1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 #include "llvm/Transforms/Utils/UnrollLoop.h" 38 #include <climits> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 static cl::opt<unsigned> 46 UnrollThreshold("unroll-threshold", cl::Hidden, 47 cl::desc("The cost threshold for loop unrolling")); 48 49 static cl::opt<unsigned> UnrollPartialThreshold( 50 "unroll-partial-threshold", cl::Hidden, 51 cl::desc("The cost threshold for partial loop unrolling")); 52 53 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 54 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 55 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 56 "to the threshold when aggressively unrolling a loop due to the " 57 "dynamic cost savings. If completely unrolling a loop will reduce " 58 "the total runtime from X to Y, we boost the loop unroll " 59 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 60 "X/Y). This limit avoids excessive code bloat.")); 61 62 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 63 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 64 cl::desc("Don't allow loop unrolling to simulate more than this number of" 65 "iterations when checking full unroll profitability")); 66 67 static cl::opt<unsigned> UnrollCount( 68 "unroll-count", cl::Hidden, 69 cl::desc("Use this unroll count for all loops including those with " 70 "unroll_count pragma values, for testing purposes")); 71 72 static cl::opt<unsigned> UnrollMaxCount( 73 "unroll-max-count", cl::Hidden, 74 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 75 "testing purposes")); 76 77 static cl::opt<unsigned> UnrollFullMaxCount( 78 "unroll-full-max-count", cl::Hidden, 79 cl::desc( 80 "Set the max unroll count for full unrolling, for testing purposes")); 81 82 static cl::opt<bool> 83 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 84 cl::desc("Allows loops to be partially unrolled until " 85 "-unroll-threshold loop size is reached.")); 86 87 static cl::opt<bool> UnrollAllowRemainder( 88 "unroll-allow-remainder", cl::Hidden, 89 cl::desc("Allow generation of a loop remainder (extra iterations) " 90 "when unrolling a loop.")); 91 92 static cl::opt<bool> 93 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 94 cl::desc("Unroll loops with run-time trip counts")); 95 96 static cl::opt<unsigned> UnrollMaxUpperBound( 97 "unroll-max-upperbound", cl::init(8), cl::Hidden, 98 cl::desc( 99 "The max of trip count upper bound that is considered in unrolling")); 100 101 static cl::opt<unsigned> PragmaUnrollThreshold( 102 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 103 cl::desc("Unrolled size limit for loops with an unroll(full) or " 104 "unroll_count pragma.")); 105 106 static cl::opt<unsigned> FlatLoopTripCountThreshold( 107 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 108 cl::desc("If the runtime tripcount for the loop is lower than the " 109 "threshold, the loop is considered as flat and will be less " 110 "aggressively unrolled.")); 111 112 static cl::opt<bool> 113 UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden, 114 cl::desc("Allows loops to be peeled when the dynamic " 115 "trip count is known to be low.")); 116 117 /// A magic value for use with the Threshold parameter to indicate 118 /// that the loop unroll should be performed regardless of how much 119 /// code expansion would result. 120 static const unsigned NoThreshold = UINT_MAX; 121 122 /// Gather the various unrolling parameters based on the defaults, compiler 123 /// flags, TTI overrides and user specified parameters. 124 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 125 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 126 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 127 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 128 TargetTransformInfo::UnrollingPreferences UP; 129 130 // Set up the defaults 131 UP.Threshold = 150; 132 UP.MaxPercentThresholdBoost = 400; 133 UP.OptSizeThreshold = 0; 134 UP.PartialThreshold = 150; 135 UP.PartialOptSizeThreshold = 0; 136 UP.Count = 0; 137 UP.PeelCount = 0; 138 UP.DefaultUnrollRuntimeCount = 8; 139 UP.MaxCount = UINT_MAX; 140 UP.FullUnrollMaxCount = UINT_MAX; 141 UP.BEInsns = 2; 142 UP.Partial = false; 143 UP.Runtime = false; 144 UP.AllowRemainder = true; 145 UP.AllowExpensiveTripCount = false; 146 UP.Force = false; 147 UP.UpperBound = false; 148 UP.AllowPeeling = false; 149 150 // Override with any target specific settings 151 TTI.getUnrollingPreferences(L, UP); 152 153 // Apply size attributes 154 if (L->getHeader()->getParent()->optForSize()) { 155 UP.Threshold = UP.OptSizeThreshold; 156 UP.PartialThreshold = UP.PartialOptSizeThreshold; 157 } 158 159 // Apply any user values specified by cl::opt 160 if (UnrollThreshold.getNumOccurrences() > 0) 161 UP.Threshold = UnrollThreshold; 162 if (UnrollPartialThreshold.getNumOccurrences() > 0) 163 UP.PartialThreshold = UnrollPartialThreshold; 164 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 165 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 166 if (UnrollMaxCount.getNumOccurrences() > 0) 167 UP.MaxCount = UnrollMaxCount; 168 if (UnrollFullMaxCount.getNumOccurrences() > 0) 169 UP.FullUnrollMaxCount = UnrollFullMaxCount; 170 if (UnrollAllowPartial.getNumOccurrences() > 0) 171 UP.Partial = UnrollAllowPartial; 172 if (UnrollAllowRemainder.getNumOccurrences() > 