1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is somtimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of" 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 /// A magic value for use with the Threshold parameter to indicate 179 /// that the loop unroll should be performed regardless of how much 180 /// code expansion would result. 181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 182 183 /// Gather the various unrolling parameters based on the defaults, compiler 184 /// flags, TTI overrides and user specified parameters. 185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 186 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 187 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 188 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 189 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 190 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 191 TargetTransformInfo::UnrollingPreferences UP; 192 193 // Set up the defaults 194 UP.Threshold = 195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 196 UP.MaxPercentThresholdBoost = 400; 197 UP.OptSizeThreshold = UnrollOptSizeThreshold; 198 UP.PartialThreshold = 150; 199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 200 UP.Count = 0; 201 UP.DefaultUnrollRuntimeCount = 8; 202 UP.MaxCount = std::numeric_limits<unsigned>::max(); 203 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 204 UP.BEInsns = 2; 205 UP.Partial = false; 206 UP.Runtime = false; 207 UP.AllowRemainder = true; 208 UP.UnrollRemainder = false; 209 UP.AllowExpensiveTripCount = false; 210 UP.Force = false; 211 UP.UpperBound = false; 212 UP.UnrollAndJam = false; 213 UP.UnrollAndJamInnerLoopThreshold = 60; 214 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 215 216 // Override with any target specific settings 217 TTI.getUnrollingPreferences(L, SE, UP); 218 219 // Apply size attributes 220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 221 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 222 PGSOQueryType::IRPass); 223 if (OptForSize) { 224 UP.Threshold = UP.OptSizeThreshold; 225 UP.PartialThreshold = UP.PartialOptSizeThreshold; 226 UP.MaxPercentThresholdBoost = 100; 227 } 228 229 // Apply any user values specified by cl::opt 230 if (UnrollThreshold.getNumOccurrences() > 0) 231 UP.Threshold = UnrollThreshold; 232 if (UnrollPartialThreshold.getNumOccurrences() > 0) 233 UP.PartialThreshold = UnrollPartialThreshold; 234 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 235 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 236 if (UnrollMaxCount.getNumOccurrences() > 0) 237 UP.MaxCount = UnrollMaxCount; 238 if (UnrollFullMaxCount.getNumOccurrences() > 0) 239 UP.FullUnrollMaxCount = UnrollFullMaxCount; 240 if (UnrollAllowPartial.getNumOccurrences() > 0) 241 UP.Partial = UnrollAllowPartial; 242 if (UnrollAllowRemainder.getNumOccurrences() > 0) 243 UP.AllowRemainder = UnrollAllowRemainder; 244 if (UnrollRuntime.getNumOccurrences() > 0) 245 UP.Runtime = UnrollRuntime; 246 if (UnrollMaxUpperBound == 0) 247 UP.UpperBound = false; 248 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 249 UP.UnrollRemainder = UnrollUnrollRemainder; 250 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 251 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 252 253 // Apply user values provided by argument 254 if (UserThreshold.hasValue()) { 255 UP.Threshold = *UserThreshold; 256 UP.PartialThreshold = *UserThreshold; 257 } 258 if (UserCount.hasValue()) 259 UP.Count = *UserCount; 260 if (UserAllowPartial.hasValue()) 261 UP.Partial = *UserAllowPartial; 262 if (UserRuntime.hasValue()) 263 UP.Runtime = *UserRuntime; 264 if (UserUpperBound.hasValue()) 265 UP.UpperBound = *UserUpperBound; 266 if (UserFullUnrollMaxCount.hasValue()) 267 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 268 269 return UP; 270 } 271 272 namespace { 273 274 /// A struct to densely store the state of an instruction after unrolling at 275 /// each iteration. 276 /// 277 /// This is designed to work like a tuple of <Instruction *, int> for the 278 /// purposes of hashing and lookup, but to be able to associate two boolean 279 /// states with each key. 280 struct UnrolledInstState { 281 Instruction *I; 282 int Iteration : 30; 283 unsigned IsFree : 1; 284 unsigned IsCounted : 1; 285 }; 286 287 /// Hashing and equality testing for a set of the instruction states. 288 struct UnrolledInstStateKeyInfo { 289 using PtrInfo = DenseMapInfo<Instruction *>; 290 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 291 292 static inline UnrolledInstState getEmptyKey() { 293 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 294 } 295 296 static inline UnrolledInstState getTombstoneKey() { 297 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 298 } 299 300 static inline unsigned getHashValue(const UnrolledInstState &S) { 301 return PairInfo::getHashValue({S.I, S.Iteration}); 302 } 303 304 static inline bool isEqual(const UnrolledInstState &LHS, 305 const UnrolledInstState &RHS) { 306 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 307 } 308 }; 309 310 struct EstimatedUnrollCost { 311 /// The estimated cost after unrolling. 312 unsigned UnrolledCost; 313 314 /// The estimated dynamic cost of executing the instructions in the 315 /// rolled form. 316 unsigned RolledDynamicCost; 317 }; 318 319 } // end anonymous namespace 320 321 /// Figure out if the loop is worth full unrolling. 322 /// 323 /// Complete loop unrolling can make some loads constant, and we need to know 324 /// if that would expose any further optimization opportunities. This routine 325 /// estimates this optimization. It computes cost of unrolled loop 326 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 327 /// dynamic cost we mean that we won't count costs of blocks that are known not 328 /// to be executed (i.e. if we have a branch in the loop and we know that at the 329 /// given iteration its condition would be resolved to true, we won't add up the 330 /// cost of the 'false'-block). 