xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision cffedc4a94cc21a124521e96280935ef7ca1aa85)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The baseline cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
51     "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden,
52     cl::desc("The percentage of estimated dynamic cost which must be saved by "
53              "unrolling to allow unrolling up to the max threshold."));
54 
55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
56     "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden,
57     cl::desc("This is the amount discounted from the total unroll cost when "
58              "the unrolled form has a high dynamic cost savings (triggered by "
59              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
60 
61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
62     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
63     cl::desc("Don't allow loop unrolling to simulate more than this number of"
64              "iterations when checking full unroll profitability"));
65 
66 static cl::opt<unsigned> UnrollCount(
67     "unroll-count", cl::Hidden,
68     cl::desc("Use this unroll count for all loops including those with "
69              "unroll_count pragma values, for testing purposes"));
70 
71 static cl::opt<unsigned> UnrollMaxCount(
72     "unroll-max-count", cl::Hidden,
73     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
74              "testing purposes"));
75 
76 static cl::opt<unsigned> UnrollFullMaxCount(
77     "unroll-full-max-count", cl::Hidden,
78     cl::desc(
79         "Set the max unroll count for full unrolling, for testing purposes"));
80 
81 static cl::opt<bool>
82     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
83                        cl::desc("Allows loops to be partially unrolled until "
84                                 "-unroll-threshold loop size is reached."));
85 
86 static cl::opt<bool> UnrollAllowRemainder(
87     "unroll-allow-remainder", cl::Hidden,
88     cl::desc("Allow generation of a loop remainder (extra iterations) "
89              "when unrolling a loop."));
90 
91 static cl::opt<bool>
92     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
93                   cl::desc("Unroll loops with run-time trip counts"));
94 
95 static cl::opt<unsigned> UnrollMaxUpperBound(
96     "unroll-max-upperbound", cl::init(8), cl::Hidden,
97     cl::desc(
98         "The max of trip count upper bound that is considered in unrolling"));
99 
100 static cl::opt<unsigned> PragmaUnrollThreshold(
101     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
102     cl::desc("Unrolled size limit for loops with an unroll(full) or "
103              "unroll_count pragma."));
104 
105 /// A magic value for use with the Threshold parameter to indicate
106 /// that the loop unroll should be performed regardless of how much
107 /// code expansion would result.
108 static const unsigned NoThreshold = UINT_MAX;
109 
110 /// Gather the various unrolling parameters based on the defaults, compiler
111 /// flags, TTI overrides and user specified parameters.
112 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
113     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
114     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
115     Optional<bool> UserRuntime, Optional<bool> UserUpperBound) {
116   TargetTransformInfo::UnrollingPreferences UP;
117 
118   // Set up the defaults
119   UP.Threshold = 150;
120   UP.PercentDynamicCostSavedThreshold = 50;
121   UP.DynamicCostSavingsDiscount = 100;
122   UP.OptSizeThreshold = 0;
123   UP.PartialThreshold = UP.Threshold;
124   UP.PartialOptSizeThreshold = 0;
125   UP.Count = 0;
126   UP.DefaultUnrollRuntimeCount = 8;
127   UP.MaxCount = UINT_MAX;
128   UP.FullUnrollMaxCount = UINT_MAX;
129   UP.Partial = false;
130   UP.Runtime = false;
131   UP.AllowRemainder = true;
132   UP.AllowExpensiveTripCount = false;
133   UP.Force = false;
134   UP.UpperBound = false;
135 
136   // Override with any target specific settings
137   TTI.getUnrollingPreferences(L, UP);
138 
139   // Apply size attributes
140   if (L->getHeader()->getParent()->optForSize()) {
141     UP.Threshold = UP.OptSizeThreshold;
142     UP.PartialThreshold = UP.PartialOptSizeThreshold;
143   }
144 
145   // Apply any user values specified by cl::opt
146   if (UnrollThreshold.getNumOccurrences() > 0) {
147     UP.Threshold = UnrollThreshold;
148     UP.PartialThreshold = UnrollThreshold;
149   }
150   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
151     UP.PercentDynamicCostSavedThreshold =
152         UnrollPercentDynamicCostSavedThreshold;
153   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
154     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
155   if (UnrollMaxCount.getNumOccurrences() > 0)
156     UP.MaxCount = UnrollMaxCount;
157   if (UnrollFullMaxCount.getNumOccurrences() > 0)
158     UP.FullUnrollMaxCount = UnrollFullMaxCount;
159   if (UnrollAllowPartial.getNumOccurrences() > 0)
160     UP.Partial = UnrollAllowPartial;
161   if (UnrollAllowRemainder.getNumOccurrences() > 0)
162     UP.AllowRemainder = UnrollAllowRemainder;
163   if (UnrollRuntime.getNumOccurrences() > 0)
164     UP.Runtime = UnrollRuntime;
165   if (UnrollMaxUpperBound == 0)
166     UP.UpperBound = false;
167 
168   // Apply user values provided by argument
169   if (UserThreshold.hasValue()) {
170     UP.Threshold = *UserThreshold;
171     UP.PartialThreshold = *UserThreshold;
172   }
173   if (UserCount.hasValue())
174     UP.Count = *UserCount;
175   if (UserAllowPartial.hasValue())
176     UP.Partial = *UserAllowPartial;
177   if (UserRuntime.hasValue())
178     UP.Runtime = *UserRuntime;
179   if (UserUpperBound.hasValue())
180     UP.UpperBound = *UserUpperBound;
181 
182   return UP;
183 }
184 
185 namespace {
186 /// A struct to densely store the state of an instruction after unrolling at
187 /// each iteration.
