1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopPassManager.h" 23 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InstVisitor.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/UnrollLoop.h" 39 #include <climits> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 static cl::opt<unsigned> 47 UnrollThreshold("unroll-threshold", cl::Hidden, 48 cl::desc("The baseline cost threshold for loop unrolling")); 49 50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 51 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 52 cl::desc("The percentage of estimated dynamic cost which must be saved by " 53 "unrolling to allow unrolling up to the max threshold.")); 54 55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 56 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 57 cl::desc("This is the amount discounted from the total unroll cost when " 58 "the unrolled form has a high dynamic cost savings (triggered by " 59 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 60 61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 62 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 63 cl::desc("Don't allow loop unrolling to simulate more than this number of" 64 "iterations when checking full unroll profitability")); 65 66 static cl::opt<unsigned> UnrollCount( 67 "unroll-count", cl::Hidden, 68 cl::desc("Use this unroll count for all loops including those with " 69 "unroll_count pragma values, for testing purposes")); 70 71 static cl::opt<unsigned> UnrollMaxCount( 72 "unroll-max-count", cl::Hidden, 73 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 74 "testing purposes")); 75 76 static cl::opt<unsigned> UnrollFullMaxCount( 77 "unroll-full-max-count", cl::Hidden, 78 cl::desc( 79 "Set the max unroll count for full unrolling, for testing purposes")); 80 81 static cl::opt<bool> 82 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 83 cl::desc("Allows loops to be partially unrolled until " 84 "-unroll-threshold loop size is reached.")); 85 86 static cl::opt<bool> UnrollAllowRemainder( 87 "unroll-allow-remainder", cl::Hidden, 88 cl::desc("Allow generation of a loop remainder (extra iterations) " 89 "when unrolling a loop.")); 90 91 static cl::opt<bool> 92 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 93 cl::desc("Unroll loops with run-time trip counts")); 94 95 static cl::opt<unsigned> UnrollMaxUpperBound( 96 "unroll-max-upperbound", cl::init(8), cl::Hidden, 97 cl::desc( 98 "The max of trip count upper bound that is considered in unrolling")); 99 100 static cl::opt<unsigned> PragmaUnrollThreshold( 101 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 102 cl::desc("Unrolled size limit for loops with an unroll(full) or " 103 "unroll_count pragma.")); 104 105 /// A magic value for use with the Threshold parameter to indicate 106 /// that the loop unroll should be performed regardless of how much 107 /// code expansion would result. 108 static const unsigned NoThreshold = UINT_MAX; 109 110 /// Gather the various unrolling parameters based on the defaults, compiler 111 /// flags, TTI overrides and user specified parameters. 112 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 113 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 114 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 115 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 116 TargetTransformInfo::UnrollingPreferences UP; 117 118 // Set up the defaults 119 UP.Threshold = 150; 120 UP.PercentDynamicCostSavedThreshold = 50; 121 UP.DynamicCostSavingsDiscount = 100; 122 UP.OptSizeThreshold = 0; 123 UP.PartialThreshold = UP.Threshold; 124 UP.PartialOptSizeThreshold = 0; 125 UP.Count = 0; 126 UP.DefaultUnrollRuntimeCount = 8; 127 UP.MaxCount = UINT_MAX; 128 UP.FullUnrollMaxCount = UINT_MAX; 129 UP.Partial = false; 130 UP.Runtime = false; 131 UP.AllowRemainder = true; 132 UP.AllowExpensiveTripCount = false; 133 UP.Force = false; 134 UP.UpperBound = false; 135 136 // Override with any target specific settings 137 TTI.getUnrollingPreferences(L, UP); 138 139 // Apply size attributes 140 if (L->getHeader()->getParent()->optForSize()) { 141 UP.Threshold = UP.OptSizeThreshold; 142 UP.PartialThreshold = UP.PartialOptSizeThreshold; 143 } 144 145 // Apply any user values specified by cl::opt 146 if (UnrollThreshold.getNumOccurrences() > 0) { 147 UP.Threshold = UnrollThreshold; 148 UP.PartialThreshold = UnrollThreshold; 149 } 150 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 151 UP.PercentDynamicCostSavedThreshold = 152 UnrollPercentDynamicCostSavedThreshold; 153 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 154 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 155 if (UnrollMaxCount.getNumOccurrences() > 0) 156 UP.MaxCount = UnrollMaxCount; 157 if (UnrollFullMaxCount.getNumOccurrences() > 0) 158 UP.FullUnrollMaxCount = UnrollFullMaxCount; 159 if (UnrollAllowPartial.getNumOccurrences() > 0) 160 UP.Partial = UnrollAllowPartial; 161 if (UnrollAllowRemainder.getNumOccurrences() > 0) 162 UP.AllowRemainder = UnrollAllowRemainder; 163 if (UnrollRuntime.getNumOccurrences() > 0) 164 UP.Runtime = UnrollRuntime; 165 if (UnrollMaxUpperBound == 0) 166 UP.UpperBound = false; 167 168 // Apply user values provided by argument 169 if (UserThreshold.hasValue()) { 170 UP.Threshold = *UserThreshold; 171 UP.PartialThreshold = *UserThreshold; 172 } 173 if (UserCount.hasValue()) 174 UP.Count = *UserCount; 175 if (UserAllowPartial.hasValue()) 176 UP.Partial = *UserAllowPartial; 177 if (UserRuntime.hasValue()) 178 UP.Runtime = *UserRuntime; 179 if (UserUpperBound.hasValue()) 180 UP.UpperBound = *UserUpperBound; 181 182 return UP; 183 } 184 185 namespace { 186 /// A struct to densely store the state of an instruction after unrolling at 187 /// each iteration. 