1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is somtimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> UnrollPartialThreshold( 85 "unroll-partial-threshold", cl::Hidden, 86 cl::desc("The cost threshold for partial loop unrolling")); 87 88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 91 "to the threshold when aggressively unrolling a loop due to the " 92 "dynamic cost savings. If completely unrolling a loop will reduce " 93 "the total runtime from X to Y, we boost the loop unroll " 94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 95 "X/Y). This limit avoids excessive code bloat.")); 96 97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 99 cl::desc("Don't allow loop unrolling to simulate more than this number of" 100 "iterations when checking full unroll profitability")); 101 102 static cl::opt<unsigned> UnrollCount( 103 "unroll-count", cl::Hidden, 104 cl::desc("Use this unroll count for all loops including those with " 105 "unroll_count pragma values, for testing purposes")); 106 107 static cl::opt<unsigned> UnrollMaxCount( 108 "unroll-max-count", cl::Hidden, 109 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 110 "testing purposes")); 111 112 static cl::opt<unsigned> UnrollFullMaxCount( 113 "unroll-full-max-count", cl::Hidden, 114 cl::desc( 115 "Set the max unroll count for full unrolling, for testing purposes")); 116 117 static cl::opt<unsigned> UnrollPeelCount( 118 "unroll-peel-count", cl::Hidden, 119 cl::desc("Set the unroll peeling count, for testing purposes")); 120 121 static cl::opt<bool> 122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 123 cl::desc("Allows loops to be partially unrolled until " 124 "-unroll-threshold loop size is reached.")); 125 126 static cl::opt<bool> UnrollAllowRemainder( 127 "unroll-allow-remainder", cl::Hidden, 128 cl::desc("Allow generation of a loop remainder (extra iterations) " 129 "when unrolling a loop.")); 130 131 static cl::opt<bool> 132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 133 cl::desc("Unroll loops with run-time trip counts")); 134 135 static cl::opt<unsigned> UnrollMaxUpperBound( 136 "unroll-max-upperbound", cl::init(8), cl::Hidden, 137 cl::desc( 138 "The max of trip count upper bound that is considered in unrolling")); 139 140 static cl::opt<unsigned> PragmaUnrollThreshold( 141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 142 cl::desc("Unrolled size limit for loops with an unroll(full) or " 143 "unroll_count pragma.")); 144 145 static cl::opt<unsigned> FlatLoopTripCountThreshold( 146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 147 cl::desc("If the runtime tripcount for the loop is lower than the " 148 "threshold, the loop is considered as flat and will be less " 149 "aggressively unrolled.")); 150 151 static cl::opt<bool> 152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 153 cl::desc("Allows loops to be peeled when the dynamic " 154 "trip count is known to be low.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 /// A magic value for use with the Threshold parameter to indicate 170 /// that the loop unroll should be performed regardless of how much 171 /// code expansion would result. 172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 173 174 /// Gather the various unrolling parameters based on the defaults, compiler 175 /// flags, TTI overrides and user specified parameters. 176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 182 Optional<bool> UserAllowProfileBasedPeeling) { 183 TargetTransformInfo::UnrollingPreferences UP; 184 185 // Set up the defaults 186 UP.Threshold = OptLevel > 2 ? 300 : 150; 187 UP.MaxPercentThresholdBoost = 400; 188 UP.OptSizeThreshold = 0; 189 UP.PartialThreshold = 150; 190 UP.PartialOptSizeThreshold = 0; 191 UP.Count = 0; 192 UP.PeelCount = 0; 193 UP.DefaultUnrollRuntimeCount = 8; 194 UP.MaxCount = std::numeric_limits<unsigned>::max(); 195 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 196 UP.BEInsns = 2; 197 UP.Partial = false; 198 UP.Runtime = false; 199 UP.AllowRemainder = true; 200 UP.UnrollRemainder = false; 201 UP.AllowExpensiveTripCount = false; 202 UP.Force = false; 203 UP.UpperBound = false; 204 UP.AllowPeeling = true; 205 UP.UnrollAndJam = false; 206 UP.PeelProfiledIterations = true; 207 UP.UnrollAndJamInnerLoopThreshold = 60; 208 209 // Override with any target specific settings 210 TTI.getUnrollingPreferences(L, SE, UP); 211 212 // Apply size attributes 213 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 214 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 215 if (OptForSize) { 216 UP.Threshold = UP.OptSizeThreshold; 217 UP.PartialThreshold = UP.PartialOptSizeThreshold; 218 UP.MaxPercentThresholdBoost = 100; 219 } 220 221 // Apply any user values specified by cl::opt 222 if (UnrollThreshold.getNumOccurrences() > 0) 223 UP.Threshold = UnrollThreshold; 224 if (UnrollPartialThreshold.getNumOccurrences() > 0) 225 UP.PartialThreshold = UnrollPartialThreshold; 226 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 227 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 228 if (UnrollMaxCount.getNumOccurrences() > 0) 229 UP.MaxCount = UnrollMaxCount; 230 if (UnrollFullMaxCount.getNumOccurrences() > 0) 231 UP.FullUnrollMaxCount = UnrollFullMaxCount; 232 if (UnrollPeelCount.getNumOccurrences() > 0) 233 UP.PeelCount = UnrollPeelCount; 234 if (UnrollAllowPartial.getNumOccurrences() > 0) 235 UP.Partial = UnrollAllowPartial; 236 if (UnrollAllowRemainder.getNumOccurrences() > 0) 237 UP.AllowRemainder = UnrollAllowRemainder; 238 if (UnrollRuntime.getNumOccurrences() > 0) 239 UP.Runtime = UnrollRuntime; 240 if (UnrollMaxUpperBound == 0) 241 UP.UpperBound = false; 242 if (UnrollAllowPeeling.getNumOccurrences() > 0) 243 UP.AllowPeeling = UnrollAllowPeeling; 244 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 245 UP.UnrollRemainder = UnrollUnrollRemainder; 246 247 // Apply user values provided by argument 248 if (UserThreshold.hasValue()) { 249 UP.Threshold = *UserThreshold; 250 UP.PartialThreshold = *UserThreshold; 251 } 252 if (UserCount.hasValue()) 253 UP.Count = *UserCount; 254 if (UserAllowPartial.hasValue()) 255 UP.Partial = *UserAllowPartial; 256 if (UserRuntime.hasValue()) 257 UP.Runtime = *UserRuntime; 258 if (UserUpperBound.hasValue()) 259 UP.UpperBound = *UserUpperBound; 260 if (UserAllowPeeling.hasValue()) 261 UP.AllowPeeling = *UserAllowPeeling; 262 if (UserAllowProfileBasedPeeling.hasValue()) 263 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 264 265 return UP; 266 } 267 268 namespace { 269 270 /// A struct to densely store the state of an instruction after unrolling at 271 /// each iteration. 