1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 #include "llvm/Transforms/Utils/UnrollLoop.h" 38 #include <climits> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 static cl::opt<unsigned> 46 UnrollThreshold("unroll-threshold", cl::Hidden, 47 cl::desc("The cost threshold for loop unrolling")); 48 49 static cl::opt<unsigned> UnrollPartialThreshold( 50 "unroll-partial-threshold", cl::Hidden, 51 cl::desc("The cost threshold for partial loop unrolling")); 52 53 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 54 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 55 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 56 "to the threshold when aggressively unrolling a loop due to the " 57 "dynamic cost savings. If completely unrolling a loop will reduce " 58 "the total runtime from X to Y, we boost the loop unroll " 59 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 60 "X/Y). This limit avoids excessive code bloat.")); 61 62 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 63 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 64 cl::desc("Don't allow loop unrolling to simulate more than this number of" 65 "iterations when checking full unroll profitability")); 66 67 static cl::opt<unsigned> UnrollCount( 68 "unroll-count", cl::Hidden, 69 cl::desc("Use this unroll count for all loops including those with " 70 "unroll_count pragma values, for testing purposes")); 71 72 static cl::opt<unsigned> UnrollMaxCount( 73 "unroll-max-count", cl::Hidden, 74 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 75 "testing purposes")); 76 77 static cl::opt<unsigned> UnrollFullMaxCount( 78 "unroll-full-max-count", cl::Hidden, 79 cl::desc( 80 "Set the max unroll count for full unrolling, for testing purposes")); 81 82 static cl::opt<bool> 83 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 84 cl::desc("Allows loops to be partially unrolled until " 85 "-unroll-threshold loop size is reached.")); 86 87 static cl::opt<bool> UnrollAllowRemainder( 88 "unroll-allow-remainder", cl::Hidden, 89 cl::desc("Allow generation of a loop remainder (extra iterations) " 90 "when unrolling a loop.")); 91 92 static cl::opt<bool> 93 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 94 cl::desc("Unroll loops with run-time trip counts")); 95 96 static cl::opt<unsigned> UnrollMaxUpperBound( 97 "unroll-max-upperbound", cl::init(8), cl::Hidden, 98 cl::desc( 99 "The max of trip count upper bound that is considered in unrolling")); 100 101 static cl::opt<unsigned> PragmaUnrollThreshold( 102 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 103 cl::desc("Unrolled size limit for loops with an unroll(full) or " 104 "unroll_count pragma.")); 105 106 static cl::opt<unsigned> FlatLoopTripCountThreshold( 107 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 108 cl::desc("If the runtime tripcount for the loop is lower than the " 109 "threshold, the loop is considered as flat and will be less " 110 "aggressively unrolled.")); 111 112 static cl::opt<bool> 113 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 114 cl::desc("Allows loops to be peeled when the dynamic " 115 "trip count is known to be low.")); 116 117 // This option isn't ever intended to be enabled, it serves to allow 118 // experiments to check the assumptions about when this kind of revisit is 119 // necessary. 120 static cl::opt<bool> UnrollRevisitChildLoops( 121 "unroll-revisit-child-loops", cl::Hidden, 122 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 123 "This shouldn't typically be needed as child loops (or their " 124 "clones) were already visited.")); 125 126 /// A magic value for use with the Threshold parameter to indicate 127 /// that the loop unroll should be performed regardless of how much 128 /// code expansion would result. 129 static const unsigned NoThreshold = UINT_MAX; 130 131 /// Gather the various unrolling parameters based on the defaults, compiler 132 /// flags, TTI overrides and user specified parameters. 133 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 134 Loop *L, const TargetTransformInfo &TTI, int OptLevel, 135 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 136 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 137 Optional<bool> UserUpperBound) { 138 TargetTransformInfo::UnrollingPreferences UP; 139 140 // Set up the defaults 141 UP.Threshold = OptLevel > 2 ? 300 : 150; 142 UP.MaxPercentThresholdBoost = 400; 143 UP.OptSizeThreshold = 0; 144 UP.PartialThreshold = 150; 145 UP.PartialOptSizeThreshold = 0; 146 UP.Count = 0; 147 UP.PeelCount = 0; 148 UP.DefaultUnrollRuntimeCount = 8; 149 UP.MaxCount = UINT_MAX; 150 UP.FullUnrollMaxCount = UINT_MAX; 151 UP.BEInsns = 2; 152 UP.Partial = false; 153 UP.Runtime = false; 154 UP.AllowRemainder = true; 155 UP.AllowExpensiveTripCount = false; 156 UP.Force = false; 157 UP.UpperBound = false; 158 UP.AllowPeeling = true; 159 160 // Override with any target specific settings 161 TTI.getUnrollingPreferences(L, UP); 162 163 // Apply size attributes 164 if (L->getHeader()->getParent()->optForSize()) { 165 UP.Threshold = UP.OptSizeThreshold; 166 UP.PartialThreshold = UP.PartialOptSizeThreshold; 167 } 168 169 // Apply any user values specified by cl::opt 170 if (UnrollThreshold.getNumOccurrences() > 0) 171 UP.Threshold = UnrollThreshold; 172 if (UnrollPartialThreshold.getNumOccurrences() > 0) 173 UP.PartialThreshold = UnrollPartialThreshold; 174 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 175 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 176 if (UnrollMaxCount.getNumOccurrences() > 0) 177 UP.MaxCount = UnrollMaxCount; 178 if (UnrollFullMaxCount.getNumOccurrences() > 0) 179 UP.FullUnrollMaxCount = UnrollFullMaxCount; 180 if (UnrollAllowPartial.getNumOccurrences() > 0) 181 UP.Partial = UnrollAllowPartial; 182 if (UnrollAllowRemainder.getNumOccurrences() > 0) 183 UP.AllowRemainder = UnrollAllowRemainder; 184 if (UnrollRuntime.getNumOccurrences() > 0) 185 UP.Runtime = UnrollRuntime; 186 if (UnrollMaxUpperBound == 0) 187 UP.UpperBound = false; 188 if (UnrollAllowPeeling.getNumOccurrences() > 0) 189 UP.AllowPeeling = UnrollAllowPeeling; 190 191 // Apply user values provided by argument 192 if (UserThreshold.hasValue()) { 193 UP.Threshold = *UserThreshold; 194 UP.PartialThreshold = *UserThreshold; 195 } 196 if (UserCount.hasValue()) 197 UP.Count = *UserCount; 198 if (UserAllowPartial.hasValue()) 199 UP.Partial = *UserAllowPartial; 200 if (UserRuntime.hasValue()) 201 UP.Runtime = *UserRuntime; 202 if (UserUpperBound.hasValue()) 203 UP.UpperBound = *UserUpperBound; 204 205 return UP; 206 } 207 208 namespace { 209 /// A struct to densely store the state of an instruction after unrolling at 210 /// each iteration. 211 /// 212 /// This is designed to work like a tuple of <Instruction *, int> for the 213 /// purposes of hashing and lookup, but to be able to associate two boolean 214 /// states with each key. 215 struct UnrolledInstState { 216 Instruction *I; 217 int Iteration : 30; 218 unsigned IsFree : 1; 219 unsigned IsCounted : 1; 220 }; 221 222 /// Hashing and equality testing for a set of the instruction states. 223 struct UnrolledInstStateKeyInfo { 224 typedef DenseMapInfo<Instruction *> PtrInfo; 225 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 226 static inline UnrolledInstState getEmptyKey() { 227 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 228 } 229 static inline UnrolledInstState getTombstoneKey() { 230 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 231 } 232 static inline unsigned getHashValue(const UnrolledInstState &S) { 233 return PairInfo::getHashValue({S.I, S.Iteration}); 234 } 235 static inline bool isEqual(const UnrolledInstState &LHS, 236 const UnrolledInstState &RHS) { 237 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 238 } 239 }; 240 } 241 242 namespace { 243 struct EstimatedUnrollCost { 244 /// \brief The estimated cost after unrolling. 245 unsigned UnrolledCost; 246 247 /// \brief The estimated dynamic cost of executing the instructions in the 248 /// rolled form. 249 unsigned RolledDynamicCost; 250 }; 251 } 252 253 /// \brief Figure out if the loop is worth full unrolling. 254 /// 255 /// Complete loop unrolling can make some loads constant, and we need to know 256 /// if that would expose any further optimization opportunities. This routine 257 /// estimates this optimization. It computes cost of unrolled loop 258 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 259 /// dynamic cost we mean that we won't count costs of blocks that are known not 260 /// to be executed (i.e. if we have a branch in the loop and we know that at the 261 /// given iteration its condition would be resolved to true, we won't add up the 262 /// cost of the 'false'-block). 263 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 264 /// the analysis failed (no benefits expected from the unrolling, or the loop is 265 /// too big to analyze), the returned value is None. 266 static Optional<EstimatedUnrollCost> 267 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 268 ScalarEvolution &SE, const TargetTransformInfo &TTI, 269 unsigned MaxUnrolledLoopSize) { 270 // We want to be able to scale offsets by the trip count and add more offsets 271 // to them without checking for overflows, and we already don't want to 272 // analyze *massive* trip counts, so we force the max to be reasonably small. 273 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 274 "The unroll iterations max is too large!"); 275 276 // Only analyze inner loops. We can't properly estimate cost of nested loops 277 // and we won't visit inner loops again anyway. 278 if (!L->empty()) 279 return None; 280 281 // Don't simulate loops with a big or unknown tripcount 282 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 283 TripCount > UnrollMaxIterationsCountToAnalyze) 284 return None; 285 286 SmallSetVector<BasicBlock *, 16> BBWorklist; 287 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 288 DenseMap<Value *, Constant *> SimplifiedValues; 289 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 290 291 // The estimated cost of the unrolled form of the loop. We try to estimate 292 // this by simplifying as much as we can while computing the estimate. 293 unsigned UnrolledCost = 0; 294 295 // We also track the estimated dynamic (that is, actually executed) cost in 296 // the rolled form. This helps identify cases when the savings from unrolling 297 // aren't just exposing dead control flows, but actual reduced dynamic 298 // instructions due to the simplifications which we expect to occur after 299 // unrolling. 300 unsigned RolledDynamicCost = 0; 301 302 // We track the simplification of each instruction in each iteration. We use 303 // this to recursively merge costs into the unrolled cost on-demand so that 304 // we don't count the cost of any dead code. This is essentially a map from 305 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 306 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 307 308 // A small worklist used to accumulate cost of instructions from each 309 // observable and reached root in the loop. 310 SmallVector<Instruction *, 16> CostWorklist; 311 312 // PHI-used worklist used between iterations while accumulating cost. 313 SmallVector<Instruction *, 4> PHIUsedList; 314 315 // Helper function to accumulate cost for instructions in the loop. 316 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 317 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 318 assert(CostWorklist.empty() && "Must start with an empty cost list"); 319 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 320 CostWorklist.push_back(&RootI); 321 for (;; --Iteration) { 322 do { 323 Instruction *I = CostWorklist.pop_back_val(); 324 325 // InstCostMap only uses I and Iteration as a key, the other two values 326 // don't matter here. 327 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 328 if (CostIter == InstCostMap.end()) 329 // If an input to a PHI node comes from a dead path through the loop 330 // we may have no cost data for it here. What that actually means is 331 // that it is free. 332 continue; 333 auto &Cost = *CostIter; 334 if (Cost.IsCounted) 335 // Already counted this instruction. 