188 /// 189 /// This is designed to work like a tuple of <Instruction *, int> for the 190 /// purposes of hashing and lookup, but to be able to associate two boolean 191 /// states with each key. 192 struct UnrolledInstState { 193 Instruction *I; 194 int Iteration : 30; 195 unsigned IsFree : 1; 196 unsigned IsCounted : 1; 197 }; 198 199 /// Hashing and equality testing for a set of the instruction states. 200 struct UnrolledInstStateKeyInfo { 201 typedef DenseMapInfo<Instruction *> PtrInfo; 202 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 203 static inline UnrolledInstState getEmptyKey() { 204 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 205 } 206 static inline UnrolledInstState getTombstoneKey() { 207 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 208 } 209 static inline unsigned getHashValue(const UnrolledInstState &S) { 210 return PairInfo::getHashValue({S.I, S.Iteration}); 211 } 212 static inline bool isEqual(const UnrolledInstState &LHS, 213 const UnrolledInstState &RHS) { 214 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 215 } 216 }; 217 } 218 219 namespace { 220 struct EstimatedUnrollCost { 221 /// \brief The estimated cost after unrolling. 222 int UnrolledCost; 223 224 /// \brief The estimated dynamic cost of executing the instructions in the 225 /// rolled form. 226 int RolledDynamicCost; 227 }; 228 } 229 230 /// \brief Figure out if the loop is worth full unrolling. 231 /// 232 /// Complete loop unrolling can make some loads constant, and we need to know 233 /// if that would expose any further optimization opportunities. This routine 234 /// estimates this optimization. It computes cost of unrolled loop 235 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 236 /// dynamic cost we mean that we won't count costs of blocks that are known not 237 /// to be executed (i.e. if we have a branch in the loop and we know that at the 238 /// given iteration its condition would be resolved to true, we won't add up the 239 /// cost of the 'false'-block). 240 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 241 /// the analysis failed (no benefits expected from the unrolling, or the loop is 242 /// too big to analyze), the returned value is None. 243 static Optional<EstimatedUnrollCost> 244 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 245 ScalarEvolution &SE, const TargetTransformInfo &TTI, 246 int MaxUnrolledLoopSize) { 247 // We want to be able to scale offsets by the trip count and add more offsets 248 // to them without checking for overflows, and we already don't want to 249 // analyze *massive* trip counts, so we force the max to be reasonably small. 250 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 251 "The unroll iterations max is too large!"); 252 253 // Only analyze inner loops. We can't properly estimate cost of nested loops 254 // and we won't visit inner loops again anyway. 255 if (!L->empty()) 256 return None; 257 258 // Don't simulate loops with a big or unknown tripcount 259 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 260 TripCount > UnrollMaxIterationsCountToAnalyze) 261 return None; 262 263 SmallSetVector<BasicBlock *, 16> BBWorklist; 264 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 265 DenseMap<Value *, Constant *> SimplifiedValues; 266 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 267 268 // The estimated cost of the unrolled form of the loop. We try to estimate 269 // this by simplifying as much as we can while computing the estimate. 270 int UnrolledCost = 0; 271 272 // We also track the estimated dynamic (that is, actually executed) cost in 273 // the rolled form. This helps identify cases when the savings from unrolling 274 // aren't just exposing dead control flows, but actual reduced dynamic 275 // instructions due to the simplifications which we expect to occur after 276 // unrolling. 277 int RolledDynamicCost = 0; 278 279 // We track the simplification of each instruction in each iteration. We use 280 // this to recursively merge costs into the unrolled cost on-demand so that 281 // we don't count the cost of any dead code. This is essentially a map from 282 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 283 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 284 285 // A small worklist used to accumulate cost of instructions from each 286 // observable and reached root in the loop. 287 SmallVector<Instruction *, 16> CostWorklist; 288 289 // PHI-used worklist used between iterations while accumulating cost. 290 SmallVector<Instruction *, 4> PHIUsedList; 291 292 // Helper function to accumulate cost for instructions in the loop. 293 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 294 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 295 assert(CostWorklist.empty() && "Must start with an empty cost list"); 296 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 297 CostWorklist.push_back(&RootI); 298 for (;; --Iteration) { 299 do { 300 Instruction *I = CostWorklist.pop_back_val(); 301 302 // InstCostMap only uses I and Iteration as a key, the other two values 303 // don't matter here. 304 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 305 if (CostIter == InstCostMap.end()) 306 // If an input to a PHI node comes from a dead path through the loop 307 // we may have no cost data for it here. What that actually means is 308 // that it is free. 309 continue; 310 auto &Cost = *CostIter; 311 if (Cost.IsCounted) 312 // Already counted this instruction. 