xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision de67affd005d2a4af3554ff48f874868f022a022)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <limits>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-unroll"
73 
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77              " the current top-most loop. This is somtimes preferred to reduce"
78              " compile time."));
79 
80 static cl::opt<unsigned>
81     UnrollThreshold("unroll-threshold", cl::Hidden,
82                     cl::desc("The cost threshold for loop unrolling"));
83 
84 static cl::opt<unsigned> UnrollPartialThreshold(
85     "unroll-partial-threshold", cl::Hidden,
86     cl::desc("The cost threshold for partial loop unrolling"));
87 
88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
89     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
90     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
91              "to the threshold when aggressively unrolling a loop due to the "
92              "dynamic cost savings. If completely unrolling a loop will reduce "
93              "the total runtime from X to Y, we boost the loop unroll "
94              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
95              "X/Y). This limit avoids excessive code bloat."));
96 
97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
98     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
99     cl::desc("Don't allow loop unrolling to simulate more than this number of"
100              "iterations when checking full unroll profitability"));
101 
102 static cl::opt<unsigned> UnrollCount(
103     "unroll-count", cl::Hidden,
104     cl::desc("Use this unroll count for all loops including those with "
105              "unroll_count pragma values, for testing purposes"));
106 
107 static cl::opt<unsigned> UnrollMaxCount(
108     "unroll-max-count", cl::Hidden,
109     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
110              "testing purposes"));
111 
112 static cl::opt<unsigned> UnrollFullMaxCount(
113     "unroll-full-max-count", cl::Hidden,
114     cl::desc(
115         "Set the max unroll count for full unrolling, for testing purposes"));
116 
117 static cl::opt<unsigned> UnrollPeelCount(
118     "unroll-peel-count", cl::Hidden,
119     cl::desc("Set the unroll peeling count, for testing purposes"));
120 
121 static cl::opt<bool>
122     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
123                        cl::desc("Allows loops to be partially unrolled until "
124                                 "-unroll-threshold loop size is reached."));
125 
126 static cl::opt<bool> UnrollAllowRemainder(
127     "unroll-allow-remainder", cl::Hidden,
128     cl::desc("Allow generation of a loop remainder (extra iterations) "
129              "when unrolling a loop."));
130 
131 static cl::opt<bool>
132     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
133                   cl::desc("Unroll loops with run-time trip counts"));
134 
135 static cl::opt<unsigned> UnrollMaxUpperBound(
136     "unroll-max-upperbound", cl::init(8), cl::Hidden,
137     cl::desc(
138         "The max of trip count upper bound that is considered in unrolling"));
139 
140 static cl::opt<unsigned> PragmaUnrollThreshold(
141     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
142     cl::desc("Unrolled size limit for loops with an unroll(full) or "
143              "unroll_count pragma."));
144 
145 static cl::opt<unsigned> FlatLoopTripCountThreshold(
146     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
147     cl::desc("If the runtime tripcount for the loop is lower than the "
148              "threshold, the loop is considered as flat and will be less "
149              "aggressively unrolled."));
150 
151 static cl::opt<bool>
152     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
153                        cl::desc("Allows loops to be peeled when the dynamic "
154                                 "trip count is known to be low."));
155 
156 static cl::opt<bool> UnrollUnrollRemainder(
157   "unroll-remainder", cl::Hidden,
158   cl::desc("Allow the loop remainder to be unrolled."));
159 
160 // This option isn't ever intended to be enabled, it serves to allow
161 // experiments to check the assumptions about when this kind of revisit is
162 // necessary.
163 static cl::opt<bool> UnrollRevisitChildLoops(
164     "unroll-revisit-child-loops", cl::Hidden,
165     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
166              "This shouldn't typically be needed as child loops (or their "
167              "clones) were already visited."));
168 
169 /// A magic value for use with the Threshold parameter to indicate
170 /// that the loop unroll should be performed regardless of how much
171 /// code expansion would result.
172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
173 
174 /// Gather the various unrolling parameters based on the defaults, compiler
175 /// flags, TTI overrides and user specified parameters.
176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
177     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
178     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
179     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
180     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
181     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
182     Optional<bool> UserAllowProfileBasedPeeling) {
183   TargetTransformInfo::UnrollingPreferences UP;
184 
185   // Set up the defaults
186   UP.Threshold = OptLevel > 2 ? 300 : 150;
187   UP.MaxPercentThresholdBoost = 400;
188   UP.OptSizeThreshold = 0;
189   UP.PartialThreshold = 150;
190   UP.PartialOptSizeThreshold = 0;
191   UP.Count = 0;
192   UP.PeelCount = 0;
193   UP.DefaultUnrollRuntimeCount = 8;
194   UP.MaxCount = std::numeric_limits<unsigned>::max();
195   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
196   UP.BEInsns = 2;
197   UP.Partial = false;
198   UP.Runtime = false;
199   UP.AllowRemainder = true;
200   UP.UnrollRemainder = false;
201   UP.AllowExpensiveTripCount = false;
202   UP.Force = false;
203   UP.UpperBound = false;
204   UP.AllowPeeling = true;
205   UP.UnrollAndJam = false;
206   UP.PeelProfiledIterations = true;
207   UP.UnrollAndJamInnerLoopThreshold = 60;
208 
209   // Override with any target specific settings
210   TTI.getUnrollingPreferences(L, SE, UP);
211 
212   // Apply size attributes
213   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
214                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
215   if (OptForSize) {
216     UP.Threshold = UP.OptSizeThreshold;
217     UP.PartialThreshold = UP.PartialOptSizeThreshold;
218     UP.MaxPercentThresholdBoost = 100;
219   }
220 
221   // Apply any user values specified by cl::opt
222   if (UnrollThreshold.getNumOccurrences() > 0)
