1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/UnrollLoop.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <limits> 64 #include <string> 65 #include <tuple> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-unroll" 71 72 static cl::opt<unsigned> 73 UnrollThreshold("unroll-threshold", cl::Hidden, 74 cl::desc("The cost threshold for loop unrolling")); 75 76 static cl::opt<unsigned> UnrollPartialThreshold( 77 "unroll-partial-threshold", cl::Hidden, 78 cl::desc("The cost threshold for partial loop unrolling")); 79 80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 81 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 82 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 83 "to the threshold when aggressively unrolling a loop due to the " 84 "dynamic cost savings. If completely unrolling a loop will reduce " 85 "the total runtime from X to Y, we boost the loop unroll " 86 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 87 "X/Y). This limit avoids excessive code bloat.")); 88 89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 90 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 91 cl::desc("Don't allow loop unrolling to simulate more than this number of" 92 "iterations when checking full unroll profitability")); 93 94 static cl::opt<unsigned> UnrollCount( 95 "unroll-count", cl::Hidden, 96 cl::desc("Use this unroll count for all loops including those with " 97 "unroll_count pragma values, for testing purposes")); 98 99 static cl::opt<unsigned> UnrollMaxCount( 100 "unroll-max-count", cl::Hidden, 101 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 102 "testing purposes")); 103 104 static cl::opt<unsigned> UnrollFullMaxCount( 105 "unroll-full-max-count", cl::Hidden, 106 cl::desc( 107 "Set the max unroll count for full unrolling, for testing purposes")); 108 109 static cl::opt<unsigned> UnrollPeelCount( 110 "unroll-peel-count", cl::Hidden, 111 cl::desc("Set the unroll peeling count, for testing purposes")); 112 113 static cl::opt<bool> 114 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 115 cl::desc("Allows loops to be partially unrolled until " 116 "-unroll-threshold loop size is reached.")); 117 118 static cl::opt<bool> UnrollAllowRemainder( 119 "unroll-allow-remainder", cl::Hidden, 120 cl::desc("Allow generation of a loop remainder (extra iterations) " 121 "when unrolling a loop.")); 122 123 static cl::opt<bool> 124 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 125 cl::desc("Unroll loops with run-time trip counts")); 126 127 static cl::opt<unsigned> UnrollMaxUpperBound( 128 "unroll-max-upperbound", cl::init(8), cl::Hidden, 129 cl::desc( 130 "The max of trip count upper bound that is considered in unrolling")); 131 132 static cl::opt<unsigned> PragmaUnrollThreshold( 133 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 134 cl::desc("Unrolled size limit for loops with an unroll(full) or " 135 "unroll_count pragma.")); 136 137 static cl::opt<unsigned> FlatLoopTripCountThreshold( 138 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 139 cl::desc("If the runtime tripcount for the loop is lower than the " 140 "threshold, the loop is considered as flat and will be less " 141 "aggressively unrolled.")); 142 143 static cl::opt<bool> 144 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 145 cl::desc("Allows loops to be peeled when the dynamic " 146 "trip count is known to be low.")); 147 148 static cl::opt<bool> UnrollUnrollRemainder( 149 "unroll-remainder", cl::Hidden, 150 cl::desc("Allow the loop remainder to be unrolled.")); 151 152 // This option isn't ever intended to be enabled, it serves to allow 153 // experiments to check the assumptions about when this kind of revisit is 154 // necessary. 155 static cl::opt<bool> UnrollRevisitChildLoops( 156 "unroll-revisit-child-loops", cl::Hidden, 157 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 158 "This shouldn't typically be needed as child loops (or their " 159 "clones) were already visited.")); 160 161 /// A magic value for use with the Threshold parameter to indicate 162 /// that the loop unroll should be performed regardless of how much 163 /// code expansion would result. 164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 165 166 /// Gather the various unrolling parameters based on the defaults, compiler 167 /// flags, TTI overrides and user specified parameters. 168 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 169 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 170 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 171 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 172 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 173 TargetTransformInfo::UnrollingPreferences UP; 174 175 // Set up the defaults 176 UP.Threshold = OptLevel > 2 ? 300 : 150; 177 UP.MaxPercentThresholdBoost = 400; 178 UP.OptSizeThreshold = 0; 179 UP.PartialThreshold = 150; 180 UP.PartialOptSizeThreshold = 0; 181 UP.Count = 0; 182 UP.PeelCount = 0; 183 UP.DefaultUnrollRuntimeCount = 8; 184 UP.MaxCount = std::numeric_limits<unsigned>::max(); 185 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 186 UP.BEInsns = 2; 187 UP.Partial = false; 188 UP.Runtime = false; 189 UP.AllowRemainder = true; 190 UP.UnrollRemainder = false; 191 UP.AllowExpensiveTripCount = false; 192 UP.Force = false; 193 UP.UpperBound = false; 194 UP.AllowPeeling = true; 195 UP.UnrollAndJam = false; 196 UP.UnrollAndJamInnerLoopThreshold = 60; 197 198 // Override with any target specific settings 199 TTI.getUnrollingPreferences(L, SE, UP); 200 201 // Apply size attributes 202 if (L->getHeader()->getParent()->optForSize()) { 203 UP.Threshold = UP.OptSizeThreshold; 204 UP.PartialThreshold = UP.PartialOptSizeThreshold; 205 } 206 207 // Apply any user values specified by cl::opt 208 if (UnrollThreshold.getNumOccurrences() > 0) 209 UP.Threshold = UnrollThreshold; 210 if (UnrollPartialThreshold.getNumOccurrences() > 0) 211 UP.PartialThreshold = UnrollPartialThreshold; 212 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 213 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 214 if (UnrollMaxCount.getNumOccurrences() > 0) 215 UP.MaxCount = UnrollMaxCount; 216 if (UnrollFullMaxCount.getNumOccurrences() > 0) 217 UP.FullUnrollMaxCount = UnrollFullMaxCount; 218 if (UnrollPeelCount.getNumOccurrences() > 0) 219 UP.PeelCount = UnrollPeelCount; 220 if (UnrollAllowPartial.getNumOccurrences() > 0) 221 UP.Partial = UnrollAllowPartial; 222 if (UnrollAllowRemainder.getNumOccurrences() > 0) 223 UP.AllowRemainder = UnrollAllowRemainder; 224 if (UnrollRuntime.getNumOccurrences() > 0) 225 UP.Runtime = UnrollRuntime; 226 if (UnrollMaxUpperBound == 0) 227 UP.UpperBound = false; 228 if (UnrollAllowPeeling.getNumOccurrences() > 0) 229 UP.AllowPeeling = UnrollAllowPeeling; 230 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 231 UP.UnrollRemainder = UnrollUnrollRemainder; 232 233 // Apply user values provided by argument 234 if (UserThreshold.hasValue()) { 235 UP.Threshold = *UserThreshold; 236 UP.PartialThreshold = *UserThreshold; 237 } 238 if (UserCount.hasValue()) 239 UP.Count = *UserCount; 240 if (UserAllowPartial.hasValue()) 241 UP.Partial = *UserAllowPartial; 242 if (UserRuntime.hasValue()) 243 UP.Runtime = *UserRuntime; 244 if (UserUpperBound.hasValue()) 245 UP.UpperBound = *UserUpperBound; 246 if (UserAllowPeeling.hasValue()) 247 UP.AllowPeeling = *UserAllowPeeling; 248 249 return UP; 250 } 251 252 namespace { 253 254 /// A struct to densely store the state of an instruction after unrolling at 255 /// each iteration. 256 /// 257 /// This is designed to work like a tuple of <Instruction *, int> for the 258 /// purposes of hashing and lookup, but to be able to associate two boolean 259 /// states with each key. 260 struct UnrolledInstState { 261 Instruction *I; 262 int Iteration : 30; 263 unsigned IsFree : 1; 264 unsigned IsCounted : 1; 265 }; 266 267 /// Hashing and equality testing for a set of the instruction states. 268 struct UnrolledInstStateKeyInfo { 269 using PtrInfo = DenseMapInfo<Instruction *>; 270 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 271 272 static inline UnrolledInstState getEmptyKey() { 273 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 274 } 275 276 static inline UnrolledInstState getTombstoneKey() { 277 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 278 } 279 280 static inline unsigned getHashValue(const UnrolledInstState &S) { 281 return PairInfo::getHashValue({S.I, S.Iteration}); 282 } 283 284 static inline bool isEqual(const UnrolledInstState &LHS, 285 const UnrolledInstState &RHS) { 286 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 287 } 288 }; 289 290 struct EstimatedUnrollCost { 291 /// The estimated cost after unrolling. 292 unsigned UnrolledCost; 293 294 /// The estimated dynamic cost of executing the instructions in the 295 /// rolled form. 296 unsigned RolledDynamicCost; 297 }; 298 299 } // end anonymous namespace 300 301 /// Figure out if the loop is worth full unrolling. 302 /// 303 /// Complete loop unrolling can make some loads constant, and we need to know 304 /// if that would expose any further optimization opportunities. This routine 305 /// estimates this optimization. It computes cost of unrolled loop 306 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 307 /// dynamic cost we mean that we won't count costs of blocks that are known not 308 /// to be executed (i.e. if we have a branch in the loop and we know that at the 309 /// given iteration its condition would be resolved to true, we won't add up the 310 /// cost of the 'false'-block). 311 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 312 /// the analysis failed (no benefits expected from the unrolling, or the loop is 313 /// too big to analyze), the returned value is None. 314 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 315 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 316 const SmallPtrSetImpl<const Value *> &EphValues, 317 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 318 // We want to be able to scale offsets by the trip count and add more offsets 319 // to them without checking for overflows, and we already don't want to 320 // analyze *massive* trip counts, so we force the max to be reasonably small. 321 assert(UnrollMaxIterationsCountToAnalyze < 322 (unsigned)(std::numeric_limits<int>::max() / 2) && 323 "The unroll iterations max is too large!"); 324 325 // Only analyze inner loops. We can't properly estimate cost of nested loops 326 // and we won't visit inner loops again anyway. 327 if (!L->empty()) 328 return None; 329 330 // Don't simulate loops with a big or unknown tripcount 331 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 332 TripCount > UnrollMaxIterationsCountToAnalyze) 333 return None; 334 335 SmallSetVector<BasicBlock *, 16> BBWorklist; 336 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 337 DenseMap<Value *, Constant *> SimplifiedValues; 338 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 339 340 // The estimated cost of the unrolled form of the loop. We try to estimate 341 // this by simplifying as much as we can while computing the estimate. 342 unsigned UnrolledCost = 0; 343 344 // We also track the estimated dynamic (that is, actually executed) cost in 345 // the rolled form. This helps identify cases when the savings from unrolling 346 // aren't just exposing dead control flows, but actual reduced dynamic 347 // instructions due to the simplifications which we expect to occur after 348 // unrolling. 349 unsigned RolledDynamicCost = 0; 350 351 // We track the simplification of each instruction in each iteration. We use 352 // this to recursively merge costs into the unrolled cost on-demand so that 353 // we don't count the cost of any dead code. This is essentially a map from 354 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 355 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 356 357 // A small worklist used to accumulate cost of instructions from each 358 // observable and reached root in the loop. 359 SmallVector<Instruction *, 16> CostWorklist; 360 361 // PHI-used worklist used between iterations while accumulating cost. 362 SmallVector<Instruction *, 4> PHIUsedList; 363 364 // Helper function to accumulate cost for instructions in the loop. 365 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 366 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 367 assert(CostWorklist.empty() && "Must start with an empty cost list"); 368 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 369 CostWorklist.push_back(&RootI); 370 for (;; --Iteration) { 371 do { 372 Instruction *I = CostWorklist.pop_back_val(); 373 374 // InstCostMap only uses I and Iteration as a key, the other two values 375 // don't matter here. 376 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 377 if (CostIter == InstCostMap.end()) 378 // If an input to a PHI node comes from a dead path through the loop 379 // we may have no cost data for it here. What that actually means is 380 // that it is free. 381 continue; 382 auto &Cost = *CostIter; 383 if (Cost.IsCounted) 384 // Already counted this instruction. 