313 continue; 314 315 // Mark that we are counting the cost of this instruction now. 316 Cost.IsCounted = true; 317 318 // If this is a PHI node in the loop header, just add it to the PHI set. 319 if (auto *PhiI = dyn_cast<PHINode>(I)) 320 if (PhiI->getParent() == L->getHeader()) { 321 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 322 "inherently simplify during unrolling."); 323 if (Iteration == 0) 324 continue; 325 326 // Push the incoming value from the backedge into the PHI used list 327 // if it is an in-loop instruction. We'll use this to populate the 328 // cost worklist for the next iteration (as we count backwards). 329 if (auto *OpI = dyn_cast<Instruction>( 330 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 331 if (L->contains(OpI)) 332 PHIUsedList.push_back(OpI); 333 continue; 334 } 335 336 // First accumulate the cost of this instruction. 337 if (!Cost.IsFree) { 338 UnrolledCost += TTI.getUserCost(I); 339 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 340 << "): "); 341 DEBUG(I->dump()); 342 } 343 344 // We must count the cost of every operand which is not free, 345 // recursively. If we reach a loop PHI node, simply add it to the set 346 // to be considered on the next iteration (backwards!). 347 for (Value *Op : I->operands()) { 348 // Check whether this operand is free due to being a constant or 349 // outside the loop. 350 auto *OpI = dyn_cast<Instruction>(Op); 351 if (!OpI || !L->contains(OpI)) 352 continue; 353 354 // Otherwise accumulate its cost. 355 CostWorklist.push_back(OpI); 356 } 357 } while (!CostWorklist.empty()); 358 359 if (PHIUsedList.empty()) 360 // We've exhausted the search. 361 break; 362 363 assert(Iteration > 0 && 364 "Cannot track PHI-used values past the first iteration!"); 365 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 366 PHIUsedList.clear(); 367 } 368 }; 369 370 // Ensure that we don't violate the loop structure invariants relied on by 371 // this analysis. 372 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 373 assert(L->isLCSSAForm(DT) && 374 "Must have loops in LCSSA form to track live-out values."); 375 376 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 377 378 // Simulate execution of each iteration of the loop counting instructions, 379 // which would be simplified. 380 // Since the same load will take different values on different iterations, 381 // we literally have to go through all loop's iterations. 382 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 383 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 384 385 // Prepare for the iteration by collecting any simplified entry or backedge 386 // inputs. 387 for (Instruction &I : *L->getHeader()) { 388 auto *PHI = dyn_cast<PHINode>(&I); 389 if (!PHI) 390 break; 391 392 // The loop header PHI nodes must have exactly two input: one from the 393 // loop preheader and one from the loop latch. 394 assert( 395 PHI->getNumIncomingValues() == 2 && 396 "Must have an incoming value only for the preheader and the latch."); 397 398 Value *V = PHI->getIncomingValueForBlock( 399 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 400 Constant *C = dyn_cast<Constant>(V); 401 if (Iteration != 0 && !C) 402 C = SimplifiedValues.lookup(V); 403 if (C) 404 SimplifiedInputValues.push_back({PHI, C}); 405 } 406 407 // Now clear and re-populate the map for the next iteration. 408 SimplifiedValues.clear(); 409 while (!SimplifiedInputValues.empty()) 410 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 411 412 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 413 414 BBWorklist.clear(); 415 BBWorklist.insert(L->getHeader()); 416 // Note that we *must not* cache the size, this loop grows the worklist. 417 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 418 BasicBlock *BB = BBWorklist[Idx]; 419 420 // Visit all instructions in the given basic block and try to simplify 421 // it. We don't change the actual IR, just count optimization 422 // opportunities. 423 for (Instruction &I : *BB) { 424 if (isa<DbgInfoIntrinsic>(I)) 425 continue; 426 427 // Track this instruction's expected baseline cost when executing the 428 // rolled loop form. 429 RolledDynamicCost += TTI.getUserCost(&I); 430 431 // Visit the instruction to analyze its loop cost after unrolling, 432 // and if the visitor returns true, mark the instruction as free after 433 // unrolling and continue. 