223     UP.Threshold = UnrollThreshold;
224   if (UnrollPartialThreshold.getNumOccurrences() > 0)
225     UP.PartialThreshold = UnrollPartialThreshold;
226   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
227     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
228   if (UnrollMaxCount.getNumOccurrences() > 0)
229     UP.MaxCount = UnrollMaxCount;
230   if (UnrollFullMaxCount.getNumOccurrences() > 0)
231     UP.FullUnrollMaxCount = UnrollFullMaxCount;
232   if (UnrollPeelCount.getNumOccurrences() > 0)
233     UP.PeelCount = UnrollPeelCount;
234   if (UnrollAllowPartial.getNumOccurrences() > 0)
235     UP.Partial = UnrollAllowPartial;
236   if (UnrollAllowRemainder.getNumOccurrences() > 0)
237     UP.AllowRemainder = UnrollAllowRemainder;
238   if (UnrollRuntime.getNumOccurrences() > 0)
239     UP.Runtime = UnrollRuntime;
240   if (UnrollMaxUpperBound == 0)
241     UP.UpperBound = false;
242   if (UnrollAllowPeeling.getNumOccurrences() > 0)
243     UP.AllowPeeling = UnrollAllowPeeling;
244   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
245     UP.UnrollRemainder = UnrollUnrollRemainder;
246 
247   // Apply user values provided by argument
248   if (UserThreshold.hasValue()) {
249     UP.Threshold = *UserThreshold;
250     UP.PartialThreshold = *UserThreshold;
251   }
252   if (UserCount.hasValue())
253     UP.Count = *UserCount;
254   if (UserAllowPartial.hasValue())
255     UP.Partial = *UserAllowPartial;
256   if (UserRuntime.hasValue())
257     UP.Runtime = *UserRuntime;
258   if (UserUpperBound.hasValue())
259     UP.UpperBound = *UserUpperBound;
260   if (UserAllowPeeling.hasValue())
261     UP.AllowPeeling = *UserAllowPeeling;
262   if (UserAllowProfileBasedPeeling.hasValue())
263     UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
264 
265   return UP;
266 }
267 
268 namespace {
269 
270 /// A struct to densely store the state of an instruction after unrolling at
271 /// each iteration.
272 ///
273 /// This is designed to work like a tuple of <Instruction *, int> for the
274 /// purposes of hashing and lookup, but to be able to associate two boolean
275 /// states with each key.
276 struct UnrolledInstState {
277   Instruction *I;
278   int Iteration : 30;
279   unsigned IsFree : 1;
280   unsigned IsCounted : 1;
281 };
282 
283 /// Hashing and equality testing for a set of the instruction states.
284 struct UnrolledInstStateKeyInfo {
285   using PtrInfo = DenseMapInfo<Instruction *>;
286   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
287 
288   static inline UnrolledInstState getEmptyKey() {
289     return {PtrInfo::getEmptyKey(), 0, 0, 0};
290   }
291 
292   static inline UnrolledInstState getTombstoneKey() {
293     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
294   }
295 
296   static inline unsigned getHashValue(const UnrolledInstState &S) {
297     return PairInfo::getHashValue({S.I, S.Iteration});
298   }
299 
300   static inline bool isEqual(const UnrolledInstState &LHS,
301                              const UnrolledInstState &RHS) {
302     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
303   }
304 };
305 
306 struct EstimatedUnrollCost {
307   /// The estimated cost after unrolling.
308   unsigned UnrolledCost;
309 
310   /// The estimated dynamic cost of executing the instructions in the
311   /// rolled form.
312   unsigned RolledDynamicCost;
313 };
314 
315 } // end anonymous namespace
316 
317 /// Figure out if the loop is worth full unrolling.
318 ///
319 /// Complete loop unrolling can make some loads constant, and we need to know
320 /// if that would expose any further optimization opportunities.  This routine
321 /// estimates this optimization.  It computes cost of unrolled loop
322 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
323 /// dynamic cost we mean that we won't count costs of blocks that are known not
324 /// to be executed (i.e. if we have a branch in the loop and we know that at the
325 /// given iteration its condition would be resolved to true, we won't add up the
326 /// cost of the 'false'-block).
327 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
328 /// the analysis failed (no benefits expected from the unrolling, or the loop is
329 /// too big to analyze), the returned value is None.
330 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
331     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
332     const SmallPtrSetImpl<const Value *> &EphValues,
333     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
334   // We want to be able to scale offsets by the trip count and add more offsets
335   // to them without checking for overflows, and we already don't want to
336   // analyze *massive* trip counts, so we force the max to be reasonably small.
337   assert(UnrollMaxIterationsCountToAnalyze <
338              (unsigned)(std::numeric_limits<int>::max() / 2) &&
339          "The unroll iterations max is too large!");
340 
341   // Only analyze inner loops. We can't properly estimate cost of nested loops
342   // and we won't visit inner loops again anyway.
343   if (!L->empty())
344     return None;
345 
346   // Don't simulate loops with a big or unknown tripcount
347   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
348       TripCount > UnrollMaxIterationsCountToAnalyze)
349     return None;
350 
351   SmallSetVector<BasicBlock *, 16> BBWorklist;
352   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
353   DenseMap<Value *, Constant *> SimplifiedValues;
354   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
355 
356   // The estimated cost of the unrolled form of the loop. We try to estimate
357   // this by simplifying as much as we can while computing the estimate.
358   unsigned UnrolledCost = 0;
359 
360   // We also track the estimated dynamic (that is, actually executed) cost in
361   // the rolled form. This helps identify cases when the savings from unrolling
362   // aren't just exposing dead control flows, but actual reduced dynamic
363   // instructions due to the simplifications which we expect to occur after
364   // unrolling.
365   unsigned RolledDynamicCost = 0;
366 
367   // We track the simplification of each instruction in each iteration. We use
368   // this to recursively merge costs into the unrolled cost on-demand so that
369   // we don't count the cost of any dead code. This is essentially a map from
370   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
371   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
372 
373   // A small worklist used to accumulate cost of instructions from each
374   // observable and reached root in the loop.
375   SmallVector<Instruction *, 16> CostWorklist;
376 
377   // PHI-used worklist used between iterations while accumulating cost.
378   SmallVector<Instruction *, 4> PHIUsedList;
379 
380   // Helper function to accumulate cost for instructions in the loop.