331 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 332 /// the analysis failed (no benefits expected from the unrolling, or the loop is 333 /// too big to analyze), the returned value is None. 334 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 335 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 336 const SmallPtrSetImpl<const Value *> &EphValues, 337 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 338 unsigned MaxIterationsCountToAnalyze) { 339 // We want to be able to scale offsets by the trip count and add more offsets 340 // to them without checking for overflows, and we already don't want to 341 // analyze *massive* trip counts, so we force the max to be reasonably small. 342 assert(MaxIterationsCountToAnalyze < 343 (unsigned)(std::numeric_limits<int>::max() / 2) && 344 "The unroll iterations max is too large!"); 345 346 // Only analyze inner loops. We can't properly estimate cost of nested loops 347 // and we won't visit inner loops again anyway. 348 if (!L->empty()) 349 return None; 350 351 // Don't simulate loops with a big or unknown tripcount 352 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 353 return None; 354 355 SmallSetVector<BasicBlock *, 16> BBWorklist; 356 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 357 DenseMap<Value *, Constant *> SimplifiedValues; 358 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 359 360 // The estimated cost of the unrolled form of the loop. We try to estimate 361 // this by simplifying as much as we can while computing the estimate. 362 unsigned UnrolledCost = 0; 363 364 // We also track the estimated dynamic (that is, actually executed) cost in 365 // the rolled form. This helps identify cases when the savings from unrolling 366 // aren't just exposing dead control flows, but actual reduced dynamic 367 // instructions due to the simplifications which we expect to occur after 368 // unrolling. 369 unsigned RolledDynamicCost = 0; 370 371 // We track the simplification of each instruction in each iteration. We use 372 // this to recursively merge costs into the unrolled cost on-demand so that 373 // we don't count the cost of any dead code. This is essentially a map from 374 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 375 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 376 377 // A small worklist used to accumulate cost of instructions from each 378 // observable and reached root in the loop. 379 SmallVector<Instruction *, 16> CostWorklist; 380 381 // PHI-used worklist used between iterations while accumulating cost. 382 SmallVector<Instruction *, 4> PHIUsedList; 383 384 // Helper function to accumulate cost for instructions in the loop. 385 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 386 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 387 assert(CostWorklist.empty() && "Must start with an empty cost list"); 388 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 389 CostWorklist.push_back(&RootI); 390 TargetTransformInfo::TargetCostKind CostKind = 391 RootI.getFunction()->hasMinSize() ? 392 TargetTransformInfo::TCK_CodeSize : 393 TargetTransformInfo::TCK_SizeAndLatency; 394 for (;; --Iteration) { 395 do { 396 Instruction *I = CostWorklist.pop_back_val(); 397 398 // InstCostMap only uses I and Iteration as a key, the other two values 399 // don't matter here. 400 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 401 if (CostIter == InstCostMap.end()) 402 // If an input to a PHI node comes from a dead path through the loop 403 // we may have no cost data for it here. What that actually means is 404 // that it is free. 405 continue; 406 auto &Cost = *CostIter; 407 if (Cost.IsCounted) 408 // Already counted this instruction. 409 continue; 410 411 // Mark that we are counting the cost of this instruction now. 412 Cost.IsCounted = true; 413 414 // If this is a PHI node in the loop header, just add it to the PHI set. 415 if (auto *PhiI = dyn_cast<PHINode>(I)) 416 if (PhiI->getParent() == L->getHeader()) { 417 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 418 "inherently simplify during unrolling."); 419 if (Iteration == 0) 420 continue; 421 422 // Push the incoming value from the backedge into the PHI used list 423 // if it is an in-loop instruction. We'll use this to populate the 424 // cost worklist for the next iteration (as we count backwards). 425 if (auto *OpI = dyn_cast<Instruction>( 426 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 427 if (L->contains(OpI)) 428 PHIUsedList.push_back(OpI); 429 continue; 430 } 431 432 // First accumulate the cost of this instruction. 433 if (!Cost.IsFree) { 434 UnrolledCost += TTI.getUserCost(I, CostKind); 435 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 436 << Iteration << "): "); 437 LLVM_DEBUG(I->dump()); 438 } 439 440 // We must count the cost of every operand which is not free, 441 // recursively. If we reach a loop PHI node, simply add it to the set 442 // to be considered on the next iteration (backwards!). 443 for (Value *Op : I->operands()) { 444 // Check whether this operand is free due to being a constant or 445 // outside the loop. 446 auto *OpI = dyn_cast<Instruction>(Op); 447 if (!OpI || !L->contains(OpI)) 448 continue; 449 450 // Otherwise accumulate its cost. 451 CostWorklist.push_back(OpI); 452 } 453 } while (!CostWorklist.empty()); 454 455 if (PHIUsedList.empty()) 456 // We've exhausted the search. 457 break; 458 459 assert(Iteration > 0 && 460 "Cannot track PHI-used values past the first iteration!"); 461 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 462 PHIUsedList.clear(); 463 } 464 }; 465 466 // Ensure that we don't violate the loop structure invariants relied on by 467 // this analysis. 468 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 469 assert(L->isLCSSAForm(DT) && 470 "Must have loops in LCSSA form to track live-out values."); 471 472 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 473 474 TargetTransformInfo::TargetCostKind CostKind = 475 L->getHeader()->getParent()->hasMinSize() ? 476 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 477 // Simulate execution of each iteration of the loop counting instructions, 478 // which would be simplified. 479 // Since the same load will take different values on different iterations, 480 // we literally have to go through all loop's iterations. 481 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 482 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 483 484 // Prepare for the iteration by collecting any simplified entry or backedge 485 // inputs. 