434 bool IsFree = Analyzer.visit(I); 435 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 436 (unsigned)IsFree, 437 /*IsCounted*/ false}).second; 438 (void)Inserted; 439 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 440 441 if (IsFree) 442 continue; 443 444 // Can't properly model a cost of a call. 445 // FIXME: With a proper cost model we should be able to do it. 446 if(isa<CallInst>(&I)) 447 return None; 448 449 // If the instruction might have a side-effect recursively account for 450 // the cost of it and all the instructions leading up to it. 451 if (I.mayHaveSideEffects()) 452 AddCostRecursively(I, Iteration); 453 454 // If unrolled body turns out to be too big, bail out. 455 if (UnrolledCost > MaxUnrolledLoopSize) { 456 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 457 << " UnrolledCost: " << UnrolledCost 458 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 459 << "\n"); 460 return None; 461 } 462 } 463 464 TerminatorInst *TI = BB->getTerminator(); 465 466 // Add in the live successors by first checking whether we have terminator 467 // that may be simplified based on the values simplified by this call. 468 BasicBlock *KnownSucc = nullptr; 469 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 470 if (BI->isConditional()) { 471 if (Constant *SimpleCond = 472 SimplifiedValues.lookup(BI->getCondition())) { 473 // Just take the first successor if condition is undef 474 if (isa<UndefValue>(SimpleCond)) 475 KnownSucc = BI->getSuccessor(0); 476 else if (ConstantInt *SimpleCondVal = 477 dyn_cast<ConstantInt>(SimpleCond)) 478 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 479 } 480 } 481 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 482 if (Constant *SimpleCond = 483 SimplifiedValues.lookup(SI->getCondition())) { 484 // Just take the first successor if condition is undef 485 if (isa<UndefValue>(SimpleCond)) 486 KnownSucc = SI->getSuccessor(0); 487 else if (ConstantInt *SimpleCondVal = 488 dyn_cast<ConstantInt>(SimpleCond)) 489 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 490 } 491 } 492 if (KnownSucc) { 493 if (L->contains(KnownSucc)) 494 BBWorklist.insert(KnownSucc); 495 else 496 ExitWorklist.insert({BB, KnownSucc}); 497 continue; 498 } 499 500 // Add BB's successors to the worklist. 501 for (BasicBlock *Succ : successors(BB)) 502 if (L->contains(Succ)) 503 BBWorklist.insert(Succ); 504 else 505 ExitWorklist.insert({BB, Succ}); 506 AddCostRecursively(*TI, Iteration); 507 } 508 509 // If we found no optimization opportunities on the first iteration, we 510 // won't find them on later ones too. 511 if (UnrolledCost == RolledDynamicCost) { 512 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 513 << " UnrolledCost: " << UnrolledCost << "\n"); 514 return None; 515 } 516 } 517 518 while (!ExitWorklist.empty()) { 519 BasicBlock *ExitingBB, *ExitBB; 520 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 521 522 for (Instruction &I : *ExitBB) { 523 auto *PN = dyn_cast<PHINode>(&I); 524 if (!PN) 525 break; 526 527 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 528 if (auto *OpI = dyn_cast<Instruction>(Op)) 529 if (L->contains(OpI)) 530 AddCostRecursively(*OpI, TripCount - 1); 531 } 532 } 533 534 DEBUG(dbgs() << "Analysis finished:\n" 535 << "UnrolledCost: " << UnrolledCost << ", " 536 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 537 return {{UnrolledCost, RolledDynamicCost}}; 538 } 539 540 /// ApproximateLoopSize - Approximate the size of the loop. 541 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 542 bool &NotDuplicatable, bool &Convergent, 543 const TargetTransformInfo &TTI, 544 AssumptionCache *AC) { 545 SmallPtrSet<const Value *, 32> EphValues; 546 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 547 548 CodeMetrics Metrics; 549 for (BasicBlock *BB : L->blocks()) 550 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 551 NumCalls = Metrics.NumInlineCandidates; 552 NotDuplicatable = Metrics.notDuplicatable; 553 Convergent = Metrics.convergent; 554 555 unsigned LoopSize = Metrics.NumInsts; 556 557 // Don't allow an estimate of size zero. This would allows unrolling of loops 558 // with huge iteration counts, which is a compile time problem even if it's 559 // not a problem for code quality. Also, the code using this size may assume 560 // that each loop has at least three instructions (likely a conditional 561 // branch, a comparison feeding that branch, and some kind of loop increment 562 // feeding that comparison instruction). 563 LoopSize = std::max(LoopSize, 3u); 564 565 return LoopSize; 566 } 567 568 // Returns the loop hint metadata node with the given name (for example, 569 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 570 // returned. 571 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 572 if (MDNode *LoopID = L->getLoopID()) 573 return GetUnrollMetadata(LoopID, Name); 574 return nullptr; 575 } 576 577 // Returns true if the loop has an unroll(full) pragma. 578 static bool HasUnrollFullPragma(const Loop *L) { 579 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 580 } 581 582 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 583 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 584 static bool HasUnrollEnablePragma(const Loop *L) { 585 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 586 } 587 588 // Returns true if the loop has an unroll(disable) pragma. 589 static bool HasUnrollDisablePragma(const Loop *L) { 590 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 591 } 592 593 // Returns true if the loop has an runtime unroll(disable) pragma. 594 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 595 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 596 } 597 598 // If loop has an unroll_count pragma return the (necessarily 599 // positive) value from the pragma. Otherwise return 0. 600 static unsigned UnrollCountPragmaValue(const Loop *L) { 601 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 602 if (MD) { 603 assert(MD->getNumOperands() == 2 && 604 "Unroll count hint metadata should have two operands."); 605 unsigned Count = 606 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 607 assert(Count >= 1 && "Unroll count must be positive."); 608 return Count; 609 } 610 return 0; 611 } 612 613 // Remove existing unroll metadata and add unroll disable metadata to 614 // indicate the loop has already been unrolled. This prevents a loop 615 // from being unrolled more than is directed by a pragma if the loop 616 // unrolling pass is run more than once (which it generally is). 