272 /// 273 /// This is designed to work like a tuple of <Instruction *, int> for the 274 /// purposes of hashing and lookup, but to be able to associate two boolean 275 /// states with each key. 276 struct UnrolledInstState { 277 Instruction *I; 278 int Iteration : 30; 279 unsigned IsFree : 1; 280 unsigned IsCounted : 1; 281 }; 282 283 /// Hashing and equality testing for a set of the instruction states. 284 struct UnrolledInstStateKeyInfo { 285 using PtrInfo = DenseMapInfo<Instruction *>; 286 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 287 288 static inline UnrolledInstState getEmptyKey() { 289 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 290 } 291 292 static inline UnrolledInstState getTombstoneKey() { 293 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 294 } 295 296 static inline unsigned getHashValue(const UnrolledInstState &S) { 297 return PairInfo::getHashValue({S.I, S.Iteration}); 298 } 299 300 static inline bool isEqual(const UnrolledInstState &LHS, 301 const UnrolledInstState &RHS) { 302 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 303 } 304 }; 305 306 struct EstimatedUnrollCost { 307 /// The estimated cost after unrolling. 308 unsigned UnrolledCost; 309 310 /// The estimated dynamic cost of executing the instructions in the 311 /// rolled form. 312 unsigned RolledDynamicCost; 313 }; 314 315 } // end anonymous namespace 316 317 /// Figure out if the loop is worth full unrolling. 318 /// 319 /// Complete loop unrolling can make some loads constant, and we need to know 320 /// if that would expose any further optimization opportunities. This routine 321 /// estimates this optimization. It computes cost of unrolled loop 322 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 323 /// dynamic cost we mean that we won't count costs of blocks that are known not 324 /// to be executed (i.e. if we have a branch in the loop and we know that at the 325 /// given iteration its condition would be resolved to true, we won't add up the 326 /// cost of the 'false'-block). 327 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 328 /// the analysis failed (no benefits expected from the unrolling, or the loop is 329 /// too big to analyze), the returned value is None. 330 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 331 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 332 const SmallPtrSetImpl<const Value *> &EphValues, 333 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 334 // We want to be able to scale offsets by the trip count and add more offsets 335 // to them without checking for overflows, and we already don't want to 336 // analyze *massive* trip counts, so we force the max to be reasonably small. 337 assert(UnrollMaxIterationsCountToAnalyze < 338 (unsigned)(std::numeric_limits<int>::max() / 2) && 339 "The unroll iterations max is too large!"); 340 341 // Only analyze inner loops. We can't properly estimate cost of nested loops 342 // and we won't visit inner loops again anyway. 343 if (!L->empty()) 344 return None; 345 346 // Don't simulate loops with a big or unknown tripcount 347 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 348 TripCount > UnrollMaxIterationsCountToAnalyze) 349 return None; 350 351 SmallSetVector<BasicBlock *, 16> BBWorklist; 352 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 353 DenseMap<Value *, Constant *> SimplifiedValues; 354 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 355 356 // The estimated cost of the unrolled form of the loop. We try to estimate 357 // this by simplifying as much as we can while computing the estimate. 358 unsigned UnrolledCost = 0; 359 360 // We also track the estimated dynamic (that is, actually executed) cost in 361 // the rolled form. This helps identify cases when the savings from unrolling 362 // aren't just exposing dead control flows, but actual reduced dynamic 363 // instructions due to the simplifications which we expect to occur after 364 // unrolling. 365 unsigned RolledDynamicCost = 0; 366 367 // We track the simplification of each instruction in each iteration. We use 368 // this to recursively merge costs into the unrolled cost on-demand so that 369 // we don't count the cost of any dead code. This is essentially a map from 370 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 371 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 372 373 // A small worklist used to accumulate cost of instructions from each 374 // observable and reached root in the loop. 375 SmallVector<Instruction *, 16> CostWorklist; 376 377 // PHI-used worklist used between iterations while accumulating cost. 378 SmallVector<Instruction *, 4> PHIUsedList; 379 380 // Helper function to accumulate cost for instructions in the loop. 381 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 382 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 383 assert(CostWorklist.empty() && "Must start with an empty cost list"); 384 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 385 CostWorklist.push_back(&RootI); 386 for (;; --Iteration) { 387 do { 388 Instruction *I = CostWorklist.pop_back_val(); 389 390 // InstCostMap only uses I and Iteration as a key, the other two values 391 // don't matter here. 392 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 393 if (CostIter == InstCostMap.end()) 394 // If an input to a PHI node comes from a dead path through the loop 395 // we may have no cost data for it here. What that actually means is 396 // that it is free. 397 continue; 398 auto &Cost = *CostIter; 399 if (Cost.IsCounted) 400 // Already counted this instruction. 401 continue; 402 403 // Mark that we are counting the cost of this instruction now. 404 Cost.IsCounted = true; 405 406 // If this is a PHI node in the loop header, just add it to the PHI set. 407 if (auto *PhiI = dyn_cast<PHINode>(I)) 408 if (PhiI->getParent() == L->getHeader()) { 409 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 410 "inherently simplify during unrolling."); 411 if (Iteration == 0) 412 continue; 413 414 // Push the incoming value from the backedge into the PHI used list 415 // if it is an in-loop instruction. We'll use this to populate the 416 // cost worklist for the next iteration (as we count backwards). 417 if (auto *OpI = dyn_cast<Instruction>( 418 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 419 if (L->contains(OpI)) 420 PHIUsedList.push_back(OpI); 421 continue; 422 } 423 424 // First accumulate the cost of this instruction. 