486 for (Instruction &I : *L->getHeader()) { 487 auto *PHI = dyn_cast<PHINode>(&I); 488 if (!PHI) 489 break; 490 491 // The loop header PHI nodes must have exactly two input: one from the 492 // loop preheader and one from the loop latch. 493 assert( 494 PHI->getNumIncomingValues() == 2 && 495 "Must have an incoming value only for the preheader and the latch."); 496 497 Value *V = PHI->getIncomingValueForBlock( 498 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 499 Constant *C = dyn_cast<Constant>(V); 500 if (Iteration != 0 && !C) 501 C = SimplifiedValues.lookup(V); 502 if (C) 503 SimplifiedInputValues.push_back({PHI, C}); 504 } 505 506 // Now clear and re-populate the map for the next iteration. 507 SimplifiedValues.clear(); 508 while (!SimplifiedInputValues.empty()) 509 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 510 511 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 512 513 BBWorklist.clear(); 514 BBWorklist.insert(L->getHeader()); 515 // Note that we *must not* cache the size, this loop grows the worklist. 516 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 517 BasicBlock *BB = BBWorklist[Idx]; 518 519 // Visit all instructions in the given basic block and try to simplify 520 // it. We don't change the actual IR, just count optimization 521 // opportunities. 522 for (Instruction &I : *BB) { 523 // These won't get into the final code - don't even try calculating the 524 // cost for them. 525 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 526 continue; 527 528 // Track this instruction's expected baseline cost when executing the 529 // rolled loop form. 530 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 531 532 // Visit the instruction to analyze its loop cost after unrolling, 533 // and if the visitor returns true, mark the instruction as free after 534 // unrolling and continue. 535 bool IsFree = Analyzer.visit(I); 536 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 537 (unsigned)IsFree, 538 /*IsCounted*/ false}).second; 539 (void)Inserted; 540 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 541 542 if (IsFree) 543 continue; 544 545 // Can't properly model a cost of a call. 546 // FIXME: With a proper cost model we should be able to do it. 547 if (auto *CI = dyn_cast<CallInst>(&I)) { 548 const Function *Callee = CI->getCalledFunction(); 549 if (!Callee || TTI.isLoweredToCall(Callee)) { 550 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 551 return None; 552 } 553 } 554 555 // If the instruction might have a side-effect recursively account for 556 // the cost of it and all the instructions leading up to it. 557 if (I.mayHaveSideEffects()) 558 AddCostRecursively(I, Iteration); 559 560 // If unrolled body turns out to be too big, bail out. 561 if (UnrolledCost > MaxUnrolledLoopSize) { 562 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 563 << " UnrolledCost: " << UnrolledCost 564 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 565 << "\n"); 566 return None; 567 } 568 } 569 570 Instruction *TI = BB->getTerminator(); 571 572 // Add in the live successors by first checking whether we have terminator 573 // that may be simplified based on the values simplified by this call. 574 BasicBlock *KnownSucc = nullptr; 575 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 576 if (BI->isConditional()) { 577 if (Constant *SimpleCond = 578 SimplifiedValues.lookup(BI->getCondition())) { 579 // Just take the first successor if condition is undef 580 if (isa<UndefValue>(SimpleCond)) 581 KnownSucc = BI->getSuccessor(0); 582 else if (ConstantInt *SimpleCondVal = 583 dyn_cast<ConstantInt>(SimpleCond)) 584 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 585 } 586 } 587 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 588 if (Constant *SimpleCond = 589 SimplifiedValues.lookup(SI->getCondition())) { 590 // Just take the first successor if condition is undef 591 if (isa<UndefValue>(SimpleCond)) 592 KnownSucc = SI->getSuccessor(0); 593 else if (ConstantInt *SimpleCondVal = 594 dyn_cast<ConstantInt>(SimpleCond)) 595 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 596 } 597 } 598 if (KnownSucc) { 599 if (L->contains(KnownSucc)) 600 BBWorklist.insert(KnownSucc); 601 else 602 ExitWorklist.insert({BB, KnownSucc}); 603 continue; 604 } 605 606 // Add BB's successors to the worklist. 607 for (BasicBlock *Succ : successors(BB)) 608 if (L->contains(Succ)) 609 BBWorklist.insert(Succ); 610 else 611 ExitWorklist.insert({BB, Succ}); 612 AddCostRecursively(*TI, Iteration); 613 } 614 615 // If we found no optimization opportunities on the first iteration, we 616 // won't find them on later ones too. 617 if (UnrolledCost == RolledDynamicCost) { 618 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 619 << " UnrolledCost: " << UnrolledCost << "\n"); 620 return None; 621 } 622 } 623 624 while (!ExitWorklist.empty()) { 625 BasicBlock *ExitingBB, *ExitBB; 626 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 627 628 for (Instruction &I : *ExitBB) { 629 auto *PN = dyn_cast<PHINode>(&I); 630 if (!PN) 631 break; 632 633 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 634 if (auto *OpI = dyn_cast<Instruction>(Op)) 635 if (L->contains(OpI)) 636 AddCostRecursively(*OpI, TripCount - 1); 637 } 638 } 639 640 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 641 << "UnrolledCost: " << UnrolledCost << ", " 642 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 643 return {{UnrolledCost, RolledDynamicCost}}; 644 } 645 646 /// ApproximateLoopSize - Approximate the size of the loop. 647 unsigned llvm::ApproximateLoopSize( 648 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 649 const TargetTransformInfo &TTI, 650 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 651 CodeMetrics Metrics; 652 for (BasicBlock *BB : L->blocks()) 653 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 654 NumCalls = Metrics.NumInlineCandidates; 655 NotDuplicatable = Metrics.notDuplicatable; 656 Convergent = Metrics.convergent; 657 658 unsigned LoopSize = Metrics.NumInsts; 659 660 // Don't allow an estimate of size zero. This would allows unrolling of loops 661 // with huge iteration counts, which is a compile time problem even if it's 662 // not a problem for code quality. Also, the code using this size may assume 663 // that each loop has at least three instructions (likely a conditional 664 // branch, a comparison feeding that branch, and some kind of loop increment 665 // feeding that comparison instruction). 