrollCount", UP.Count) << " time(s).";
1005       });
1006   }
1007 
1008   if (UP.Count > UP.MaxCount)
1009     UP.Count = UP.MaxCount;
1010 
1011   if (MaxTripCount && UP.Count > MaxTripCount)
1012     UP.Count = MaxTripCount;
1013 
1014   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1015                     << "\n");
1016   if (UP.Count < 2)
1017     UP.Count = 0;
1018   return ExplicitUnroll;
1019 }
1020 
1021 static LoopUnrollResult tryToUnrollLoop(
1022     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1023     const TargetTransformInfo &TTI, AssumptionCache &AC,
1024     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1025     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1026     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1027     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1028     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1029     Optional<bool> ProvidedAllowPeeling,
1030     Optional<bool> ProvidedAllowProfileBasedPeeling,
1031     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1032   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1033                     << L->getHeader()->getParent()->getName() << "] Loop %"
1034                     << L->getHeader()->getName() << "\n");
1035   TransformationMode TM = hasUnrollTransformation(L);
1036   if (TM & TM_Disable)
1037     return LoopUnrollResult::Unmodified;
1038   if (!L->isLoopSimplifyForm()) {
1039     LLVM_DEBUG(
1040         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1041     return LoopUnrollResult::Unmodified;
1042   }
1043 
1044   // When automtatic unrolling is disabled, do not unroll unless overridden for
1045   // this loop.
1046   if (OnlyWhenForced && !(TM & TM_Enable))
1047     return LoopUnrollResult::Unmodified;
1048 
1049   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1050   unsigned NumInlineCandidates;
1051   bool NotDuplicatable;
1052   bool Convergent;
1053   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1054       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1055       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1056       ProvidedFullUnrollMaxCount);
1057   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1058       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1059 
1060   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1061   // as threshold later on.
1062   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1063       !OptForSize)
1064     return LoopUnrollResult::Unmodified;
1065 
1066   SmallPtrSet<const Value *, 32> EphValues;
1067   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1068 
1069   unsigned LoopSize =
1070       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1071                           TTI, EphValues, UP.BEInsns);
1072   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1073   if (NotDuplicatable) {
1074     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1075                       << " instructions.\n");
1076     return LoopUnrollResult::Unmodified;
1077   }
1078 
1079   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1080   // later), to (fully) unroll loops, if it does not increase code size.
1081   if (OptForSize)
1082     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1083 
1084   if (NumInlineCandidates != 0) {
1085     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1086     return LoopUnrollResult::Unmodified;
1087   }
1088 
1089   // Find trip count and trip multiple if count is not available
1090   unsigned TripCount = 0;
1091   unsigned TripMultiple = 1;
1092   // If there are multiple exiting blocks but one of them is the latch, use the
1093   // latch for the trip count estimation. Otherwise insist on a single exiting
1094   // block for the trip count estimation.
1095   BasicBlock *ExitingBlock = L->getLoopLatch();
1096   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1097     ExitingBlock = L->getExitingBlock();
1098   if (ExitingBlock) {
1099     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1100     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1101   }
1102 
1103   // If the loop contains a convergent operation, the prelude we'd add
1104   // to do the first few instructions before we hit the unrolled loop
1105   // is unsafe -- it adds a control-flow dependency to the convergent
1106   // operation.  Therefore restrict remainder loop (try unrollig without).
1107   //
1108   // TODO: This is quite conservative.  In practice, convergent_op()
1109   // is likely to be called unconditionally in the loop.  In this
1110   // case, the program would be ill-formed (on most architectures)
1111   // unless n were the same on all threads in a thread group.
1112   // Assuming n is the same on all threads, any kind of unrolling is
1113   // safe.  But currently llvm's notion of convergence isn't powerful
1114   // enough to express this.
1115   if (Convergent)
1116     UP.AllowRemainder = false;
1117 
1118   // Try to find the trip count upper bound if we cannot find the exact trip
1119   // count.