425 if (!Cost.IsFree) { 426 UnrolledCost += TTI.getUserCost(I); 427 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 428 << Iteration << "): "); 429 LLVM_DEBUG(I->dump()); 430 } 431 432 // We must count the cost of every operand which is not free, 433 // recursively. If we reach a loop PHI node, simply add it to the set 434 // to be considered on the next iteration (backwards!). 435 for (Value *Op : I->operands()) { 436 // Check whether this operand is free due to being a constant or 437 // outside the loop. 438 auto *OpI = dyn_cast<Instruction>(Op); 439 if (!OpI || !L->contains(OpI)) 440 continue; 441 442 // Otherwise accumulate its cost. 443 CostWorklist.push_back(OpI); 444 } 445 } while (!CostWorklist.empty()); 446 447 if (PHIUsedList.empty()) 448 // We've exhausted the search. 449 break; 450 451 assert(Iteration > 0 && 452 "Cannot track PHI-used values past the first iteration!"); 453 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 454 PHIUsedList.clear(); 455 } 456 }; 457 458 // Ensure that we don't violate the loop structure invariants relied on by 459 // this analysis. 460 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 461 assert(L->isLCSSAForm(DT) && 462 "Must have loops in LCSSA form to track live-out values."); 463 464 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 465 466 // Simulate execution of each iteration of the loop counting instructions, 467 // which would be simplified. 468 // Since the same load will take different values on different iterations, 469 // we literally have to go through all loop's iterations. 470 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 471 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 472 473 // Prepare for the iteration by collecting any simplified entry or backedge 474 // inputs. 475 for (Instruction &I : *L->getHeader()) { 476 auto *PHI = dyn_cast<PHINode>(&I); 477 if (!PHI) 478 break; 479 480 // The loop header PHI nodes must have exactly two input: one from the 481 // loop preheader and one from the loop latch. 482 assert( 483 PHI->getNumIncomingValues() == 2 && 484 "Must have an incoming value only for the preheader and the latch."); 485 486 Value *V = PHI->getIncomingValueForBlock( 487 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 488 Constant *C = dyn_cast<Constant>(V); 489 if (Iteration != 0 && !C) 490 C = SimplifiedValues.lookup(V); 491 if (C) 492 SimplifiedInputValues.push_back({PHI, C}); 493 } 494 495 // Now clear and re-populate the map for the next iteration. 496 SimplifiedValues.clear(); 497 while (!SimplifiedInputValues.empty()) 498 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 499 500 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 501 502 BBWorklist.clear(); 503 BBWorklist.insert(L->getHeader()); 504 // Note that we *must not* cache the size, this loop grows the worklist. 505 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 506 BasicBlock *BB = BBWorklist[Idx]; 507 508 // Visit all instructions in the given basic block and try to simplify 509 // it. We don't change the actual IR, just count optimization 510 // opportunities. 511 for (Instruction &I : *BB) { 512 // These won't get into the final code - don't even try calculating the 513 // cost for them. 514 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 515 continue; 516 517 // Track this instruction's expected baseline cost when executing the 518 // rolled loop form. 519 RolledDynamicCost += TTI.getUserCost(&I); 520 521 // Visit the instruction to analyze its loop cost after unrolling, 522 // and if the visitor returns true, mark the instruction as free after 523 // unrolling and continue. 524 bool IsFree = Analyzer.visit(I); 525 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 526 (unsigned)IsFree, 527 /*IsCounted*/ false}).second; 528 (void)Inserted; 529 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 530 531 if (IsFree) 532 continue; 533 534 // Can't properly model a cost of a call. 535 // FIXME: With a proper cost model we should be able to do it. 536 if (auto *CI = dyn_cast<CallInst>(&I)) { 537 const Function *Callee = CI->getCalledFunction(); 538 if (!Callee || TTI.isLoweredToCall(Callee)) { 539 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 540 return None; 541 } 542 } 543 544 // If the instruction might have a side-effect recursively account for 545 // the cost of it and all the instructions leading up to it. 546 if (I.mayHaveSideEffects()) 547 AddCostRecursively(I, Iteration); 548 549 // If unrolled body turns out to be too big, bail out. 550 if (UnrolledCost > MaxUnrolledLoopSize) { 551 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 552 << " UnrolledCost: " << UnrolledCost 553 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 554 << "\n"); 555 return None; 556 } 557 } 558 559 Instruction *TI = BB->getTerminator(); 560 561 // Add in the live successors by first checking whether we have terminator 562 // that may be simplified based on the values simplified by this call. 563 BasicBlock *KnownSucc = nullptr; 564 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 565 if (BI->isConditional()) { 566 if (Constant *SimpleCond = 567 SimplifiedValues.lookup(BI->getCondition())) { 568 // Just take the first successor if condition is undef 569 if (isa<UndefValue>(SimpleCond)) 570 KnownSucc = BI->getSuccessor(0); 571 else if (ConstantInt *SimpleCondVal = 572 dyn_cast<ConstantInt>(SimpleCond)) 573 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 574 } 575 } 576 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 577 if (Constant *SimpleCond = 578 SimplifiedValues.lookup(SI->getCondition())) { 579 // Just take the first successor if condition is undef 580 if (isa<UndefValue>(SimpleCond)) 581 KnownSucc = SI->getSuccessor(0); 582 else if (ConstantInt *SimpleCondVal = 583 dyn_cast<ConstantInt>(SimpleCond)) 584 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 585 } 586 } 587 if (KnownSucc) { 588 if (L->contains(KnownSucc)) 589 BBWorklist.insert(KnownSucc); 590 else 591 ExitWorklist.insert({BB, KnownSucc}); 592 continue; 593 } 594 595 // Add BB's successors to the worklist. 