336 continue; 337 338 // Mark that we are counting the cost of this instruction now. 339 Cost.IsCounted = true; 340 341 // If this is a PHI node in the loop header, just add it to the PHI set. 342 if (auto *PhiI = dyn_cast<PHINode>(I)) 343 if (PhiI->getParent() == L->getHeader()) { 344 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 345 "inherently simplify during unrolling."); 346 if (Iteration == 0) 347 continue; 348 349 // Push the incoming value from the backedge into the PHI used list 350 // if it is an in-loop instruction. We'll use this to populate the 351 // cost worklist for the next iteration (as we count backwards). 352 if (auto *OpI = dyn_cast<Instruction>( 353 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 354 if (L->contains(OpI)) 355 PHIUsedList.push_back(OpI); 356 continue; 357 } 358 359 // First accumulate the cost of this instruction. 360 if (!Cost.IsFree) { 361 UnrolledCost += TTI.getUserCost(I); 362 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 363 << "): "); 364 DEBUG(I->dump()); 365 } 366 367 // We must count the cost of every operand which is not free, 368 // recursively. If we reach a loop PHI node, simply add it to the set 369 // to be considered on the next iteration (backwards!). 370 for (Value *Op : I->operands()) { 371 // Check whether this operand is free due to being a constant or 372 // outside the loop. 373 auto *OpI = dyn_cast<Instruction>(Op); 374 if (!OpI || !L->contains(OpI)) 375 continue; 376 377 // Otherwise accumulate its cost. 378 CostWorklist.push_back(OpI); 379 } 380 } while (!CostWorklist.empty()); 381 382 if (PHIUsedList.empty()) 383 // We've exhausted the search. 384 break; 385 386 assert(Iteration > 0 && 387 "Cannot track PHI-used values past the first iteration!"); 388 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 389 PHIUsedList.clear(); 390 } 391 }; 392 393 // Ensure that we don't violate the loop structure invariants relied on by 394 // this analysis. 395 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 396 assert(L->isLCSSAForm(DT) && 397 "Must have loops in LCSSA form to track live-out values."); 398 399 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 400 401 // Simulate execution of each iteration of the loop counting instructions, 402 // which would be simplified. 403 // Since the same load will take different values on different iterations, 404 // we literally have to go through all loop's iterations. 405 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 406 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 407 408 // Prepare for the iteration by collecting any simplified entry or backedge 409 // inputs. 410 for (Instruction &I : *L->getHeader()) { 411 auto *PHI = dyn_cast<PHINode>(&I); 412 if (!PHI) 413 break; 414 415 // The loop header PHI nodes must have exactly two input: one from the 416 // loop preheader and one from the loop latch. 417 assert( 418 PHI->getNumIncomingValues() == 2 && 419 "Must have an incoming value only for the preheader and the latch."); 420 421 Value *V = PHI->getIncomingValueForBlock( 422 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 423 Constant *C = dyn_cast<Constant>(V); 424 if (Iteration != 0 && !C) 425 C = SimplifiedValues.lookup(V); 426 if (C) 427 SimplifiedInputValues.push_back({PHI, C}); 428 } 429 430 // Now clear and re-populate the map for the next iteration. 431 SimplifiedValues.clear(); 432 while (!SimplifiedInputValues.empty()) 433 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 434 435 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 436 437 BBWorklist.clear(); 438 BBWorklist.insert(L->getHeader()); 439 // Note that we *must not* cache the size, this loop grows the worklist. 440 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 441 BasicBlock *BB = BBWorklist[Idx]; 442 443 // Visit all instructions in the given basic block and try to simplify 444 // it. We don't change the actual IR, just count optimization 445 // opportunities. 446 for (Instruction &I : *BB) { 447 if (isa<DbgInfoIntrinsic>(I)) 448 continue; 449 450 // Track this instruction's expected baseline cost when executing the 451 // rolled loop form. 452 RolledDynamicCost += TTI.getUserCost(&I); 453 454 // Visit the instruction to analyze its loop cost after unrolling, 455 // and if the visitor returns true, mark the instruction as free after 456 // unrolling and continue. 