188 ///
189 /// This is designed to work like a tuple of <Instruction *, int> for the
190 /// purposes of hashing and lookup, but to be able to associate two boolean
191 /// states with each key.
192 struct UnrolledInstState {
193   Instruction *I;
194   int Iteration : 30;
195   unsigned IsFree : 1;
196   unsigned IsCounted : 1;
197 };
198 
199 /// Hashing and equality testing for a set of the instruction states.
200 struct UnrolledInstStateKeyInfo {
201   typedef DenseMapInfo<Instruction *> PtrInfo;
202   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
203   static inline UnrolledInstState getEmptyKey() {
204     return {PtrInfo::getEmptyKey(), 0, 0, 0};
205   }
206   static inline UnrolledInstState getTombstoneKey() {
207     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
208   }
209   static inline unsigned getHashValue(const UnrolledInstState &S) {
210     return PairInfo::getHashValue({S.I, S.Iteration});
211   }
212   static inline bool isEqual(const UnrolledInstState &LHS,
213                              const UnrolledInstState &RHS) {
214     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
215   }
216 };
217 }
218 
219 namespace {
220 struct EstimatedUnrollCost {
221   /// \brief The estimated cost after unrolling.
222   int UnrolledCost;
223 
224   /// \brief The estimated dynamic cost of executing the instructions in the
225   /// rolled form.
226   int RolledDynamicCost;
227 };
228 }
229 
230 /// \brief Figure out if the loop is worth full unrolling.
231 ///
232 /// Complete loop unrolling can make some loads constant, and we need to know
233 /// if that would expose any further optimization opportunities.  This routine
234 /// estimates this optimization.  It computes cost of unrolled loop
235 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
236 /// dynamic cost we mean that we won't count costs of blocks that are known not
237 /// to be executed (i.e. if we have a branch in the loop and we know that at the
238 /// given iteration its condition would be resolved to true, we won't add up the
239 /// cost of the 'false'-block).
240 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
241 /// the analysis failed (no benefits expected from the unrolling, or the loop is
242 /// too big to analyze), the returned value is None.
243 static Optional<EstimatedUnrollCost>
244 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
245                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
246                       int MaxUnrolledLoopSize) {
247   // We want to be able to scale offsets by the trip count and add more offsets
248   // to them without checking for overflows, and we already don't want to
249   // analyze *massive* trip counts, so we force the max to be reasonably small.
250   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
251          "The unroll iterations max is too large!");
252 
253   // Only analyze inner loops. We can't properly estimate cost of nested loops
254   // and we won't visit inner loops again anyway.
255   if (!L->empty())
256     return None;
257 
258   // Don't simulate loops with a big or unknown tripcount
259   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
260       TripCount > UnrollMaxIterationsCountToAnalyze)
261     return None;
262 
263   SmallSetVector<BasicBlock *, 16> BBWorklist;
264   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
265   DenseMap<Value *, Constant *> SimplifiedValues;
266   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
267 
268   // The estimated cost of the unrolled form of the loop. We try to estimate
269   // this by simplifying as much as we can while computing the estimate.
270   int UnrolledCost = 0;
271 
272   // We also track the estimated dynamic (that is, actually executed) cost in
273   // the rolled form. This helps identify cases when the savings from unrolling
274   // aren't just exposing dead control flows, but actual reduced dynamic
275   // instructions due to the simplifications which we expect to occur after
276   // unrolling.
277   int RolledDynamicCost = 0;
278 
279   // We track the simplification of each instruction in each iteration. We use
280   // this to recursively merge costs into the unrolled cost on-demand so that
281   // we don't count the cost of any dead code. This is essentially a map from
282   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
283   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
284 
285   // A small worklist used to accumulate cost of instructions from each
286   // observable and reached root in the loop.
287   SmallVector<Instruction *, 16> CostWorklist;
288 
289   // PHI-used worklist used between iterations while accumulating cost.
290   SmallVector<Instruction *, 4> PHIUsedList;
291 
292   // Helper function to accumulate cost for instructions in the loop.
293   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
294     assert(Iteration >= 0 && "Cannot have a negative iteration!");
295     assert(CostWorklist.empty() && "Must start with an empty cost list");
296     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
297     CostWorklist.push_back(&RootI);
298     for (;; --Iteration) {
299       do {
300         Instruction *I = CostWorklist.pop_back_val();
301 
302         // InstCostMap only uses I and Iteration as a key, the other two values
303         // don't matter here.