596 for (BasicBlock *Succ : successors(BB)) 597 if (L->contains(Succ)) 598 BBWorklist.insert(Succ); 599 else 600 ExitWorklist.insert({BB, Succ}); 601 AddCostRecursively(*TI, Iteration); 602 } 603 604 // If we found no optimization opportunities on the first iteration, we 605 // won't find them on later ones too. 606 if (UnrolledCost == RolledDynamicCost) { 607 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 608 << " UnrolledCost: " << UnrolledCost << "\n"); 609 return None; 610 } 611 } 612 613 while (!ExitWorklist.empty()) { 614 BasicBlock *ExitingBB, *ExitBB; 615 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 616 617 for (Instruction &I : *ExitBB) { 618 auto *PN = dyn_cast<PHINode>(&I); 619 if (!PN) 620 break; 621 622 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 623 if (auto *OpI = dyn_cast<Instruction>(Op)) 624 if (L->contains(OpI)) 625 AddCostRecursively(*OpI, TripCount - 1); 626 } 627 } 628 629 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 630 << "UnrolledCost: " << UnrolledCost << ", " 631 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 632 return {{UnrolledCost, RolledDynamicCost}}; 633 } 634 635 /// ApproximateLoopSize - Approximate the size of the loop. 636 unsigned llvm::ApproximateLoopSize( 637 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 638 const TargetTransformInfo &TTI, 639 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 640 CodeMetrics Metrics; 641 for (BasicBlock *BB : L->blocks()) 642 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 643 NumCalls = Metrics.NumInlineCandidates; 644 NotDuplicatable = Metrics.notDuplicatable; 645 Convergent = Metrics.convergent; 646 647 unsigned LoopSize = Metrics.NumInsts; 648 649 // Don't allow an estimate of size zero. This would allows unrolling of loops 650 // with huge iteration counts, which is a compile time problem even if it's 651 // not a problem for code quality. Also, the code using this size may assume 652 // that each loop has at least three instructions (likely a conditional 653 // branch, a comparison feeding that branch, and some kind of loop increment 654 // feeding that comparison instruction). 655 LoopSize = std::max(LoopSize, BEInsns + 1); 656 657 return LoopSize; 658 } 659 660 // Returns the loop hint metadata node with the given name (for example, 661 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 662 // returned. 663 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 664 if (MDNode *LoopID = L->getLoopID()) 665 return GetUnrollMetadata(LoopID, Name); 666 return nullptr; 667 } 668 669 // Returns true if the loop has an unroll(full) pragma. 670 static bool HasUnrollFullPragma(const Loop *L) { 671 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 672 } 673 674 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 675 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 676 static bool HasUnrollEnablePragma(const Loop *L) { 677 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 678 } 679 680 // Returns true if the loop has an runtime unroll(disable) pragma. 681 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 682 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 683 } 684 685 // If loop has an unroll_count pragma return the (necessarily 686 // positive) value from the pragma. Otherwise return 0. 687 static unsigned UnrollCountPragmaValue(const Loop *L) { 688 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 689 if (MD) { 690 assert(MD->getNumOperands() == 2 && 691 "Unroll count hint metadata should have two operands."); 692 unsigned Count = 693 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 694 assert(Count >= 1 && "Unroll count must be positive."); 695 return Count; 696 } 697 return 0; 698 } 699 700 // Computes the boosting factor for complete unrolling. 701 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 702 // be beneficial to fully unroll the loop even if unrolledcost is large. We 703 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 704 // the unroll threshold. 705 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 706 unsigned MaxPercentThresholdBoost) { 707 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 708 return 100; 709 else if (Cost.UnrolledCost != 0) 710 // The boosting factor is RolledDynamicCost / UnrolledCost 711 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 712 MaxPercentThresholdBoost); 713 else 714 return MaxPercentThresholdBoost; 715 } 716 717 // Returns loop size estimation for unrolled loop. 718 static uint64_t getUnrolledLoopSize( 719 unsigned LoopSize, 720 TargetTransformInfo::UnrollingPreferences &UP) { 721 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 722 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 723 } 724 725 // Returns true if unroll count was set explicitly. 726 // Calculates unroll count and writes it to UP.Count. 727 // Unless IgnoreUser is true, will also use metadata and command-line options 728 // that are specific to to the LoopUnroll pass (which, for instance, are 729 // irrelevant for the LoopUnrollAndJam pass). 730 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 731 // many LoopUnroll-specific options. The shared functionality should be 732 // refactored into it own function. 733 bool llvm::computeUnrollCount( 734 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 735 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 736 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 737 unsigned &TripMultiple, unsigned LoopSize, 738 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 739 740 // Check for explicit Count. 741 // 1st priority is unroll count set by "unroll-count" option. 742 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 743 if (UserUnrollCount) { 744 UP.Count = UnrollCount; 745 UP.AllowExpensiveTripCount = true; 746 UP.Force = true; 747 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 748 return true; 749 } 750 751 // 2nd priority is unroll count set by pragma. 752 unsigned PragmaCount = UnrollCountPragmaValue(L); 753 if (PragmaCount > 0) { 754 UP.Count = PragmaCount; 755 UP.Runtime = true; 756 UP.AllowExpensiveTripCount = true; 757 UP.Force = true; 758 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 759 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 760 return true; 761 } 762 bool PragmaFullUnroll = HasUnrollFullPragma(L); 763 if (PragmaFullUnroll && TripCount != 0) { 764 UP.Count = TripCount; 765 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 766 return false; 767 } 768 769 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 770 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 771 PragmaEnableUnroll || UserUnrollCount; 772 773 if (ExplicitUnroll && TripCount != 0) { 774 // If the loop has an unrolling pragma, we want to be more aggressive with 775 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 776 // value which is larger than the default limits. 777 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 778 UP.PartialThreshold = 779 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 780 } 781 782 // 3rd priority is full unroll count. 