381   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
382     assert(Iteration >= 0 && "Cannot have a negative iteration!");
383     assert(CostWorklist.empty() && "Must start with an empty cost list");
384     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
385     CostWorklist.push_back(&RootI);
386     for (;; --Iteration) {
387       do {
388         Instruction *I = CostWorklist.pop_back_val();
389 
390         // InstCostMap only uses I and Iteration as a key, the other two values
391         // don't matter here.
392         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
393         if (CostIter == InstCostMap.end())
394           // If an input to a PHI node comes from a dead path through the loop
395           // we may have no cost data for it here. What that actually means is
396           // that it is free.
397           continue;
398         auto &Cost = *CostIter;
399         if (Cost.IsCounted)
400           // Already counted this instruction.
401           continue;
402 
403         // Mark that we are counting the cost of this instruction now.
404         Cost.IsCounted = true;
405 
406         // If this is a PHI node in the loop header, just add it to the PHI set.
407         if (auto *PhiI = dyn_cast<PHINode>(I))
408           if (PhiI->getParent() == L->getHeader()) {
409             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
410                                   "inherently simplify during unrolling.");
411             if (Iteration == 0)
412               continue;
413 
414             // Push the incoming value from the backedge into the PHI used list
415             // if it is an in-loop instruction. We'll use this to populate the
416             // cost worklist for the next iteration (as we count backwards).
417             if (auto *OpI = dyn_cast<Instruction>(
418                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
419               if (L->contains(OpI))
420                 PHIUsedList.push_back(OpI);
421             continue;
422           }
423 
424         // First accumulate the cost of this instruction.
425         if (!Cost.IsFree) {
426           UnrolledCost += TTI.getUserCost(I);
427           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
428                             << Iteration << "): ");
429           LLVM_DEBUG(I->dump());
430         }
431 
432         // We must count the cost of every operand which is not free,
433         // recursively. If we reach a loop PHI node, simply add it to the set
434         // to be considered on the next iteration (backwards!).
435         for (Value *Op : I->operands()) {
436           // Check whether this operand is free due to being a constant or
437           // outside the loop.
438           auto *OpI = dyn_cast<Instruction>(Op);
439           if (!OpI || !L->contains(OpI))
440             continue;
441 
442           // Otherwise accumulate its cost.
443           CostWorklist.push_back(OpI);
444         }
445       } while (!CostWorklist.empty());
446 
447       if (PHIUsedList.empty())
448         // We've exhausted the search.
449         break;
450 
451       assert(Iteration > 0 &&
452              "Cannot track PHI-used values past the first iteration!");
453       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
454       PHIUsedList.clear();
455     }
456   };
457 
458   // Ensure that we don't violate the loop structure invariants relied on by
459   // this analysis.
460   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
461   assert(L->isLCSSAForm(DT) &&
462          "Must have loops in LCSSA form to track live-out values.");
463 
464   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
465 
466   // Simulate execution of each iteration of the loop counting instructions,
467   // which would be simplified.
468   // Since the same load will take different values on different iterations,
469   // we literally have to go through all loop's iterations.
470   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
471     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
472 
473     // Prepare for the iteration by collecting any simplified entry or backedge
474     // inputs.
475     for (Instruction &I : *L->getHeader()) {
476       auto *PHI = dyn_cast<PHINode>(&I);
477       if (!PHI)
478         break;
479 
480       // The loop header PHI nodes must have exactly two input: one from the
481       // loop preheader and one from the loop latch.
482       assert(
483           PHI->getNumIncomingValues() == 2 &&
484           "Must have an incoming value only for the preheader and the latch.");
485 
486       Value *V = PHI->getIncomingValueForBlock(
487           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
488       Constant *C = dyn_cast<Constant>(V);
489       if (Iteration != 0 && !C)
490         C = SimplifiedValues.lookup(V);
491       if (C)
492         SimplifiedInputValues.push_back({PHI, C});
493     }
494 
495     // Now clear and re-populate the map for the next iteration.
496     SimplifiedValues.clear();
497     while (!SimplifiedInputValues.empty())
498       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
499 
500     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
501 
502     BBWorklist.clear();
503     BBWorklist.insert(L->getHeader());
504     // Note that we *must not* cache the size, this loop grows the worklist.
505     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
506       BasicBlock *BB = BBWorklist[Idx];
507 
508       // Visit all instructions in the given basic block and try to simplify
509       // it.  We don't change the actual IR, just count optimization
510       // opportunities.
511       for (Instruction &I : *BB) {
512         // These won't get into the final code - don't even try calculating the
513         // cost for them.
514         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
515           continue;
516 
517         // Track this instruction's expected baseline cost when executing the
518         // rolled loop form.
519         RolledDynamicCost += TTI.getUserCost(&I);
520 
521         // Visit the instruction to analyze its loop cost after unrolling,
522         // and if the visitor returns true, mark the instruction as free after
523         // unrolling and continue.
524         bool IsFree = Analyzer.visit(I);
525         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
526                                            (unsigned)IsFree,
527                                            /*IsCounted*/ false}).second;
528         (void)Inserted;
529         assert(Inserted && "Cannot have a state for an unvisited instruction!");
530 
531         if (IsFree)
532           continue;
533 
534         // Can't properly model a cost of a call.
535         // FIXME: With a proper cost model we should be able to do it.
536         if (auto *CI = dyn_cast<CallInst>(&I)) {
537           const Function *Callee = CI->getCalledFunction();
538           if (!Callee || TTI.isLoweredToCall(Callee)) {
539             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
540             return None;
541           }
542         }
543 
544         // If the instruction might have a side-effect recursively account for
545         // the cost of it and all the instructions leading up to it.
546         if (I.mayHaveSideEffects())
547           AddCostRecursively(I, Iteration);
548 
549         // If unrolled body turns out to be too big, bail out.
550         if (UnrolledCost > MaxUnrolledLoopSize) {
551           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
552                             << "  UnrolledCost: " << UnrolledCost
553                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
554                             << "\n");
555           return None;
556         }
557       }
558 
559       Instruction *TI = BB->getTerminator();
560 
561       // Add in the live successors by first checking whether we have terminator
562       // that may be simplified based on the values simplified by this call.