304         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
305         if (CostIter == InstCostMap.end())
306           // If an input to a PHI node comes from a dead path through the loop
307           // we may have no cost data for it here. What that actually means is
308           // that it is free.
309           continue;
310         auto &Cost = *CostIter;
311         if (Cost.IsCounted)
312           // Already counted this instruction.
313           continue;
314 
315         // Mark that we are counting the cost of this instruction now.
316         Cost.IsCounted = true;
317 
318         // If this is a PHI node in the loop header, just add it to the PHI set.
319         if (auto *PhiI = dyn_cast<PHINode>(I))
320           if (PhiI->getParent() == L->getHeader()) {
321             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
322                                   "inherently simplify during unrolling.");
323             if (Iteration == 0)
324               continue;
325 
326             // Push the incoming value from the backedge into the PHI used list
327             // if it is an in-loop instruction. We'll use this to populate the
328             // cost worklist for the next iteration (as we count backwards).
329             if (auto *OpI = dyn_cast<Instruction>(
330                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
331               if (L->contains(OpI))
332                 PHIUsedList.push_back(OpI);
333             continue;
334           }
335 
336         // First accumulate the cost of this instruction.
337         if (!Cost.IsFree) {
338           UnrolledCost += TTI.getUserCost(I);
339           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
340                        << "): ");
341           DEBUG(I->dump());
342         }
343 
344         // We must count the cost of every operand which is not free,
345         // recursively. If we reach a loop PHI node, simply add it to the set
346         // to be considered on the next iteration (backwards!).
347         for (Value *Op : I->operands()) {
348           // Check whether this operand is free due to being a constant or
349           // outside the loop.
350           auto *OpI = dyn_cast<Instruction>(Op);
351           if (!OpI || !L->contains(OpI))
352             continue;
353 
354           // Otherwise accumulate its cost.
355           CostWorklist.push_back(OpI);
356         }
357       } while (!CostWorklist.empty());
358 
359       if (PHIUsedList.empty())
360         // We've exhausted the search.
361         break;
362 
363       assert(Iteration > 0 &&
364              "Cannot track PHI-used values past the first iteration!");
365       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
366       PHIUsedList.clear();
367     }
368   };
369 
370   // Ensure that we don't violate the loop structure invariants relied on by
371   // this analysis.
372   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
373   assert(L->isLCSSAForm(DT) &&
374          "Must have loops in LCSSA form to track live-out values.");
375 
376   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
377 
378   // Simulate execution of each iteration of the loop counting instructions,
379   // which would be simplified.
380   // Since the same load will take different values on different iterations,
381   // we literally have to go through all loop's iterations.
382   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
383     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
384 
385     // Prepare for the iteration by collecting any simplified entry or backedge
386     // inputs.
387     for (Instruction &I : *L->getHeader()) {
388       auto *PHI = dyn_cast<PHINode>(&I);
389       if (!PHI)
390         break;
391 
392       // The loop header PHI nodes must have exactly two input: one from the
393       // loop preheader and one from the loop latch.
394       assert(
395           PHI->getNumIncomingValues() == 2 &&
396           "Must have an incoming value only for the preheader and the latch.");
397 
398       Value *V = PHI->getIncomingValueForBlock(
399           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
400       Constant *C = dyn_cast<Constant>(V);
401       if (Iteration != 0 && !C)
402         C = SimplifiedValues.lookup(V);
403       if (C)
404         SimplifiedInputValues.push_back({PHI, C});
405     }
406 
407     // Now clear and re-populate the map for the next iteration.
408     SimplifiedValues.clear();
409     while (!SimplifiedInputValues.empty())
410       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
411 
412     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
413 
414     BBWorklist.clear();
415     BBWorklist.insert(L->getHeader());
416     // Note that we *must not* cache the size, this loop grows the worklist.
417     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
418       BasicBlock *BB = BBWorklist[Idx];
419 
420       // Visit all instructions in the given basic block and try to simplify
421       // it.  We don't change the actual IR, just count optimization
422       // opportunities.
423       for (Instruction &I : *BB) {
424         if (isa<DbgInfoIntrinsic>(I))
425           continue;
426 
427         // Track this instruction's expected baseline cost when executing the
428         // rolled loop form.
429         RolledDynamicCost += TTI.getUserCost(&I);
430 
431         // Visit the instruction to analyze its loop cost after unrolling,
432         // and if the visitor returns true, mark the instruction as free after
433         // unrolling and continue.
434         bool IsFree = Analyzer.visit(I);
435         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
436                                            (unsigned)IsFree,
437                                            /*IsCounted*/ false}).second;
438         (void)Inserted;
439         assert(Inserted && "Cannot have a state for an unvisited instruction!");
440 
441         if (IsFree)
442           continue;
443 
444         // Can't properly model a cost of a call.
445         // FIXME: With a proper cost model we should be able to do it.
446         if(isa<CallInst>(&I))
447           return None;
448 
449         // If the instruction might have a side-effect recursively account for
450         // the cost of it and all the instructions leading up to it.