783 // Full unroll makes sense only when TripCount or its upper bound could be 784 // statically calculated. 785 // Also we need to check if we exceed FullUnrollMaxCount. 786 // If using the upper bound to unroll, TripMultiple should be set to 1 because 787 // we do not know when loop may exit. 788 // MaxTripCount and ExactTripCount cannot both be non zero since we only 789 // compute the former when the latter is zero. 790 unsigned ExactTripCount = TripCount; 791 assert((ExactTripCount == 0 || MaxTripCount == 0) && 792 "ExtractTripCount and MaxTripCount cannot both be non zero."); 793 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 794 UP.Count = FullUnrollTripCount; 795 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 796 // When computing the unrolled size, note that BEInsns are not replicated 797 // like the rest of the loop body. 798 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 799 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 800 TripCount = FullUnrollTripCount; 801 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 802 return ExplicitUnroll; 803 } else { 804 // The loop isn't that small, but we still can fully unroll it if that 805 // helps to remove a significant number of instructions. 806 // To check that, run additional analysis on the loop. 807 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 808 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 809 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 810 unsigned Boost = 811 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 812 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 813 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 814 TripCount = FullUnrollTripCount; 815 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 816 return ExplicitUnroll; 817 } 818 } 819 } 820 } 821 822 // 4th priority is loop peeling. 823 computePeelCount(L, LoopSize, UP, TripCount, SE); 824 if (UP.PeelCount) { 825 UP.Runtime = false; 826 UP.Count = 1; 827 return ExplicitUnroll; 828 } 829 830 // 5th priority is partial unrolling. 831 // Try partial unroll only when TripCount could be statically calculated. 832 if (TripCount) { 833 UP.Partial |= ExplicitUnroll; 834 if (!UP.Partial) { 835 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 836 << "-unroll-allow-partial not given\n"); 837 UP.Count = 0; 838 return false; 839 } 840 if (UP.Count == 0) 841 UP.Count = TripCount; 842 if (UP.PartialThreshold != NoThreshold) { 843 // Reduce unroll count to be modulo of TripCount for partial unrolling. 844 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 845 UP.Count = 846 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 847 (LoopSize - UP.BEInsns); 848 if (UP.Count > UP.MaxCount) 849 UP.Count = UP.MaxCount; 850 while (UP.Count != 0 && TripCount % UP.Count != 0) 851 UP.Count--; 852 if (UP.AllowRemainder && UP.Count <= 1) { 853 // If there is no Count that is modulo of TripCount, set Count to 854 // largest power-of-two factor that satisfies the threshold limit. 855 // As we'll create fixup loop, do the type of unrolling only if 856 // remainder loop is allowed. 857 UP.Count = UP.DefaultUnrollRuntimeCount; 858 while (UP.Count != 0 && 859 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 860 UP.Count >>= 1; 861 } 862 if (UP.Count < 2) { 863 if (PragmaEnableUnroll) 864 ORE->emit([&]() { 865 return OptimizationRemarkMissed(DEBUG_TYPE, 866 "UnrollAsDirectedTooLarge", 867 L->getStartLoc(), L->getHeader()) 868 << "Unable to unroll loop as directed by unroll(enable) " 869 "pragma " 870 "because unrolled size is too large."; 871 }); 872 UP.Count = 0; 873 } 874 } else { 875 UP.Count = TripCount; 876 } 877 if (UP.Count > UP.MaxCount) 878 UP.Count = UP.MaxCount; 879 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 880 UP.Count != TripCount) 881 ORE->emit([&]() { 882 return OptimizationRemarkMissed(DEBUG_TYPE, 883 "FullUnrollAsDirectedTooLarge", 884 L->getStartLoc(), L->getHeader()) 885 << "Unable to fully unroll loop as directed by unroll pragma " 886 "because " 887 "unrolled size is too large."; 888 }); 889 return ExplicitUnroll; 890 } 891 assert(TripCount == 0 && 892 "All cases when TripCount is constant should be covered here."); 893 if (PragmaFullUnroll) 894 ORE->emit([&]() { 895 return OptimizationRemarkMissed( 896 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 897 L->getStartLoc(), L->getHeader()) 898 << "Unable to fully unroll loop as directed by unroll(full) " 899 "pragma " 900 "because loop has a runtime trip count."; 901 }); 902 903 // 6th priority is runtime unrolling. 904 // Don't unroll a runtime trip count loop when it is disabled. 905 if (HasRuntimeUnrollDisablePragma(L)) { 906 UP.Count = 0; 907 return false; 908 } 909 910 // Check if the runtime trip count is too small when profile is available. 911 if (L->getHeader()->getParent()->hasProfileData()) { 912 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 913 if (*ProfileTripCount < FlatLoopTripCountThreshold) 914 return false; 915 else 916 UP.AllowExpensiveTripCount = true; 917 } 918 } 919 920 // Reduce count based on the type of unrolling and the threshold values. 921 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 922 if (!UP.Runtime) { 923 LLVM_DEBUG( 924 dbgs() << " will not try to unroll loop with runtime trip count " 925 << "-unroll-runtime not given\n"); 926 UP.Count = 0; 927 return false; 928 } 929 if (UP.Count == 0) 930 UP.Count = UP.DefaultUnrollRuntimeCount; 931 932 // Reduce unroll count to be the largest power-of-two factor of 933 // the original count which satisfies the threshold limit. 934 while (UP.Count != 0 && 935 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 936 UP.Count >>= 1; 937 938 #ifndef NDEBUG 939 unsigned OrigCount = UP.Count; 940 #endif 941 942 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 943 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 944 UP.Count >>= 1; 945 LLVM_DEBUG( 946 dbgs() << "Remainder loop is restricted (that could architecture " 947 "specific or because the loop contains a convergent " 948 "instruction), so unroll count must divide the trip " 949 "multiple, " 950 << TripMultiple << ". Reducing unroll count from " << OrigCount 951 << " to " << UP.Count << ".