385 continue; 386 387 // Mark that we are counting the cost of this instruction now. 388 Cost.IsCounted = true; 389 390 // If this is a PHI node in the loop header, just add it to the PHI set. 391 if (auto *PhiI = dyn_cast<PHINode>(I)) 392 if (PhiI->getParent() == L->getHeader()) { 393 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 394 "inherently simplify during unrolling."); 395 if (Iteration == 0) 396 continue; 397 398 // Push the incoming value from the backedge into the PHI used list 399 // if it is an in-loop instruction. We'll use this to populate the 400 // cost worklist for the next iteration (as we count backwards). 401 if (auto *OpI = dyn_cast<Instruction>( 402 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 403 if (L->contains(OpI)) 404 PHIUsedList.push_back(OpI); 405 continue; 406 } 407 408 // First accumulate the cost of this instruction. 409 if (!Cost.IsFree) { 410 UnrolledCost += TTI.getUserCost(I); 411 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 412 << Iteration << "): "); 413 LLVM_DEBUG(I->dump()); 414 } 415 416 // We must count the cost of every operand which is not free, 417 // recursively. If we reach a loop PHI node, simply add it to the set 418 // to be considered on the next iteration (backwards!). 419 for (Value *Op : I->operands()) { 420 // Check whether this operand is free due to being a constant or 421 // outside the loop. 422 auto *OpI = dyn_cast<Instruction>(Op); 423 if (!OpI || !L->contains(OpI)) 424 continue; 425 426 // Otherwise accumulate its cost. 427 CostWorklist.push_back(OpI); 428 } 429 } while (!CostWorklist.empty()); 430 431 if (PHIUsedList.empty()) 432 // We've exhausted the search. 433 break; 434 435 assert(Iteration > 0 && 436 "Cannot track PHI-used values past the first iteration!"); 437 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 438 PHIUsedList.clear(); 439 } 440 }; 441 442 // Ensure that we don't violate the loop structure invariants relied on by 443 // this analysis. 444 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 445 assert(L->isLCSSAForm(DT) && 446 "Must have loops in LCSSA form to track live-out values."); 447 448 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 449 450 // Simulate execution of each iteration of the loop counting instructions, 451 // which would be simplified. 452 // Since the same load will take different values on different iterations, 453 // we literally have to go through all loop's iterations. 454 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 455 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 456 457 // Prepare for the iteration by collecting any simplified entry or backedge 458 // inputs. 459 for (Instruction &I : *L->getHeader()) { 460 auto *PHI = dyn_cast<PHINode>(&I); 461 if (!PHI) 462 break; 463 464 // The loop header PHI nodes must have exactly two input: one from the 465 // loop preheader and one from the loop latch. 466 assert( 467 PHI->getNumIncomingValues() == 2 && 468 "Must have an incoming value only for the preheader and the latch."); 469 470 Value *V = PHI->getIncomingValueForBlock( 471 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 472 Constant *C = dyn_cast<Constant>(V); 473 if (Iteration != 0 && !C) 474 C = SimplifiedValues.lookup(V); 475 if (C) 476 SimplifiedInputValues.push_back({PHI, C}); 477 } 478 479 // Now clear and re-populate the map for the next iteration. 480 SimplifiedValues.clear(); 481 while (!SimplifiedInputValues.empty()) 482 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 483 484 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 485 486 BBWorklist.clear(); 487 BBWorklist.insert(L->getHeader()); 488 // Note that we *must not* cache the size, this loop grows the worklist. 489 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 490 BasicBlock *BB = BBWorklist[Idx]; 491 492 // Visit all instructions in the given basic block and try to simplify 493 // it. We don't change the actual IR, just count optimization 494 // opportunities. 495 for (Instruction &I : *BB) { 496 // These won't get into the final code - don't even try calculating the 497 // cost for them. 498 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 499 continue; 500 501 // Track this instruction's expected baseline cost when executing the 502 // rolled loop form. 503 RolledDynamicCost += TTI.getUserCost(&I); 504 505 // Visit the instruction to analyze its loop cost after unrolling, 506 // and if the visitor returns true, mark the instruction as free after 507 // unrolling and continue. 508 bool IsFree = Analyzer.visit(I); 509 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 510 (unsigned)IsFree, 511 /*IsCounted*/ false}).second; 512 (void)Inserted; 513 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 514 515 if (IsFree) 516 continue; 517 518 // Can't properly model a cost of a call. 519 // FIXME: With a proper cost model we should be able to do it. 520 if (auto *CI = dyn_cast<CallInst>(&I)) { 521 const Function *Callee = CI->getCalledFunction(); 522 if (!Callee || TTI.isLoweredToCall(Callee)) { 523 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 524 return None; 525 } 526 } 527 528 // If the instruction might have a side-effect recursively account for 529 // the cost of it and all the instructions leading up to it. 530 if (I.mayHaveSideEffects()) 531 AddCostRecursively(I, Iteration); 532 533 // If unrolled body turns out to be too big, bail out. 534 if (UnrolledCost > MaxUnrolledLoopSize) { 535 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 536 << " UnrolledCost: " << UnrolledCost 537 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 538 << "\n"); 539 return None; 540 } 541 } 542 543 TerminatorInst *TI = BB->getTerminator(); 544 545 // Add in the live successors by first checking whether we have terminator 546 // that may be simplified based on the values simplified by this call. 