563       BasicBlock *KnownSucc = nullptr;
564       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
565         if (BI->isConditional()) {
566           if (Constant *SimpleCond =
567                   SimplifiedValues.lookup(BI->getCondition())) {
568             // Just take the first successor if condition is undef
569             if (isa<UndefValue>(SimpleCond))
570               KnownSucc = BI->getSuccessor(0);
571             else if (ConstantInt *SimpleCondVal =
572                          dyn_cast<ConstantInt>(SimpleCond))
573               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
574           }
575         }
576       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
577         if (Constant *SimpleCond =
578                 SimplifiedValues.lookup(SI->getCondition())) {
579           // Just take the first successor if condition is undef
580           if (isa<UndefValue>(SimpleCond))
581             KnownSucc = SI->getSuccessor(0);
582           else if (ConstantInt *SimpleCondVal =
583                        dyn_cast<ConstantInt>(SimpleCond))
584             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
585         }
586       }
587       if (KnownSucc) {
588         if (L->contains(KnownSucc))
589           BBWorklist.insert(KnownSucc);
590         else
591           ExitWorklist.insert({BB, KnownSucc});
592         continue;
593       }
594 
595       // Add BB's successors to the worklist.
596       for (BasicBlock *Succ : successors(BB))
597         if (L->contains(Succ))
598           BBWorklist.insert(Succ);
599         else
600           ExitWorklist.insert({BB, Succ});
601       AddCostRecursively(*TI, Iteration);
602     }
603 
604     // If we found no optimization opportunities on the first iteration, we
605     // won't find them on later ones too.
606     if (UnrolledCost == RolledDynamicCost) {
607       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
608                         << "  UnrolledCost: " << UnrolledCost << "\n");
609       return None;
610     }
611   }
612 
613   while (!ExitWorklist.empty()) {
614     BasicBlock *ExitingBB, *ExitBB;
615     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
616 
617     for (Instruction &I : *ExitBB) {
618       auto *PN = dyn_cast<PHINode>(&I);
619       if (!PN)
620         break;
621 
622       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
623       if (auto *OpI = dyn_cast<Instruction>(Op))
624         if (L->contains(OpI))
625           AddCostRecursively(*OpI, TripCount - 1);
626     }
627   }
628 
629   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
630                     << "UnrolledCost: " << UnrolledCost << ", "
631                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
632   return {{UnrolledCost, RolledDynamicCost}};
633 }
634 
635 /// ApproximateLoopSize - Approximate the size of the loop.
636 unsigned llvm::ApproximateLoopSize(
637     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
638     const TargetTransformInfo &TTI,
639     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
640   CodeMetrics Metrics;
641   for (BasicBlock *BB : L->blocks())
642     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
643   NumCalls = Metrics.NumInlineCandidates;
644   NotDuplicatable = Metrics.notDuplicatable;
645   Convergent = Metrics.convergent;
646 
647   unsigned LoopSize = Metrics.NumInsts;
648 
649   // Don't allow an estimate of size zero.  This would allows unrolling of loops
650   // with huge iteration counts, which is a compile time problem even if it's
651   // not a problem for code quality. Also, the code using this size may assume
652   // that each loop has at least three instructions (likely a conditional
653   // branch, a comparison feeding that branch, and some kind of loop increment
654   // feeding that comparison instruction).
655   LoopSize = std::max(LoopSize, BEInsns + 1);
656 
657   return LoopSize;
658 }
659 
660 // Returns the loop hint metadata node with the given name (for example,
661 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
662 // returned.
663 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
664   if (MDNode *LoopID = L->getLoopID())
665     return GetUnrollMetadata(LoopID, Name);
666   return nullptr;
667 }
668 
669 // Returns true if the loop has an unroll(full) pragma.
670 static bool HasUnrollFullPragma(const Loop *L) {
671   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
672 }
673 
674 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
675 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
676 static bool HasUnrollEnablePragma(const Loop *L) {
677   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
678 }
679 
680 // Returns true if the loop has an runtime unroll(disable) pragma.
681 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
682   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
683 }
684 
685 // If loop has an unroll_count pragma return the (necessarily
686 // positive) value from the pragma.  Otherwise return 0.
687 static unsigned UnrollCountPragmaValue(const Loop *L) {
688   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
689   if (MD) {
690     assert(MD->getNumOperands() == 2 &&
691            "Unroll count hint metadata should have two operands.");
692     unsigned Count =
693         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
694     assert(Count >= 1 && "Unroll count must be positive.");
695     return Count;
696   }
697   return 0;
698 }
699 
700 // Computes the boosting factor for complete unrolling.
701 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
702 // be beneficial to fully unroll the loop even if unrolledcost is large. We
703 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
704 // the unroll threshold.
705 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
706                                             unsigned MaxPercentThresholdBoost) {
707   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
708     return 100;
709   else if (Cost.UnrolledCost != 0)
710     // The boosting factor is RolledDynamicCost / UnrolledCost
711     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
712                     MaxPercentThresholdBoost);
713   else
714     return MaxPercentThresholdBoost;
715 }
716 
717 // Returns loop size estimation for unrolled loop.
718 static uint64_t getUnrolledLoopSize(
719     unsigned LoopSize,
720     TargetTransformInfo::UnrollingPreferences &UP) {
721   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
722   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
723 }
724 
725 // Returns true if unroll count was set explicitly.
726 // Calculates unroll count and writes it to UP.Count.
727 // Unless IgnoreUser is true, will also use metadata and command-line options
728 // that are specific to to the LoopUnroll pass (which, for instance, are
729 // irrelevant for the LoopUnrollAndJam pass).
730 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
731 // many LoopUnroll-specific options. The shared functionality should be
732 // refactored into it own function.
733 bool llvm::computeUnrollCount(
734     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
735     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
736     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
737     unsigned &TripMultiple, unsigned LoopSize,
738     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
739 
740   // Check for explicit Count.
741   // 1st priority is unroll count set by "unroll-count" option.
742   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
743   if (UserUnrollCount) {
744     UP.Count = UnrollCount;
745     UP.AllowExpensiveTripCount = true;
746     UP.Force = true;
747     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
748       return true;
749   }
750 
751   // 2nd priority is unroll count set by pragma.