\n"); 952 953 using namespace ore; 954 955 if (PragmaCount > 0 && !UP.AllowRemainder) 956 ORE->emit([&]() { 957 return OptimizationRemarkMissed(DEBUG_TYPE, 958 "DifferentUnrollCountFromDirected", 959 L->getStartLoc(), L->getHeader()) 960 << "Unable to unroll loop the number of times directed by " 961 "unroll_count pragma because remainder loop is restricted " 962 "(that could architecture specific or because the loop " 963 "contains a convergent instruction) and so must have an " 964 "unroll " 965 "count that divides the loop trip multiple of " 966 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 967 << NV("UnrollCount", UP.Count) << " time(s)."; 968 }); 969 } 970 971 if (UP.Count > UP.MaxCount) 972 UP.Count = UP.MaxCount; 973 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 974 << "\n"); 975 if (UP.Count < 2) 976 UP.Count = 0; 977 return ExplicitUnroll; 978 } 979 980 static LoopUnrollResult tryToUnrollLoop( 981 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 982 const TargetTransformInfo &TTI, AssumptionCache &AC, 983 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 984 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 985 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 986 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 987 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 988 Optional<bool> ProvidedAllowPeeling, 989 Optional<bool> ProvidedAllowProfileBasedPeeling) { 990 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 991 << L->getHeader()->getParent()->getName() << "] Loop %" 992 << L->getHeader()->getName() << "\n"); 993 TransformationMode TM = hasUnrollTransformation(L); 994 if (TM & TM_Disable) 995 return LoopUnrollResult::Unmodified; 996 if (!L->isLoopSimplifyForm()) { 997 LLVM_DEBUG( 998 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 999 return LoopUnrollResult::Unmodified; 1000 } 1001 1002 // When automtatic unrolling is disabled, do not unroll unless overridden for 1003 // this loop. 1004 if (OnlyWhenForced && !(TM & TM_Enable)) 1005 return LoopUnrollResult::Unmodified; 1006 1007 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1008 unsigned NumInlineCandidates; 1009 bool NotDuplicatable; 1010 bool Convergent; 1011 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1012 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1013 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1014 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling); 1015 1016 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1017 // as threshold later on. 1018 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1019 !OptForSize) 1020 return LoopUnrollResult::Unmodified; 1021 1022 SmallPtrSet<const Value *, 32> EphValues; 1023 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1024 1025 unsigned LoopSize = 1026 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1027 TTI, EphValues, UP.BEInsns); 1028 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1029 if (NotDuplicatable) { 1030 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1031 << " instructions.\n"); 1032 return LoopUnrollResult::Unmodified; 1033 } 1034 1035 // When optimizing for size, use LoopSize as threshold, to (fully) unroll 1036 // loops, if it does not increase code size. 1037 if (OptForSize) 1038 UP.Threshold = std::max(UP.Threshold, LoopSize); 1039 1040 if (NumInlineCandidates != 0) { 1041 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1042 return LoopUnrollResult::Unmodified; 1043 } 1044 1045 // Find trip count and trip multiple if count is not available 1046 unsigned TripCount = 0; 1047 unsigned MaxTripCount = 0; 1048 unsigned TripMultiple = 1; 1049 // If there are multiple exiting blocks but one of them is the latch, use the 1050 // latch for the trip count estimation. Otherwise insist on a single exiting 1051 // block for the trip count estimation. 1052 BasicBlock *ExitingBlock = L->getLoopLatch(); 1053 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1054 ExitingBlock = L->getExitingBlock(); 1055 if (ExitingBlock) { 1056 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1057 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1058 } 1059 1060 // If the loop contains a convergent operation, the prelude we'd add 1061 // to do the first few instructions before we hit the unrolled loop 1062 // is unsafe -- it adds a control-flow dependency to the convergent 1063 // operation. Therefore restrict remainder loop (try unrollig without). 1064 // 1065 // TODO: This is quite conservative. In practice, convergent_op() 1066 // is likely to be called unconditionally in the loop. In this 1067 // case, the program would be ill-formed (on most architectures) 1068 // unless n were the same on all threads in a thread group. 1069 // Assuming n is the same on all threads, any kind of unrolling is 1070 // safe. But currently llvm's notion of convergence isn't powerful 1071 // enough to express this. 1072 if (Convergent) 1073 UP.AllowRemainder = false; 1074 1075 // Try to find the trip count upper bound if we cannot find the exact trip 1076 // count. 1077 bool MaxOrZero = false; 1078 if (!TripCount) { 1079 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1080 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1081 // We can unroll by the upper bound amount if it's generally allowed or if 1082 // we know that the loop is executed either the upper bound or zero times. 1083 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1084 // loop tests remains the same compared to the non-unrolled version, whereas 1085 // the generic upper bound unrolling keeps all but the last loop test so the 1086 // number of loop tests goes up which may end up being worse on targets with 1087 // constrained branch predictor resources so is controlled by an option.) 1088 // In addition we only unroll small upper bounds. 1089 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1090 MaxTripCount = 0; 1091 } 1092 } 1093 1094 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1095 // fully unroll the loop. 1096 bool UseUpperBound = false; 1097 bool IsCountSetExplicitly = computeUnrollCount( 1098 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1099 TripMultiple, LoopSize, UP, UseUpperBound); 1100 if (!UP.Count) 1101 return LoopUnrollResult::Unmodified; 1102 // Unroll factor (Count) must be less or equal to TripCount. 1103 if (TripCount && UP.Count > TripCount) 1104 UP.Count = TripCount; 1105 1106 // Save loop properties before it is transformed. 