451         if (I.mayHaveSideEffects())
452           AddCostRecursively(I, Iteration);
453 
454         // If unrolled body turns out to be too big, bail out.
455         if (UnrolledCost > MaxUnrolledLoopSize) {
456           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
457                        << "  UnrolledCost: " << UnrolledCost
458                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
459                        << "\n");
460           return None;
461         }
462       }
463 
464       TerminatorInst *TI = BB->getTerminator();
465 
466       // Add in the live successors by first checking whether we have terminator
467       // that may be simplified based on the values simplified by this call.
468       BasicBlock *KnownSucc = nullptr;
469       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
470         if (BI->isConditional()) {
471           if (Constant *SimpleCond =
472                   SimplifiedValues.lookup(BI->getCondition())) {
473             // Just take the first successor if condition is undef
474             if (isa<UndefValue>(SimpleCond))
475               KnownSucc = BI->getSuccessor(0);
476             else if (ConstantInt *SimpleCondVal =
477                          dyn_cast<ConstantInt>(SimpleCond))
478               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
479           }
480         }
481       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
482         if (Constant *SimpleCond =
483                 SimplifiedValues.lookup(SI->getCondition())) {
484           // Just take the first successor if condition is undef
485           if (isa<UndefValue>(SimpleCond))
486             KnownSucc = SI->getSuccessor(0);
487           else if (ConstantInt *SimpleCondVal =
488                        dyn_cast<ConstantInt>(SimpleCond))
489             KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
490         }
491       }
492       if (KnownSucc) {
493         if (L->contains(KnownSucc))
494           BBWorklist.insert(KnownSucc);
495         else
496           ExitWorklist.insert({BB, KnownSucc});
497         continue;
498       }
499 
500       // Add BB's successors to the worklist.
501       for (BasicBlock *Succ : successors(BB))
502         if (L->contains(Succ))
503           BBWorklist.insert(Succ);
504         else
505           ExitWorklist.insert({BB, Succ});
506       AddCostRecursively(*TI, Iteration);
507     }
508 
509     // If we found no optimization opportunities on the first iteration, we
510     // won't find them on later ones too.
511     if (UnrolledCost == RolledDynamicCost) {
512       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
513                    << "  UnrolledCost: " << UnrolledCost << "\n");
514       return None;
515     }
516   }
517 
518   while (!ExitWorklist.empty()) {
519     BasicBlock *ExitingBB, *ExitBB;
520     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
521 
522     for (Instruction &I : *ExitBB) {
523       auto *PN = dyn_cast<PHINode>(&I);
524       if (!PN)
525         break;
526 
527       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
528       if (auto *OpI = dyn_cast<Instruction>(Op))
529         if (L->contains(OpI))
530           AddCostRecursively(*OpI, TripCount - 1);
531     }
532   }
533 
534   DEBUG(dbgs() << "Analysis finished:\n"
535                << "UnrolledCost: " << UnrolledCost << ", "
536                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
537   return {{UnrolledCost, RolledDynamicCost}};
538 }
539 
540 /// ApproximateLoopSize - Approximate the size of the loop.
541 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
542                                     bool &NotDuplicatable, bool &Convergent,
543                                     const TargetTransformInfo &TTI,
544                                     AssumptionCache *AC) {
545   SmallPtrSet<const Value *, 32> EphValues;
546   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
547 
548   CodeMetrics Metrics;
549   for (BasicBlock *BB : L->blocks())
550     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
551   NumCalls = Metrics.NumInlineCandidates;
552   NotDuplicatable = Metrics.notDuplicatable;
553   Convergent = Metrics.convergent;
554 
555   unsigned LoopSize = Metrics.NumInsts;
556 
557   // Don't allow an estimate of size zero.  This would allows unrolling of loops
558   // with huge iteration counts, which is a compile time problem even if it's
559   // not a problem for code quality. Also, the code using this size may assume
560   // that each loop has at least three instructions (likely a conditional
561   // branch, a comparison feeding that branch, and some kind of loop increment
562   // feeding that comparison instruction).
563   LoopSize = std::max(LoopSize, 3u);
564 
565   return LoopSize;
566 }
567 
568 // Returns the loop hint metadata node with the given name (for example,
569 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
570 // returned.
571 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
572   if (MDNode *LoopID = L->getLoopID())
573     return GetUnrollMetadata(LoopID, Name);
574   return nullptr;
575 }
576 
577 // Returns true if the loop has an unroll(full) pragma.
578 static bool HasUnrollFullPragma(const Loop *L) {
579   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
580 }
581 
582 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
583 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
584 static bool HasUnrollEnablePragma(const Loop *L) {
585   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
586 }
587 
588 // Returns true if the loop has an unroll(disable) pragma.
589 static bool HasUnrollDisablePragma(const Loop *L) {
590   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
591 }
592 
593 // Returns true if the loop has an runtime unroll(disable) pragma.
594 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
595   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
596 }
597 
598 // If loop has an unroll_count pragma return the (necessarily
599 // positive) value from the pragma.  Otherwise return 0.