752   unsigned PragmaCount = UnrollCountPragmaValue(L);
753   if (PragmaCount > 0) {
754     UP.Count = PragmaCount;
755     UP.Runtime = true;
756     UP.AllowExpensiveTripCount = true;
757     UP.Force = true;
758     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
759         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
760       return true;
761   }
762   bool PragmaFullUnroll = HasUnrollFullPragma(L);
763   if (PragmaFullUnroll && TripCount != 0) {
764     UP.Count = TripCount;
765     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
766       return false;
767   }
768 
769   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
770   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
771                         PragmaEnableUnroll || UserUnrollCount;
772 
773   if (ExplicitUnroll && TripCount != 0) {
774     // If the loop has an unrolling pragma, we want to be more aggressive with
775     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
776     // value which is larger than the default limits.
777     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
778     UP.PartialThreshold =
779         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
780   }
781 
782   // 3rd priority is full unroll count.
783   // Full unroll makes sense only when TripCount or its upper bound could be
784   // statically calculated.
785   // Also we need to check if we exceed FullUnrollMaxCount.
786   // If using the upper bound to unroll, TripMultiple should be set to 1 because
787   // we do not know when loop may exit.
788   // MaxTripCount and ExactTripCount cannot both be non zero since we only
789   // compute the former when the latter is zero.
790   unsigned ExactTripCount = TripCount;
791   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
792          "ExtractTripCount and MaxTripCount cannot both be non zero.");
793   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
794   UP.Count = FullUnrollTripCount;
795   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
796     // When computing the unrolled size, note that BEInsns are not replicated
797     // like the rest of the loop body.
798     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
799       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
800       TripCount = FullUnrollTripCount;
801       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
802       return ExplicitUnroll;
803     } else {
804       // The loop isn't that small, but we still can fully unroll it if that
805       // helps to remove a significant number of instructions.
806       // To check that, run additional analysis on the loop.
807       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
808               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
809               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
810         unsigned Boost =
811             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
812         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
813           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
814           TripCount = FullUnrollTripCount;
815           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
816           return ExplicitUnroll;
817         }
818       }
819     }
820   }
821 
822   // 4th priority is loop peeling.
823   computePeelCount(L, LoopSize, UP, TripCount, SE);
824   if (UP.PeelCount) {
825     UP.Runtime = false;
826     UP.Count = 1;
827     return ExplicitUnroll;
828   }
829 
830   // 5th priority is partial unrolling.
831   // Try partial unroll only when TripCount could be statically calculated.
832   if (TripCount) {
833     UP.Partial |= ExplicitUnroll;
834     if (!UP.Partial) {
835       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
836                         << "-unroll-allow-partial not given\n");
837       UP.Count = 0;
838       return false;
839     }
840     if (UP.Count == 0)
841       UP.Count = TripCount;
842     if (UP.PartialThreshold != NoThreshold) {
843       // Reduce unroll count to be modulo of TripCount for partial unrolling.
844       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
845         UP.Count =
846             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
847             (LoopSize - UP.BEInsns);
848       if (UP.Count > UP.MaxCount)
849         UP.Count = UP.MaxCount;
850       while (UP.Count != 0 && TripCount % UP.Count != 0)
851         UP.Count--;
852       if (UP.AllowRemainder && UP.Count <= 1) {
853         // If there is no Count that is modulo of TripCount, set Count to
854         // largest power-of-two factor that satisfies the threshold limit.
855         // As we'll create fixup loop, do the type of unrolling only if
856         // remainder loop is allowed.
857         UP.Count = UP.DefaultUnrollRuntimeCount;
858         while (UP.Count != 0 &&
859                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
860           UP.Count >>= 1;
861       }
862       if (UP.Count < 2) {
863         if (PragmaEnableUnroll)
864           ORE->emit([&]() {
865             return OptimizationRemarkMissed(DEBUG_TYPE,
866                                             "UnrollAsDirectedTooLarge",
867                                             L->getStartLoc(), L->getHeader())
868                    << "Unable to unroll loop as directed by unroll(enable) "
869                       "pragma "
870                       "because unrolled size is too large.";
871           });
872         UP.Count = 0;
873       }
874     } else {
875       UP.Count = TripCount;
876     }
877     if (UP.Count > UP.MaxCount)
878       UP.Count = UP.MaxCount;
879     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
880         UP.Count != TripCount)
881       ORE->emit([&]() {
882         return OptimizationRemarkMissed(DEBUG_TYPE,
883                                         "FullUnrollAsDirectedTooLarge",
884                                         L->getStartLoc(), L->getHeader())
885                << "Unable to fully unroll loop as directed by unroll pragma "
886                   "because "
887                   "unrolled size is too large.";
888       });
889     return ExplicitUnroll;
890   }
891   assert(TripCount == 0 &&
892          "All cases when TripCount is constant should be covered here.");
893   if (PragmaFullUnroll)
894     ORE->emit([&]() {
895       return OptimizationRemarkMissed(
896                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
897                  L->getStartLoc(), L->getHeader())
898              << "Unable to fully unroll loop as directed by unroll(full) "
899                 "pragma "
900                 "because loop has a runtime trip count.";
901     });
902 
903   // 6th priority is runtime unrolling.
904   // Don't unroll a runtime trip count loop when it is disabled.
905   if (HasRuntimeUnrollDisablePragma(L)) {
906     UP.Count = 0;
907     return false;
908   }
909 
910   // Check if the runtime trip count is too small when profile is available.
911   if (L->getHeader()->getParent()->hasProfileData()) {
912     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
913       if (*ProfileTripCount < FlatLoopTripCountThreshold)
914         return false;
915       else
916         UP.AllowExpensiveTripCount = true;
917     }
918   }
919 
920   // Reduce count based on the type of unrolling and the threshold values.
921   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
922   if (!UP.Runtime) {
923     LLVM_DEBUG(
924         dbgs() << "  will not try to unroll loop with runtime trip count "
925                << "-unroll-runtime not given\n");
926     UP.Count = 0;
927     return false;
928   }
929   if (UP.Count == 0)
930     UP.Count = UP.DefaultUnrollRuntimeCount;
931 
932   // Reduce unroll count to be the largest power-of-two factor of
933   // the original count which satisfies the threshold limit.