457 bool IsFree = Analyzer.visit(I); 458 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 459 (unsigned)IsFree, 460 /*IsCounted*/ false}).second; 461 (void)Inserted; 462 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 463 464 if (IsFree) 465 continue; 466 467 // Can't properly model a cost of a call. 468 // FIXME: With a proper cost model we should be able to do it. 469 if(isa<CallInst>(&I)) 470 return None; 471 472 // If the instruction might have a side-effect recursively account for 473 // the cost of it and all the instructions leading up to it. 474 if (I.mayHaveSideEffects()) 475 AddCostRecursively(I, Iteration); 476 477 // If unrolled body turns out to be too big, bail out. 478 if (UnrolledCost > MaxUnrolledLoopSize) { 479 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 480 << " UnrolledCost: " << UnrolledCost 481 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 482 << "\n"); 483 return None; 484 } 485 } 486 487 TerminatorInst *TI = BB->getTerminator(); 488 489 // Add in the live successors by first checking whether we have terminator 490 // that may be simplified based on the values simplified by this call. 491 BasicBlock *KnownSucc = nullptr; 492 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 493 if (BI->isConditional()) { 494 if (Constant *SimpleCond = 495 SimplifiedValues.lookup(BI->getCondition())) { 496 // Just take the first successor if condition is undef 497 if (isa<UndefValue>(SimpleCond)) 498 KnownSucc = BI->getSuccessor(0); 499 else if (ConstantInt *SimpleCondVal = 500 dyn_cast<ConstantInt>(SimpleCond)) 501 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 502 } 503 } 504 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 505 if (Constant *SimpleCond = 506 SimplifiedValues.lookup(SI->getCondition())) { 507 // Just take the first successor if condition is undef 508 if (isa<UndefValue>(SimpleCond)) 509 KnownSucc = SI->getSuccessor(0); 510 else if (ConstantInt *SimpleCondVal = 511 dyn_cast<ConstantInt>(SimpleCond)) 512 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 513 } 514 } 515 if (KnownSucc) { 516 if (L->contains(KnownSucc)) 517 BBWorklist.insert(KnownSucc); 518 else 519 ExitWorklist.insert({BB, KnownSucc}); 520 continue; 521 } 522 523 // Add BB's successors to the worklist. 524 for (BasicBlock *Succ : successors(BB)) 525 if (L->contains(Succ)) 526 BBWorklist.insert(Succ); 527 else 528 ExitWorklist.insert({BB, Succ}); 529 AddCostRecursively(*TI, Iteration); 530 } 531 532 // If we found no optimization opportunities on the first iteration, we 533 // won't find them on later ones too. 534 if (UnrolledCost == RolledDynamicCost) { 535 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 536 << " UnrolledCost: " << UnrolledCost << "\n"); 537 return None; 538 } 539 } 540 541 while (!ExitWorklist.empty()) { 542 BasicBlock *ExitingBB, *ExitBB; 543 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 544 545 for (Instruction &I : *ExitBB) { 546 auto *PN = dyn_cast<PHINode>(&I); 547 if (!PN) 548 break; 549 550 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 551 if (auto *OpI = dyn_cast<Instruction>(Op)) 552 if (L->contains(OpI)) 553 AddCostRecursively(*OpI, TripCount - 1); 554 } 555 } 556 557 DEBUG(dbgs() << "Analysis finished:\n" 558 << "UnrolledCost: " << UnrolledCost << ", " 559 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 560 return {{UnrolledCost, RolledDynamicCost}}; 561 } 562 563 /// ApproximateLoopSize - Approximate the size of the loop. 564 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 565 bool &NotDuplicatable, bool &Convergent, 566 const TargetTransformInfo &TTI, 567 AssumptionCache *AC, unsigned BEInsns) { 568 SmallPtrSet<const Value *, 32> EphValues; 569 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 570 571 CodeMetrics Metrics; 572 for (BasicBlock *BB : L->blocks()) 573 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 574 NumCalls = Metrics.NumInlineCandidates; 575 NotDuplicatable = Metrics.notDuplicatable; 576 Convergent = Metrics.convergent; 577 578 unsigned LoopSize = Metrics.NumInsts; 579 580 // Don't allow an estimate of size zero. This would allows unrolling of loops 581 // with huge iteration counts, which is a compile time problem even if it's 582 // not a problem for code quality. Also, the code using this size may assume 583 // that each loop has at least three instructions (likely a conditional 584 // branch, a comparison feeding that branch, and some kind of loop increment 585 // feeding that comparison instruction). 586 LoopSize = std::max(LoopSize, BEInsns + 1); 587 588 return LoopSize; 589 } 590 591 // Returns the loop hint metadata node with the given name (for example, 592 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 593 // returned. 594 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 595 if (MDNode *LoopID = L->getLoopID()) 596 return GetUnrollMetadata(LoopID, Name); 597 return nullptr; 598 } 599 600 // Returns true if the loop has an unroll(full) pragma. 601 static bool HasUnrollFullPragma(const Loop *L) { 602 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 603 } 604 605 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 606 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 607 static bool HasUnrollEnablePragma(const Loop *L) { 608 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 609 } 610 611 // Returns true if the loop has an unroll(disable) pragma. 612 static bool HasUnrollDisablePragma(const Loop *L) { 613 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 614 } 615 616 // Returns true if the loop has an runtime unroll(disable) pragma. 617 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 618 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 619 } 620 621 // If loop has an unroll_count pragma return the (necessarily 622 // positive) value from the pragma. Otherwise return 0. 623 static unsigned UnrollCountPragmaValue(const Loop *L) { 624 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 625 if (MD) { 626 assert(MD->getNumOperands() == 2 && 627 "Unroll count hint metadata should have two operands."); 628 unsigned Count = 629 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 630 assert(Count >= 1 && "Unroll count must be positive."); 631 return Count; 632 } 633 return 0; 634 } 635 636 // Remove existing unroll metadata and add unroll disable metadata to 637 // indicate the loop has already been unrolled. This prevents a loop 638 // from being unrolled more than is directed by a pragma if the loop 639 // unrolling pass is run more than once (which it generally is). 