547 BasicBlock *KnownSucc = nullptr; 548 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 549 if (BI->isConditional()) { 550 if (Constant *SimpleCond = 551 SimplifiedValues.lookup(BI->getCondition())) { 552 // Just take the first successor if condition is undef 553 if (isa<UndefValue>(SimpleCond)) 554 KnownSucc = BI->getSuccessor(0); 555 else if (ConstantInt *SimpleCondVal = 556 dyn_cast<ConstantInt>(SimpleCond)) 557 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 558 } 559 } 560 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 561 if (Constant *SimpleCond = 562 SimplifiedValues.lookup(SI->getCondition())) { 563 // Just take the first successor if condition is undef 564 if (isa<UndefValue>(SimpleCond)) 565 KnownSucc = SI->getSuccessor(0); 566 else if (ConstantInt *SimpleCondVal = 567 dyn_cast<ConstantInt>(SimpleCond)) 568 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 569 } 570 } 571 if (KnownSucc) { 572 if (L->contains(KnownSucc)) 573 BBWorklist.insert(KnownSucc); 574 else 575 ExitWorklist.insert({BB, KnownSucc}); 576 continue; 577 } 578 579 // Add BB's successors to the worklist. 580 for (BasicBlock *Succ : successors(BB)) 581 if (L->contains(Succ)) 582 BBWorklist.insert(Succ); 583 else 584 ExitWorklist.insert({BB, Succ}); 585 AddCostRecursively(*TI, Iteration); 586 } 587 588 // If we found no optimization opportunities on the first iteration, we 589 // won't find them on later ones too. 590 if (UnrolledCost == RolledDynamicCost) { 591 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 592 << " UnrolledCost: " << UnrolledCost << "\n"); 593 return None; 594 } 595 } 596 597 while (!ExitWorklist.empty()) { 598 BasicBlock *ExitingBB, *ExitBB; 599 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 600 601 for (Instruction &I : *ExitBB) { 602 auto *PN = dyn_cast<PHINode>(&I); 603 if (!PN) 604 break; 605 606 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 607 if (auto *OpI = dyn_cast<Instruction>(Op)) 608 if (L->contains(OpI)) 609 AddCostRecursively(*OpI, TripCount - 1); 610 } 611 } 612 613 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 614 << "UnrolledCost: " << UnrolledCost << ", " 615 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 616 return {{UnrolledCost, RolledDynamicCost}}; 617 } 618 619 /// ApproximateLoopSize - Approximate the size of the loop. 620 unsigned llvm::ApproximateLoopSize( 621 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 622 const TargetTransformInfo &TTI, 623 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 624 CodeMetrics Metrics; 625 for (BasicBlock *BB : L->blocks()) 626 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 627 NumCalls = Metrics.NumInlineCandidates; 628 NotDuplicatable = Metrics.notDuplicatable; 629 Convergent = Metrics.convergent; 630 631 unsigned LoopSize = Metrics.NumInsts; 632 633 // Don't allow an estimate of size zero. This would allows unrolling of loops 634 // with huge iteration counts, which is a compile time problem even if it's 635 // not a problem for code quality. Also, the code using this size may assume 636 // that each loop has at least three instructions (likely a conditional 637 // branch, a comparison feeding that branch, and some kind of loop increment 638 // feeding that comparison instruction). 639 LoopSize = std::max(LoopSize, BEInsns + 1); 640 641 return LoopSize; 642 } 643 644 // Returns the loop hint metadata node with the given name (for example, 645 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 646 // returned. 647 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 648 if (MDNode *LoopID = L->getLoopID()) 649 return GetUnrollMetadata(LoopID, Name); 650 return nullptr; 651 } 652 653 // Returns true if the loop has an unroll(full) pragma. 654 static bool HasUnrollFullPragma(const Loop *L) { 655 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 656 } 657 658 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 659 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 660 static bool HasUnrollEnablePragma(const Loop *L) { 661 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 662 } 663 664 // Returns true if the loop has an unroll(disable) pragma. 665 static bool HasUnrollDisablePragma(const Loop *L) { 666 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 667 } 668 669 // Returns true if the loop has an runtime unroll(disable) pragma. 670 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 671 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 672 } 673 674 // If loop has an unroll_count pragma return the (necessarily 675 // positive) value from the pragma. Otherwise return 0. 676 static unsigned UnrollCountPragmaValue(const Loop *L) { 677 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 678 if (MD) { 679 assert(MD->getNumOperands() == 2 && 680 "Unroll count hint metadata should have two operands."); 681 unsigned Count = 682 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 683 assert(Count >= 1 && "Unroll count must be positive."); 684 return Count; 685 } 686 return 0; 687 } 688 689 // Computes the boosting factor for complete unrolling. 690 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 691 // be beneficial to fully unroll the loop even if unrolledcost is large. We 692 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 693 // the unroll threshold. 694 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 695 unsigned MaxPercentThresholdBoost) { 696 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 697 return 100; 698 else if (Cost.UnrolledCost != 0) 699 // The boosting factor is RolledDynamicCost / UnrolledCost 700 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 701 MaxPercentThresholdBoost); 702 else 703 return MaxPercentThresholdBoost; 704 } 705 706 // Returns loop size estimation for unrolled loop. 707 static uint64_t getUnrolledLoopSize( 708 unsigned LoopSize, 709 TargetTransformInfo::UnrollingPreferences &UP) { 710 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 711 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 712 } 713 714 // Returns true if unroll count was set explicitly. 715 // Calculates unroll count and writes it to UP.Count. 716 bool llvm::computeUnrollCount( 717 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 718 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 719 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 720 unsigned &TripMultiple, unsigned LoopSize, 721 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 722 // Check for explicit Count. 