934   while (UP.Count != 0 &&
935          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
936     UP.Count >>= 1;
937 
938 #ifndef NDEBUG
939   unsigned OrigCount = UP.Count;
940 #endif
941 
942   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
943     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
944       UP.Count >>= 1;
945     LLVM_DEBUG(
946         dbgs() << "Remainder loop is restricted (that could architecture "
947                   "specific or because the loop contains a convergent "
948                   "instruction), so unroll count must divide the trip "
949                   "multiple, "
950                << TripMultiple << ".  Reducing unroll count from " << OrigCount
951                << " to " << UP.Count << ".\n");
952 
953     using namespace ore;
954 
955     if (PragmaCount > 0 && !UP.AllowRemainder)
956       ORE->emit([&]() {
957         return OptimizationRemarkMissed(DEBUG_TYPE,
958                                         "DifferentUnrollCountFromDirected",
959                                         L->getStartLoc(), L->getHeader())
960                << "Unable to unroll loop the number of times directed by "
961                   "unroll_count pragma because remainder loop is restricted "
962                   "(that could architecture specific or because the loop "
963                   "contains a convergent instruction) and so must have an "
964                   "unroll "
965                   "count that divides the loop trip multiple of "
966                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
967                << NV("UnrollCount", UP.Count) << " time(s).";
968       });
969   }
970 
971   if (UP.Count > UP.MaxCount)
972     UP.Count = UP.MaxCount;
973   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
974                     << "\n");
975   if (UP.Count < 2)
976     UP.Count = 0;
977   return ExplicitUnroll;
978 }
979 
980 static LoopUnrollResult tryToUnrollLoop(
981     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
982     const TargetTransformInfo &TTI, AssumptionCache &AC,
983     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
984     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
985     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
986     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
987     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
988     Optional<bool> ProvidedAllowPeeling,
989     Optional<bool> ProvidedAllowProfileBasedPeeling) {
990   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
991                     << L->getHeader()->getParent()->getName() << "] Loop %"
992                     << L->getHeader()->getName() << "\n");
993   TransformationMode TM = hasUnrollTransformation(L);
994   if (TM & TM_Disable)
995     return LoopUnrollResult::Unmodified;
996   if (!L->isLoopSimplifyForm()) {
997     LLVM_DEBUG(
998         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
999     return LoopUnrollResult::Unmodified;
1000   }
1001 
1002   // When automtatic unrolling is disabled, do not unroll unless overridden for
1003   // this loop.
1004   if (OnlyWhenForced && !(TM & TM_Enable))
1005     return LoopUnrollResult::Unmodified;
1006 
1007   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1008   unsigned NumInlineCandidates;
1009   bool NotDuplicatable;
1010   bool Convergent;
1011   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1012       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1013       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1014       ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);
1015 
1016   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1017   // as threshold later on.
1018   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1019       !OptForSize)
1020     return LoopUnrollResult::Unmodified;
1021 
1022   SmallPtrSet<const Value *, 32> EphValues;
1023   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1024 
1025   unsigned LoopSize =
1026       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1027                           TTI, EphValues, UP.BEInsns);
1028   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1029   if (NotDuplicatable) {
1030     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1031                       << " instructions.\n");
1032     return LoopUnrollResult::Unmodified;
1033   }
1034 
1035   // When optimizing for size, use LoopSize as threshold, to (fully) unroll
1036   // loops, if it does not increase code size.
1037   if (OptForSize)
1038     UP.Threshold = std::max(UP.Threshold, LoopSize);
1039 
1040   if (NumInlineCandidates != 0) {
1041     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1042     return LoopUnrollResult::Unmodified;
1043   }
1044 
1045   // Find trip count and trip multiple if count is not available
1046   unsigned TripCount = 0;
1047   unsigned MaxTripCount = 0;
1048   unsigned TripMultiple = 1;
1049   // If there are multiple exiting blocks but one of them is the latch, use the
1050   // latch for the trip count estimation. Otherwise insist on a single exiting
1051   // block for the trip count estimation.
1052   BasicBlock *ExitingBlock = L->getLoopLatch();
1053   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1054     ExitingBlock = L->getExitingBlock();
1055   if (ExitingBlock) {
1056     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1057     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1058   }
1059 
1060   // If the loop contains a convergent operation, the prelude we'd add
1061   // to do the first few instructions before we hit the unrolled loop
1062   // is unsafe -- it adds a control-flow dependency to the convergent
1063   // operation.  Therefore restrict remainder loop (try unrollig without).
1064   //
1065   // TODO: This is quite conservative.  In practice, convergent_op()
1066   // is likely to be called unconditionally in the loop.  In this
1067   // case, the program would be ill-formed (on most architectures)
1068   // unless n were the same on all threads in a thread group.
1069   // Assuming n is the same on all threads, any kind of unrolling is
1070   // safe.  But currently llvm's notion of convergence isn't powerful
1071   // enough to express this.
1072   if (Convergent)
1073     UP.AllowRemainder = false;
1074 
1075   // Try to find the trip count upper bound if we cannot find the exact trip
1076   // count.
1077   bool MaxOrZero = false;
1078   if (!TripCount) {
1079     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1080     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1081     // We can unroll by the upper bound amount if it's generally allowed or if
1082     // we know that the loop is executed either the upper bound or zero times.
1083     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1084     // loop tests remains the same compared to the non-unrolled version, whereas
1085     // the generic upper bound unrolling keeps all but the last loop test so the
1086     // number of loop tests goes up which may end up being worse on targets with
1087     // constrained branch predictor resources so is controlled by an option.)
1088     // In addition we only unroll small upper bounds.
1089     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1090       MaxTripCount = 0;
1091     }
1092   }
1093 
1094   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1095   // fully unroll the loop.