600 static unsigned UnrollCountPragmaValue(const Loop *L) {
601   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
602   if (MD) {
603     assert(MD->getNumOperands() == 2 &&
604            "Unroll count hint metadata should have two operands.");
605     unsigned Count =
606         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
607     assert(Count >= 1 && "Unroll count must be positive.");
608     return Count;
609   }
610   return 0;
611 }
612 
613 // Remove existing unroll metadata and add unroll disable metadata to
614 // indicate the loop has already been unrolled.  This prevents a loop
615 // from being unrolled more than is directed by a pragma if the loop
616 // unrolling pass is run more than once (which it generally is).
617 static void SetLoopAlreadyUnrolled(Loop *L) {
618   MDNode *LoopID = L->getLoopID();
619   // First remove any existing loop unrolling metadata.
620   SmallVector<Metadata *, 4> MDs;
621   // Reserve first location for self reference to the LoopID metadata node.
622   MDs.push_back(nullptr);
623 
624   if (LoopID) {
625     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
626       bool IsUnrollMetadata = false;
627       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
628       if (MD) {
629         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
630         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
631       }
632       if (!IsUnrollMetadata)
633         MDs.push_back(LoopID->getOperand(i));
634     }
635   }
636 
637   // Add unroll(disable) metadata to disable future unrolling.
638   LLVMContext &Context = L->getHeader()->getContext();
639   SmallVector<Metadata *, 1> DisableOperands;
640   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
641   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
642   MDs.push_back(DisableNode);
643 
644   MDNode *NewLoopID = MDNode::get(Context, MDs);
645   // Set operand 0 to refer to the loop id itself.
646   NewLoopID->replaceOperandWith(0, NewLoopID);
647   L->setLoopID(NewLoopID);
648 }
649 
650 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
651                                 unsigned PercentDynamicCostSavedThreshold,
652                                 unsigned DynamicCostSavingsDiscount,
653                                 uint64_t UnrolledCost,
654                                 uint64_t RolledDynamicCost) {
655   if (Threshold == NoThreshold) {
656     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
657     return true;
658   }
659 
660   if (UnrolledCost <= Threshold) {
661     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
662                  << UnrolledCost << "<=" << Threshold << "\n");
663     return true;
664   }
665 
666   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
667   assert(RolledDynamicCost >= UnrolledCost &&
668          "Cannot have a higher unrolled cost than a rolled cost!");
669 
670   // Compute the percentage of the dynamic cost in the rolled form that is
671   // saved when unrolled. If unrolling dramatically reduces the estimated
672   // dynamic cost of the loop, we use a higher threshold to allow more
673   // unrolling.
674   unsigned PercentDynamicCostSaved =
675       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
676 
677   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
678       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
679           (int64_t)Threshold) {
680     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
681                     "expected dynamic cost by "
682                  << PercentDynamicCostSaved << "% (threshold: "
683                  << PercentDynamicCostSavedThreshold << "%)\n"
684                  << "  and the unrolled cost (" << UnrolledCost
685                  << ") is less than the max threshold ("
686                  << DynamicCostSavingsDiscount << ").\n");
687     return true;
688   }
689 
690   DEBUG(dbgs() << "  Too large to fully unroll:\n");
691   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
692   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
693   DEBUG(dbgs() << "    Percent cost saved threshold: "
694                << PercentDynamicCostSavedThreshold << "%\n");
695   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
696   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
697   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
698                << "\n");
699   return false;
700 }
701 
702 // Returns true if unroll count was set explicitly.
703 // Calculates unroll count and writes it to UP.Count.
704 static bool computeUnrollCount(
705     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
706     ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount,
707     unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize,
708     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
709   // BEInsns represents number of instructions optimized when "back edge"
710   // becomes "fall through" in unrolled loop.
711   // For now we count a conditional branch on a backedge and a comparison
712   // feeding it.
713   unsigned BEInsns = 2;
714   // Check for explicit Count.
715   // 1st priority is unroll count set by "unroll-count" option.
716   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
717   if (UserUnrollCount) {
718     UP.Count = UnrollCount;
719     UP.AllowExpensiveTripCount = true;
720     UP.Force = true;
721     if (UP.AllowRemainder &&
722         (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold)
723       return true;
724   }
725 
726   // 2nd priority is unroll count set by pragma.
727   unsigned PragmaCount = UnrollCountPragmaValue(L);
728   if (PragmaCount > 0) {
729     UP.Count = PragmaCount;
730     UP.Runtime = true;
731     UP.AllowExpensiveTripCount = true;
732     UP.Force = true;
733     if (UP.AllowRemainder &&
734         (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
735       return true;
736   }
737   bool PragmaFullUnroll = HasUnrollFullPragma(L);
738   if (PragmaFullUnroll && TripCount != 0) {
739     UP.Count = TripCount;
740     if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
741       return false;
742   }
743 
744   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
745   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
746                         PragmaEnableUnroll || UserUnrollCount;
747 
748   uint64_t UnrolledSize;
749 
750   if (ExplicitUnroll && TripCount != 0) {
751     // If the loop has an unrolling pragma, we want to be more aggressive with
752     // unrolling limits. Set thresholds to at least the PragmaThreshold value
753     // which is larger than the default limits.