723 // 1st priority is unroll count set by "unroll-count" option. 724 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 725 if (UserUnrollCount) { 726 UP.Count = UnrollCount; 727 UP.AllowExpensiveTripCount = true; 728 UP.Force = true; 729 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 730 return true; 731 } 732 733 // 2nd priority is unroll count set by pragma. 734 unsigned PragmaCount = UnrollCountPragmaValue(L); 735 if (PragmaCount > 0) { 736 UP.Count = PragmaCount; 737 UP.Runtime = true; 738 UP.AllowExpensiveTripCount = true; 739 UP.Force = true; 740 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 741 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 742 return true; 743 } 744 bool PragmaFullUnroll = HasUnrollFullPragma(L); 745 if (PragmaFullUnroll && TripCount != 0) { 746 UP.Count = TripCount; 747 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 748 return false; 749 } 750 751 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 752 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 753 PragmaEnableUnroll || UserUnrollCount; 754 755 if (ExplicitUnroll && TripCount != 0) { 756 // If the loop has an unrolling pragma, we want to be more aggressive with 757 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 758 // value which is larger than the default limits. 759 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 760 UP.PartialThreshold = 761 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 762 } 763 764 // 3rd priority is full unroll count. 765 // Full unroll makes sense only when TripCount or its upper bound could be 766 // statically calculated. 767 // Also we need to check if we exceed FullUnrollMaxCount. 768 // If using the upper bound to unroll, TripMultiple should be set to 1 because 769 // we do not know when loop may exit. 770 // MaxTripCount and ExactTripCount cannot both be non zero since we only 771 // compute the former when the latter is zero. 772 unsigned ExactTripCount = TripCount; 773 assert((ExactTripCount == 0 || MaxTripCount == 0) && 774 "ExtractTripCount and MaxTripCount cannot both be non zero."); 775 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 776 UP.Count = FullUnrollTripCount; 777 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 778 // When computing the unrolled size, note that BEInsns are not replicated 779 // like the rest of the loop body. 780 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 781 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 782 TripCount = FullUnrollTripCount; 783 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 784 return ExplicitUnroll; 785 } else { 786 // The loop isn't that small, but we still can fully unroll it if that 787 // helps to remove a significant number of instructions. 788 // To check that, run additional analysis on the loop. 789 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 790 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 791 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 792 unsigned Boost = 793 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 794 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 795 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 796 TripCount = FullUnrollTripCount; 797 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 798 return ExplicitUnroll; 799 } 800 } 801 } 802 } 803 804 // 4th priority is loop peeling. 805 computePeelCount(L, LoopSize, UP, TripCount, SE); 806 if (UP.PeelCount) { 807 UP.Runtime = false; 808 UP.Count = 1; 809 return ExplicitUnroll; 810 } 811 812 // 5th priority is partial unrolling. 813 // Try partial unroll only when TripCount could be statically calculated. 814 if (TripCount) { 815 UP.Partial |= ExplicitUnroll; 816 if (!UP.Partial) { 817 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 818 << "-unroll-allow-partial not given\n"); 819 UP.Count = 0; 820 return false; 821 } 822 if (UP.Count == 0) 823 UP.Count = TripCount; 824 if (UP.PartialThreshold != NoThreshold) { 825 // Reduce unroll count to be modulo of TripCount for partial unrolling. 826 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 827 UP.Count = 828 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 829 (LoopSize - UP.BEInsns); 830 if (UP.Count > UP.MaxCount) 831 UP.Count = UP.MaxCount; 832 while (UP.Count != 0 && TripCount % UP.Count != 0) 833 UP.Count--; 834 if (UP.AllowRemainder && UP.Count <= 1) { 835 // If there is no Count that is modulo of TripCount, set Count to 836 // largest power-of-two factor that satisfies the threshold limit. 837 // As we'll create fixup loop, do the type of unrolling only if 838 // remainder loop is allowed. 839 UP.Count = UP.DefaultUnrollRuntimeCount; 840 while (UP.Count != 0 && 841 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 842 UP.Count >>= 1; 843 } 844 if (UP.Count < 2) { 845 if (PragmaEnableUnroll) 846 ORE->emit([&]() { 847 return OptimizationRemarkMissed(DEBUG_TYPE, 848 "UnrollAsDirectedTooLarge", 849 L->getStartLoc(), L->getHeader()) 850 << "Unable to unroll loop as directed by unroll(enable) " 851 "pragma " 852 "because unrolled size is too large."; 853 }); 854 UP.Count = 0; 855 } 856 } else { 857 UP.Count = TripCount; 858 } 859 if (UP.Count > UP.MaxCount) 860 UP.Count = UP.MaxCount; 861 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 862 UP.Count != TripCount) 863 ORE->emit([&]() { 864 return OptimizationRemarkMissed(DEBUG_TYPE, 865 "FullUnrollAsDirectedTooLarge", 866 L->getStartLoc(), L->getHeader()) 867 << "Unable to fully unroll loop as directed by unroll pragma " 868 "because " 869 "unrolled size is too large."; 870 }); 871 return ExplicitUnroll; 872 } 873 assert(TripCount == 0 && 874 "All cases when TripCount is constant should be covered here."); 875 if (PragmaFullUnroll) 876 ORE->emit([&]() { 877 return OptimizationRemarkMissed( 878 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 879 L->getStartLoc(), L->getHeader()) 880 << "Unable to fully unroll loop as directed by unroll(full) " 881 "pragma " 882 "because loop has a runtime trip count."; 883 }); 884 885 // 6th priority is runtime unrolling. 886 // Don't unroll a runtime trip count loop when it is disabled. 