666 LoopSize = std::max(LoopSize, BEInsns + 1); 667 668 return LoopSize; 669 } 670 671 // Returns the loop hint metadata node with the given name (for example, 672 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 673 // returned. 674 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 675 if (MDNode *LoopID = L->getLoopID()) 676 return GetUnrollMetadata(LoopID, Name); 677 return nullptr; 678 } 679 680 // Returns true if the loop has an unroll(full) pragma. 681 static bool hasUnrollFullPragma(const Loop *L) { 682 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 683 } 684 685 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 686 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 687 static bool hasUnrollEnablePragma(const Loop *L) { 688 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 689 } 690 691 // Returns true if the loop has an runtime unroll(disable) pragma. 692 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 693 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 694 } 695 696 // If loop has an unroll_count pragma return the (necessarily 697 // positive) value from the pragma. Otherwise return 0. 698 static unsigned unrollCountPragmaValue(const Loop *L) { 699 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 700 if (MD) { 701 assert(MD->getNumOperands() == 2 && 702 "Unroll count hint metadata should have two operands."); 703 unsigned Count = 704 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 705 assert(Count >= 1 && "Unroll count must be positive."); 706 return Count; 707 } 708 return 0; 709 } 710 711 // Computes the boosting factor for complete unrolling. 712 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 713 // be beneficial to fully unroll the loop even if unrolledcost is large. We 714 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 715 // the unroll threshold. 716 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 717 unsigned MaxPercentThresholdBoost) { 718 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 719 return 100; 720 else if (Cost.UnrolledCost != 0) 721 // The boosting factor is RolledDynamicCost / UnrolledCost 722 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 723 MaxPercentThresholdBoost); 724 else 725 return MaxPercentThresholdBoost; 726 } 727 728 // Returns loop size estimation for unrolled loop. 729 static uint64_t getUnrolledLoopSize( 730 unsigned LoopSize, 731 TargetTransformInfo::UnrollingPreferences &UP) { 732 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 733 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 734 } 735 736 // Returns true if unroll count was set explicitly. 737 // Calculates unroll count and writes it to UP.Count. 738 // Unless IgnoreUser is true, will also use metadata and command-line options 739 // that are specific to to the LoopUnroll pass (which, for instance, are 740 // irrelevant for the LoopUnrollAndJam pass). 741 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 742 // many LoopUnroll-specific options. The shared functionality should be 743 // refactored into it own function. 744 bool llvm::computeUnrollCount( 745 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 746 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 747 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 748 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 749 TargetTransformInfo::UnrollingPreferences &UP, 750 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 751 752 // Check for explicit Count. 753 // 1st priority is unroll count set by "unroll-count" option. 754 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 755 if (UserUnrollCount) { 756 UP.Count = UnrollCount; 757 UP.AllowExpensiveTripCount = true; 758 UP.Force = true; 759 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 760 return true; 761 } 762 763 // 2nd priority is unroll count set by pragma. 764 unsigned PragmaCount = unrollCountPragmaValue(L); 765 if (PragmaCount > 0) { 766 UP.Count = PragmaCount; 767 UP.Runtime = true; 768 UP.AllowExpensiveTripCount = true; 769 UP.Force = true; 770 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 771 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 772 return true; 773 } 774 bool PragmaFullUnroll = hasUnrollFullPragma(L); 775 if (PragmaFullUnroll && TripCount != 0) { 776 UP.Count = TripCount; 777 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 778 return false; 779 } 780 781 bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 782 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 783 PragmaEnableUnroll || UserUnrollCount; 784 785 if (ExplicitUnroll && TripCount != 0) { 786 // If the loop has an unrolling pragma, we want to be more aggressive with 787 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 788 // value which is larger than the default limits. 789 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 790 UP.PartialThreshold = 791 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 792 } 793 794 // 3rd priority is full unroll count. 795 // Full unroll makes sense only when TripCount or its upper bound could be 796 // statically calculated. 797 // Also we need to check if we exceed FullUnrollMaxCount. 798 // If using the upper bound to unroll, TripMultiple should be set to 1 because 799 // we do not know when loop may exit. 800 801 // We can unroll by the upper bound amount if it's generally allowed or if 802 // we know that the loop is executed either the upper bound or zero times. 803 // (MaxOrZero unrolling keeps only the first loop test, so the number of 804 // loop tests remains the same compared to the non-unrolled version, whereas 805 // the generic upper bound unrolling keeps all but the last loop test so the 806 // number of loop tests goes up which may end up being worse on targets with 807 // constrained branch predictor resources so is controlled by an option.) 808 // In addition we only unroll small upper bounds. 809 unsigned FullUnrollMaxTripCount = MaxTripCount; 810 if (!