617 static void SetLoopAlreadyUnrolled(Loop *L) { 618 MDNode *LoopID = L->getLoopID(); 619 // First remove any existing loop unrolling metadata. 620 SmallVector<Metadata *, 4> MDs; 621 // Reserve first location for self reference to the LoopID metadata node. 622 MDs.push_back(nullptr); 623 624 if (LoopID) { 625 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 626 bool IsUnrollMetadata = false; 627 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 628 if (MD) { 629 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 630 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 631 } 632 if (!IsUnrollMetadata) 633 MDs.push_back(LoopID->getOperand(i)); 634 } 635 } 636 637 // Add unroll(disable) metadata to disable future unrolling. 638 LLVMContext &Context = L->getHeader()->getContext(); 639 SmallVector<Metadata *, 1> DisableOperands; 640 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 641 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 642 MDs.push_back(DisableNode); 643 644 MDNode *NewLoopID = MDNode::get(Context, MDs); 645 // Set operand 0 to refer to the loop id itself. 646 NewLoopID->replaceOperandWith(0, NewLoopID); 647 L->setLoopID(NewLoopID); 648 } 649 650 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 651 unsigned PercentDynamicCostSavedThreshold, 652 unsigned DynamicCostSavingsDiscount, 653 uint64_t UnrolledCost, 654 uint64_t RolledDynamicCost) { 655 if (Threshold == NoThreshold) { 656 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 657 return true; 658 } 659 660 if (UnrolledCost <= Threshold) { 661 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 662 << UnrolledCost << "<=" << Threshold << "\n"); 663 return true; 664 } 665 666 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 667 assert(RolledDynamicCost >= UnrolledCost && 668 "Cannot have a higher unrolled cost than a rolled cost!"); 669 670 // Compute the percentage of the dynamic cost in the rolled form that is 671 // saved when unrolled. If unrolling dramatically reduces the estimated 672 // dynamic cost of the loop, we use a higher threshold to allow more 673 // unrolling. 674 unsigned PercentDynamicCostSaved = 675 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 676 677 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 678 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 679 (int64_t)Threshold) { 680 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 681 "expected dynamic cost by " 682 << PercentDynamicCostSaved << "% (threshold: " 683 << PercentDynamicCostSavedThreshold << "%)\n" 684 << " and the unrolled cost (" << UnrolledCost 685 << ") is less than the max threshold (" 686 << DynamicCostSavingsDiscount << ").\n"); 687 return true; 688 } 689 690 DEBUG(dbgs() << " Too large to fully unroll:\n"); 691 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 692 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 693 DEBUG(dbgs() << " Percent cost saved threshold: " 694 << PercentDynamicCostSavedThreshold << "%\n"); 695 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 696 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 697 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 698 << "\n"); 699 return false; 700 } 701 702 // Returns true if unroll count was set explicitly. 703 // Calculates unroll count and writes it to UP.Count. 704 static bool computeUnrollCount( 705 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 706 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 707 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 708 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 709 // BEInsns represents number of instructions optimized when "back edge" 710 // becomes "fall through" in unrolled loop. 711 // For now we count a conditional branch on a backedge and a comparison 712 // feeding it. 713 unsigned BEInsns = 2; 714 // Check for explicit Count. 715 // 1st priority is unroll count set by "unroll-count" option. 716 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 717 if (UserUnrollCount) { 718 UP.Count = UnrollCount; 719 UP.AllowExpensiveTripCount = true; 720 UP.Force = true; 721 if (UP.AllowRemainder && 722 (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold) 723 return true; 724 } 725 726 // 2nd priority is unroll count set by pragma. 727 unsigned PragmaCount = UnrollCountPragmaValue(L); 728 if (PragmaCount > 0) { 729 UP.Count = PragmaCount; 730 UP.Runtime = true; 731 UP.AllowExpensiveTripCount = true; 732 UP.Force = true; 733 if (UP.AllowRemainder && 734 (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold) 735 return true; 736 } 737 bool PragmaFullUnroll = HasUnrollFullPragma(L); 738 if (PragmaFullUnroll && TripCount != 0) { 739 UP.Count = TripCount; 740 if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold) 741 return false; 742 } 743 744 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 745 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 746 PragmaEnableUnroll || UserUnrollCount; 747 748 uint64_t UnrolledSize; 749 750 if (ExplicitUnroll && TripCount != 0) { 751 // If the loop has an unrolling pragma, we want to be more aggressive with 752 // unrolling limits. Set thresholds to at least the PragmaThreshold value 753 // which is larger than the default limits. 