640 static void SetLoopAlreadyUnrolled(Loop *L) { 641 MDNode *LoopID = L->getLoopID(); 642 // First remove any existing loop unrolling metadata. 643 SmallVector<Metadata *, 4> MDs; 644 // Reserve first location for self reference to the LoopID metadata node. 645 MDs.push_back(nullptr); 646 647 if (LoopID) { 648 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 649 bool IsUnrollMetadata = false; 650 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 651 if (MD) { 652 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 653 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 654 } 655 if (!IsUnrollMetadata) 656 MDs.push_back(LoopID->getOperand(i)); 657 } 658 } 659 660 // Add unroll(disable) metadata to disable future unrolling. 661 LLVMContext &Context = L->getHeader()->getContext(); 662 SmallVector<Metadata *, 1> DisableOperands; 663 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 664 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 665 MDs.push_back(DisableNode); 666 667 MDNode *NewLoopID = MDNode::get(Context, MDs); 668 // Set operand 0 to refer to the loop id itself. 669 NewLoopID->replaceOperandWith(0, NewLoopID); 670 L->setLoopID(NewLoopID); 671 } 672 673 // Computes the boosting factor for complete unrolling. 674 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 675 // be beneficial to fully unroll the loop even if unrolledcost is large. We 676 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 677 // the unroll threshold. 678 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 679 unsigned MaxPercentThresholdBoost) { 680 if (Cost.RolledDynamicCost >= UINT_MAX / 100) 681 return 100; 682 else if (Cost.UnrolledCost != 0) 683 // The boosting factor is RolledDynamicCost / UnrolledCost 684 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 685 MaxPercentThresholdBoost); 686 else 687 return MaxPercentThresholdBoost; 688 } 689 690 // Returns loop size estimation for unrolled loop. 691 static uint64_t getUnrolledLoopSize( 692 unsigned LoopSize, 693 TargetTransformInfo::UnrollingPreferences &UP) { 694 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 695 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 696 } 697 698 // Returns true if unroll count was set explicitly. 699 // Calculates unroll count and writes it to UP.Count. 700 static bool computeUnrollCount( 701 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 702 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 703 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 704 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 705 // Check for explicit Count. 706 // 1st priority is unroll count set by "unroll-count" option. 707 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 708 if (UserUnrollCount) { 709 UP.Count = UnrollCount; 710 UP.AllowExpensiveTripCount = true; 711 UP.Force = true; 712 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 713 return true; 714 } 715 716 // 2nd priority is unroll count set by pragma. 717 unsigned PragmaCount = UnrollCountPragmaValue(L); 718 if (PragmaCount > 0) { 719 UP.Count = PragmaCount; 720 UP.Runtime = true; 721 UP.AllowExpensiveTripCount = true; 722 UP.Force = true; 723 if (UP.AllowRemainder && 724 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 725 return true; 726 } 727 bool PragmaFullUnroll = HasUnrollFullPragma(L); 728 if (PragmaFullUnroll && TripCount != 0) { 729 UP.Count = TripCount; 730 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 731 return false; 732 } 733 734 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 735 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 736 PragmaEnableUnroll || UserUnrollCount; 737 738 if (ExplicitUnroll && TripCount != 0) { 739 // If the loop has an unrolling pragma, we want to be more aggressive with 740 // unrolling limits. Set thresholds to at least the PragmaThreshold value 741 // which is larger than the default limits. 742 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 743 UP.PartialThreshold = 744 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 745 } 746 747 // 3rd priority is full unroll count. 748 // Full unroll makes sense only when TripCount or its upper bound could be 749 // statically calculated. 750 // Also we need to check if we exceed FullUnrollMaxCount. 751 // If using the upper bound to unroll, TripMultiple should be set to 1 because 752 // we do not know when loop may exit. 753 // MaxTripCount and ExactTripCount cannot both be non zero since we only 754 // compute the former when the latter is zero. 755 unsigned ExactTripCount = TripCount; 756 assert((ExactTripCount == 0 || MaxTripCount == 0) && 757 "ExtractTripCound and MaxTripCount cannot both be non zero."); 758 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 759 UP.Count = FullUnrollTripCount; 760 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 761 // When computing the unrolled size, note that BEInsns are not replicated 762 // like the rest of the loop body. 763 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 764 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 765 TripCount = FullUnrollTripCount; 766 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 767 return ExplicitUnroll; 768 } else { 769 // The loop isn't that small, but we still can fully unroll it if that 770 // helps to remove a significant number of instructions. 771 // To check that, run additional analysis on the loop. 772 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 773 L, FullUnrollTripCount, DT, *SE, TTI, 774 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 775 unsigned Boost = 776 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 777 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 778 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 779 TripCount = FullUnrollTripCount; 780 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 781 return ExplicitUnroll; 782 } 783 } 784 } 785 } 786 787 // 4rd priority is partial unrolling. 