(UP.UpperBound || MaxOrZero) || 811 FullUnrollMaxTripCount > UnrollMaxUpperBound) 812 FullUnrollMaxTripCount = 0; 813 814 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 815 // compute the former when the latter is zero. 816 unsigned ExactTripCount = TripCount; 817 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 818 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 819 820 unsigned FullUnrollTripCount = 821 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 822 UP.Count = FullUnrollTripCount; 823 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 824 // When computing the unrolled size, note that BEInsns are not replicated 825 // like the rest of the loop body. 826 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 827 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 828 TripCount = FullUnrollTripCount; 829 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 830 return ExplicitUnroll; 831 } else { 832 // The loop isn't that small, but we still can fully unroll it if that 833 // helps to remove a significant number of instructions. 834 // To check that, run additional analysis on the loop. 835 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 836 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 837 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 838 UP.MaxIterationsCountToAnalyze)) { 839 unsigned Boost = 840 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 841 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 842 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 843 TripCount = FullUnrollTripCount; 844 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 845 return ExplicitUnroll; 846 } 847 } 848 } 849 } 850 851 // 4th priority is loop peeling. 852 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold); 853 if (PP.PeelCount) { 854 UP.Runtime = false; 855 UP.Count = 1; 856 return ExplicitUnroll; 857 } 858 859 // 5th priority is partial unrolling. 860 // Try partial unroll only when TripCount could be statically calculated. 861 if (TripCount) { 862 UP.Partial |= ExplicitUnroll; 863 if (!UP.Partial) { 864 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 865 << "-unroll-allow-partial not given\n"); 866 UP.Count = 0; 867 return false; 868 } 869 if (UP.Count == 0) 870 UP.Count = TripCount; 871 if (UP.PartialThreshold != NoThreshold) { 872 // Reduce unroll count to be modulo of TripCount for partial unrolling. 873 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 874 UP.Count = 875 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 876 (LoopSize - UP.BEInsns); 877 if (UP.Count > UP.MaxCount) 878 UP.Count = UP.MaxCount; 879 while (UP.Count != 0 && TripCount % UP.Count != 0) 880 UP.Count--; 881 if (UP.AllowRemainder && UP.Count <= 1) { 882 // If there is no Count that is modulo of TripCount, set Count to 883 // largest power-of-two factor that satisfies the threshold limit. 884 // As we'll create fixup loop, do the type of unrolling only if 885 // remainder loop is allowed. 886 UP.Count = UP.DefaultUnrollRuntimeCount; 887 while (UP.Count != 0 && 888 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 889 UP.Count >>= 1; 890 } 891 if (UP.Count < 2) { 892 if (PragmaEnableUnroll) 893 ORE->emit([&]() { 894 return OptimizationRemarkMissed(DEBUG_TYPE, 895 "UnrollAsDirectedTooLarge", 896 L->getStartLoc(), L->getHeader()) 897 << "Unable to unroll loop as directed by unroll(enable) " 898 "pragma " 899 "because unrolled size is too large."; 900 }); 901 UP.Count = 0; 902 } 903 } else { 904 UP.Count = TripCount; 905 } 906 if (UP.Count > UP.MaxCount) 907 UP.Count = UP.MaxCount; 908 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 909 UP.Count != TripCount) 910 ORE->emit([&]() { 911 return OptimizationRemarkMissed(DEBUG_TYPE, 912 "FullUnrollAsDirectedTooLarge", 913 L->getStartLoc(), L->getHeader()) 914 << "Unable to fully unroll loop as directed by unroll pragma " 915 "because " 916 "unrolled size is too large."; 917 }); 918 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 919 << "\n"); 920 return ExplicitUnroll; 921 } 922 assert(TripCount == 0 && 923 "All cases when TripCount is constant should be covered here."); 924 if (PragmaFullUnroll) 925 ORE->emit([&]() { 926 return OptimizationRemarkMissed( 927 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 928 L->getStartLoc(), L->getHeader()) 929 << "Unable to fully unroll loop as directed by unroll(full) " 930 "pragma " 931 "because loop has a runtime trip count."; 932 }); 933 934 // 6th priority is runtime unrolling. 935 // Don't unroll a runtime trip count loop when it is disabled. 936 if (hasRuntimeUnrollDisablePragma(L)) { 937 UP.Count = 0; 938 return false; 939 } 940 941 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 942 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 943 UP.Count = 0; 944 return false; 945 } 946 947 // Check if the runtime trip count is too small when profile is available. 948 if (L->getHeader()->getParent()->hasProfileData()) { 949 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 950 if (*ProfileTripCount < FlatLoopTripCountThreshold) 951 return false; 952 else 953 UP.AllowExpensiveTripCount = true; 954 } 955 } 956 957 // Reduce count based on the type of unrolling and the threshold values. 958 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 959 if (!UP.Runtime) { 960 LLVM_DEBUG( 961 dbgs() << " will not try to unroll loop with runtime trip count " 962 << "-unroll-runtime not given\n"); 963 UP.Count = 0; 964 return false; 965 } 966 if (UP.Count == 0) 967 UP.Count = UP.DefaultUnrollRuntimeCount; 968 969 // Reduce unroll count to be the largest power-of-two factor of 970 // the original count which satisfies the threshold limit. 971 while (UP.Count != 0 && 972 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 973 UP.Count >>= 1; 974 975 #ifndef NDEBUG 976 unsigned OrigCount = UP.Count; 977 #endif 978 979 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 980 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 981 UP.Count >>= 1; 982 LLVM_DEBUG( 983 dbgs() << "Remainder loop is restricted (that could architecture " 984 "specific or because the loop contains a convergent " 985 "instruction), so unroll count must divide the trip " 986 "multiple, " 987 << TripMultiple << ". Reducing unroll count from " << OrigCount 988 << " to " << UP.Count << ".