1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 #include "llvm/Transforms/Utils/UnrollLoop.h" 38 #include <climits> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 static cl::opt<unsigned> 46 UnrollThreshold("unroll-threshold", cl::Hidden, 47 cl::desc("The baseline cost threshold for loop unrolling")); 48 49 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 50 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 51 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 52 "to the threshold when aggressively unrolling a loop due to the " 53 "dynamic cost savings. If completely unrolling a loop will reduce " 54 "the total runtime from X to Y, we boost the loop unroll " 55 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 56 "X/Y). This limit avoids excessive code bloat.")); 57 58 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 59 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 60 cl::desc("Don't allow loop unrolling to simulate more than this number of" 61 "iterations when checking full unroll profitability")); 62 63 static cl::opt<unsigned> UnrollCount( 64 "unroll-count", cl::Hidden, 65 cl::desc("Use this unroll count for all loops including those with " 66 "unroll_count pragma values, for testing purposes")); 67 68 static cl::opt<unsigned> UnrollMaxCount( 69 "unroll-max-count", cl::Hidden, 70 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 71 "testing purposes")); 72 73 static cl::opt<unsigned> UnrollFullMaxCount( 74 "unroll-full-max-count", cl::Hidden, 75 cl::desc( 76 "Set the max unroll count for full unrolling, for testing purposes")); 77 78 static cl::opt<bool> 79 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 80 cl::desc("Allows loops to be partially unrolled until " 81 "-unroll-threshold loop size is reached.")); 82 83 static cl::opt<bool> UnrollAllowRemainder( 84 "unroll-allow-remainder", cl::Hidden, 85 cl::desc("Allow generation of a loop remainder (extra iterations) " 86 "when unrolling a loop.")); 87 88 static cl::opt<bool> 89 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 90 cl::desc("Unroll loops with run-time trip counts")); 91 92 static cl::opt<unsigned> UnrollMaxUpperBound( 93 "unroll-max-upperbound", cl::init(8), cl::Hidden, 94 cl::desc( 95 "The max of trip count upper bound that is considered in unrolling")); 96 97 static cl::opt<unsigned> PragmaUnrollThreshold( 98 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 99 cl::desc("Unrolled size limit for loops with an unroll(full) or " 100 "unroll_count pragma.")); 101 102 static cl::opt<unsigned> FlatLoopTripCountThreshold( 103 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 104 cl::desc("If the runtime tripcount for the loop is lower than the " 105 "threshold, the loop is considered as flat and will be less " 106 "aggressively unrolled.")); 107 108 static cl::opt<bool> 109 UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden, 110 cl::desc("Allows loops to be peeled when the dynamic " 111 "trip count is known to be low.")); 112 113 /// A magic value for use with the Threshold parameter to indicate 114 /// that the loop unroll should be performed regardless of how much 115 /// code expansion would result. 116 static const unsigned NoThreshold = UINT_MAX; 117 118 /// Gather the various unrolling parameters based on the defaults, compiler 119 /// flags, TTI overrides and user specified parameters. 120 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 121 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 122 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 123 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 124 TargetTransformInfo::UnrollingPreferences UP; 125 126 // Set up the defaults 127 UP.Threshold = 150; 128 UP.MaxPercentThresholdBoost = 400; 129 UP.OptSizeThreshold = 0; 130 UP.PartialThreshold = UP.Threshold; 131 UP.PartialOptSizeThreshold = 0; 132 UP.Count = 0; 133 UP.PeelCount = 0; 134 UP.DefaultUnrollRuntimeCount = 8; 135 UP.MaxCount = UINT_MAX; 136 UP.FullUnrollMaxCount = UINT_MAX; 137 UP.BEInsns = 2; 138 UP.Partial = false; 139 UP.Runtime = false; 140 UP.AllowRemainder = true; 141 UP.AllowExpensiveTripCount = false; 142 UP.Force = false; 143 UP.UpperBound = false; 144 UP.AllowPeeling = false; 145 146 // Override with any target specific settings 147 TTI.getUnrollingPreferences(L, UP); 148 149 // Apply size attributes 150 if (L->getHeader()->getParent()->optForSize()) { 151 UP.Threshold = UP.OptSizeThreshold; 152 UP.PartialThreshold = UP.PartialOptSizeThreshold; 153 } 154 155 // Apply any user values specified by cl::opt 156 if (UnrollThreshold.getNumOccurrences() > 0) { 157 UP.Threshold = UnrollThreshold; 158 UP.PartialThreshold = UnrollThreshold; 159 } 160 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 161 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 162 if (UnrollMaxCount.getNumOccurrences() > 0) 163 UP.MaxCount = UnrollMaxCount; 164 if (UnrollFullMaxCount.getNumOccurrences() > 0) 165 UP.FullUnrollMaxCount = UnrollFullMaxCount; 166 if (UnrollAllowPartial.getNumOccurrences() > 0) 167 UP.Partial = UnrollAllowPartial; 168 if (UnrollAllowRemainder.getNumOccurrences() > 0) 169 UP.AllowRemainder = UnrollAllowRemainder; 170 if (UnrollRuntime.getNumOccurrences() > 0) 171 UP.Runtime = UnrollRuntime; 172 if (UnrollMaxUpperBound == 0) 173 UP.UpperBound = false; 174 if (UnrollAllowPeeling.getNumOccurrences() > 0) 175 UP.AllowPeeling = UnrollAllowPeeling; 176 177 // Apply user values provided by argument 178 if (UserThreshold.hasValue()) { 179 UP.Threshold = *UserThreshold; 180 UP.PartialThreshold = *UserThreshold; 181 } 182 if (UserCount.hasValue()) 183 UP.Count = *UserCount; 184 if (UserAllowPartial.hasValue()) 185 UP.Partial = *UserAllowPartial; 186 if (UserRuntime.hasValue()) 187 UP.Runtime = *UserRuntime; 188 if (UserUpperBound.hasValue()) 189 UP.UpperBound = *UserUpperBound; 190 191 return UP; 192 } 193 194 namespace { 195 /// A struct to densely store the state of an instruction after unrolling at 196 /// each iteration. 