1120   unsigned MaxTripCount = 0;
1121   bool MaxOrZero = false;
1122   if (!TripCount) {
1123     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1124     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1125   }
1126 
1127   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1128   // fully unroll the loop.
1129   bool UseUpperBound = false;
1130   bool IsCountSetExplicitly = computeUnrollCount(
1131       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1132       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1133   if (!UP.Count)
1134     return LoopUnrollResult::Unmodified;
1135   // Unroll factor (Count) must be less or equal to TripCount.
1136   if (TripCount && UP.Count > TripCount)
1137     UP.Count = TripCount;
1138 
1139   // Save loop properties before it is transformed.
1140   MDNode *OrigLoopID = L->getLoopID();
1141 
1142   // Unroll the loop.
1143   Loop *RemainderLoop = nullptr;
1144   LoopUnrollResult UnrollResult = UnrollLoop(
1145       L,
1146       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1147        UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
1148        ForgetAllSCEV},
1149       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1150   if (UnrollResult == LoopUnrollResult::Unmodified)
1151     return LoopUnrollResult::Unmodified;
1152 
1153   if (RemainderLoop) {
1154     Optional<MDNode *> RemainderLoopID =
1155         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1156                                         LLVMLoopUnrollFollowupRemainder});
1157     if (RemainderLoopID.hasValue())
1158       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1159   }
1160 
1161   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1162     Optional<MDNode *> NewLoopID =
1163         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1164                                         LLVMLoopUnrollFollowupUnrolled});
1165     if (NewLoopID.hasValue()) {
1166       L->setLoopID(NewLoopID.getValue());
1167 
1168       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1169       // explicitly.
1170       return UnrollResult;
1171     }
1172   }
1173 
1174   // If loop has an unroll count pragma or unrolled by explicitly set count
1175   // mark loop as unrolled to prevent unrolling beyond that requested.
1176   // If the loop was peeled, we already "used up" the profile information
1177   // we had, so we don't want to unroll or peel again.
1178   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1179       (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
1180     L->setLoopAlreadyUnrolled();
1181 
1182   return UnrollResult;
1183 }
1184 
1185 namespace {
1186 
1187 class LoopUnroll : public LoopPass {
1188 public:
1189   static char ID; // Pass ID, replacement for typeid
1190 
1191   int OptLevel;
1192 
1193   /// If false, use a cost model to determine whether unrolling of a loop is
1194   /// profitable. If true, only loops that explicitly request unrolling via
1195   /// metadata are considered. All other loops are skipped.
1196   bool OnlyWhenForced;
1197 
1198   /// If false, when SCEV is invalidated, only forget everything in the
1199   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1200   /// Otherwise, forgetAllLoops and rebuild when needed next.
1201   bool ForgetAllSCEV;
1202 
1203   Optional<unsigned> ProvidedCount;
1204   Optional<unsigned> ProvidedThreshold;
1205   Optional<bool> ProvidedAllowPartial;
1206   Optional<bool> ProvidedRuntime;
1207   Optional<bool> ProvidedUpperBound;
1208   Optional<bool> ProvidedAllowPeeling;
1209   Optional<bool> ProvidedAllowProfileBasedPeeling;
1210   Optional<unsigned> ProvidedFullUnrollMaxCount;
1211 
1212   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1213              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1214              Optional<unsigned> Count = None,
1215              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1216              Optional<bool> UpperBound = None,
1217              Optional<bool> AllowPeeling = None,
1218              Optional<bool> AllowProfileBasedPeeling = None,
1219              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1220       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1221         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1222         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1223         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1224         ProvidedAllowPeeling(AllowPeeling),
1225         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1226         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1227     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1228   }
1229 
1230   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1231     if (skipLoop(L))
1232       return false;
1233 
1234     Function &F = *L->getHeader()->getParent();
1235 
1236     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1237     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1238     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1239     const TargetTransformInfo &TTI =
1240         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1241     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1242     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1243     // pass.  Function analyses need to be preserved across loop transformations
1244     // but ORE cannot be preserved (see comment before the pass definition).