887 if (HasRuntimeUnrollDisablePragma(L)) { 888 UP.Count = 0; 889 return false; 890 } 891 892 // Check if the runtime trip count is too small when profile is available. 893 if (L->getHeader()->getParent()->hasProfileData()) { 894 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 895 if (*ProfileTripCount < FlatLoopTripCountThreshold) 896 return false; 897 else 898 UP.AllowExpensiveTripCount = true; 899 } 900 } 901 902 // Reduce count based on the type of unrolling and the threshold values. 903 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 904 if (!UP.Runtime) { 905 LLVM_DEBUG( 906 dbgs() << " will not try to unroll loop with runtime trip count " 907 << "-unroll-runtime not given\n"); 908 UP.Count = 0; 909 return false; 910 } 911 if (UP.Count == 0) 912 UP.Count = UP.DefaultUnrollRuntimeCount; 913 914 // Reduce unroll count to be the largest power-of-two factor of 915 // the original count which satisfies the threshold limit. 916 while (UP.Count != 0 && 917 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 918 UP.Count >>= 1; 919 920 #ifndef NDEBUG 921 unsigned OrigCount = UP.Count; 922 #endif 923 924 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 925 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 926 UP.Count >>= 1; 927 LLVM_DEBUG( 928 dbgs() << "Remainder loop is restricted (that could architecture " 929 "specific or because the loop contains a convergent " 930 "instruction), so unroll count must divide the trip " 931 "multiple, " 932 << TripMultiple << ". Reducing unroll count from " << OrigCount 933 << " to " << UP.Count << ".\n"); 934 935 using namespace ore; 936 937 if (PragmaCount > 0 && !UP.AllowRemainder) 938 ORE->emit([&]() { 939 return OptimizationRemarkMissed(DEBUG_TYPE, 940 "DifferentUnrollCountFromDirected", 941 L->getStartLoc(), L->getHeader()) 942 << "Unable to unroll loop the number of times directed by " 943 "unroll_count pragma because remainder loop is restricted " 944 "(that could architecture specific or because the loop " 945 "contains a convergent instruction) and so must have an " 946 "unroll " 947 "count that divides the loop trip multiple of " 948 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 949 << NV("UnrollCount", UP.Count) << " time(s)."; 950 }); 951 } 952 953 if (UP.Count > UP.MaxCount) 954 UP.Count = UP.MaxCount; 955 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 956 << "\n"); 957 if (UP.Count < 2) 958 UP.Count = 0; 959 return ExplicitUnroll; 960 } 961 962 static LoopUnrollResult tryToUnrollLoop( 963 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 964 const TargetTransformInfo &TTI, AssumptionCache &AC, 965 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 966 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 967 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 968 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 969 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 970 << L->getHeader()->getParent()->getName() << "] Loop %" 971 << L->getHeader()->getName() << "\n"); 972 if (HasUnrollDisablePragma(L)) 973 return LoopUnrollResult::Unmodified; 974 if (!L->isLoopSimplifyForm()) { 975 LLVM_DEBUG( 976 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 977 return LoopUnrollResult::Unmodified; 978 } 979 980 unsigned NumInlineCandidates; 981 bool NotDuplicatable; 982 bool Convergent; 983 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 984 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 985 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 986 ProvidedAllowPeeling); 987 // Exit early if unrolling is disabled. 988 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 989 return LoopUnrollResult::Unmodified; 990 991 SmallPtrSet<const Value *, 32> EphValues; 992 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 993 994 unsigned LoopSize = 995 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 996 TTI, EphValues, UP.BEInsns); 997 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 998 if (NotDuplicatable) { 999 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1000 << " instructions.\n"); 1001 return LoopUnrollResult::Unmodified; 1002 } 1003 if (NumInlineCandidates != 0) { 1004 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1005 return LoopUnrollResult::Unmodified; 1006 } 1007 1008 // Find trip count and trip multiple if count is not available 1009 unsigned TripCount = 0; 1010 unsigned MaxTripCount = 0; 1011 unsigned TripMultiple = 1; 1012 // If there are multiple exiting blocks but one of them is the latch, use the 1013 // latch for the trip count estimation. Otherwise insist on a single exiting 1014 // block for the trip count estimation. 1015 BasicBlock *ExitingBlock = L->getLoopLatch(); 1016 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1017 ExitingBlock = L->getExitingBlock(); 1018 if (ExitingBlock) { 1019 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1020 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1021 } 1022 1023 // If the loop contains a convergent operation, the prelude we'd add 1024 // to do the first few instructions before we hit the unrolled loop 1025 // is unsafe -- it adds a control-flow dependency to the convergent 1026 // operation. Therefore restrict remainder loop (try unrollig without). 1027 // 1028 // TODO: This is quite conservative. In practice, convergent_op() 1029 // is likely to be called unconditionally in the loop. In this 1030 // case, the program would be ill-formed (on most architectures) 1031 // unless n were the same on all threads in a thread group. 1032 // Assuming n is the same on all threads, any kind of unrolling is 1033 // safe. But currently llvm's notion of convergence isn't powerful 1034 // enough to express this. 1035 if (Convergent) 1036 UP.AllowRemainder = false; 1037 1038 // Try to find the trip count upper bound if we cannot find the exact trip 1039 // count. 1040 bool MaxOrZero = false; 1041 if (!TripCount) { 1042 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1043 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1044 // We can unroll by the upper bound amount if it's generally allowed or if 1045 // we know that the loop is executed either the upper bound or zero times. 