197 /// 198 /// This is designed to work like a tuple of <Instruction *, int> for the 199 /// purposes of hashing and lookup, but to be able to associate two boolean 200 /// states with each key. 201 struct UnrolledInstState { 202 Instruction *I; 203 int Iteration : 30; 204 unsigned IsFree : 1; 205 unsigned IsCounted : 1; 206 }; 207 208 /// Hashing and equality testing for a set of the instruction states. 209 struct UnrolledInstStateKeyInfo { 210 typedef DenseMapInfo<Instruction *> PtrInfo; 211 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 212 static inline UnrolledInstState getEmptyKey() { 213 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 214 } 215 static inline UnrolledInstState getTombstoneKey() { 216 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 217 } 218 static inline unsigned getHashValue(const UnrolledInstState &S) { 219 return PairInfo::getHashValue({S.I, S.Iteration}); 220 } 221 static inline bool isEqual(const UnrolledInstState &LHS, 222 const UnrolledInstState &RHS) { 223 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 224 } 225 }; 226 } 227 228 namespace { 229 struct EstimatedUnrollCost { 230 /// \brief The estimated cost after unrolling. 231 unsigned UnrolledCost; 232 233 /// \brief The estimated dynamic cost of executing the instructions in the 234 /// rolled form. 235 unsigned RolledDynamicCost; 236 }; 237 } 238 239 /// \brief Figure out if the loop is worth full unrolling. 240 /// 241 /// Complete loop unrolling can make some loads constant, and we need to know 242 /// if that would expose any further optimization opportunities. This routine 243 /// estimates this optimization. It computes cost of unrolled loop 244 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 245 /// dynamic cost we mean that we won't count costs of blocks that are known not 246 /// to be executed (i.e. if we have a branch in the loop and we know that at the 247 /// given iteration its condition would be resolved to true, we won't add up the 248 /// cost of the 'false'-block). 249 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 250 /// the analysis failed (no benefits expected from the unrolling, or the loop is 251 /// too big to analyze), the returned value is None. 252 static Optional<EstimatedUnrollCost> 253 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 254 ScalarEvolution &SE, const TargetTransformInfo &TTI, 255 unsigned MaxUnrolledLoopSize) { 256 // We want to be able to scale offsets by the trip count and add more offsets 257 // to them without checking for overflows, and we already don't want to 258 // analyze *massive* trip counts, so we force the max to be reasonably small. 259 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 260 "The unroll iterations max is too large!"); 261 262 // Only analyze inner loops. We can't properly estimate cost of nested loops 263 // and we won't visit inner loops again anyway. 264 if (!L->empty()) 265 return None; 266 267 // Don't simulate loops with a big or unknown tripcount 268 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 269 TripCount > UnrollMaxIterationsCountToAnalyze) 270 return None; 271 272 SmallSetVector<BasicBlock *, 16> BBWorklist; 273 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 274 DenseMap<Value *, Constant *> SimplifiedValues; 275 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 276 277 // The estimated cost of the unrolled form of the loop. We try to estimate 278 // this by simplifying as much as we can while computing the estimate. 279 unsigned UnrolledCost = 0; 280 281 // We also track the estimated dynamic (that is, actually executed) cost in 282 // the rolled form. This helps identify cases when the savings from unrolling 283 // aren't just exposing dead control flows, but actual reduced dynamic 284 // instructions due to the simplifications which we expect to occur after 285 // unrolling. 