0) 173 UP.AllowRemainder = UnrollAllowRemainder; 174 if (UnrollRuntime.getNumOccurrences() > 0) 175 UP.Runtime = UnrollRuntime; 176 if (UnrollMaxUpperBound == 0) 177 UP.UpperBound = false; 178 if (UnrollAllowPeeling.getNumOccurrences() > 0) 179 UP.AllowPeeling = UnrollAllowPeeling; 180 181 // Apply user values provided by argument 182 if (UserThreshold.hasValue()) { 183 UP.Threshold = *UserThreshold; 184 UP.PartialThreshold = *UserThreshold; 185 } 186 if (UserCount.hasValue()) 187 UP.Count = *UserCount; 188 if (UserAllowPartial.hasValue()) 189 UP.Partial = *UserAllowPartial; 190 if (UserRuntime.hasValue()) 191 UP.Runtime = *UserRuntime; 192 if (UserUpperBound.hasValue()) 193 UP.UpperBound = *UserUpperBound; 194 195 return UP; 196 } 197 198 namespace { 199 /// A struct to densely store the state of an instruction after unrolling at 200 /// each iteration. 201 /// 202 /// This is designed to work like a tuple of <Instruction *, int> for the 203 /// purposes of hashing and lookup, but to be able to associate two boolean 204 /// states with each key. 205 struct UnrolledInstState { 206 Instruction *I; 207 int Iteration : 30; 208 unsigned IsFree : 1; 209 unsigned IsCounted : 1; 210 }; 211 212 /// Hashing and equality testing for a set of the instruction states. 213 struct UnrolledInstStateKeyInfo { 214 typedef DenseMapInfo<Instruction *> PtrInfo; 215 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 216 static inline UnrolledInstState getEmptyKey() { 217 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 218 } 219 static inline UnrolledInstState getTombstoneKey() { 220 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 221 } 222 static inline unsigned getHashValue(const UnrolledInstState &S) { 223 return PairInfo::getHashValue({S.I, S.Iteration}); 224 } 225 static inline bool isEqual(const UnrolledInstState &LHS, 226 const UnrolledInstState &RHS) { 227 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 228 } 229 }; 230 } 231 232 namespace { 233 struct EstimatedUnrollCost { 234 /// \brief The estimated cost after unrolling. 235 unsigned UnrolledCost; 236 237 /// \brief The estimated dynamic cost of executing the instructions in the 238 /// rolled form. 239 unsigned RolledDynamicCost; 240 }; 241 } 242 243 /// \brief Figure out if the loop is worth full unrolling. 244 /// 245 /// Complete loop unrolling can make some loads constant, and we need to know 246 /// if that would expose any further optimization opportunities. This routine 247 /// estimates this optimization. It computes cost of unrolled loop 248 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 249 /// dynamic cost we mean that we won't count costs of blocks that are known not 250 /// to be executed (i.e. if we have a branch in the loop and we know that at the 251 /// given iteration its condition would be resolved to true, we won't add up the 252 /// cost of the 'false'-block). 253 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 254 /// the analysis failed (no benefits expected from the unrolling, or the loop is 255 /// too big to analyze), the returned value is None. 256 static Optional<EstimatedUnrollCost> 257 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 258 ScalarEvolution &SE, const TargetTransformInfo &TTI, 259 unsigned MaxUnrolledLoopSize) { 260 // We want to be able to scale offsets by the trip count and add more offsets 261 // to them without checking for overflows, and we already don't want to 262 // analyze *massive* trip counts, so we force the max to be reasonably small. 263 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 264 "The unroll iterations max is too large!"); 265 266 // Only analyze inner loops. We can't properly estimate cost of nested loops 267 // and we won't visit inner loops again anyway. 268 if (!L->empty()) 269 return None; 270 271 // Don't simulate loops with a big or unknown tripcount 272 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 273 TripCount > UnrollMaxIterationsCountToAnalyze) 274 return None; 275 276 SmallSetVector<BasicBlock *, 16> BBWorklist; 277 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 278 DenseMap<Value *, Constant *> SimplifiedValues; 279 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 280 281 // The estimated cost of the unrolled form of the loop. We try to estimate 282 // this by simplifying as much as we can while computing the estimate. 283 unsigned UnrolledCost = 0; 284 285 // We also track the estimated dynamic (that is, actually executed) cost in 286 // the rolled form. This helps identify cases when the savings from unrolling 287 // aren't just exposing dead control flows, but actual reduced dynamic 288 // instructions due to the simplifications which we expect to occur after 289 // unrolling. 