1046 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1047 // loop tests remains the same compared to the non-unrolled version, whereas 1048 // the generic upper bound unrolling keeps all but the last loop test so the 1049 // number of loop tests goes up which may end up being worse on targets with 1050 // constrained branch predictor resources so is controlled by an option.) 1051 // In addition we only unroll small upper bounds. 1052 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1053 MaxTripCount = 0; 1054 } 1055 } 1056 1057 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1058 // fully unroll the loop. 1059 bool UseUpperBound = false; 1060 bool IsCountSetExplicitly = computeUnrollCount( 1061 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1062 TripMultiple, LoopSize, UP, UseUpperBound); 1063 if (!UP.Count) 1064 return LoopUnrollResult::Unmodified; 1065 // Unroll factor (Count) must be less or equal to TripCount. 1066 if (TripCount && UP.Count > TripCount) 1067 UP.Count = TripCount; 1068 1069 // Unroll the loop. 1070 LoopUnrollResult UnrollResult = UnrollLoop( 1071 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1072 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1073 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA); 1074 if (UnrollResult == LoopUnrollResult::Unmodified) 1075 return LoopUnrollResult::Unmodified; 1076 1077 // If loop has an unroll count pragma or unrolled by explicitly set count 1078 // mark loop as unrolled to prevent unrolling beyond that requested. 1079 // If the loop was peeled, we already "used up" the profile information 1080 // we had, so we don't want to unroll or peel again. 1081 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1082 (IsCountSetExplicitly || UP.PeelCount)) 1083 L->setLoopAlreadyUnrolled(); 1084 1085 return UnrollResult; 1086 } 1087 1088 namespace { 1089 1090 class LoopUnroll : public LoopPass { 1091 public: 1092 static char ID; // Pass ID, replacement for typeid 1093 1094 int OptLevel; 1095 Optional<unsigned> ProvidedCount; 1096 Optional<unsigned> ProvidedThreshold; 1097 Optional<bool> ProvidedAllowPartial; 1098 Optional<bool> ProvidedRuntime; 1099 Optional<bool> ProvidedUpperBound; 1100 Optional<bool> ProvidedAllowPeeling; 1101 1102 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1103 Optional<unsigned> Count = None, 1104 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1105 Optional<bool> UpperBound = None, 1106 Optional<bool> AllowPeeling = None) 1107 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1108 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1109 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1110 ProvidedAllowPeeling(AllowPeeling) { 1111 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1112 } 1113 1114 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1115 if (skipLoop(L)) 1116 return false; 1117 1118 Function &F = *L->getHeader()->getParent(); 1119 1120 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1121 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1122 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1123 const TargetTransformInfo &TTI = 1124 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1125 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1126 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1127 // pass. Function analyses need to be preserved across loop transformations 1128 // but ORE cannot be preserved (see comment before the pass definition). 1129 OptimizationRemarkEmitter ORE(&F); 1130 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1131 1132 LoopUnrollResult Result = tryToUnrollLoop( 1133 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount, 1134 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1135 ProvidedUpperBound, ProvidedAllowPeeling); 1136 1137 if (Result == LoopUnrollResult::FullyUnrolled) 1138 LPM.markLoopAsDeleted(*L); 1139 1140 return Result != LoopUnrollResult::Unmodified; 1141 } 1142 1143 /// This transformation requires natural loop information & requires that 1144 /// loop preheaders be inserted into the CFG... 1145 void getAnalysisUsage(AnalysisUsage &AU) const override { 1146 AU.addRequired<AssumptionCacheTracker>(); 1147 AU.addRequired<TargetTransformInfoWrapperPass>(); 1148 // FIXME: Loop passes are required to preserve domtree, and for now we just 1149 // recreate dom info if anything gets unrolled. 1150 getLoopAnalysisUsage(AU); 1151 } 1152 }; 1153 1154 } // end anonymous namespace 1155 1156 char LoopUnroll::ID = 0; 1157 1158 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1159 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1160 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1161 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1162 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1163 1164 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1165 int AllowPartial, int Runtime, int UpperBound, 1166 int AllowPeeling) { 1167 // TODO: It would make more sense for this function to take the optionals 1168 // directly, but that's dangerous since it would silently break out of tree 1169 // callers. 1170 return new LoopUnroll( 1171 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1172 Count == -1 ? None : Optional<unsigned>(Count), 1173 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1174 Runtime == -1 ? None : Optional<bool>(Runtime), 1175 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1176 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1177 } 1178 1179 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1180 return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1181 } 1182 1183 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1184 LoopStandardAnalysisResults &AR, 1185 LPMUpdater &Updater) { 1186 const auto &FAM = 1187 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1188 Function *F = L.getHeader()->getParent(); 1189 1190 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1191 // FIXME: This should probably be optional rather than required. 1192 if (!ORE) 1193 report_fatal_error( 1194 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1195 "cached at a higher level"); 1196 1197 // Keep track of the previous loop structure so we can identify new loops 1198 // created by unrolling. 