286 unsigned RolledDynamicCost = 0; 287 288 // We track the simplification of each instruction in each iteration. We use 289 // this to recursively merge costs into the unrolled cost on-demand so that 290 // we don't count the cost of any dead code. This is essentially a map from 291 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 292 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 293 294 // A small worklist used to accumulate cost of instructions from each 295 // observable and reached root in the loop. 296 SmallVector<Instruction *, 16> CostWorklist; 297 298 // PHI-used worklist used between iterations while accumulating cost. 299 SmallVector<Instruction *, 4> PHIUsedList; 300 301 // Helper function to accumulate cost for instructions in the loop. 302 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 303 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 304 assert(CostWorklist.empty() && "Must start with an empty cost list"); 305 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 306 CostWorklist.push_back(&RootI); 307 for (;; --Iteration) { 308 do { 309 Instruction *I = CostWorklist.pop_back_val(); 310 311 // InstCostMap only uses I and Iteration as a key, the other two values 312 // don't matter here. 313 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 314 if (CostIter == InstCostMap.end()) 315 // If an input to a PHI node comes from a dead path through the loop 316 // we may have no cost data for it here. What that actually means is 317 // that it is free. 318 continue; 319 auto &Cost = *CostIter; 320 if (Cost.IsCounted) 321 // Already counted this instruction. 322 continue; 323 324 // Mark that we are counting the cost of this instruction now. 325 Cost.IsCounted = true; 326 327 // If this is a PHI node in the loop header, just add it to the PHI set. 328 if (auto *PhiI = dyn_cast<PHINode>(I)) 329 if (PhiI->getParent() == L->getHeader()) { 330 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 331 "inherently simplify during unrolling."); 332 if (Iteration == 0) 333 continue; 334 335 // Push the incoming value from the backedge into the PHI used list 336 // if it is an in-loop instruction. We'll use this to populate the 337 // cost worklist for the next iteration (as we count backwards). 338 if (auto *OpI = dyn_cast<Instruction>( 339 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 340 if (L->contains(OpI)) 341 PHIUsedList.push_back(OpI); 342 continue; 343 } 344 345 // First accumulate the cost of this instruction. 346 if (!Cost.IsFree) { 347 UnrolledCost += TTI.getUserCost(I); 348 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 349 << "): "); 350 DEBUG(I->dump()); 351 } 352 353 // We must count the cost of every operand which is not free, 354 // recursively. If we reach a loop PHI node, simply add it to the set 355 // to be considered on the next iteration (backwards!). 356 for (Value *Op : I->operands()) { 357 // Check whether this operand is free due to being a constant or 358 // outside the loop. 359 auto *OpI = dyn_cast<Instruction>(Op); 360 if (!OpI || !L->contains(OpI)) 361 continue; 362 363 // Otherwise accumulate its cost. 364 CostWorklist.push_back(OpI); 365 } 366 } while (!CostWorklist.empty()); 367 368 if (PHIUsedList.empty()) 369 // We've exhausted the search. 370 break; 371 372 assert(Iteration > 0 && 373 "Cannot track PHI-used values past the first iteration!"); 374 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 375 PHIUsedList.clear(); 376 } 377 }; 378 379 // Ensure that we don't violate the loop structure invariants relied on by 380 // this analysis. 381 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 382 assert(L->isLCSSAForm(DT) && 383 "Must have loops in LCSSA form to track live-out values."); 384 385 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 386 387 // Simulate execution of each iteration of the loop counting instructions, 388 // which would be simplified. 389 // Since the same load will take different values on different iterations, 390 // we literally have to go through all loop's iterations. 391 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 392 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 393 394 // Prepare for the iteration by collecting any simplified entry or backedge 395 // inputs. 396 for (Instruction &I : *L->getHeader()) { 397 auto *PHI = dyn_cast<PHINode>(&I); 398 if (!PHI) 399 break; 400 401 // The loop header PHI nodes must have exactly two input: one from the 402 // loop preheader and one from the loop latch. 403 assert( 404 PHI->getNumIncomingValues() == 2 && 405 "Must have an incoming value only for the preheader and the latch."); 406 407 Value *V = PHI->getIncomingValueForBlock( 408 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 409 Constant *C = dyn_cast<Constant>(V); 410 if (Iteration != 0 && !C) 411 C = SimplifiedValues.lookup(V); 412 if (C) 413 SimplifiedInputValues.push_back({PHI, C}); 414 } 415 416 // Now clear and re-populate the map for the next iteration. 417 SimplifiedValues.clear(); 418 while (!SimplifiedInputValues.empty()) 419 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 420 421 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 422 423 BBWorklist.clear(); 424 BBWorklist.insert(L->getHeader()); 425 // Note that we *must not* cache the size, this loop grows the worklist. 426 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 427 BasicBlock *BB = BBWorklist[Idx]; 428 429 // Visit all instructions in the given basic block and try to simplify 430 // it. We don't change the actual IR, just count optimization 431 // opportunities. 432 for (Instruction &I : *BB) { 433 if (isa<DbgInfoIntrinsic>(I)) 434 continue; 435 436 // Track this instruction's expected baseline cost when executing the 437 // rolled loop form. 438 RolledDynamicCost += TTI.getUserCost(&I); 439 440 // Visit the instruction to analyze its loop cost after unrolling, 441 // and if the visitor returns true, mark the instruction as free after 442 // unrolling and continue. 