290 unsigned RolledDynamicCost = 0; 291 292 // We track the simplification of each instruction in each iteration. We use 293 // this to recursively merge costs into the unrolled cost on-demand so that 294 // we don't count the cost of any dead code. This is essentially a map from 295 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 296 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 297 298 // A small worklist used to accumulate cost of instructions from each 299 // observable and reached root in the loop. 300 SmallVector<Instruction *, 16> CostWorklist; 301 302 // PHI-used worklist used between iterations while accumulating cost. 303 SmallVector<Instruction *, 4> PHIUsedList; 304 305 // Helper function to accumulate cost for instructions in the loop. 306 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 307 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 308 assert(CostWorklist.empty() && "Must start with an empty cost list"); 309 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 310 CostWorklist.push_back(&RootI); 311 for (;; --Iteration) { 312 do { 313 Instruction *I = CostWorklist.pop_back_val(); 314 315 // InstCostMap only uses I and Iteration as a key, the other two values 316 // don't matter here. 317 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 318 if (CostIter == InstCostMap.end()) 319 // If an input to a PHI node comes from a dead path through the loop 320 // we may have no cost data for it here. What that actually means is 321 // that it is free. 322 continue; 323 auto &Cost = *CostIter; 324 if (Cost.IsCounted) 325 // Already counted this instruction. 326 continue; 327 328 // Mark that we are counting the cost of this instruction now. 329 Cost.IsCounted = true; 330 331 // If this is a PHI node in the loop header, just add it to the PHI set. 332 if (auto *PhiI = dyn_cast<PHINode>(I)) 333 if (PhiI->getParent() == L->getHeader()) { 334 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 335 "inherently simplify during unrolling."); 336 if (Iteration == 0) 337 continue; 338 339 // Push the incoming value from the backedge into the PHI used list 340 // if it is an in-loop instruction. We'll use this to populate the 341 // cost worklist for the next iteration (as we count backwards). 342 if (auto *OpI = dyn_cast<Instruction>( 343 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 344 if (L->contains(OpI)) 345 PHIUsedList.push_back(OpI); 346 continue; 347 } 348 349 // First accumulate the cost of this instruction. 350 if (!Cost.IsFree) { 351 UnrolledCost += TTI.getUserCost(I); 352 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 353 << "): "); 354 DEBUG(I->dump()); 355 } 356 357 // We must count the cost of every operand which is not free, 358 // recursively. If we reach a loop PHI node, simply add it to the set 359 // to be considered on the next iteration (backwards!). 360 for (Value *Op : I->operands()) { 361 // Check whether this operand is free due to being a constant or 362 // outside the loop. 363 auto *OpI = dyn_cast<Instruction>(Op); 364 if (!OpI || !L->contains(OpI)) 365 continue; 366 367 // Otherwise accumulate its cost. 368 CostWorklist.push_back(OpI); 369 } 370 } while (!CostWorklist.empty()); 371 372 if (PHIUsedList.empty()) 373 // We've exhausted the search. 374 break; 375 376 assert(Iteration > 0 && 377 "Cannot track PHI-used values past the first iteration!"); 378 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 379 PHIUsedList.clear(); 380 } 381 }; 382 383 // Ensure that we don't violate the loop structure invariants relied on by 384 // this analysis. 385 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 386 assert(L->isLCSSAForm(DT) && 387 "Must have loops in LCSSA form to track live-out values."); 388 389 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 390 391 // Simulate execution of each iteration of the loop counting instructions, 392 // which would be simplified. 393 // Since the same load will take different values on different iterations, 394 // we literally have to go through all loop's iterations. 395 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 396 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 397 398 // Prepare for the iteration by collecting any simplified entry or backedge 399 // inputs. 400 for (Instruction &I : *L->getHeader()) { 401 auto *PHI = dyn_cast<PHINode>(&I); 402 if (!PHI) 403 break; 404 405 // The loop header PHI nodes must have exactly two input: one from the 406 // loop preheader and one from the loop latch. 407 assert( 408 PHI->getNumIncomingValues() == 2 && 409 "Must have an incoming value only for the preheader and the latch."); 410 411 Value *V = PHI->getIncomingValueForBlock( 412 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 413 Constant *C = dyn_cast<Constant>(V); 414 if (Iteration != 0 && !C) 415 C = SimplifiedValues.lookup(V); 416 if (C) 417 SimplifiedInputValues.push_back({PHI, C}); 418 } 419 420 // Now clear and re-populate the map for the next iteration. 421 SimplifiedValues.clear(); 422 while (!SimplifiedInputValues.empty()) 423 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 424 425 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 426 427 BBWorklist.clear(); 428 BBWorklist.insert(L->getHeader()); 429 // Note that we *must not* cache the size, this loop grows the worklist. 430 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 431 BasicBlock *BB = BBWorklist[Idx]; 432 433 // Visit all instructions in the given basic block and try to simplify 434 // it. We don't change the actual IR, just count optimization 435 // opportunities. 436 for (Instruction &I : *BB) { 437 if (isa<DbgInfoIntrinsic>(I)) 438 continue; 439 440 // Track this instruction's expected baseline cost when executing the 441 // rolled loop form. 442 RolledDynamicCost += TTI.getUserCost(&I); 443 444 // Visit the instruction to analyze its loop cost after unrolling, 445 // and if the visitor returns true, mark the instruction as free after 446 // unrolling and continue. 