754     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
755     UP.PartialThreshold =
756         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
757   }
758 
759   // 3rd priority is full unroll count.
760   // Full unroll makes sense only when TripCount or its upper bound could be
761   // statically calculated.
762   // Also we need to check if we exceed FullUnrollMaxCount.
763   // If using the upper bound to unroll, TripMultiple should be set to 1 because
764   // we do not know when loop may exit.
765   // MaxTripCount and ExactTripCount cannot both be non zero since we only
766   // compute the former when the latter is zero.
767   unsigned ExactTripCount = TripCount;
768   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
769          "ExtractTripCound and MaxTripCount cannot both be non zero.");
770   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
771   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
772     // When computing the unrolled size, note that BEInsns are not replicated
773     // like the rest of the loop body.
774     UnrolledSize =
775         (uint64_t)(LoopSize - BEInsns) * FullUnrollTripCount + BEInsns;
776     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
777                             UnrolledSize, UnrolledSize)) {
778       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
779       TripCount = FullUnrollTripCount;
780       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
781       UP.Count = TripCount;
782       return ExplicitUnroll;
783     } else {
784       // The loop isn't that small, but we still can fully unroll it if that
785       // helps to remove a significant number of instructions.
786       // To check that, run additional analysis on the loop.
787       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
788               L, FullUnrollTripCount, DT, *SE, TTI,
789               UP.Threshold + UP.DynamicCostSavingsDiscount))
790         if (canUnrollCompletely(L, UP.Threshold,
791                                 UP.PercentDynamicCostSavedThreshold,
792                                 UP.DynamicCostSavingsDiscount,
793                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
794           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
795           TripCount = FullUnrollTripCount;
796           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
797           UP.Count = TripCount;
798           return ExplicitUnroll;
799         }
800     }
801   }
802 
803   // 4rd priority is partial unrolling.
804   // Try partial unroll only when TripCount could be staticaly calculated.
805   if (TripCount) {
806     if (UP.Count == 0)
807       UP.Count = TripCount;
808     UP.Partial |= ExplicitUnroll;
809     if (!UP.Partial) {
810       DEBUG(dbgs() << "  will not try to unroll partially because "
811                    << "-unroll-allow-partial not given\n");
812       UP.Count = 0;
813       return false;
814     }
815     if (UP.PartialThreshold != NoThreshold) {
816       // Reduce unroll count to be modulo of TripCount for partial unrolling.
817       UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns;
818       if (UnrolledSize > UP.PartialThreshold)
819         UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) /
820                    (LoopSize - BEInsns);
821       if (UP.Count > UP.MaxCount)
822         UP.Count = UP.MaxCount;
823       while (UP.Count != 0 && TripCount % UP.Count != 0)
824         UP.Count--;
825       if (UP.AllowRemainder && UP.Count <= 1) {
826         // If there is no Count that is modulo of TripCount, set Count to
827         // largest power-of-two factor that satisfies the threshold limit.
828         // As we'll create fixup loop, do the type of unrolling only if
829         // remainder loop is allowed.
830         UP.Count = UP.DefaultUnrollRuntimeCount;
831         UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
832         while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
833           UP.Count >>= 1;
834           UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
835         }
836       }
837       if (UP.Count < 2) {
838         if (PragmaEnableUnroll)
839           ORE->emit(
840               OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
841                                        L->getStartLoc(), L->getHeader())
842               << "Unable to unroll loop as directed by unroll(enable) pragma "
843                  "because unrolled size is too large.");
844         UP.Count = 0;
845       }
846     } else {
847       UP.Count = TripCount;
848     }
849     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
850         UP.Count != TripCount)
851       ORE->emit(
852           OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
853                                    L->getStartLoc(), L->getHeader())
854           << "Unable to fully unroll loop as directed by unroll pragma because "
855              "unrolled size is too large.");
856     return ExplicitUnroll;
857   }
858   assert(TripCount == 0 &&
859          "All cases when TripCount is constant should be covered here.");
860   if (PragmaFullUnroll)
861     ORE->emit(
862         OptimizationRemarkMissed(DEBUG_TYPE,
863                                  "CantFullUnrollAsDirectedRuntimeTripCount",
864                                  L->getStartLoc(), L->getHeader())
865         << "Unable to fully unroll loop as directed by unroll(full) pragma "
866            "because loop has a runtime trip count.");
867 
868   // 5th priority is runtime unrolling.
869   // Don't unroll a runtime trip count loop when it is disabled.
870   if (HasRuntimeUnrollDisablePragma(L)) {
871     UP.Count = 0;
872     return false;
873   }
874   // Reduce count based on the type of unrolling and the threshold values.