443 bool IsFree = Analyzer.visit(I); 444 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 445 (unsigned)IsFree, 446 /*IsCounted*/ false}).second; 447 (void)Inserted; 448 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 449 450 if (IsFree) 451 continue; 452 453 // Can't properly model a cost of a call. 454 // FIXME: With a proper cost model we should be able to do it. 455 if(isa<CallInst>(&I)) 456 return None; 457 458 // If the instruction might have a side-effect recursively account for 459 // the cost of it and all the instructions leading up to it. 460 if (I.mayHaveSideEffects()) 461 AddCostRecursively(I, Iteration); 462 463 // If unrolled body turns out to be too big, bail out. 464 if (UnrolledCost > MaxUnrolledLoopSize) { 465 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 466 << " UnrolledCost: " << UnrolledCost 467 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 468 << "\n"); 469 return None; 470 } 471 } 472 473 TerminatorInst *TI = BB->getTerminator(); 474 475 // Add in the live successors by first checking whether we have terminator 476 // that may be simplified based on the values simplified by this call. 477 BasicBlock *KnownSucc = nullptr; 478 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 479 if (BI->isConditional()) { 480 if (Constant *SimpleCond = 481 SimplifiedValues.lookup(BI->getCondition())) { 482 // Just take the first successor if condition is undef 483 if (isa<UndefValue>(SimpleCond)) 484 KnownSucc = BI->getSuccessor(0); 485 else if (ConstantInt *SimpleCondVal = 486 dyn_cast<ConstantInt>(SimpleCond)) 487 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 488 } 489 } 490 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 491 if (Constant *SimpleCond = 492 SimplifiedValues.lookup(SI->getCondition())) { 493 // Just take the first successor if condition is undef 494 if (isa<UndefValue>(SimpleCond)) 495 KnownSucc = SI->getSuccessor(0); 496 else if (ConstantInt *SimpleCondVal = 497 dyn_cast<ConstantInt>(SimpleCond)) 498 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 499 } 500 } 501 if (KnownSucc) { 502 if (L->contains(KnownSucc)) 503 BBWorklist.insert(KnownSucc); 504 else 505 ExitWorklist.insert({BB, KnownSucc}); 506 continue; 507 } 508 509 // Add BB's successors to the worklist. 510 for (BasicBlock *Succ : successors(BB)) 511 if (L->contains(Succ)) 512 BBWorklist.insert(Succ); 513 else 514 ExitWorklist.insert({BB, Succ}); 515 AddCostRecursively(*TI, Iteration); 516 } 517 518 // If we found no optimization opportunities on the first iteration, we 519 // won't find them on later ones too. 520 if (UnrolledCost == RolledDynamicCost) { 521 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 522 << " UnrolledCost: " << UnrolledCost << "\n"); 523 return None; 524 } 525 } 526 527 while (!ExitWorklist.empty()) { 528 BasicBlock *ExitingBB, *ExitBB; 529 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 530 531 for (Instruction &I : *ExitBB) { 532 auto *PN = dyn_cast<PHINode>(&I); 533 if (!PN) 534 break; 535 536 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 537 if (auto *OpI = dyn_cast<Instruction>(Op)) 538 if (L->contains(OpI)) 539 AddCostRecursively(*OpI, TripCount - 1); 540 } 541 } 542 543 DEBUG(dbgs() << "Analysis finished:\n" 544 << "UnrolledCost: " << UnrolledCost << ", " 545 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 546 return {{UnrolledCost, RolledDynamicCost}}; 547 } 548 549 /// ApproximateLoopSize - Approximate the size of the loop. 550 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 551 bool &NotDuplicatable, bool &Convergent, 552 const TargetTransformInfo &TTI, 553 AssumptionCache *AC, unsigned BEInsns) { 554 SmallPtrSet<const Value *, 32> EphValues; 555 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 556 557 CodeMetrics Metrics; 558 for (BasicBlock *BB : L->blocks()) 559 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 560 NumCalls = Metrics.NumInlineCandidates; 561 NotDuplicatable = Metrics.notDuplicatable; 562 Convergent = Metrics.convergent; 563 564 unsigned LoopSize = Metrics.NumInsts; 565 566 // Don't allow an estimate of size zero. This would allows unrolling of loops 567 // with huge iteration counts, which is a compile time problem even if it's 568 // not a problem for code quality. Also, the code using this size may assume 569 // that each loop has at least three instructions (likely a conditional 570 // branch, a comparison feeding that branch, and some kind of loop increment 571 // feeding that comparison instruction). 572 LoopSize = std::max(LoopSize, BEInsns + 1); 573 574 return LoopSize; 575 } 576 577 // Returns the loop hint metadata node with the given name (for example, 578 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 579 // returned. 580 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 581 if (MDNode *LoopID = L->getLoopID()) 582 return GetUnrollMetadata(LoopID, Name); 583 return nullptr; 584 } 585 586 // Returns true if the loop has an unroll(full) pragma. 587 static bool HasUnrollFullPragma(const Loop *L) { 588 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 589 } 590 591 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 592 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 593 static bool HasUnrollEnablePragma(const Loop *L) { 594 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 595 } 596 597 // Returns true if the loop has an unroll(disable) pragma. 