447 bool IsFree = Analyzer.visit(I); 448 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 449 (unsigned)IsFree, 450 /*IsCounted*/ false}).second; 451 (void)Inserted; 452 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 453 454 if (IsFree) 455 continue; 456 457 // Can't properly model a cost of a call. 458 // FIXME: With a proper cost model we should be able to do it. 459 if(isa<CallInst>(&I)) 460 return None; 461 462 // If the instruction might have a side-effect recursively account for 463 // the cost of it and all the instructions leading up to it. 464 if (I.mayHaveSideEffects()) 465 AddCostRecursively(I, Iteration); 466 467 // If unrolled body turns out to be too big, bail out. 468 if (UnrolledCost > MaxUnrolledLoopSize) { 469 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 470 << " UnrolledCost: " << UnrolledCost 471 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 472 << "\n"); 473 return None; 474 } 475 } 476 477 TerminatorInst *TI = BB->getTerminator(); 478 479 // Add in the live successors by first checking whether we have terminator 480 // that may be simplified based on the values simplified by this call. 481 BasicBlock *KnownSucc = nullptr; 482 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 483 if (BI->isConditional()) { 484 if (Constant *SimpleCond = 485 SimplifiedValues.lookup(BI->getCondition())) { 486 // Just take the first successor if condition is undef 487 if (isa<UndefValue>(SimpleCond)) 488 KnownSucc = BI->getSuccessor(0); 489 else if (ConstantInt *SimpleCondVal = 490 dyn_cast<ConstantInt>(SimpleCond)) 491 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 492 } 493 } 494 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 495 if (Constant *SimpleCond = 496 SimplifiedValues.lookup(SI->getCondition())) { 497 // Just take the first successor if condition is undef 498 if (isa<UndefValue>(SimpleCond)) 499 KnownSucc = SI->getSuccessor(0); 500 else if (ConstantInt *SimpleCondVal = 501 dyn_cast<ConstantInt>(SimpleCond)) 502 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 503 } 504 } 505 if (KnownSucc) { 506 if (L->contains(KnownSucc)) 507 BBWorklist.insert(KnownSucc); 508 else 509 ExitWorklist.insert({BB, KnownSucc}); 510 continue; 511 } 512 513 // Add BB's successors to the worklist. 514 for (BasicBlock *Succ : successors(BB)) 515 if (L->contains(Succ)) 516 BBWorklist.insert(Succ); 517 else 518 ExitWorklist.insert({BB, Succ}); 519 AddCostRecursively(*TI, Iteration); 520 } 521 522 // If we found no optimization opportunities on the first iteration, we 523 // won't find them on later ones too. 524 if (UnrolledCost == RolledDynamicCost) { 525 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 526 << " UnrolledCost: " << UnrolledCost << "\n"); 527 return None; 528 } 529 } 530 531 while (!ExitWorklist.empty()) { 532 BasicBlock *ExitingBB, *ExitBB; 533 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 534 535 for (Instruction &I : *ExitBB) { 536 auto *PN = dyn_cast<PHINode>(&I); 537 if (!PN) 538 break; 539 540 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 541 if (auto *OpI = dyn_cast<Instruction>(Op)) 542 if (L->contains(OpI)) 543 AddCostRecursively(*OpI, TripCount - 1); 544 } 545 } 546 547 DEBUG(dbgs() << "Analysis finished:\n" 548 << "UnrolledCost: " << UnrolledCost << ", " 549 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 550 return {{UnrolledCost, RolledDynamicCost}}; 551 } 552 553 /// ApproximateLoopSize - Approximate the size of the loop. 554 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 555 bool &NotDuplicatable, bool &Convergent, 556 const TargetTransformInfo &TTI, 557 AssumptionCache *AC, unsigned BEInsns) { 558 SmallPtrSet<const Value *, 32> EphValues; 559 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 560 561 CodeMetrics Metrics; 562 for (BasicBlock *BB : L->blocks()) 563 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 564 NumCalls = Metrics.NumInlineCandidates; 565 NotDuplicatable = Metrics.notDuplicatable; 566 Convergent = Metrics.convergent; 567 568 unsigned LoopSize = Metrics.NumInsts; 569 570 // Don't allow an estimate of size zero. This would allows unrolling of loops 571 // with huge iteration counts, which is a compile time problem even if it's 572 // not a problem for code quality. Also, the code using this size may assume 573 // that each loop has at least three instructions (likely a conditional 574 // branch, a comparison feeding that branch, and some kind of loop increment 575 // feeding that comparison instruction). 576 LoopSize = std::max(LoopSize, BEInsns + 1); 577 578 return LoopSize; 579 } 580 581 // Returns the loop hint metadata node with the given name (for example, 582 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 583 // returned. 584 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 585 if (MDNode *LoopID = L->getLoopID()) 586 return GetUnrollMetadata(LoopID, Name); 587 return nullptr; 588 } 589 590 // Returns true if the loop has an unroll(full) pragma. 591 static bool HasUnrollFullPragma(const Loop *L) { 592 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 593 } 594 595 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 596 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 597 static bool HasUnrollEnablePragma(const Loop *L) { 598 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 599 } 600 601 // Returns true if the loop has an unroll(disable) pragma. 