1245     OptimizationRemarkEmitter ORE(&F);
1246     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1247 
1248     LoopUnrollResult Result = tryToUnrollLoop(
1249         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1250         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1251         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1252         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1253         ProvidedFullUnrollMaxCount);
1254 
1255     if (Result == LoopUnrollResult::FullyUnrolled)
1256       LPM.markLoopAsDeleted(*L);
1257 
1258     return Result != LoopUnrollResult::Unmodified;
1259   }
1260 
1261   /// This transformation requires natural loop information & requires that
1262   /// loop preheaders be inserted into the CFG...
1263   void getAnalysisUsage(AnalysisUsage &AU) const override {
1264     AU.addRequired<AssumptionCacheTracker>();
1265     AU.addRequired<TargetTransformInfoWrapperPass>();
1266     // FIXME: Loop passes are required to preserve domtree, and for now we just
1267     // recreate dom info if anything gets unrolled.
1268     getLoopAnalysisUsage(AU);
1269   }
1270 };
1271 
1272 } // end anonymous namespace
1273 
1274 char LoopUnroll::ID = 0;
1275 
1276 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1277 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1278 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1279 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1280 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1281 
1282 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1283                                  bool ForgetAllSCEV, int Threshold, int Count,
1284                                  int AllowPartial, int Runtime, int UpperBound,
1285                                  int AllowPeeling) {
1286   // TODO: It would make more sense for this function to take the optionals
1287   // directly, but that's dangerous since it would silently break out of tree
1288   // callers.
1289   return new LoopUnroll(
1290       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1291       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1292       Count == -1 ? None : Optional<unsigned>(Count),
1293       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1294       Runtime == -1 ? None : Optional<bool>(Runtime),
1295       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1296       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1297 }
1298 
1299 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1300                                        bool ForgetAllSCEV) {
1301   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1302                               0, 0, 0, 0);
1303 }
1304 
1305 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1306                                           LoopStandardAnalysisResults &AR,
1307                                           LPMUpdater &Updater) {
1308   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1309   // pass. Function analyses need to be preserved across loop transformations
1310   // but ORE cannot be preserved (see comment before the pass definition).
1311   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1312 
1313   // Keep track of the previous loop structure so we can identify new loops
1314   // created by unrolling.
1315   Loop *ParentL = L.getParentLoop();
1316   SmallPtrSet<Loop *, 4> OldLoops;
1317   if (ParentL)
1318     OldLoops.insert(ParentL->begin(), ParentL->end());
1319   else
1320     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1321 
1322   std::string LoopName = std::string(L.getName());
1323 
1324   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1325                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1326                                  /*PreserveLCSSA*/ true, OptLevel,
1327                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1328                                  /*Threshold*/ None, /*AllowPartial*/ false,
1329                                  /*Runtime*/ false, /*UpperBound*/ false,
1330                                  /*AllowPeeling*/ false,
1331                                  /*AllowProfileBasedPeeling*/ false,
1332                                  /*FullUnrollMaxCount*/ None) !=
1333                  LoopUnrollResult::Unmodified;
1334   if (!Changed)
1335     return PreservedAnalyses::all();
1336 
1337   // The parent must not be damaged by unrolling!
1338 #ifndef NDEBUG
1339   if (ParentL)
1340     ParentL->verifyLoop();
1341 #endif
1342 
1343   // Unrolling can do several things to introduce new loops into a loop nest:
1344   // - Full unrolling clones child loops within the current loop but then
1345   //   removes the current loop making all of the children appear to be new
1346   //   sibling loops.
1347   //
1348   // When a new loop appears as a sibling loop after fully unrolling,
1349   // its nesting structure has fundamentally changed and we want to revisit
1350   // it to reflect that.
1351   //
1352   // When unrolling has removed the current loop, we need to tell the
1353   // infrastructure that it is gone.
1354   //
1355   // Finally, we support a debugging/testing mode where we revisit child loops
1356   // as well. These are not expected to require further optimizations as either
1357   // they or the loop they were cloned from have been directly visited already.