598 static bool HasUnrollDisablePragma(const Loop *L) { 599 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 600 } 601 602 // Returns true if the loop has an runtime unroll(disable) pragma. 603 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 604 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 605 } 606 607 // If loop has an unroll_count pragma return the (necessarily 608 // positive) value from the pragma. Otherwise return 0. 609 static unsigned UnrollCountPragmaValue(const Loop *L) { 610 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 611 if (MD) { 612 assert(MD->getNumOperands() == 2 && 613 "Unroll count hint metadata should have two operands."); 614 unsigned Count = 615 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 616 assert(Count >= 1 && "Unroll count must be positive."); 617 return Count; 618 } 619 return 0; 620 } 621 622 // Remove existing unroll metadata and add unroll disable metadata to 623 // indicate the loop has already been unrolled. This prevents a loop 624 // from being unrolled more than is directed by a pragma if the loop 625 // unrolling pass is run more than once (which it generally is). 626 static void SetLoopAlreadyUnrolled(Loop *L) { 627 MDNode *LoopID = L->getLoopID(); 628 // First remove any existing loop unrolling metadata. 629 SmallVector<Metadata *, 4> MDs; 630 // Reserve first location for self reference to the LoopID metadata node. 631 MDs.push_back(nullptr); 632 633 if (LoopID) { 634 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 635 bool IsUnrollMetadata = false; 636 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 637 if (MD) { 638 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 639 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 640 } 641 if (!IsUnrollMetadata) 642 MDs.push_back(LoopID->getOperand(i)); 643 } 644 } 645 646 // Add unroll(disable) metadata to disable future unrolling. 647 LLVMContext &Context = L->getHeader()->getContext(); 648 SmallVector<Metadata *, 1> DisableOperands; 649 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 650 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 651 MDs.push_back(DisableNode); 652 653 MDNode *NewLoopID = MDNode::get(Context, MDs); 654 // Set operand 0 to refer to the loop id itself. 655 NewLoopID->replaceOperandWith(0, NewLoopID); 656 L->setLoopID(NewLoopID); 657 } 658 659 // Computes the boosting factor for complete unrolling. 660 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 661 // be beneficial to fully unroll the loop even if unrolledcost is large. We 662 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 663 // the unroll threshold. 664 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 665 unsigned MaxPercentThresholdBoost) { 666 if (Cost.RolledDynamicCost >= UINT_MAX / 100) 667 return 100; 668 else if (Cost.UnrolledCost != 0) 669 // The boosting factor is RolledDynamicCost / UnrolledCost 670 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 671 MaxPercentThresholdBoost); 672 else 673 return MaxPercentThresholdBoost; 674 } 675 676 // Returns loop size estimation for unrolled loop. 677 static uint64_t getUnrolledLoopSize( 678 unsigned LoopSize, 679 TargetTransformInfo::UnrollingPreferences &UP) { 680 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 681 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 682 } 683 684 // Returns true if unroll count was set explicitly. 685 // Calculates unroll count and writes it to UP.Count. 686 static bool computeUnrollCount( 687 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 688 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 689 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 690 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 691 // Check for explicit Count. 692 // 1st priority is unroll count set by "unroll-count" option. 693 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 694 if (UserUnrollCount) { 695 UP.Count = UnrollCount; 696 UP.AllowExpensiveTripCount = true; 697 UP.Force = true; 698 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 699 return true; 700 } 701 702 // 2nd priority is unroll count set by pragma. 703 unsigned PragmaCount = UnrollCountPragmaValue(L); 704 if (PragmaCount > 0) { 705 UP.Count = PragmaCount; 706 UP.Runtime = true; 707 UP.AllowExpensiveTripCount = true; 708 UP.Force = true; 709 if (UP.AllowRemainder && 710 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 711 return true; 712 } 713 bool PragmaFullUnroll = HasUnrollFullPragma(L); 714 if (PragmaFullUnroll && TripCount != 0) { 715 UP.Count = TripCount; 716 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 717 return false; 718 } 719 720 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 721 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 722 PragmaEnableUnroll || UserUnrollCount; 723 724 if (ExplicitUnroll && TripCount != 0) { 725 // If the loop has an unrolling pragma, we want to be more aggressive with 726 // unrolling limits. Set thresholds to at least the PragmaThreshold value 727 // which is larger than the default limits. 728 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 729 UP.PartialThreshold = 730 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 731 } 732 733 // 3rd priority is full unroll count. 