754 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 755 UP.PartialThreshold = 756 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 757 } 758 759 // 3rd priority is full unroll count. 760 // Full unroll makes sense only when TripCount or its upper bound could be 761 // statically calculated. 762 // Also we need to check if we exceed FullUnrollMaxCount. 763 // If using the upper bound to unroll, TripMultiple should be set to 1 because 764 // we do not know when loop may exit. 765 // MaxTripCount and ExactTripCount cannot both be non zero since we only 766 // compute the former when the latter is zero. 767 unsigned ExactTripCount = TripCount; 768 assert((ExactTripCount == 0 || MaxTripCount == 0) && 769 "ExtractTripCound and MaxTripCount cannot both be non zero."); 770 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 771 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 772 // When computing the unrolled size, note that BEInsns are not replicated 773 // like the rest of the loop body. 774 UnrolledSize = 775 (uint64_t)(LoopSize - BEInsns) * FullUnrollTripCount + BEInsns; 776 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 777 UnrolledSize, UnrolledSize)) { 778 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 779 TripCount = FullUnrollTripCount; 780 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 781 UP.Count = TripCount; 782 return ExplicitUnroll; 783 } else { 784 // The loop isn't that small, but we still can fully unroll it if that 785 // helps to remove a significant number of instructions. 786 // To check that, run additional analysis on the loop. 787 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 788 L, FullUnrollTripCount, DT, *SE, TTI, 789 UP.Threshold + UP.DynamicCostSavingsDiscount)) 790 if (canUnrollCompletely(L, UP.Threshold, 791 UP.PercentDynamicCostSavedThreshold, 792 UP.DynamicCostSavingsDiscount, 793 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 794 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 795 TripCount = FullUnrollTripCount; 796 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 797 UP.Count = TripCount; 798 return ExplicitUnroll; 799 } 800 } 801 } 802 803 // 4rd priority is partial unrolling. 804 // Try partial unroll only when TripCount could be staticaly calculated. 805 if (TripCount) { 806 if (UP.Count == 0) 807 UP.Count = TripCount; 808 UP.Partial |= ExplicitUnroll; 809 if (!UP.Partial) { 810 DEBUG(dbgs() << " will not try to unroll partially because " 811 << "-unroll-allow-partial not given\n"); 812 UP.Count = 0; 813 return false; 814 } 815 if (UP.PartialThreshold != NoThreshold) { 816 // Reduce unroll count to be modulo of TripCount for partial unrolling. 817 UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns; 818 if (UnrolledSize > UP.PartialThreshold) 819 UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) / 820 (LoopSize - BEInsns); 821 if (UP.Count > UP.MaxCount) 822 UP.Count = UP.MaxCount; 823 while (UP.Count != 0 && TripCount % UP.Count != 0) 824 UP.Count--; 825 if (UP.AllowRemainder && UP.Count <= 1) { 826 // If there is no Count that is modulo of TripCount, set Count to 827 // largest power-of-two factor that satisfies the threshold limit. 828 // As we'll create fixup loop, do the type of unrolling only if 829 // remainder loop is allowed. 830 UP.Count = UP.DefaultUnrollRuntimeCount; 831 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 832 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) { 833 UP.Count >>= 1; 834 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 835 } 836 } 837 if (UP.Count < 2) { 838 if (PragmaEnableUnroll) 839 ORE->emit( 840 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 841 L->getStartLoc(), L->getHeader()) 842 << "Unable to unroll loop as directed by unroll(enable) pragma " 843 "because unrolled size is too large."); 844 UP.Count = 0; 845 } 846 } else { 847 UP.Count = TripCount; 848 } 849 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 850 UP.Count != TripCount) 851 ORE->emit( 852 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 853 L->getStartLoc(), L->getHeader()) 854 << "Unable to fully unroll loop as directed by unroll pragma because " 855 "unrolled size is too large."); 856 return ExplicitUnroll; 857 } 858 assert(TripCount == 0 && 859 "All cases when TripCount is constant should be covered here."); 860 if (PragmaFullUnroll) 861 ORE->emit( 862 OptimizationRemarkMissed(DEBUG_TYPE, 863 "CantFullUnrollAsDirectedRuntimeTripCount", 864 L->getStartLoc(), L->getHeader()) 865 << "Unable to fully unroll loop as directed by unroll(full) pragma " 866 "because loop has a runtime trip count."); 867 868 // 5th priority is runtime unrolling. 869 // Don't unroll a runtime trip count loop when it is disabled. 870 if (HasRuntimeUnrollDisablePragma(L)) { 871 UP.Count = 0; 872 return false; 873 } 874 // Reduce count based on the type of unrolling and the threshold values. 875 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 876 if (!UP.Runtime) { 877 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 878 << "-unroll-runtime not given\n"); 879 UP.Count = 0; 880 return false; 881 } 882 if (UP.Count == 0) 883 UP.Count = UP.DefaultUnrollRuntimeCount; 884 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 885 886 // Reduce unroll count to be the largest power-of-two factor of 887 // the original count which satisfies the threshold limit. 