788 // Try partial unroll only when TripCount could be staticaly calculated. 789 if (TripCount) { 790 UP.Partial |= ExplicitUnroll; 791 if (!UP.Partial) { 792 DEBUG(dbgs() << " will not try to unroll partially because " 793 << "-unroll-allow-partial not given\n"); 794 UP.Count = 0; 795 return false; 796 } 797 if (UP.Count == 0) 798 UP.Count = TripCount; 799 if (UP.PartialThreshold != NoThreshold) { 800 // Reduce unroll count to be modulo of TripCount for partial unrolling. 801 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 802 UP.Count = 803 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 804 (LoopSize - UP.BEInsns); 805 if (UP.Count > UP.MaxCount) 806 UP.Count = UP.MaxCount; 807 while (UP.Count != 0 && TripCount % UP.Count != 0) 808 UP.Count--; 809 if (UP.AllowRemainder && UP.Count <= 1) { 810 // If there is no Count that is modulo of TripCount, set Count to 811 // largest power-of-two factor that satisfies the threshold limit. 812 // As we'll create fixup loop, do the type of unrolling only if 813 // remainder loop is allowed. 814 UP.Count = UP.DefaultUnrollRuntimeCount; 815 while (UP.Count != 0 && 816 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 817 UP.Count >>= 1; 818 } 819 if (UP.Count < 2) { 820 if (PragmaEnableUnroll) 821 ORE->emit( 822 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 823 L->getStartLoc(), L->getHeader()) 824 << "Unable to unroll loop as directed by unroll(enable) pragma " 825 "because unrolled size is too large."); 826 UP.Count = 0; 827 } 828 } else { 829 UP.Count = TripCount; 830 } 831 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 832 UP.Count != TripCount) 833 ORE->emit( 834 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 835 L->getStartLoc(), L->getHeader()) 836 << "Unable to fully unroll loop as directed by unroll pragma because " 837 "unrolled size is too large."); 838 return ExplicitUnroll; 839 } 840 assert(TripCount == 0 && 841 "All cases when TripCount is constant should be covered here."); 842 if (PragmaFullUnroll) 843 ORE->emit( 844 OptimizationRemarkMissed(DEBUG_TYPE, 845 "CantFullUnrollAsDirectedRuntimeTripCount", 846 L->getStartLoc(), L->getHeader()) 847 << "Unable to fully unroll loop as directed by unroll(full) pragma " 848 "because loop has a runtime trip count."); 849 850 // 5th priority is loop peeling 851 computePeelCount(L, LoopSize, UP); 852 if (UP.PeelCount) { 853 UP.Runtime = false; 854 UP.Count = 1; 855 return ExplicitUnroll; 856 } 857 858 // 6th priority is runtime unrolling. 859 // Don't unroll a runtime trip count loop when it is disabled. 860 if (HasRuntimeUnrollDisablePragma(L)) { 861 UP.Count = 0; 862 return false; 863 } 864 865 // Check if the runtime trip count is too small when profile is available. 866 if (L->getHeader()->getParent()->getEntryCount()) { 867 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 868 if (*ProfileTripCount < FlatLoopTripCountThreshold) 869 return false; 870 else 871 UP.AllowExpensiveTripCount = true; 872 } 873 } 874 875 // Reduce count based on the type of unrolling and the threshold values. 876 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 877 if (!UP.Runtime) { 878 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 879 << "-unroll-runtime not given\n"); 880 UP.Count = 0; 881 return false; 882 } 883 if (UP.Count == 0) 884 UP.Count = UP.DefaultUnrollRuntimeCount; 885 886 // Reduce unroll count to be the largest power-of-two factor of 887 // the original count which satisfies the threshold limit. 888 while (UP.Count != 0 && 889 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 890 UP.Count >>= 1; 891 892 #ifndef NDEBUG 893 unsigned OrigCount = UP.Count; 894 #endif 895 896 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 897 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 898 UP.Count >>= 1; 899 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 900 "specific or because the loop contains a convergent " 901 "instruction), so unroll count must divide the trip " 902 "multiple, " 903 << TripMultiple << ". Reducing unroll count from " 904 << OrigCount << " to " << UP.Count << ".\n"); 905 using namespace ore; 906 if (PragmaCount > 0 && !UP.AllowRemainder) 907 ORE->emit( 908 OptimizationRemarkMissed(DEBUG_TYPE, 909 "DifferentUnrollCountFromDirected", 910 L->getStartLoc(), L->getHeader()) 911 << "Unable to unroll loop the number of times directed by " 912 "unroll_count pragma because remainder loop is restricted " 913 "(that could architecture specific or because the loop " 914 "contains a convergent instruction) and so must have an unroll " 915 "count that divides the loop trip multiple of " 916 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 917 << NV("UnrollCount", UP.Count) << " time(s)."); 918 } 919 920 if (UP.Count > UP.MaxCount) 921 UP.Count = UP.MaxCount; 922 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 923 if (UP.Count < 2) 924 UP.Count = 0; 925 return ExplicitUnroll; 926 } 927 928 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 929 ScalarEvolution *SE, const TargetTransformInfo &TTI, 930 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 931 bool PreserveLCSSA, int OptLevel, 932 Optional<unsigned> ProvidedCount, 933 Optional<unsigned> ProvidedThreshold, 934 Optional<bool> ProvidedAllowPartial, 935 Optional<bool> ProvidedRuntime, 936 Optional<bool> ProvidedUpperBound) { 937 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 938 << "] Loop %" << L->getHeader()->getName() << "\n"); 939 if (HasUnrollDisablePragma(L)) 940 return false; 941 if (!L->isLoopSimplifyForm()) { 942 DEBUG( 943 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 944 return false; 945 } 946 947 unsigned NumInlineCandidates; 948 bool NotDuplicatable; 949 bool Convergent; 950 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 951 L, TTI, OptLevel, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 952 ProvidedRuntime, ProvidedUpperBound); 953 // Exit early if unrolling is disabled. 