734 // Full unroll makes sense only when TripCount or its upper bound could be 735 // statically calculated. 736 // Also we need to check if we exceed FullUnrollMaxCount. 737 // If using the upper bound to unroll, TripMultiple should be set to 1 because 738 // we do not know when loop may exit. 739 // MaxTripCount and ExactTripCount cannot both be non zero since we only 740 // compute the former when the latter is zero. 741 unsigned ExactTripCount = TripCount; 742 assert((ExactTripCount == 0 || MaxTripCount == 0) && 743 "ExtractTripCound and MaxTripCount cannot both be non zero."); 744 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 745 UP.Count = FullUnrollTripCount; 746 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 747 // When computing the unrolled size, note that BEInsns are not replicated 748 // like the rest of the loop body. 749 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 750 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 751 TripCount = FullUnrollTripCount; 752 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 753 return ExplicitUnroll; 754 } else { 755 // The loop isn't that small, but we still can fully unroll it if that 756 // helps to remove a significant number of instructions. 757 // To check that, run additional analysis on the loop. 758 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 759 L, FullUnrollTripCount, DT, *SE, TTI, 760 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 761 unsigned Boost = 762 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 763 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 764 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 765 TripCount = FullUnrollTripCount; 766 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 767 return ExplicitUnroll; 768 } 769 } 770 } 771 } 772 773 // 4rd priority is partial unrolling. 774 // Try partial unroll only when TripCount could be staticaly calculated. 775 if (TripCount) { 776 UP.Partial |= ExplicitUnroll; 777 if (!UP.Partial) { 778 DEBUG(dbgs() << " will not try to unroll partially because " 779 << "-unroll-allow-partial not given\n"); 780 UP.Count = 0; 781 return false; 782 } 783 if (UP.Count == 0) 784 UP.Count = TripCount; 785 if (UP.PartialThreshold != NoThreshold) { 786 // Reduce unroll count to be modulo of TripCount for partial unrolling. 787 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 788 UP.Count = 789 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 790 (LoopSize - UP.BEInsns); 791 if (UP.Count > UP.MaxCount) 792 UP.Count = UP.MaxCount; 793 while (UP.Count != 0 && TripCount % UP.Count != 0) 794 UP.Count--; 795 if (UP.AllowRemainder && UP.Count <= 1) { 796 // If there is no Count that is modulo of TripCount, set Count to 797 // largest power-of-two factor that satisfies the threshold limit. 798 // As we'll create fixup loop, do the type of unrolling only if 799 // remainder loop is allowed. 800 UP.Count = UP.DefaultUnrollRuntimeCount; 801 while (UP.Count != 0 && 802 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 803 UP.Count >>= 1; 804 } 805 if (UP.Count < 2) { 806 if (PragmaEnableUnroll) 807 ORE->emit( 808 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 809 L->getStartLoc(), L->getHeader()) 810 << "Unable to unroll loop as directed by unroll(enable) pragma " 811 "because unrolled size is too large."); 812 UP.Count = 0; 813 } 814 } else { 815 UP.Count = TripCount; 816 } 817 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 818 UP.Count != TripCount) 819 ORE->emit( 820 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 821 L->getStartLoc(), L->getHeader()) 822 << "Unable to fully unroll loop as directed by unroll pragma because " 823 "unrolled size is too large."); 824 return ExplicitUnroll; 825 } 826 assert(TripCount == 0 && 827 "All cases when TripCount is constant should be covered here."); 828 if (PragmaFullUnroll) 829 ORE->emit( 830 OptimizationRemarkMissed(DEBUG_TYPE, 831 "CantFullUnrollAsDirectedRuntimeTripCount", 832 L->getStartLoc(), L->getHeader()) 833 << "Unable to fully unroll loop as directed by unroll(full) pragma " 834 "because loop has a runtime trip count."); 835 836 // 5th priority is loop peeling 837 computePeelCount(L, LoopSize, UP); 838 if (UP.PeelCount) { 839 UP.Runtime = false; 840 UP.Count = 1; 841 return ExplicitUnroll; 842 } 843 844 // 6th priority is runtime unrolling. 845 // Don't unroll a runtime trip count loop when it is disabled. 846 if (HasRuntimeUnrollDisablePragma(L)) { 847 UP.Count = 0; 848 return false; 849 } 850 851 // Check if the runtime trip count is too small when profile is available. 852 if (L->getHeader()->getParent()->getEntryCount()) { 853 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 854 if (*ProfileTripCount < FlatLoopTripCountThreshold) 855 return false; 856 else 857 UP.AllowExpensiveTripCount = true; 858 } 859 } 860 861 // Reduce count based on the type of unrolling and the threshold values. 862 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 863 if (!UP.Runtime) { 864 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 865 << "-unroll-runtime not given\n"); 866 UP.Count = 0; 867 return false; 868 } 869 if (UP.Count == 0) 870 UP.Count = UP.DefaultUnrollRuntimeCount; 871 872 // Reduce unroll count to be the largest power-of-two factor of 873 // the original count which satisfies the threshold limit. 