\n"); 989 990 using namespace ore; 991 992 if (PragmaCount > 0 && !UP.AllowRemainder) 993 ORE->emit([&]() { 994 return OptimizationRemarkMissed(DEBUG_TYPE, 995 "DifferentUnrollCountFromDirected", 996 L->getStartLoc(), L->getHeader()) 997 << "Unable to unroll loop the number of times directed by " 998 "unroll_count pragma because remainder loop is restricted " 999 "(that could architecture specific or because the loop " 1000 "contains a convergent instruction) and so must have an " 1001 "unroll " 1002 "count that divides the loop trip multiple of " 1003 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1004 << NV("UnrollCount", UP.Count) << " time(s)."; 1005 }); 1006 } 1007 1008 if (UP.Count > UP.MaxCount) 1009 UP.Count = UP.MaxCount; 1010 1011 if (MaxTripCount && UP.Count > MaxTripCount) 1012 UP.Count = MaxTripCount; 1013 1014 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1015 << "\n"); 1016 if (UP.Count < 2) 1017 UP.Count = 0; 1018 return ExplicitUnroll; 1019 } 1020 1021 static LoopUnrollResult tryToUnrollLoop( 1022 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1023 const TargetTransformInfo &TTI, AssumptionCache &AC, 1024 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1025 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1026 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1027 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1028 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1029 Optional<bool> ProvidedAllowPeeling, 1030 Optional<bool> ProvidedAllowProfileBasedPeeling, 1031 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1032 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1033 << L->getHeader()->getParent()->getName() << "] Loop %" 1034 << L->getHeader()->getName() << "\n"); 1035 TransformationMode TM = hasUnrollTransformation(L); 1036 if (TM & TM_Disable) 1037 return LoopUnrollResult::Unmodified; 1038 if (!L->isLoopSimplifyForm()) { 1039 LLVM_DEBUG( 1040 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1041 return LoopUnrollResult::Unmodified; 1042 } 1043 1044 // When automtatic unrolling is disabled, do not unroll unless overridden for 1045 // this loop. 1046 if (OnlyWhenForced && !(TM & TM_Enable)) 1047 return LoopUnrollResult::Unmodified; 1048 1049 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1050 unsigned NumInlineCandidates; 1051 bool NotDuplicatable; 1052 bool Convergent; 1053 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1054 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1055 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1056 ProvidedFullUnrollMaxCount); 1057 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1058 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1059 1060 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1061 // as threshold later on. 1062 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1063 !OptForSize) 1064 return LoopUnrollResult::Unmodified; 1065 1066 SmallPtrSet<const Value *, 32> EphValues; 1067 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1068 1069 unsigned LoopSize = 1070 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1071 TTI, EphValues, UP.BEInsns); 1072 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1073 if (NotDuplicatable) { 1074 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1075 << " instructions.\n"); 1076 return LoopUnrollResult::Unmodified; 1077 } 1078 1079 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1080 // later), to (fully) unroll loops, if it does not increase code size. 1081 if (OptForSize) 1082 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1083 1084 if (NumInlineCandidates != 0) { 1085 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1086 return LoopUnrollResult::Unmodified; 1087 } 1088 1089 // Find trip count and trip multiple if count is not available 1090 unsigned TripCount = 0; 1091 unsigned TripMultiple = 1; 1092 // If there are multiple exiting blocks but one of them is the latch, use the 1093 // latch for the trip count estimation. Otherwise insist on a single exiting 1094 // block for the trip count estimation. 1095 BasicBlock *ExitingBlock = L->getLoopLatch(); 1096 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1097 ExitingBlock = L->getExitingBlock(); 1098 if (ExitingBlock) { 1099 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1100 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1101 } 1102 1103 // If the loop contains a convergent operation, the prelude we'd add 1104 // to do the first few instructions before we hit the unrolled loop 1105 // is unsafe -- it adds a control-flow dependency to the convergent 1106 // operation. Therefore restrict remainder loop (try unrollig without). 1107 // 1108 // TODO: This is quite conservative. In practice, convergent_op() 1109 // is likely to be called unconditionally in the loop. In this 1110 // case, the program would be ill-formed (on most architectures) 1111 // unless n were the same on all threads in a thread group. 1112 // Assuming n is the same on all threads, any kind of unrolling is 1113 // safe. But currently llvm's notion of convergence isn't powerful 1114 // enough to express this. 1115 if (Convergent) 1116 UP.AllowRemainder = false; 1117 1118 // Try to find the trip count upper bound if we cannot find the exact trip 1119 // count. 1120 unsigned MaxTripCount = 0; 1121 bool MaxOrZero = false; 1122 if (!TripCount) { 1123 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1124 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1125 } 1126 1127 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1128 // fully unroll the loop. 1129 bool UseUpperBound = false; 1130 bool IsCountSetExplicitly = computeUnrollCount( 1131 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1132 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1133 if (!UP.Count) 1134 return LoopUnrollResult::Unmodified; 1135 // Unroll factor (Count) must be less or equal to TripCount. 1136 if (TripCount && UP.Count > TripCount) 1137 UP.Count = TripCount; 1138 1139 // Save loop properties before it is transformed. 1140 MDNode *OrigLoopID = L->getLoopID(); 1141 1142 // Unroll the loop. 1143 Loop *RemainderLoop = nullptr; 1144 LoopUnrollResult UnrollResult = UnrollLoop( 1145 L, 1146 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1147 UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder, 1148 ForgetAllSCEV}, 1149 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1150 if (UnrollResult == LoopUnrollResult::Unmodified) 1151 return LoopUnrollResult::Unmodified; 1152 1153 if (RemainderLoop) { 1154 Optional<MDNode *> RemainderLoopID = 1155 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1156 LLVMLoopUnrollFollowupRemainder}); 1157 if (RemainderLoopID.hasValue()) 1158 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1159 } 1160 1161 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1162 Optional<MDNode *> NewLoopID = 1163 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1164 LLVMLoopUnrollFollowupUnrolled}); 1165 if (NewLoopID.hasValue()) { 1166 L->setLoopID(NewLoopID.getValue()); 1167 1168 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1169 // explicitly. 