602 static bool HasUnrollDisablePragma(const Loop *L) { 603 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 604 } 605 606 // Returns true if the loop has an runtime unroll(disable) pragma. 607 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 608 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 609 } 610 611 // If loop has an unroll_count pragma return the (necessarily 612 // positive) value from the pragma. Otherwise return 0. 613 static unsigned UnrollCountPragmaValue(const Loop *L) { 614 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 615 if (MD) { 616 assert(MD->getNumOperands() == 2 && 617 "Unroll count hint metadata should have two operands."); 618 unsigned Count = 619 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 620 assert(Count >= 1 && "Unroll count must be positive."); 621 return Count; 622 } 623 return 0; 624 } 625 626 // Remove existing unroll metadata and add unroll disable metadata to 627 // indicate the loop has already been unrolled. This prevents a loop 628 // from being unrolled more than is directed by a pragma if the loop 629 // unrolling pass is run more than once (which it generally is). 630 static void SetLoopAlreadyUnrolled(Loop *L) { 631 MDNode *LoopID = L->getLoopID(); 632 // First remove any existing loop unrolling metadata. 633 SmallVector<Metadata *, 4> MDs; 634 // Reserve first location for self reference to the LoopID metadata node. 635 MDs.push_back(nullptr); 636 637 if (LoopID) { 638 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 639 bool IsUnrollMetadata = false; 640 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 641 if (MD) { 642 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 643 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 644 } 645 if (!IsUnrollMetadata) 646 MDs.push_back(LoopID->getOperand(i)); 647 } 648 } 649 650 // Add unroll(disable) metadata to disable future unrolling. 651 LLVMContext &Context = L->getHeader()->getContext(); 652 SmallVector<Metadata *, 1> DisableOperands; 653 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 654 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 655 MDs.push_back(DisableNode); 656 657 MDNode *NewLoopID = MDNode::get(Context, MDs); 658 // Set operand 0 to refer to the loop id itself. 659 NewLoopID->replaceOperandWith(0, NewLoopID); 660 L->setLoopID(NewLoopID); 661 } 662 663 // Computes the boosting factor for complete unrolling. 664 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 665 // be beneficial to fully unroll the loop even if unrolledcost is large. We 666 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 667 // the unroll threshold. 668 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 669 unsigned MaxPercentThresholdBoost) { 670 if (Cost.RolledDynamicCost >= UINT_MAX / 100) 671 return 100; 672 else if (Cost.UnrolledCost != 0) 673 // The boosting factor is RolledDynamicCost / UnrolledCost 674 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 675 MaxPercentThresholdBoost); 676 else 677 return MaxPercentThresholdBoost; 678 } 679 680 // Returns loop size estimation for unrolled loop. 681 static uint64_t getUnrolledLoopSize( 682 unsigned LoopSize, 683 TargetTransformInfo::UnrollingPreferences &UP) { 684 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 685 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 686 } 687 688 // Returns true if unroll count was set explicitly. 689 // Calculates unroll count and writes it to UP.Count. 690 static bool computeUnrollCount( 691 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 692 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 693 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 694 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 695 // Check for explicit Count. 696 // 1st priority is unroll count set by "unroll-count" option. 697 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 698 if (UserUnrollCount) { 699 UP.Count = UnrollCount; 700 UP.AllowExpensiveTripCount = true; 701 UP.Force = true; 702 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 703 return true; 704 } 705 706 // 2nd priority is unroll count set by pragma. 707 unsigned PragmaCount = UnrollCountPragmaValue(L); 708 if (PragmaCount > 0) { 709 UP.Count = PragmaCount; 710 UP.Runtime = true; 711 UP.AllowExpensiveTripCount = true; 712 UP.Force = true; 713 if (UP.AllowRemainder && 714 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 715 return true; 716 } 717 bool PragmaFullUnroll = HasUnrollFullPragma(L); 718 if (PragmaFullUnroll && TripCount != 0) { 719 UP.Count = TripCount; 720 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 721 return false; 722 } 723 724 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 725 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 726 PragmaEnableUnroll || UserUnrollCount; 727 728 if (ExplicitUnroll && TripCount != 0) { 729 // If the loop has an unrolling pragma, we want to be more aggressive with 730 // unrolling limits. Set thresholds to at least the PragmaThreshold value 731 // which is larger than the default limits. 