874 while (UP.Count != 0 && 875 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 876 UP.Count >>= 1; 877 878 #ifndef NDEBUG 879 unsigned OrigCount = UP.Count; 880 #endif 881 882 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 883 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 884 UP.Count >>= 1; 885 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 886 "specific or because the loop contains a convergent " 887 "instruction), so unroll count must divide the trip " 888 "multiple, " 889 << TripMultiple << ". Reducing unroll count from " 890 << OrigCount << " to " << UP.Count << ".\n"); 891 using namespace ore; 892 if (PragmaCount > 0 && !UP.AllowRemainder) 893 ORE->emit( 894 OptimizationRemarkMissed(DEBUG_TYPE, 895 "DifferentUnrollCountFromDirected", 896 L->getStartLoc(), L->getHeader()) 897 << "Unable to unroll loop the number of times directed by " 898 "unroll_count pragma because remainder loop is restricted " 899 "(that could architecture specific or because the loop " 900 "contains a convergent instruction) and so must have an unroll " 901 "count that divides the loop trip multiple of " 902 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 903 << NV("UnrollCount", UP.Count) << " time(s)."); 904 } 905 906 if (UP.Count > UP.MaxCount) 907 UP.Count = UP.MaxCount; 908 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 909 if (UP.Count < 2) 910 UP.Count = 0; 911 return ExplicitUnroll; 912 } 913 914 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 915 ScalarEvolution *SE, const TargetTransformInfo &TTI, 916 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 917 bool PreserveLCSSA, 918 Optional<unsigned> ProvidedCount, 919 Optional<unsigned> ProvidedThreshold, 920 Optional<bool> ProvidedAllowPartial, 921 Optional<bool> ProvidedRuntime, 922 Optional<bool> ProvidedUpperBound) { 923 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 924 << "] Loop %" << L->getHeader()->getName() << "\n"); 925 if (HasUnrollDisablePragma(L)) 926 return false; 927 if (!L->isLoopSimplifyForm()) { 928 DEBUG( 929 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 930 return false; 931 } 932 933 unsigned NumInlineCandidates; 934 bool NotDuplicatable; 935 bool Convergent; 936 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 937 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 938 ProvidedRuntime, ProvidedUpperBound); 939 // Exit early if unrolling is disabled. 940 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 941 return false; 942 unsigned LoopSize = ApproximateLoopSize( 943 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 944 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 945 if (NotDuplicatable) { 946 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 947 << " instructions.\n"); 948 return false; 949 } 950 if (NumInlineCandidates != 0) { 951 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 952 return false; 953 } 954 955 // Find trip count and trip multiple if count is not available 956 unsigned TripCount = 0; 957 unsigned MaxTripCount = 0; 958 unsigned TripMultiple = 1; 959 // If there are multiple exiting blocks but one of them is the latch, use the 960 // latch for the trip count estimation. Otherwise insist on a single exiting 961 // block for the trip count estimation. 962 BasicBlock *ExitingBlock = L->getLoopLatch(); 963 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 964 ExitingBlock = L->getExitingBlock(); 965 if (ExitingBlock) { 966 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 967 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 968 } 969 970 // If the loop contains a convergent operation, the prelude we'd add 971 // to do the first few instructions before we hit the unrolled loop 972 // is unsafe -- it adds a control-flow dependency to the convergent 973 // operation. Therefore restrict remainder loop (try unrollig without). 974 // 975 // TODO: This is quite conservative. In practice, convergent_op() 976 // is likely to be called unconditionally in the loop. In this 977 // case, the program would be ill-formed (on most architectures) 978 // unless n were the same on all threads in a thread group. 979 // Assuming n is the same on all threads, any kind of unrolling is 980 // safe. But currently llvm's notion of convergence isn't powerful 981 // enough to express this. 982 if (Convergent) 983 UP.AllowRemainder = false; 984 985 // Try to find the trip count upper bound if we cannot find the exact trip 986 // count. 987 bool MaxOrZero = false; 988 if (!TripCount) { 989 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 990 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 991 // We can unroll by the upper bound amount if it's generally allowed or if 992 // we know that the loop is executed either the upper bound or zero times. 993 // (MaxOrZero unrolling keeps only the first loop test, so the number of 994 // loop tests remains the same compared to the non-unrolled version, whereas 995 // the generic upper bound unrolling keeps all but the last loop test so the 996 // number of loop tests goes up which may end up being worse on targets with 997 // constriained branch predictor resources so is controlled by an option.) 998 // In addition we only unroll small upper bounds. 