954 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 955 return false; 956 unsigned LoopSize = ApproximateLoopSize( 957 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 958 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 959 if (NotDuplicatable) { 960 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 961 << " instructions.\n"); 962 return false; 963 } 964 if (NumInlineCandidates != 0) { 965 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 966 return false; 967 } 968 969 // Find trip count and trip multiple if count is not available 970 unsigned TripCount = 0; 971 unsigned MaxTripCount = 0; 972 unsigned TripMultiple = 1; 973 // If there are multiple exiting blocks but one of them is the latch, use the 974 // latch for the trip count estimation. Otherwise insist on a single exiting 975 // block for the trip count estimation. 976 BasicBlock *ExitingBlock = L->getLoopLatch(); 977 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 978 ExitingBlock = L->getExitingBlock(); 979 if (ExitingBlock) { 980 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 981 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 982 } 983 984 // If the loop contains a convergent operation, the prelude we'd add 985 // to do the first few instructions before we hit the unrolled loop 986 // is unsafe -- it adds a control-flow dependency to the convergent 987 // operation. Therefore restrict remainder loop (try unrollig without). 988 // 989 // TODO: This is quite conservative. In practice, convergent_op() 990 // is likely to be called unconditionally in the loop. In this 991 // case, the program would be ill-formed (on most architectures) 992 // unless n were the same on all threads in a thread group. 993 // Assuming n is the same on all threads, any kind of unrolling is 994 // safe. But currently llvm's notion of convergence isn't powerful 995 // enough to express this. 996 if (Convergent) 997 UP.AllowRemainder = false; 998 999 // Try to find the trip count upper bound if we cannot find the exact trip 1000 // count. 1001 bool MaxOrZero = false; 1002 if (!TripCount) { 1003 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1004 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1005 // We can unroll by the upper bound amount if it's generally allowed or if 1006 // we know that the loop is executed either the upper bound or zero times. 1007 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1008 // loop tests remains the same compared to the non-unrolled version, whereas 1009 // the generic upper bound unrolling keeps all but the last loop test so the 1010 // number of loop tests goes up which may end up being worse on targets with 1011 // constriained branch predictor resources so is controlled by an option.) 1012 // In addition we only unroll small upper bounds. 1013 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1014 MaxTripCount = 0; 1015 } 1016 } 1017 1018 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1019 // fully unroll the loop. 1020 bool UseUpperBound = false; 1021 bool IsCountSetExplicitly = 1022 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1023 TripMultiple, LoopSize, UP, UseUpperBound); 1024 if (!UP.Count) 1025 return false; 1026 // Unroll factor (Count) must be less or equal to TripCount. 1027 if (TripCount && UP.Count > TripCount) 1028 UP.Count = TripCount; 1029 1030 // Unroll the loop. 1031 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1032 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1033 TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE, 1034 PreserveLCSSA)) 1035 return false; 1036 1037 // If loop has an unroll count pragma or unrolled by explicitly set count 1038 // mark loop as unrolled to prevent unrolling beyond that requested. 1039 // If the loop was peeled, we already "used up" the profile information 1040 // we had, so we don't want to unroll or peel again. 1041 if (IsCountSetExplicitly || UP.PeelCount) 1042 SetLoopAlreadyUnrolled(L); 1043 1044 return true; 1045 } 1046 1047 namespace { 1048 class LoopUnroll : public LoopPass { 1049 public: 1050 static char ID; // Pass ID, replacement for typeid 1051 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1052 Optional<unsigned> Count = None, 1053 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1054 Optional<bool> UpperBound = None) 1055 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1056 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1057 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1058 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1059 } 1060 1061 int OptLevel; 1062 Optional<unsigned> ProvidedCount; 1063 Optional<unsigned> ProvidedThreshold; 1064 Optional<bool> ProvidedAllowPartial; 1065 Optional<bool> ProvidedRuntime; 1066 Optional<bool> ProvidedUpperBound; 1067 1068 bool runOnLoop(Loop *L, LPPassManager &) override { 1069 if (skipLoop(L)) 1070 return false; 1071 1072 Function &F = *L->getHeader()->getParent(); 1073 1074 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1075 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1076 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1077 const TargetTransformInfo &TTI = 1078 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1079 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1080 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1081 // pass. Function analyses need to be preserved across loop transformations 1082 // but ORE cannot be preserved (see comment before the pass definition). 