1199 Loop *ParentL = L.getParentLoop(); 1200 SmallPtrSet<Loop *, 4> OldLoops; 1201 if (ParentL) 1202 OldLoops.insert(ParentL->begin(), ParentL->end()); 1203 else 1204 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1205 1206 std::string LoopName = L.getName(); 1207 1208 bool Changed = 1209 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1210 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1211 /*Threshold*/ None, /*AllowPartial*/ false, 1212 /*Runtime*/ false, /*UpperBound*/ false, 1213 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1214 if (!Changed) 1215 return PreservedAnalyses::all(); 1216 1217 // The parent must not be damaged by unrolling! 1218 #ifndef NDEBUG 1219 if (ParentL) 1220 ParentL->verifyLoop(); 1221 #endif 1222 1223 // Unrolling can do several things to introduce new loops into a loop nest: 1224 // - Full unrolling clones child loops within the current loop but then 1225 // removes the current loop making all of the children appear to be new 1226 // sibling loops. 1227 // 1228 // When a new loop appears as a sibling loop after fully unrolling, 1229 // its nesting structure has fundamentally changed and we want to revisit 1230 // it to reflect that. 1231 // 1232 // When unrolling has removed the current loop, we need to tell the 1233 // infrastructure that it is gone. 1234 // 1235 // Finally, we support a debugging/testing mode where we revisit child loops 1236 // as well. These are not expected to require further optimizations as either 1237 // they or the loop they were cloned from have been directly visited already. 1238 // But the debugging mode allows us to check this assumption. 1239 bool IsCurrentLoopValid = false; 1240 SmallVector<Loop *, 4> SibLoops; 1241 if (ParentL) 1242 SibLoops.append(ParentL->begin(), ParentL->end()); 1243 else 1244 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1245 erase_if(SibLoops, [&](Loop *SibLoop) { 1246 if (SibLoop == &L) { 1247 IsCurrentLoopValid = true; 1248 return true; 1249 } 1250 1251 // Otherwise erase the loop from the list if it was in the old loops. 1252 return OldLoops.count(SibLoop) != 0; 1253 }); 1254 Updater.addSiblingLoops(SibLoops); 1255 1256 if (!IsCurrentLoopValid) { 1257 Updater.markLoopAsDeleted(L, LoopName); 1258 } else { 1259 // We can only walk child loops if the current loop remained valid. 1260 if (UnrollRevisitChildLoops) { 1261 // Walk *all* of the child loops. 1262 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1263 Updater.addChildLoops(ChildLoops); 1264 } 1265 } 1266 1267 return getLoopPassPreservedAnalyses(); 1268 } 1269 1270 template <typename RangeT> 1271 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1272 SmallVector<Loop *, 8> Worklist; 1273 // We use an internal worklist to build up the preorder traversal without 1274 // recursion. 1275 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1276 1277 for (Loop *RootL : Loops) { 1278 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1279 assert(PreOrderWorklist.empty() && 1280 "Must start with an empty preorder walk worklist."); 1281 PreOrderWorklist.push_back(RootL); 1282 do { 1283 Loop *L = PreOrderWorklist.pop_back_val(); 1284 PreOrderWorklist.append(L->begin(), L->end()); 1285 PreOrderLoops.push_back(L); 1286 } while (!PreOrderWorklist.empty()); 1287 1288 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1289 PreOrderLoops.clear(); 1290 } 1291 return Worklist; 1292 } 1293 1294 PreservedAnalyses LoopUnrollPass::run(Function &F, 1295 FunctionAnalysisManager &AM) { 1296 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1297 auto &LI = AM.getResult<LoopAnalysis>(F); 1298 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1299 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1300 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1301 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1302 1303 LoopAnalysisManager *LAM = nullptr; 1304 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1305 LAM = &LAMProxy->getManager(); 1306 1307 const ModuleAnalysisManager &MAM = 1308 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1309 ProfileSummaryInfo *PSI = 1310 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1311 1312 bool Changed = false; 1313 1314 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1315 // Since simplification may add new inner loops, it has to run before the 1316 // legality and profitability checks. This means running the loop unroller 1317 // will simplify all loops, regardless of whether anything end up being 1318 // unrolled. 1319 for (auto &L : LI) { 1320 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1321 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1322 } 1323 1324 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1325 1326 while (!Worklist.empty()) { 1327 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1328 // from back to front so that we work forward across the CFG, which 1329 // for unrolling is only needed to get optimization remarks emitted in 1330 // a forward order. 1331 Loop &L = *Worklist.pop_back_val(); 1332 #ifndef NDEBUG 1333 Loop *ParentL = L.getParentLoop(); 1334 #endif 1335 1336 // The API here is quite complex to call, but there are only two interesting 1337 // states we support: partial and full (or "simple") unrolling. However, to 1338 // enable these things we actually pass "None" in for the optional to avoid 1339 // providing an explicit choice. 1340 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1341 AllowPeeling; 1342 // Check if the profile summary indicates that the profiled application 1343 // has a huge working set size, in which case we disable peeling to avoid 1344 // bloating it further. 1345 if (PSI && PSI->hasHugeWorkingSetSize()) 1346 AllowPeeling = false; 1347 std::string LoopName = L.getName(); 1348 LoopUnrollResult Result = 1349 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1350 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1351 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1352 UpperBoundParam, AllowPeeling); 1353 Changed |= Result != LoopUnrollResult::Unmodified; 1354 1355 // The parent must not be damaged by unrolling! 1356 #ifndef NDEBUG 1357 if (Result != LoopUnrollResult::Unmodified && ParentL) 1358 ParentL->verifyLoop(); 1359 #endif 1360 1361 // Clear any cached analysis results for L if we removed it completely. 1362 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1363 LAM->clear(L, LoopName); 1364 } 1365 1366 if (!Changed) 1367 return PreservedAnalyses::all(); 1368 1369 return getLoopPassPreservedAnalyses(); 1370 } 1371