732 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 733 UP.PartialThreshold = 734 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 735 } 736 737 // 3rd priority is full unroll count. 738 // Full unroll makes sense only when TripCount or its upper bound could be 739 // statically calculated. 740 // Also we need to check if we exceed FullUnrollMaxCount. 741 // If using the upper bound to unroll, TripMultiple should be set to 1 because 742 // we do not know when loop may exit. 743 // MaxTripCount and ExactTripCount cannot both be non zero since we only 744 // compute the former when the latter is zero. 745 unsigned ExactTripCount = TripCount; 746 assert((ExactTripCount == 0 || MaxTripCount == 0) && 747 "ExtractTripCound and MaxTripCount cannot both be non zero."); 748 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 749 UP.Count = FullUnrollTripCount; 750 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 751 // When computing the unrolled size, note that BEInsns are not replicated 752 // like the rest of the loop body. 753 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 754 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 755 TripCount = FullUnrollTripCount; 756 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 757 return ExplicitUnroll; 758 } else { 759 // The loop isn't that small, but we still can fully unroll it if that 760 // helps to remove a significant number of instructions. 761 // To check that, run additional analysis on the loop. 762 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 763 L, FullUnrollTripCount, DT, *SE, TTI, 764 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 765 unsigned Boost = 766 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 767 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 768 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 769 TripCount = FullUnrollTripCount; 770 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 771 return ExplicitUnroll; 772 } 773 } 774 } 775 } 776 777 // 4rd priority is partial unrolling. 778 // Try partial unroll only when TripCount could be staticaly calculated. 779 if (TripCount) { 780 UP.Partial |= ExplicitUnroll; 781 if (!UP.Partial) { 782 DEBUG(dbgs() << " will not try to unroll partially because " 783 << "-unroll-allow-partial not given\n"); 784 UP.Count = 0; 785 return false; 786 } 787 if (UP.Count == 0) 788 UP.Count = TripCount; 789 if (UP.PartialThreshold != NoThreshold) { 790 // Reduce unroll count to be modulo of TripCount for partial unrolling. 791 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 792 UP.Count = 793 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 794 (LoopSize - UP.BEInsns); 795 if (UP.Count > UP.MaxCount) 796 UP.Count = UP.MaxCount; 797 while (UP.Count != 0 && TripCount % UP.Count != 0) 798 UP.Count--; 799 if (UP.AllowRemainder && UP.Count <= 1) { 800 // If there is no Count that is modulo of TripCount, set Count to 801 // largest power-of-two factor that satisfies the threshold limit. 802 // As we'll create fixup loop, do the type of unrolling only if 803 // remainder loop is allowed. 804 UP.Count = UP.DefaultUnrollRuntimeCount; 805 while (UP.Count != 0 && 806 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 807 UP.Count >>= 1; 808 } 809 if (UP.Count < 2) { 810 if (PragmaEnableUnroll) 811 ORE->emit( 812 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 813 L->getStartLoc(), L->getHeader()) 814 << "Unable to unroll loop as directed by unroll(enable) pragma " 815 "because unrolled size is too large."); 816 UP.Count = 0; 817 } 818 } else { 819 UP.Count = TripCount; 820 } 821 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 822 UP.Count != TripCount) 823 ORE->emit( 824 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 825 L->getStartLoc(), L->getHeader()) 826 << "Unable to fully unroll loop as directed by unroll pragma because " 827 "unrolled size is too large."); 828 return ExplicitUnroll; 829 } 830 assert(TripCount == 0 && 831 "All cases when TripCount is constant should be covered here."); 832 if (PragmaFullUnroll) 833 ORE->emit( 834 OptimizationRemarkMissed(DEBUG_TYPE, 835 "CantFullUnrollAsDirectedRuntimeTripCount", 836 L->getStartLoc(), L->getHeader()) 837 << "Unable to fully unroll loop as directed by unroll(full) pragma " 838 "because loop has a runtime trip count."); 839 840 // 5th priority is loop peeling 841 computePeelCount(L, LoopSize, UP); 842 if (UP.PeelCount) { 843 UP.Runtime = false; 844 UP.Count = 1; 845 return ExplicitUnroll; 846 } 847 848 // 6th priority is runtime unrolling. 849 // Don't unroll a runtime trip count loop when it is disabled. 850 if (HasRuntimeUnrollDisablePragma(L)) { 851 UP.Count = 0; 852 return false; 853 } 854 855 // Check if the runtime trip count is too small when profile is available. 856 if (L->getHeader()->getParent()->getEntryCount()) { 857 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 858 if (*ProfileTripCount < FlatLoopTripCountThreshold) 859 return false; 860 else 861 UP.AllowExpensiveTripCount = true; 862 } 863 } 864 865 // Reduce count based on the type of unrolling and the threshold values. 866 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 867 if (!UP.Runtime) { 868 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 869 << "-unroll-runtime not given\n"); 870 UP.Count = 0; 871 return false; 872 } 873 if (UP.Count == 0) 874 UP.Count = UP.DefaultUnrollRuntimeCount; 875 876 // Reduce unroll count to be the largest power-of-two factor of 877 // the original count which satisfies the threshold limit. 