1096   bool UseUpperBound = false;
1097   bool IsCountSetExplicitly = computeUnrollCount(
1098       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1099       TripMultiple, LoopSize, UP, UseUpperBound);
1100   if (!UP.Count)
1101     return LoopUnrollResult::Unmodified;
1102   // Unroll factor (Count) must be less or equal to TripCount.
1103   if (TripCount && UP.Count > TripCount)
1104     UP.Count = TripCount;
1105 
1106   // Save loop properties before it is transformed.
1107   MDNode *OrigLoopID = L->getLoopID();
1108 
1109   // Unroll the loop.
1110   Loop *RemainderLoop = nullptr;
1111   LoopUnrollResult UnrollResult = UnrollLoop(
1112       L,
1113       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1114        UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1115        ForgetAllSCEV},
1116       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1117   if (UnrollResult == LoopUnrollResult::Unmodified)
1118     return LoopUnrollResult::Unmodified;
1119 
1120   if (RemainderLoop) {
1121     Optional<MDNode *> RemainderLoopID =
1122         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1123                                         LLVMLoopUnrollFollowupRemainder});
1124     if (RemainderLoopID.hasValue())
1125       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1126   }
1127 
1128   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1129     Optional<MDNode *> NewLoopID =
1130         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1131                                         LLVMLoopUnrollFollowupUnrolled});
1132     if (NewLoopID.hasValue()) {
1133       L->setLoopID(NewLoopID.getValue());
1134 
1135       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1136       // explicitly.
1137       return UnrollResult;
1138     }
1139   }
1140 
1141   // If loop has an unroll count pragma or unrolled by explicitly set count
1142   // mark loop as unrolled to prevent unrolling beyond that requested.
1143   // If the loop was peeled, we already "used up" the profile information
1144   // we had, so we don't want to unroll or peel again.
1145   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1146       (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1147     L->setLoopAlreadyUnrolled();
1148 
1149   return UnrollResult;
1150 }
1151 
1152 namespace {
1153 
1154 class LoopUnroll : public LoopPass {
1155 public:
1156   static char ID; // Pass ID, replacement for typeid
1157 
1158   int OptLevel;
1159 
1160   /// If false, use a cost model to determine whether unrolling of a loop is
1161   /// profitable. If true, only loops that explicitly request unrolling via
1162   /// metadata are considered. All other loops are skipped.
1163   bool OnlyWhenForced;
1164 
1165   /// If false, when SCEV is invalidated, only forget everything in the
1166   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1167   /// Otherwise, forgetAllLoops and rebuild when needed next.
1168   bool ForgetAllSCEV;
1169 
1170   Optional<unsigned> ProvidedCount;
1171   Optional<unsigned> ProvidedThreshold;
1172   Optional<bool> ProvidedAllowPartial;
1173   Optional<bool> ProvidedRuntime;
1174   Optional<bool> ProvidedUpperBound;
1175   Optional<bool> ProvidedAllowPeeling;
1176   Optional<bool> ProvidedAllowProfileBasedPeeling;
1177 
1178   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1179              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1180              Optional<unsigned> Count = None,
1181              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1182              Optional<bool> UpperBound = None,
1183              Optional<bool> AllowPeeling = None,
1184              Optional<bool> AllowProfileBasedPeeling = None)
1185       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1186         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1187         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1188         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1189         ProvidedAllowPeeling(AllowPeeling),
1190         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling) {
1191     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1192   }
1193 
1194   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1195     if (skipLoop(L))
1196       return false;
1197 
1198     Function &F = *L->getHeader()->getParent();
1199 
1200     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1201     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1202     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1203     const TargetTransformInfo &TTI =
1204         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1205     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1206     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1207     // pass.  Function analyses need to be preserved across loop transformations
1208     // but ORE cannot be preserved (see comment before the pass definition).
1209     OptimizationRemarkEmitter ORE(&F);
1210     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1211 
1212     LoopUnrollResult Result = tryToUnrollLoop(
1213         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1214         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1215         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1216         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);
1217 
1218     if (Result == LoopUnrollResult::FullyUnrolled)
1219       LPM.markLoopAsDeleted(*L);
1220 
1221     return Result != LoopUnrollResult::Unmodified;
1222   }
1223 
1224   /// This transformation requires natural loop information & requires that
1225   /// loop preheaders be inserted into the CFG...
1226   void getAnalysisUsage(AnalysisUsage &AU) const override {
1227     AU.addRequired<AssumptionCacheTracker>();
1228     AU.addRequired<TargetTransformInfoWrapperPass>();
1229     // FIXME: Loop passes are required to preserve domtree, and for now we just
1230     // recreate dom info if anything gets unrolled.
1231     getLoopAnalysisUsage(AU);
1232   }
1233 };
1234 
1235 } // end anonymous namespace
1236 
1237 char LoopUnroll::ID = 0;
1238 
1239 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1241 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1243 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1244 
1245 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1246                                  bool ForgetAllSCEV, int Threshold, int Count,
1247                                  int AllowPartial, int Runtime, int UpperBound,
1248                                  int AllowPeeling) {
1249   // TODO: It would make more sense for this function to take the optionals
1250   // directly, but that's dangerous since it would silently break out of tree
1251   // callers.
1252   return new LoopUnroll(
1253       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1254       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1255       Count == -1 ? None : Optional<unsigned>(Count),
1256       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1257       Runtime == -1 ? None : Optional<bool>(Runtime),
1258       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1259       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1260 }
1261 
1262 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1263                                        bool ForgetAllSCEV) {
1264   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1265                               0, 0, 0, 0);
1266 }
1267 
1268 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1269                                           LoopStandardAnalysisResults &AR,
1270                                           LPMUpdater &Updater) {
1271   const auto &FAM =
1272       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1273   Function *F = L.getHeader()->getParent();
1274 
1275   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1276   // FIXME: This should probably be optional rather than required.
1277   if (!ORE)
1278     report_fatal_error(
1279         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1280         "cached at a higher level");
1281 
1282   // Keep track of the previous loop structure so we can identify new loops
1283   // created by unrolling.