888 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) { 889 UP.Count >>= 1; 890 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 891 } 892 893 #ifndef NDEBUG 894 unsigned OrigCount = UP.Count; 895 #endif 896 897 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 898 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 899 UP.Count >>= 1; 900 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 901 "specific or because the loop contains a convergent " 902 "instruction), so unroll count must divide the trip " 903 "multiple, " 904 << TripMultiple << ". Reducing unroll count from " 905 << OrigCount << " to " << UP.Count << ".\n"); 906 using namespace ore; 907 if (PragmaCount > 0 && !UP.AllowRemainder) 908 ORE->emit( 909 OptimizationRemarkMissed(DEBUG_TYPE, 910 "DifferentUnrollCountFromDirected", 911 L->getStartLoc(), L->getHeader()) 912 << "Unable to unroll loop the number of times directed by " 913 "unroll_count pragma because remainder loop is restricted " 914 "(that could architecture specific or because the loop " 915 "contains a convergent instruction) and so must have an unroll " 916 "count that divides the loop trip multiple of " 917 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 918 << NV("UnrollCount", UP.Count) << " time(s)."); 919 } 920 921 if (UP.Count > UP.MaxCount) 922 UP.Count = UP.MaxCount; 923 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 924 if (UP.Count < 2) 925 UP.Count = 0; 926 return ExplicitUnroll; 927 } 928 929 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 930 ScalarEvolution *SE, const TargetTransformInfo &TTI, 931 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 932 bool PreserveLCSSA, 933 Optional<unsigned> ProvidedCount, 934 Optional<unsigned> ProvidedThreshold, 935 Optional<bool> ProvidedAllowPartial, 936 Optional<bool> ProvidedRuntime, 937 Optional<bool> ProvidedUpperBound) { 938 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 939 << "] Loop %" << L->getHeader()->getName() << "\n"); 940 if (HasUnrollDisablePragma(L)) { 941 return false; 942 } 943 944 unsigned NumInlineCandidates; 945 bool NotDuplicatable; 946 bool Convergent; 947 unsigned LoopSize = ApproximateLoopSize( 948 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 949 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 950 if (NotDuplicatable) { 951 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 952 << " instructions.\n"); 953 return false; 954 } 955 if (NumInlineCandidates != 0) { 956 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 957 return false; 958 } 959 if (!L->isLoopSimplifyForm()) { 960 DEBUG( 961 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 962 return false; 963 } 964 965 // Find trip count and trip multiple if count is not available 966 unsigned TripCount = 0; 967 unsigned MaxTripCount = 0; 968 unsigned TripMultiple = 1; 969 // If there are multiple exiting blocks but one of them is the latch, use the 970 // latch for the trip count estimation. Otherwise insist on a single exiting 971 // block for the trip count estimation. 972 BasicBlock *ExitingBlock = L->getLoopLatch(); 973 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 974 ExitingBlock = L->getExitingBlock(); 975 if (ExitingBlock) { 976 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 977 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 978 } 979 980 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 981 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 982 ProvidedRuntime, ProvidedUpperBound); 983 984 // Exit early if unrolling is disabled. 985 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 986 return false; 987 988 // If the loop contains a convergent operation, the prelude we'd add 989 // to do the first few instructions before we hit the unrolled loop 990 // is unsafe -- it adds a control-flow dependency to the convergent 991 // operation. Therefore restrict remainder loop (try unrollig without). 992 // 993 // TODO: This is quite conservative. In practice, convergent_op() 994 // is likely to be called unconditionally in the loop. In this 995 // case, the program would be ill-formed (on most architectures) 996 // unless n were the same on all threads in a thread group. 997 // Assuming n is the same on all threads, any kind of unrolling is 998 // safe. But currently llvm's notion of convergence isn't powerful 999 // enough to express this. 1000 if (Convergent) 1001 UP.AllowRemainder = false; 1002 1003 // Try to find the trip count upper bound if we cannot find the exact trip 1004 // count. 1005 bool MaxOrZero = false; 1006 if (!TripCount) { 1007 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1008 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1009 // We can unroll by the upper bound amount if it's generally allowed or if 1010 // we know that the loop is executed either the upper bound or zero times. 1011 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1012 // loop tests remains the same compared to the non-unrolled version, whereas 1013 // the generic upper bound unrolling keeps all but the last loop test so the 1014 // number of loop tests goes up which may end up being worse on targets with 1015 // constriained branch predictor resources so is controlled by an option.) 1016 // In addition we only unroll small upper bounds. 