999 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1000 MaxTripCount = 0; 1001 } 1002 } 1003 1004 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1005 // fully unroll the loop. 1006 bool UseUpperBound = false; 1007 bool IsCountSetExplicitly = 1008 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1009 TripMultiple, LoopSize, UP, UseUpperBound); 1010 if (!UP.Count) 1011 return false; 1012 // Unroll factor (Count) must be less or equal to TripCount. 1013 if (TripCount && UP.Count > TripCount) 1014 UP.Count = TripCount; 1015 1016 // Unroll the loop. 1017 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1018 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1019 TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE, 1020 PreserveLCSSA)) 1021 return false; 1022 1023 // If loop has an unroll count pragma or unrolled by explicitly set count 1024 // mark loop as unrolled to prevent unrolling beyond that requested. 1025 // If the loop was peeled, we already "used up" the profile information 1026 // we had, so we don't want to unroll or peel again. 1027 if (IsCountSetExplicitly || UP.PeelCount) 1028 SetLoopAlreadyUnrolled(L); 1029 1030 return true; 1031 } 1032 1033 namespace { 1034 class LoopUnroll : public LoopPass { 1035 public: 1036 static char ID; // Pass ID, replacement for typeid 1037 LoopUnroll(Optional<unsigned> Threshold = None, 1038 Optional<unsigned> Count = None, 1039 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1040 Optional<bool> UpperBound = None) 1041 : LoopPass(ID), ProvidedCount(std::move(Count)), 1042 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1043 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1044 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1045 } 1046 1047 Optional<unsigned> ProvidedCount; 1048 Optional<unsigned> ProvidedThreshold; 1049 Optional<bool> ProvidedAllowPartial; 1050 Optional<bool> ProvidedRuntime; 1051 Optional<bool> ProvidedUpperBound; 1052 1053 bool runOnLoop(Loop *L, LPPassManager &) override { 1054 if (skipLoop(L)) 1055 return false; 1056 1057 Function &F = *L->getHeader()->getParent(); 1058 1059 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1060 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1061 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1062 const TargetTransformInfo &TTI = 1063 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1064 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1065 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1066 // pass. Function analyses need to be preserved across loop transformations 1067 // but ORE cannot be preserved (see comment before the pass definition). 1068 OptimizationRemarkEmitter ORE(&F); 1069 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1070 1071 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1072 ProvidedCount, ProvidedThreshold, 1073 ProvidedAllowPartial, ProvidedRuntime, 1074 ProvidedUpperBound); 1075 } 1076 1077 /// This transformation requires natural loop information & requires that 1078 /// loop preheaders be inserted into the CFG... 1079 /// 1080 void getAnalysisUsage(AnalysisUsage &AU) const override { 1081 AU.addRequired<AssumptionCacheTracker>(); 1082 AU.addRequired<TargetTransformInfoWrapperPass>(); 1083 // FIXME: Loop passes are required to preserve domtree, and for now we just 1084 // recreate dom info if anything gets unrolled. 1085 getLoopAnalysisUsage(AU); 1086 } 1087 }; 1088 } 1089 1090 char LoopUnroll::ID = 0; 1091 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1092 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1093 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1094 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1095 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1096 1097 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1098 int Runtime, int UpperBound) { 1099 // TODO: It would make more sense for this function to take the optionals 1100 // directly, but that's dangerous since it would silently break out of tree 1101 // callers. 1102 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1103 Count == -1 ? None : Optional<unsigned>(Count), 1104 AllowPartial == -1 ? None 1105 : Optional<bool>(AllowPartial), 1106 Runtime == -1 ? None : Optional<bool>(Runtime), 1107 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1108 } 1109 1110 Pass *llvm::createSimpleLoopUnrollPass() { 1111 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1112 } 1113 1114 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1115 LoopStandardAnalysisResults &AR, 1116 LPMUpdater &) { 1117 const auto &FAM = 1118 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1119 Function *F = L.getHeader()->getParent(); 1120 1121 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1122 // FIXME: This should probably be optional rather than required. 1123 if (!ORE) 1124 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1125 "cached at a higher level"); 1126 1127 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, &AR.SE, AR.TTI, AR.AC, *ORE, 1128 /*PreserveLCSSA*/ true, ProvidedCount, 1129 ProvidedThreshold, ProvidedAllowPartial, 1130 ProvidedRuntime, ProvidedUpperBound); 1131 if (!Changed) 1132 return PreservedAnalyses::all(); 1133 1134 return getLoopPassPreservedAnalyses(); 1135 } 1136