1107 MDNode *OrigLoopID = L->getLoopID(); 1108 1109 // Unroll the loop. 1110 Loop *RemainderLoop = nullptr; 1111 LoopUnrollResult UnrollResult = UnrollLoop( 1112 L, 1113 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1114 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1115 ForgetAllSCEV}, 1116 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1117 if (UnrollResult == LoopUnrollResult::Unmodified) 1118 return LoopUnrollResult::Unmodified; 1119 1120 if (RemainderLoop) { 1121 Optional<MDNode *> RemainderLoopID = 1122 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1123 LLVMLoopUnrollFollowupRemainder}); 1124 if (RemainderLoopID.hasValue()) 1125 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1126 } 1127 1128 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1129 Optional<MDNode *> NewLoopID = 1130 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1131 LLVMLoopUnrollFollowupUnrolled}); 1132 if (NewLoopID.hasValue()) { 1133 L->setLoopID(NewLoopID.getValue()); 1134 1135 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1136 // explicitly. 1137 return UnrollResult; 1138 } 1139 } 1140 1141 // If loop has an unroll count pragma or unrolled by explicitly set count 1142 // mark loop as unrolled to prevent unrolling beyond that requested. 1143 // If the loop was peeled, we already "used up" the profile information 1144 // we had, so we don't want to unroll or peel again. 1145 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1146 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1147 L->setLoopAlreadyUnrolled(); 1148 1149 return UnrollResult; 1150 } 1151 1152 namespace { 1153 1154 class LoopUnroll : public LoopPass { 1155 public: 1156 static char ID; // Pass ID, replacement for typeid 1157 1158 int OptLevel; 1159 1160 /// If false, use a cost model to determine whether unrolling of a loop is 1161 /// profitable. If true, only loops that explicitly request unrolling via 1162 /// metadata are considered. All other loops are skipped. 1163 bool OnlyWhenForced; 1164 1165 /// If false, when SCEV is invalidated, only forget everything in the 1166 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1167 /// Otherwise, forgetAllLoops and rebuild when needed next. 1168 bool ForgetAllSCEV; 1169 1170 Optional<unsigned> ProvidedCount; 1171 Optional<unsigned> ProvidedThreshold; 1172 Optional<bool> ProvidedAllowPartial; 1173 Optional<bool> ProvidedRuntime; 1174 Optional<bool> ProvidedUpperBound; 1175 Optional<bool> ProvidedAllowPeeling; 1176 Optional<bool> ProvidedAllowProfileBasedPeeling; 1177 1178 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1179 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1180 Optional<unsigned> Count = None, 1181 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1182 Optional<bool> UpperBound = None, 1183 Optional<bool> AllowPeeling = None, 1184 Optional<bool> AllowProfileBasedPeeling = None) 1185 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1186 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1187 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1188 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1189 ProvidedAllowPeeling(AllowPeeling), 1190 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling) { 1191 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1192 } 1193 1194 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1195 if (skipLoop(L)) 1196 return false; 1197 1198 Function &F = *L->getHeader()->getParent(); 1199 1200 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1201 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1202 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1203 const TargetTransformInfo &TTI = 1204 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1205 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1206 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1207 // pass. Function analyses need to be preserved across loop transformations 1208 // but ORE cannot be preserved (see comment before the pass definition). 1209 OptimizationRemarkEmitter ORE(&F); 1210 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1211 1212 LoopUnrollResult Result = tryToUnrollLoop( 1213 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1214 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1215 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1216 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling); 1217 1218 if (Result == LoopUnrollResult::FullyUnrolled) 1219 LPM.markLoopAsDeleted(*L); 1220 1221 return Result != LoopUnrollResult::Unmodified; 1222 } 1223 1224 /// This transformation requires natural loop information & requires that 1225 /// loop preheaders be inserted into the CFG... 1226 void getAnalysisUsage(AnalysisUsage &AU) const override { 1227 AU.addRequired<AssumptionCacheTracker>(); 1228 AU.addRequired<TargetTransformInfoWrapperPass>(); 1229 // FIXME: Loop passes are required to preserve domtree, and for now we just 1230 // recreate dom info if anything gets unrolled. 1231 getLoopAnalysisUsage(AU); 1232 } 1233 }; 1234 1235 } // end anonymous namespace 1236 1237 char LoopUnroll::ID = 0; 1238 1239 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1241 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1243 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1244 1245 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1246 bool ForgetAllSCEV, int Threshold, int Count, 1247 int AllowPartial, int Runtime, int UpperBound, 1248 int AllowPeeling) { 1249 // TODO: It would make more sense for this function to take the optionals 1250 // directly, but that's dangerous since it would silently break out of tree 1251 // callers. 1252 return new LoopUnroll( 1253 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1254 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1255 Count == -1 ? None : Optional<unsigned>(Count), 1256 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1257 Runtime == -1 ? None : Optional<bool>(Runtime), 1258 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1259 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1260 } 1261 1262 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1263 bool ForgetAllSCEV) { 1264 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1265 0, 0, 0, 0); 1266 } 1267 1268 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1269 LoopStandardAnalysisResults &AR, 1270 LPMUpdater &Updater) { 1271 const auto &FAM = 1272 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1273 Function *F = L.getHeader()->getParent(); 1274 1275 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1276 // FIXME: This should probably be optional rather than required. 1277 if (!ORE) 1278 report_fatal_error( 1279 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1280 "cached at a higher level"); 1281 1282 // Keep track of the previous loop structure so we can identify new loops 1283 // created by unrolling. 