875   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
876   if (!UP.Runtime) {
877     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
878                  << "-unroll-runtime not given\n");
879     UP.Count = 0;
880     return false;
881   }
882   if (UP.Count == 0)
883     UP.Count = UP.DefaultUnrollRuntimeCount;
884   UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
885 
886   // Reduce unroll count to be the largest power-of-two factor of
887   // the original count which satisfies the threshold limit.
888   while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
889     UP.Count >>= 1;
890     UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
891   }
892 
893 #ifndef NDEBUG
894   unsigned OrigCount = UP.Count;
895 #endif
896 
897   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
898     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
899       UP.Count >>= 1;
900     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
901                     "specific or because the loop contains a convergent "
902                     "instruction), so unroll count must divide the trip "
903                     "multiple, "
904                  << TripMultiple << ".  Reducing unroll count from "
905                  << OrigCount << " to " << UP.Count << ".\n");
906     using namespace ore;
907     if (PragmaCount > 0 && !UP.AllowRemainder)
908       ORE->emit(
909           OptimizationRemarkMissed(DEBUG_TYPE,
910                                    "DifferentUnrollCountFromDirected",
911                                    L->getStartLoc(), L->getHeader())
912           << "Unable to unroll loop the number of times directed by "
913              "unroll_count pragma because remainder loop is restricted "
914              "(that could architecture specific or because the loop "
915              "contains a convergent instruction) and so must have an unroll "
916              "count that divides the loop trip multiple of "
917           << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
918           << NV("UnrollCount", UP.Count) << " time(s).");
919   }
920 
921   if (UP.Count > UP.MaxCount)
922     UP.Count = UP.MaxCount;
923   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
924   if (UP.Count < 2)
925     UP.Count = 0;
926   return ExplicitUnroll;
927 }
928 
929 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
930                             ScalarEvolution *SE, const TargetTransformInfo &TTI,
931                             AssumptionCache &AC, OptimizationRemarkEmitter &ORE,
932                             bool PreserveLCSSA,
933                             Optional<unsigned> ProvidedCount,
934                             Optional<unsigned> ProvidedThreshold,
935                             Optional<bool> ProvidedAllowPartial,
936                             Optional<bool> ProvidedRuntime,
937                             Optional<bool> ProvidedUpperBound) {
938   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
939                << "] Loop %" << L->getHeader()->getName() << "\n");
940   if (HasUnrollDisablePragma(L)) {
941     return false;
942   }
943 
944   unsigned NumInlineCandidates;
945   bool NotDuplicatable;
946   bool Convergent;
947   unsigned LoopSize = ApproximateLoopSize(
948       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
949   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
950   if (NotDuplicatable) {
951     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
952                  << " instructions.\n");
953     return false;
954   }
955   if (NumInlineCandidates != 0) {
956     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
957     return false;
958   }
959   if (!L->isLoopSimplifyForm()) {
960     DEBUG(
961         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
962     return false;
963   }
964 
965   // Find trip count and trip multiple if count is not available
966   unsigned TripCount = 0;
967   unsigned MaxTripCount = 0;
968   unsigned TripMultiple = 1;
969   // If there are multiple exiting blocks but one of them is the latch, use the
970   // latch for the trip count estimation. Otherwise insist on a single exiting
971   // block for the trip count estimation.
972   BasicBlock *ExitingBlock = L->getLoopLatch();
973   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
974     ExitingBlock = L->getExitingBlock();
975   if (ExitingBlock) {
976     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
977     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
978   }
979 
980   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
981       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
982       ProvidedRuntime, ProvidedUpperBound);
983 
984   // Exit early if unrolling is disabled.
985   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
986     return false;
987 
988   // If the loop contains a convergent operation, the prelude we'd add
989   // to do the first few instructions before we hit the unrolled loop
990   // is unsafe -- it adds a control-flow dependency to the convergent
991   // operation.  Therefore restrict remainder loop (try unrollig without).
992   //
993   // TODO: This is quite conservative.  In practice, convergent_op()
994   // is likely to be called unconditionally in the loop.  In this
995   // case, the program would be ill-formed (on most architectures)
996   // unless n were the same on all threads in a thread group.
997   // Assuming n is the same on all threads, any kind of unrolling is
998   // safe.  But currently llvm's notion of convergence isn't powerful
999   // enough to express this.
1000   if (Convergent)
1001     UP.AllowRemainder = false;
1002 
1003   // Try to find the trip count upper bound if we cannot find the exact trip
1004   // count.
1005   bool MaxOrZero = false;
1006   if (!TripCount) {
1007     MaxTripCount = SE->getSmallConstantMaxTripCount(L);
1008     MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
1009     // We can unroll by the upper bound amount if it's generally allowed or if
1010     // we know that the loop is executed either the upper bound or zero times.
1011     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1012     // loop tests remains the same compared to the non-unrolled version, whereas
1013     // the generic upper bound unrolling keeps all but the last loop test so the
1014     // number of loop tests goes up which may end up being worse on targets with
1015     // constriained branch predictor resources so is controlled by an option.)
1016     // In addition we only unroll small upper bounds.