1170 return UnrollResult; 1171 } 1172 } 1173 1174 // If loop has an unroll count pragma or unrolled by explicitly set count 1175 // mark loop as unrolled to prevent unrolling beyond that requested. 1176 // If the loop was peeled, we already "used up" the profile information 1177 // we had, so we don't want to unroll or peel again. 1178 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1179 (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount))) 1180 L->setLoopAlreadyUnrolled(); 1181 1182 return UnrollResult; 1183 } 1184 1185 namespace { 1186 1187 class LoopUnroll : public LoopPass { 1188 public: 1189 static char ID; // Pass ID, replacement for typeid 1190 1191 int OptLevel; 1192 1193 /// If false, use a cost model to determine whether unrolling of a loop is 1194 /// profitable. If true, only loops that explicitly request unrolling via 1195 /// metadata are considered. All other loops are skipped. 1196 bool OnlyWhenForced; 1197 1198 /// If false, when SCEV is invalidated, only forget everything in the 1199 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1200 /// Otherwise, forgetAllLoops and rebuild when needed next. 1201 bool ForgetAllSCEV; 1202 1203 Optional<unsigned> ProvidedCount; 1204 Optional<unsigned> ProvidedThreshold; 1205 Optional<bool> ProvidedAllowPartial; 1206 Optional<bool> ProvidedRuntime; 1207 Optional<bool> ProvidedUpperBound; 1208 Optional<bool> ProvidedAllowPeeling; 1209 Optional<bool> ProvidedAllowProfileBasedPeeling; 1210 Optional<unsigned> ProvidedFullUnrollMaxCount; 1211 1212 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1213 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1214 Optional<unsigned> Count = None, 1215 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1216 Optional<bool> UpperBound = None, 1217 Optional<bool> AllowPeeling = None, 1218 Optional<bool> AllowProfileBasedPeeling = None, 1219 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1220 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1221 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1222 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1223 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1224 ProvidedAllowPeeling(AllowPeeling), 1225 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1226 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1227 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1228 } 1229 1230 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1231 if (skipLoop(L)) 1232 return false; 1233 1234 Function &F = *L->getHeader()->getParent(); 1235 1236 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1237 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1238 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1239 const TargetTransformInfo &TTI = 1240 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1241 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1242 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1243 // pass. Function analyses need to be preserved across loop transformations 1244 // but ORE cannot be preserved (see comment before the pass definition). 1245 OptimizationRemarkEmitter ORE(&F); 1246 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1247 1248 LoopUnrollResult Result = tryToUnrollLoop( 1249 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1250 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1251 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1252 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1253 ProvidedFullUnrollMaxCount); 1254 1255 if (Result == LoopUnrollResult::FullyUnrolled) 1256 LPM.markLoopAsDeleted(*L); 1257 1258 return Result != LoopUnrollResult::Unmodified; 1259 } 1260 1261 /// This transformation requires natural loop information & requires that 1262 /// loop preheaders be inserted into the CFG... 1263 void getAnalysisUsage(AnalysisUsage &AU) const override { 1264 AU.addRequired<AssumptionCacheTracker>(); 1265 AU.addRequired<TargetTransformInfoWrapperPass>(); 1266 // FIXME: Loop passes are required to preserve domtree, and for now we just 1267 // recreate dom info if anything gets unrolled. 1268 getLoopAnalysisUsage(AU); 1269 } 1270 }; 1271 1272 } // end anonymous namespace 1273 1274 char LoopUnroll::ID = 0; 1275 1276 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1277 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1278 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1279 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1280 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1281 1282 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1283 bool ForgetAllSCEV, int Threshold, int Count, 1284 int AllowPartial, int Runtime, int UpperBound, 1285 int AllowPeeling) { 1286 // TODO: It would make more sense for this function to take the optionals 1287 // directly, but that's dangerous since it would silently break out of tree 1288 // callers. 1289 return new LoopUnroll( 1290 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1291 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1292 Count == -1 ? None : Optional<unsigned>(Count), 1293 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1294 Runtime == -1 ? None : Optional<bool>(Runtime), 1295 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1296 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1297 } 1298 1299 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1300 bool ForgetAllSCEV) { 1301 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1302 0, 0, 0, 0); 1303 } 1304 1305 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1306 LoopStandardAnalysisResults &AR, 1307 LPMUpdater &Updater) { 1308 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1309 // pass. Function analyses need to be preserved across loop transformations 1310 // but ORE cannot be preserved (see comment before the pass definition). 