878 while (UP.Count != 0 && 879 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 880 UP.Count >>= 1; 881 882 #ifndef NDEBUG 883 unsigned OrigCount = UP.Count; 884 #endif 885 886 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 887 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 888 UP.Count >>= 1; 889 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 890 "specific or because the loop contains a convergent " 891 "instruction), so unroll count must divide the trip " 892 "multiple, " 893 << TripMultiple << ". Reducing unroll count from " 894 << OrigCount << " to " << UP.Count << ".\n"); 895 using namespace ore; 896 if (PragmaCount > 0 && !UP.AllowRemainder) 897 ORE->emit( 898 OptimizationRemarkMissed(DEBUG_TYPE, 899 "DifferentUnrollCountFromDirected", 900 L->getStartLoc(), L->getHeader()) 901 << "Unable to unroll loop the number of times directed by " 902 "unroll_count pragma because remainder loop is restricted " 903 "(that could architecture specific or because the loop " 904 "contains a convergent instruction) and so must have an unroll " 905 "count that divides the loop trip multiple of " 906 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 907 << NV("UnrollCount", UP.Count) << " time(s)."); 908 } 909 910 if (UP.Count > UP.MaxCount) 911 UP.Count = UP.MaxCount; 912 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 913 if (UP.Count < 2) 914 UP.Count = 0; 915 return ExplicitUnroll; 916 } 917 918 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 919 ScalarEvolution *SE, const TargetTransformInfo &TTI, 920 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 921 bool PreserveLCSSA, 922 Optional<unsigned> ProvidedCount, 923 Optional<unsigned> ProvidedThreshold, 924 Optional<bool> ProvidedAllowPartial, 925 Optional<bool> ProvidedRuntime, 926 Optional<bool> ProvidedUpperBound) { 927 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 928 << "] Loop %" << L->getHeader()->getName() << "\n"); 929 if (HasUnrollDisablePragma(L)) 930 return false; 931 if (!L->isLoopSimplifyForm()) { 932 DEBUG( 933 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 934 return false; 935 } 936 937 unsigned NumInlineCandidates; 938 bool NotDuplicatable; 939 bool Convergent; 940 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 941 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 942 ProvidedRuntime, ProvidedUpperBound); 943 // Exit early if unrolling is disabled. 944 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 945 return false; 946 unsigned LoopSize = ApproximateLoopSize( 947 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 948 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 949 if (NotDuplicatable) { 950 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 951 << " instructions.\n"); 952 return false; 953 } 954 if (NumInlineCandidates != 0) { 955 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 956 return false; 957 } 958 959 // Find trip count and trip multiple if count is not available 960 unsigned TripCount = 0; 961 unsigned MaxTripCount = 0; 962 unsigned TripMultiple = 1; 963 // If there are multiple exiting blocks but one of them is the latch, use the 964 // latch for the trip count estimation. Otherwise insist on a single exiting 965 // block for the trip count estimation. 966 BasicBlock *ExitingBlock = L->getLoopLatch(); 967 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 968 ExitingBlock = L->getExitingBlock(); 969 if (ExitingBlock) { 970 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 971 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 972 } 973 974 // If the loop contains a convergent operation, the prelude we'd add 975 // to do the first few instructions before we hit the unrolled loop 976 // is unsafe -- it adds a control-flow dependency to the convergent 977 // operation. Therefore restrict remainder loop (try unrollig without). 978 // 979 // TODO: This is quite conservative. In practice, convergent_op() 980 // is likely to be called unconditionally in the loop. In this 981 // case, the program would be ill-formed (on most architectures) 982 // unless n were the same on all threads in a thread group. 983 // Assuming n is the same on all threads, any kind of unrolling is 984 // safe. But currently llvm's notion of convergence isn't powerful 985 // enough to express this. 986 if (Convergent) 987 UP.AllowRemainder = false; 988 989 // Try to find the trip count upper bound if we cannot find the exact trip 990 // count. 991 bool MaxOrZero = false; 992 if (!TripCount) { 993 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 994 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 995 // We can unroll by the upper bound amount if it's generally allowed or if 996 // we know that the loop is executed either the upper bound or zero times. 997 // (MaxOrZero unrolling keeps only the first loop test, so the number of 998 // loop tests remains the same compared to the non-unrolled version, whereas 999 // the generic upper bound unrolling keeps all but the last loop test so the 1000 // number of loop tests goes up which may end up being worse on targets with 1001 // constriained branch predictor resources so is controlled by an option.) 