1358   // But the debugging mode allows us to check this assumption.
1359   bool IsCurrentLoopValid = false;
1360   SmallVector<Loop *, 4> SibLoops;
1361   if (ParentL)
1362     SibLoops.append(ParentL->begin(), ParentL->end());
1363   else
1364     SibLoops.append(AR.LI.begin(), AR.LI.end());
1365   erase_if(SibLoops, [&](Loop *SibLoop) {
1366     if (SibLoop == &L) {
1367       IsCurrentLoopValid = true;
1368       return true;
1369     }
1370 
1371     // Otherwise erase the loop from the list if it was in the old loops.
1372     return OldLoops.count(SibLoop) != 0;
1373   });
1374   Updater.addSiblingLoops(SibLoops);
1375 
1376   if (!IsCurrentLoopValid) {
1377     Updater.markLoopAsDeleted(L, LoopName);
1378   } else {
1379     // We can only walk child loops if the current loop remained valid.
1380     if (UnrollRevisitChildLoops) {
1381       // Walk *all* of the child loops.
1382       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1383       Updater.addChildLoops(ChildLoops);
1384     }
1385   }
1386 
1387   return getLoopPassPreservedAnalyses();
1388 }
1389 
1390 PreservedAnalyses LoopUnrollPass::run(Function &F,
1391                                       FunctionAnalysisManager &AM) {
1392   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1393   auto &LI = AM.getResult<LoopAnalysis>(F);
1394   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1395   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1396   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1397   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1398 
1399   LoopAnalysisManager *LAM = nullptr;
1400   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1401     LAM = &LAMProxy->getManager();
1402 
1403   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1404   ProfileSummaryInfo *PSI =
1405       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1406   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1407       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1408 
1409   bool Changed = false;
1410 
1411   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1412   // Since simplification may add new inner loops, it has to run before the
1413   // legality and profitability checks. This means running the loop unroller
1414   // will simplify all loops, regardless of whether anything end up being
1415   // unrolled.
1416   for (auto &L : LI) {
1417     Changed |=
1418         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1419     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1420   }
1421 
1422   // Add the loop nests in the reverse order of LoopInfo. See method
1423   // declaration.
1424   SmallPriorityWorklist<Loop *, 4> Worklist;
1425   appendLoopsToWorklist(LI, Worklist);
1426 
1427   while (!Worklist.empty()) {
1428     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1429     // from back to front so that we work forward across the CFG, which
1430     // for unrolling is only needed to get optimization remarks emitted in
1431     // a forward order.
1432     Loop &L = *Worklist.pop_back_val();
1433 #ifndef NDEBUG
1434     Loop *ParentL = L.getParentLoop();
1435 #endif
1436 
1437     // Check if the profile summary indicates that the profiled application
1438     // has a huge working set size, in which case we disable peeling to avoid
1439     // bloating it further.
1440     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1441     if (PSI && PSI->hasHugeWorkingSetSize())
1442       LocalAllowPeeling = false;
1443     std::string LoopName = std::string(L.getName());
1444     // The API here is quite complex to call and we allow to select some
1445     // flavors of unrolling during construction time (by setting UnrollOpts).
1446     LoopUnrollResult Result = tryToUnrollLoop(
1447         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1448         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1449         UnrollOpts.ForgetSCEV, /*Count*/ None,
1450         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1451         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1452         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1453     Changed |= Result != LoopUnrollResult::Unmodified;
1454 
1455     // The parent must not be damaged by unrolling!
1456 #ifndef NDEBUG
1457     if (Result != LoopUnrollResult::Unmodified && ParentL)
1458       ParentL->verifyLoop();
1459 #endif
1460 
1461     // Clear any cached analysis results for L if we removed it completely.
1462     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1463       LAM->clear(L, LoopName);
1464   }
1465 
1466   if (!Changed)
1467     return PreservedAnalyses::all();
1468 
1469   return getLoopPassPreservedAnalyses();
1470 }
1471