1017 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1018 MaxTripCount = 0; 1019 } 1020 } 1021 1022 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1023 // fully unroll the loop. 1024 bool UseUpperBound = false; 1025 bool IsCountSetExplicitly = 1026 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1027 TripMultiple, LoopSize, UP, UseUpperBound); 1028 if (!UP.Count) 1029 return false; 1030 // Unroll factor (Count) must be less or equal to TripCount. 1031 if (TripCount && UP.Count > TripCount) 1032 UP.Count = TripCount; 1033 1034 // Unroll the loop. 1035 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1036 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1037 TripMultiple, LI, SE, &DT, &AC, &ORE, PreserveLCSSA)) 1038 return false; 1039 1040 // If loop has an unroll count pragma or unrolled by explicitly set count 1041 // mark loop as unrolled to prevent unrolling beyond that requested. 1042 if (IsCountSetExplicitly) 1043 SetLoopAlreadyUnrolled(L); 1044 return true; 1045 } 1046 1047 namespace { 1048 class LoopUnroll : public LoopPass { 1049 public: 1050 static char ID; // Pass ID, replacement for typeid 1051 LoopUnroll(Optional<unsigned> Threshold = None, 1052 Optional<unsigned> Count = None, 1053 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1054 Optional<bool> UpperBound = None) 1055 : LoopPass(ID), ProvidedCount(std::move(Count)), 1056 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1057 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1058 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1059 } 1060 1061 Optional<unsigned> ProvidedCount; 1062 Optional<unsigned> ProvidedThreshold; 1063 Optional<bool> ProvidedAllowPartial; 1064 Optional<bool> ProvidedRuntime; 1065 Optional<bool> ProvidedUpperBound; 1066 1067 bool runOnLoop(Loop *L, LPPassManager &) override { 1068 if (skipLoop(L)) 1069 return false; 1070 1071 Function &F = *L->getHeader()->getParent(); 1072 1073 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1074 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1075 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1076 const TargetTransformInfo &TTI = 1077 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1078 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1079 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1080 // pass. Function analyses need to be preserved across loop transformations 1081 // but ORE cannot be preserved (see comment before the pass definition). 1082 OptimizationRemarkEmitter ORE(&F); 1083 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1084 1085 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1086 ProvidedCount, ProvidedThreshold, 1087 ProvidedAllowPartial, ProvidedRuntime, 1088 ProvidedUpperBound); 1089 } 1090 1091 /// This transformation requires natural loop information & requires that 1092 /// loop preheaders be inserted into the CFG... 1093 /// 1094 void getAnalysisUsage(AnalysisUsage &AU) const override { 1095 AU.addRequired<AssumptionCacheTracker>(); 1096 AU.addRequired<TargetTransformInfoWrapperPass>(); 1097 // FIXME: Loop passes are required to preserve domtree, and for now we just 1098 // recreate dom info if anything gets unrolled. 1099 getLoopAnalysisUsage(AU); 1100 } 1101 }; 1102 } 1103 1104 char LoopUnroll::ID = 0; 1105 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1107 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1108 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1109 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1110 1111 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1112 int Runtime, int UpperBound) { 1113 // TODO: It would make more sense for this function to take the optionals 1114 // directly, but that's dangerous since it would silently break out of tree 1115 // callers. 1116 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1117 Count == -1 ? None : Optional<unsigned>(Count), 1118 AllowPartial == -1 ? None 1119 : Optional<bool>(AllowPartial), 1120 Runtime == -1 ? None : Optional<bool>(Runtime), 1121 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1122 } 1123 1124 Pass *llvm::createSimpleLoopUnrollPass() { 1125 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1126 } 1127 1128 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1129 const auto &FAM = 1130 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1131 Function *F = L.getHeader()->getParent(); 1132 1133 1134 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1135 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1136 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1137 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1138 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 1139 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1140 if (!DT) 1141 report_fatal_error( 1142 "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1143 if (!LI) 1144 report_fatal_error( 1145 "LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1146 if (!SE) 1147 report_fatal_error( 1148 "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1149 if (!TTI) 1150 report_fatal_error( 1151 "LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1152 if (!AC) 1153 report_fatal_error( 1154 "LoopUnrollPass: AssumptionAnalysis not cached at a higher level"); 1155 if (!ORE) 1156 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1157 "cached at a higher level"); 1158 1159 bool Changed = 1160 tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, 1161 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1162 ProvidedRuntime, ProvidedUpperBound); 1163 1164 if (!Changed) 1165 return PreservedAnalyses::all(); 1166 return getLoopPassPreservedAnalyses(); 1167 } 1168