1311 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1312 1313 // Keep track of the previous loop structure so we can identify new loops 1314 // created by unrolling. 1315 Loop *ParentL = L.getParentLoop(); 1316 SmallPtrSet<Loop *, 4> OldLoops; 1317 if (ParentL) 1318 OldLoops.insert(ParentL->begin(), ParentL->end()); 1319 else 1320 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1321 1322 std::string LoopName = std::string(L.getName()); 1323 1324 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1325 /*BFI*/ nullptr, /*PSI*/ nullptr, 1326 /*PreserveLCSSA*/ true, OptLevel, 1327 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1328 /*Threshold*/ None, /*AllowPartial*/ false, 1329 /*Runtime*/ false, /*UpperBound*/ false, 1330 /*AllowPeeling*/ false, 1331 /*AllowProfileBasedPeeling*/ false, 1332 /*FullUnrollMaxCount*/ None) != 1333 LoopUnrollResult::Unmodified; 1334 if (!Changed) 1335 return PreservedAnalyses::all(); 1336 1337 // The parent must not be damaged by unrolling! 1338 #ifndef NDEBUG 1339 if (ParentL) 1340 ParentL->verifyLoop(); 1341 #endif 1342 1343 // Unrolling can do several things to introduce new loops into a loop nest: 1344 // - Full unrolling clones child loops within the current loop but then 1345 // removes the current loop making all of the children appear to be new 1346 // sibling loops. 1347 // 1348 // When a new loop appears as a sibling loop after fully unrolling, 1349 // its nesting structure has fundamentally changed and we want to revisit 1350 // it to reflect that. 1351 // 1352 // When unrolling has removed the current loop, we need to tell the 1353 // infrastructure that it is gone. 1354 // 1355 // Finally, we support a debugging/testing mode where we revisit child loops 1356 // as well. These are not expected to require further optimizations as either 1357 // they or the loop they were cloned from have been directly visited already. 1358 // But the debugging mode allows us to check this assumption. 1359 bool IsCurrentLoopValid = false; 1360 SmallVector<Loop *, 4> SibLoops; 1361 if (ParentL) 1362 SibLoops.append(ParentL->begin(), ParentL->end()); 1363 else 1364 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1365 erase_if(SibLoops, [&](Loop *SibLoop) { 1366 if (SibLoop == &L) { 1367 IsCurrentLoopValid = true; 1368 return true; 1369 } 1370 1371 // Otherwise erase the loop from the list if it was in the old loops. 1372 return OldLoops.count(SibLoop) != 0; 1373 }); 1374 Updater.addSiblingLoops(SibLoops); 1375 1376 if (!IsCurrentLoopValid) { 1377 Updater.markLoopAsDeleted(L, LoopName); 1378 } else { 1379 // We can only walk child loops if the current loop remained valid. 1380 if (UnrollRevisitChildLoops) { 1381 // Walk *all* of the child loops. 1382 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1383 Updater.addChildLoops(ChildLoops); 1384 } 1385 } 1386 1387 return getLoopPassPreservedAnalyses(); 1388 } 1389 1390 PreservedAnalyses LoopUnrollPass::run(Function &F, 1391 FunctionAnalysisManager &AM) { 1392 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1393 auto &LI = AM.getResult<LoopAnalysis>(F); 1394 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1395 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1396 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1397 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1398 1399 LoopAnalysisManager *LAM = nullptr; 1400 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1401 LAM = &LAMProxy->getManager(); 1402 1403 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1404 ProfileSummaryInfo *PSI = 1405 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1406 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1407 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1408 1409 bool Changed = false; 1410 1411 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1412 // Since simplification may add new inner loops, it has to run before the 1413 // legality and profitability checks. This means running the loop unroller 1414 // will simplify all loops, regardless of whether anything end up being 1415 // unrolled. 1416 for (auto &L : LI) { 1417 Changed |= 1418 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1419 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1420 } 1421 1422 // Add the loop nests in the reverse order of LoopInfo. See method 1423 // declaration. 1424 SmallPriorityWorklist<Loop *, 4> Worklist; 1425 appendLoopsToWorklist(LI, Worklist); 1426 1427 while (!Worklist.empty()) { 1428 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1429 // from back to front so that we work forward across the CFG, which 1430 // for unrolling is only needed to get optimization remarks emitted in 1431 // a forward order. 1432 Loop &L = *Worklist.pop_back_val(); 1433 #ifndef NDEBUG 1434 Loop *ParentL = L.getParentLoop(); 1435 #endif 1436 1437 // Check if the profile summary indicates that the profiled application 1438 // has a huge working set size, in which case we disable peeling to avoid 1439 // bloating it further. 1440 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1441 if (PSI && PSI->hasHugeWorkingSetSize()) 1442 LocalAllowPeeling = false; 1443 std::string LoopName = std::string(L.getName()); 1444 // The API here is quite complex to call and we allow to select some 1445 // flavors of unrolling during construction time (by setting UnrollOpts). 1446 LoopUnrollResult Result = tryToUnrollLoop( 1447 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1448 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1449 UnrollOpts.ForgetSCEV, /*Count*/ None, 1450 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1451 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1452 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1453 Changed |= Result != LoopUnrollResult::Unmodified; 1454 1455 // The parent must not be damaged by unrolling! 1456 #ifndef NDEBUG 1457 if (Result != LoopUnrollResult::Unmodified && ParentL) 1458 ParentL->verifyLoop(); 1459 #endif 1460 1461 // Clear any cached analysis results for L if we removed it completely. 1462 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1463 LAM->clear(L, LoopName); 1464 } 1465 1466 if (!Changed) 1467 return PreservedAnalyses::all(); 1468 1469 return getLoopPassPreservedAnalyses(); 1470 } 1471