1002 // In addition we only unroll small upper bounds. 1003 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1004 MaxTripCount = 0; 1005 } 1006 } 1007 1008 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1009 // fully unroll the loop. 1010 bool UseUpperBound = false; 1011 bool IsCountSetExplicitly = 1012 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1013 TripMultiple, LoopSize, UP, UseUpperBound); 1014 if (!UP.Count) 1015 return false; 1016 // Unroll factor (Count) must be less or equal to TripCount. 1017 if (TripCount && UP.Count > TripCount) 1018 UP.Count = TripCount; 1019 1020 // Unroll the loop. 1021 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1022 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1023 TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE, 1024 PreserveLCSSA)) 1025 return false; 1026 1027 // If loop has an unroll count pragma or unrolled by explicitly set count 1028 // mark loop as unrolled to prevent unrolling beyond that requested. 1029 // If the loop was peeled, we already "used up" the profile information 1030 // we had, so we don't want to unroll or peel again. 1031 if (IsCountSetExplicitly || UP.PeelCount) 1032 SetLoopAlreadyUnrolled(L); 1033 1034 return true; 1035 } 1036 1037 namespace { 1038 class LoopUnroll : public LoopPass { 1039 public: 1040 static char ID; // Pass ID, replacement for typeid 1041 LoopUnroll(Optional<unsigned> Threshold = None, 1042 Optional<unsigned> Count = None, 1043 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1044 Optional<bool> UpperBound = None) 1045 : LoopPass(ID), ProvidedCount(std::move(Count)), 1046 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1047 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1048 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1049 } 1050 1051 Optional<unsigned> ProvidedCount; 1052 Optional<unsigned> ProvidedThreshold; 1053 Optional<bool> ProvidedAllowPartial; 1054 Optional<bool> ProvidedRuntime; 1055 Optional<bool> ProvidedUpperBound; 1056 1057 bool runOnLoop(Loop *L, LPPassManager &) override { 1058 if (skipLoop(L)) 1059 return false; 1060 1061 Function &F = *L->getHeader()->getParent(); 1062 1063 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1064 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1065 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1066 const TargetTransformInfo &TTI = 1067 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1068 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1069 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1070 // pass. Function analyses need to be preserved across loop transformations 1071 // but ORE cannot be preserved (see comment before the pass definition). 1072 OptimizationRemarkEmitter ORE(&F); 1073 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1074 1075 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1076 ProvidedCount, ProvidedThreshold, 1077 ProvidedAllowPartial, ProvidedRuntime, 1078 ProvidedUpperBound); 1079 } 1080 1081 /// This transformation requires natural loop information & requires that 1082 /// loop preheaders be inserted into the CFG... 1083 /// 1084 void getAnalysisUsage(AnalysisUsage &AU) const override { 1085 AU.addRequired<AssumptionCacheTracker>(); 1086 AU.addRequired<TargetTransformInfoWrapperPass>(); 1087 // FIXME: Loop passes are required to preserve domtree, and for now we just 1088 // recreate dom info if anything gets unrolled. 1089 getLoopAnalysisUsage(AU); 1090 } 1091 }; 1092 } 1093 1094 char LoopUnroll::ID = 0; 1095 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1096 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1097 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1098 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1099 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1100 1101 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1102 int Runtime, int UpperBound) { 1103 // TODO: It would make more sense for this function to take the optionals 1104 // directly, but that's dangerous since it would silently break out of tree 1105 // callers. 1106 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1107 Count == -1 ? None : Optional<unsigned>(Count), 1108 AllowPartial == -1 ? None 1109 : Optional<bool>(AllowPartial), 1110 Runtime == -1 ? None : Optional<bool>(Runtime), 1111 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1112 } 1113 1114 Pass *llvm::createSimpleLoopUnrollPass() { 1115 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1116 } 1117 1118 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1119 LoopStandardAnalysisResults &AR, 1120 LPMUpdater &) { 1121 const auto &FAM = 1122 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1123 Function *F = L.getHeader()->getParent(); 1124 1125 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1126 // FIXME: This should probably be optional rather than required. 1127 if (!ORE) 1128 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1129 "cached at a higher level"); 1130 1131 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, &AR.SE, AR.TTI, AR.AC, *ORE, 1132 /*PreserveLCSSA*/ true, ProvidedCount, 1133 ProvidedThreshold, ProvidedAllowPartial, 1134 ProvidedRuntime, ProvidedUpperBound); 1135 if (!Changed) 1136 return PreservedAnalyses::all(); 1137 1138 return getLoopPassPreservedAnalyses(); 1139 } 1140