1284 Loop *ParentL = L.getParentLoop(); 1285 SmallPtrSet<Loop *, 4> OldLoops; 1286 if (ParentL) 1287 OldLoops.insert(ParentL->begin(), ParentL->end()); 1288 else 1289 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1290 1291 std::string LoopName = L.getName(); 1292 1293 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1294 /*BFI*/ nullptr, /*PSI*/ nullptr, 1295 /*PreserveLCSSA*/ true, OptLevel, 1296 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1297 /*Threshold*/ None, /*AllowPartial*/ false, 1298 /*Runtime*/ false, /*UpperBound*/ false, 1299 /*AllowPeeling*/ false, 1300 /*AllowProfileBasedPeeling*/ false) != 1301 LoopUnrollResult::Unmodified; 1302 if (!Changed) 1303 return PreservedAnalyses::all(); 1304 1305 // The parent must not be damaged by unrolling! 1306 #ifndef NDEBUG 1307 if (ParentL) 1308 ParentL->verifyLoop(); 1309 #endif 1310 1311 // Unrolling can do several things to introduce new loops into a loop nest: 1312 // - Full unrolling clones child loops within the current loop but then 1313 // removes the current loop making all of the children appear to be new 1314 // sibling loops. 1315 // 1316 // When a new loop appears as a sibling loop after fully unrolling, 1317 // its nesting structure has fundamentally changed and we want to revisit 1318 // it to reflect that. 1319 // 1320 // When unrolling has removed the current loop, we need to tell the 1321 // infrastructure that it is gone. 1322 // 1323 // Finally, we support a debugging/testing mode where we revisit child loops 1324 // as well. These are not expected to require further optimizations as either 1325 // they or the loop they were cloned from have been directly visited already. 1326 // But the debugging mode allows us to check this assumption. 1327 bool IsCurrentLoopValid = false; 1328 SmallVector<Loop *, 4> SibLoops; 1329 if (ParentL) 1330 SibLoops.append(ParentL->begin(), ParentL->end()); 1331 else 1332 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1333 erase_if(SibLoops, [&](Loop *SibLoop) { 1334 if (SibLoop == &L) { 1335 IsCurrentLoopValid = true; 1336 return true; 1337 } 1338 1339 // Otherwise erase the loop from the list if it was in the old loops. 1340 return OldLoops.count(SibLoop) != 0; 1341 }); 1342 Updater.addSiblingLoops(SibLoops); 1343 1344 if (!IsCurrentLoopValid) { 1345 Updater.markLoopAsDeleted(L, LoopName); 1346 } else { 1347 // We can only walk child loops if the current loop remained valid. 1348 if (UnrollRevisitChildLoops) { 1349 // Walk *all* of the child loops. 1350 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1351 Updater.addChildLoops(ChildLoops); 1352 } 1353 } 1354 1355 return getLoopPassPreservedAnalyses(); 1356 } 1357 1358 template <typename RangeT> 1359 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1360 SmallVector<Loop *, 8> Worklist; 1361 // We use an internal worklist to build up the preorder traversal without 1362 // recursion. 1363 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1364 1365 for (Loop *RootL : Loops) { 1366 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1367 assert(PreOrderWorklist.empty() && 1368 "Must start with an empty preorder walk worklist."); 1369 PreOrderWorklist.push_back(RootL); 1370 do { 1371 Loop *L = PreOrderWorklist.pop_back_val(); 1372 PreOrderWorklist.append(L->begin(), L->end()); 1373 PreOrderLoops.push_back(L); 1374 } while (!PreOrderWorklist.empty()); 1375 1376 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1377 PreOrderLoops.clear(); 1378 } 1379 return Worklist; 1380 } 1381 1382 PreservedAnalyses LoopUnrollPass::run(Function &F, 1383 FunctionAnalysisManager &AM) { 1384 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1385 auto &LI = AM.getResult<LoopAnalysis>(F); 1386 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1387 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1388 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1389 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1390 1391 LoopAnalysisManager *LAM = nullptr; 1392 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1393 LAM = &LAMProxy->getManager(); 1394 1395 const ModuleAnalysisManager &MAM = 1396 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1397 ProfileSummaryInfo *PSI = 1398 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1399 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1400 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1401 1402 bool Changed = false; 1403 1404 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1405 // Since simplification may add new inner loops, it has to run before the 1406 // legality and profitability checks. This means running the loop unroller 1407 // will simplify all loops, regardless of whether anything end up being 1408 // unrolled. 1409 for (auto &L : LI) { 1410 Changed |= 1411 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1412 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1413 } 1414 1415 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1416 1417 while (!Worklist.empty()) { 1418 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1419 // from back to front so that we work forward across the CFG, which 1420 // for unrolling is only needed to get optimization remarks emitted in 1421 // a forward order. 1422 Loop &L = *Worklist.pop_back_val(); 1423 #ifndef NDEBUG 1424 Loop *ParentL = L.getParentLoop(); 1425 #endif 1426 1427 // Check if the profile summary indicates that the profiled application 1428 // has a huge working set size, in which case we disable peeling to avoid 1429 // bloating it further. 1430 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1431 if (PSI && PSI->hasHugeWorkingSetSize()) 1432 LocalAllowPeeling = false; 1433 std::string LoopName = L.getName(); 1434 // The API here is quite complex to call and we allow to select some 1435 // flavors of unrolling during construction time (by setting UnrollOpts). 1436 LoopUnrollResult Result = tryToUnrollLoop( 1437 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1438 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1439 UnrollOpts.ForgetSCEV, /*Count*/ None, 1440 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1441 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1442 UnrollOpts.AllowProfileBasedPeeling); 1443 Changed |= Result != LoopUnrollResult::Unmodified; 1444 1445 // The parent must not be damaged by unrolling! 1446 #ifndef NDEBUG 1447 if (Result != LoopUnrollResult::Unmodified && ParentL) 1448 ParentL->verifyLoop(); 1449 #endif 1450 1451 // Clear any cached analysis results for L if we removed it completely. 1452 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1453 LAM->clear(L, LoopName); 1454 } 1455 1456 if (!Changed) 1457 return PreservedAnalyses::all(); 1458 1459 return getLoopPassPreservedAnalyses(); 1460 } 1461