1083 OptimizationRemarkEmitter ORE(&F); 1084 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1085 1086 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, 1087 ProvidedCount, ProvidedThreshold, 1088 ProvidedAllowPartial, ProvidedRuntime, 1089 ProvidedUpperBound); 1090 } 1091 1092 /// This transformation requires natural loop information & requires that 1093 /// loop preheaders be inserted into the CFG... 1094 /// 1095 void getAnalysisUsage(AnalysisUsage &AU) const override { 1096 AU.addRequired<AssumptionCacheTracker>(); 1097 AU.addRequired<TargetTransformInfoWrapperPass>(); 1098 // FIXME: Loop passes are required to preserve domtree, and for now we just 1099 // recreate dom info if anything gets unrolled. 1100 getLoopAnalysisUsage(AU); 1101 } 1102 }; 1103 } 1104 1105 char LoopUnroll::ID = 0; 1106 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1108 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1110 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1111 1112 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1113 int AllowPartial, int Runtime, 1114 int UpperBound) { 1115 // TODO: It would make more sense for this function to take the optionals 1116 // directly, but that's dangerous since it would silently break out of tree 1117 // callers. 1118 return new LoopUnroll( 1119 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1120 Count == -1 ? None : Optional<unsigned>(Count), 1121 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1122 Runtime == -1 ? None : Optional<bool>(Runtime), 1123 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1124 } 1125 1126 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1127 return llvm::createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0); 1128 } 1129 1130 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1131 LoopStandardAnalysisResults &AR, 1132 LPMUpdater &Updater) { 1133 const auto &FAM = 1134 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1135 Function *F = L.getHeader()->getParent(); 1136 1137 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1138 // FIXME: This should probably be optional rather than required. 1139 if (!ORE) 1140 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1141 "cached at a higher level"); 1142 1143 // Keep track of the previous loop structure so we can identify new loops 1144 // created by unrolling. 1145 Loop *ParentL = L.getParentLoop(); 1146 SmallPtrSet<Loop *, 4> OldLoops; 1147 if (ParentL) 1148 OldLoops.insert(ParentL->begin(), ParentL->end()); 1149 else 1150 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1151 1152 // The API here is quite complex to call, but there are only two interesting 1153 // states we support: partial and full (or "simple") unrolling. However, to 1154 // enable these things we actually pass "None" in for the optional to avoid 1155 // providing an explicit choice. 1156 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam; 1157 if (!AllowPartialUnrolling) 1158 AllowPartialParam = RuntimeParam = UpperBoundParam = false; 1159 bool Changed = tryToUnrollLoop( 1160 &L, AR.DT, &AR.LI, &AR.SE, AR.TTI, AR.AC, *ORE, 1161 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1162 /*Threshold*/ None, AllowPartialParam, RuntimeParam, UpperBoundParam); 1163 if (!Changed) 1164 return PreservedAnalyses::all(); 1165 1166 // The parent must not be damaged by unrolling! 1167 #ifndef NDEBUG 1168 if (ParentL) 1169 ParentL->verifyLoop(); 1170 #endif 1171 1172 // Unrolling can do several things to introduce new loops into a loop nest: 1173 // - Partial unrolling clones child loops within the current loop. If it 1174 // uses a remainder, then it can also create any number of sibling loops. 1175 // - Full unrolling clones child loops within the current loop but then 1176 // removes the current loop making all of the children appear to be new 1177 // sibling loops. 1178 // - Loop peeling can directly introduce new sibling loops by peeling one 1179 // iteration. 1180 // 1181 // When a new loop appears as a sibling loop, either from peeling an 1182 // iteration or fully unrolling, its nesting structure has fundamentally 1183 // changed and we want to revisit it to reflect that. 1184 // 1185 // When unrolling has removed the current loop, we need to tell the 1186 // infrastructure that it is gone. 1187 // 1188 // Finally, we support a debugging/testing mode where we revisit child loops 1189 // as well. These are not expected to require further optimizations as either 1190 // they or the loop they were cloned from have been directly visited already. 1191 // But the debugging mode allows us to check this assumption. 1192 bool IsCurrentLoopValid = false; 1193 SmallVector<Loop *, 4> SibLoops; 1194 if (ParentL) 1195 SibLoops.append(ParentL->begin(), ParentL->end()); 1196 else 1197 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1198 erase_if(SibLoops, [&](Loop *SibLoop) { 1199 if (SibLoop == &L) { 1200 IsCurrentLoopValid = true; 1201 return true; 1202 } 1203 1204 // Otherwise erase the loop from the list if it was in the old loops. 1205 return OldLoops.count(SibLoop) != 0; 1206 }); 1207 Updater.addSiblingLoops(SibLoops); 1208 1209 if (!IsCurrentLoopValid) { 1210 Updater.markLoopAsDeleted(L); 1211 } else { 1212 // We can only walk child loops if the current loop remained valid. 1213 if (UnrollRevisitChildLoops) { 1214 // Walk *all* of the child loops. This is a highly speculative mode 1215 // anyways so look for any simplifications that arose from partial 1216 // unrolling or peeling off of iterations. 1217 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1218 Updater.addChildLoops(ChildLoops); 1219 } 1220 } 1221 1222 return getLoopPassPreservedAnalyses(); 1223 } 1224