1284   Loop *ParentL = L.getParentLoop();
1285   SmallPtrSet<Loop *, 4> OldLoops;
1286   if (ParentL)
1287     OldLoops.insert(ParentL->begin(), ParentL->end());
1288   else
1289     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1290 
1291   std::string LoopName = L.getName();
1292 
1293   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1294                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1295                                  /*PreserveLCSSA*/ true, OptLevel,
1296                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1297                                  /*Threshold*/ None, /*AllowPartial*/ false,
1298                                  /*Runtime*/ false, /*UpperBound*/ false,
1299                                  /*AllowPeeling*/ false,
1300                                  /*AllowProfileBasedPeeling*/ false) !=
1301                  LoopUnrollResult::Unmodified;
1302   if (!Changed)
1303     return PreservedAnalyses::all();
1304 
1305   // The parent must not be damaged by unrolling!
1306 #ifndef NDEBUG
1307   if (ParentL)
1308     ParentL->verifyLoop();
1309 #endif
1310 
1311   // Unrolling can do several things to introduce new loops into a loop nest:
1312   // - Full unrolling clones child loops within the current loop but then
1313   //   removes the current loop making all of the children appear to be new
1314   //   sibling loops.
1315   //
1316   // When a new loop appears as a sibling loop after fully unrolling,
1317   // its nesting structure has fundamentally changed and we want to revisit
1318   // it to reflect that.
1319   //
1320   // When unrolling has removed the current loop, we need to tell the
1321   // infrastructure that it is gone.
1322   //
1323   // Finally, we support a debugging/testing mode where we revisit child loops
1324   // as well. These are not expected to require further optimizations as either
1325   // they or the loop they were cloned from have been directly visited already.
1326   // But the debugging mode allows us to check this assumption.
1327   bool IsCurrentLoopValid = false;
1328   SmallVector<Loop *, 4> SibLoops;
1329   if (ParentL)
1330     SibLoops.append(ParentL->begin(), ParentL->end());
1331   else
1332     SibLoops.append(AR.LI.begin(), AR.LI.end());
1333   erase_if(SibLoops, [&](Loop *SibLoop) {
1334     if (SibLoop == &L) {
1335       IsCurrentLoopValid = true;
1336       return true;
1337     }
1338 
1339     // Otherwise erase the loop from the list if it was in the old loops.
1340     return OldLoops.count(SibLoop) != 0;
1341   });
1342   Updater.addSiblingLoops(SibLoops);
1343 
1344   if (!IsCurrentLoopValid) {
1345     Updater.markLoopAsDeleted(L, LoopName);
1346   } else {
1347     // We can only walk child loops if the current loop remained valid.
1348     if (UnrollRevisitChildLoops) {
1349       // Walk *all* of the child loops.
1350       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1351       Updater.addChildLoops(ChildLoops);
1352     }
1353   }
1354 
1355   return getLoopPassPreservedAnalyses();
1356 }
1357 
1358 template <typename RangeT>
1359 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1360   SmallVector<Loop *, 8> Worklist;
1361   // We use an internal worklist to build up the preorder traversal without
1362   // recursion.
1363   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1364 
1365   for (Loop *RootL : Loops) {
1366     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1367     assert(PreOrderWorklist.empty() &&
1368            "Must start with an empty preorder walk worklist.");
1369     PreOrderWorklist.push_back(RootL);
1370     do {
1371       Loop *L = PreOrderWorklist.pop_back_val();
1372       PreOrderWorklist.append(L->begin(), L->end());
1373       PreOrderLoops.push_back(L);
1374     } while (!PreOrderWorklist.empty());
1375 
1376     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1377     PreOrderLoops.clear();
1378   }
1379   return Worklist;
1380 }
1381 
1382 PreservedAnalyses LoopUnrollPass::run(Function &F,
1383                                       FunctionAnalysisManager &AM) {
1384   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1385   auto &LI = AM.getResult<LoopAnalysis>(F);
1386   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1387   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1388   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1389   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1390 
1391   LoopAnalysisManager *LAM = nullptr;
1392   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1393     LAM = &LAMProxy->getManager();
1394 
1395   const ModuleAnalysisManager &MAM =
1396       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1397   ProfileSummaryInfo *PSI =
1398       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1399   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1400       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1401 
1402   bool Changed = false;
1403 
1404   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1405   // Since simplification may add new inner loops, it has to run before the
1406   // legality and profitability checks. This means running the loop unroller
1407   // will simplify all loops, regardless of whether anything end up being
1408   // unrolled.
1409   for (auto &L : LI) {
1410     Changed |=
1411         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1412     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1413   }
1414 
1415   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1416 
1417   while (!Worklist.empty()) {
1418     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1419     // from back to front so that we work forward across the CFG, which
1420     // for unrolling is only needed to get optimization remarks emitted in
1421     // a forward order.
1422     Loop &L = *Worklist.pop_back_val();
1423 #ifndef NDEBUG
1424     Loop *ParentL = L.getParentLoop();
1425 #endif
1426 
1427     // Check if the profile summary indicates that the profiled application
1428     // has a huge working set size, in which case we disable peeling to avoid
1429     // bloating it further.
1430     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1431     if (PSI && PSI->hasHugeWorkingSetSize())
1432       LocalAllowPeeling = false;
1433     std::string LoopName = L.getName();
1434     // The API here is quite complex to call and we allow to select some
1435     // flavors of unrolling during construction time (by setting UnrollOpts).
1436     LoopUnrollResult Result = tryToUnrollLoop(
1437         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1438         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1439         UnrollOpts.ForgetSCEV, /*Count*/ None,
1440         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1441         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1442         UnrollOpts.AllowProfileBasedPeeling);
1443     Changed |= Result != LoopUnrollResult::Unmodified;
1444 
1445     // The parent must not be damaged by unrolling!
1446 #ifndef NDEBUG
1447     if (Result != LoopUnrollResult::Unmodified && ParentL)
1448       ParentL->verifyLoop();
1449 #endif
1450 
1451     // Clear any cached analysis results for L if we removed it completely.
1452     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1453       LAM->clear(L, LoopName);
1454   }
1455 
1456   if (!Changed)
1457     return PreservedAnalyses::all();
1458 
1459   return getLoopPassPreservedAnalyses();
1460 }
1461