1017     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1018       MaxTripCount = 0;
1019     }
1020   }
1021 
1022   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1023   // fully unroll the loop.
1024   bool UseUpperBound = false;
1025   bool IsCountSetExplicitly =
1026       computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount,
1027                          TripMultiple, LoopSize, UP, UseUpperBound);
1028   if (!UP.Count)
1029     return false;
1030   // Unroll factor (Count) must be less or equal to TripCount.
1031   if (TripCount && UP.Count > TripCount)
1032     UP.Count = TripCount;
1033 
1034   // Unroll the loop.
1035   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
1036                   UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero,
1037                   TripMultiple, LI, SE, &DT, &AC, &ORE, PreserveLCSSA))
1038     return false;
1039 
1040   // If loop has an unroll count pragma or unrolled by explicitly set count
1041   // mark loop as unrolled to prevent unrolling beyond that requested.
1042   if (IsCountSetExplicitly)
1043     SetLoopAlreadyUnrolled(L);
1044   return true;
1045 }
1046 
1047 namespace {
1048 class LoopUnroll : public LoopPass {
1049 public:
1050   static char ID; // Pass ID, replacement for typeid
1051   LoopUnroll(Optional<unsigned> Threshold = None,
1052              Optional<unsigned> Count = None,
1053              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1054              Optional<bool> UpperBound = None)
1055       : LoopPass(ID), ProvidedCount(std::move(Count)),
1056         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1057         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) {
1058     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1059   }
1060 
1061   Optional<unsigned> ProvidedCount;
1062   Optional<unsigned> ProvidedThreshold;
1063   Optional<bool> ProvidedAllowPartial;
1064   Optional<bool> ProvidedRuntime;
1065   Optional<bool> ProvidedUpperBound;
1066 
1067   bool runOnLoop(Loop *L, LPPassManager &) override {
1068     if (skipLoop(L))
1069       return false;
1070 
1071     Function &F = *L->getHeader()->getParent();
1072 
1073     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1074     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1075     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1076     const TargetTransformInfo &TTI =
1077         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1078     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1079     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1080     // pass.  Function analyses need to be preserved across loop transformations
1081     // but ORE cannot be preserved (see comment before the pass definition).
1082     OptimizationRemarkEmitter ORE(&F);
1083     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1084 
1085     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA,
1086                            ProvidedCount, ProvidedThreshold,
1087                            ProvidedAllowPartial, ProvidedRuntime,
1088                            ProvidedUpperBound);
1089   }
1090 
1091   /// This transformation requires natural loop information & requires that
1092   /// loop preheaders be inserted into the CFG...
1093   ///
1094   void getAnalysisUsage(AnalysisUsage &AU) const override {
1095     AU.addRequired<AssumptionCacheTracker>();
1096     AU.addRequired<TargetTransformInfoWrapperPass>();
1097     // FIXME: Loop passes are required to preserve domtree, and for now we just
1098     // recreate dom info if anything gets unrolled.
1099     getLoopAnalysisUsage(AU);
1100   }
1101 };
1102 }
1103 
1104 char LoopUnroll::ID = 0;
1105 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1107 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1109 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1110 
1111 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
1112                                  int Runtime, int UpperBound) {
1113   // TODO: It would make more sense for this function to take the optionals
1114   // directly, but that's dangerous since it would silently break out of tree
1115   // callers.
1116   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
1117                         Count == -1 ? None : Optional<unsigned>(Count),
1118                         AllowPartial == -1 ? None
1119                                            : Optional<bool>(AllowPartial),
1120                         Runtime == -1 ? None : Optional<bool>(Runtime),
1121                         UpperBound == -1 ? None : Optional<bool>(UpperBound));
1122 }
1123 
1124 Pass *llvm::createSimpleLoopUnrollPass() {
1125   return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0);
1126 }
1127 
1128 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) {
1129   const auto &FAM =
1130       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
1131   Function *F = L.getHeader()->getParent();
1132 
1133 
1134   DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
1135   LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F);
1136   ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
1137   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
1138   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
1139   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1140   if (!DT)
1141     report_fatal_error(
1142         "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level");
1143   if (!LI)
1144     report_fatal_error(
1145         "LoopUnrollPass: LoopAnalysis not cached at a higher level");
1146   if (!SE)
1147     report_fatal_error(
1148         "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level");
1149   if (!TTI)
1150     report_fatal_error(
1151         "LoopUnrollPass: TargetIRAnalysis not cached at a higher level");
1152   if (!AC)
1153     report_fatal_error(
1154         "LoopUnrollPass: AssumptionAnalysis not cached at a higher level");
1155   if (!ORE)
1156     report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not "
1157                        "cached at a higher level");
1158 
1159   bool Changed =
1160       tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true,
1161                       ProvidedCount, ProvidedThreshold, ProvidedAllowPartial,
1162                       ProvidedRuntime, ProvidedUpperBound);
1163 
1164   if (!Changed)
1165     return PreservedAnalyses::all();
1166   return getLoopPassPreservedAnalyses();
1167 }
1168