1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopPassManager.h" 23 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InstVisitor.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/UnrollLoop.h" 39 #include <climits> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 static cl::opt<unsigned> 47 UnrollThreshold("unroll-threshold", cl::Hidden, 48 cl::desc("The baseline cost threshold for loop unrolling")); 49 50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 51 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 52 cl::desc("The percentage of estimated dynamic cost which must be saved by " 53 "unrolling to allow unrolling up to the max threshold.")); 54 55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 56 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 57 cl::desc("This is the amount discounted from the total unroll cost when " 58 "the unrolled form has a high dynamic cost savings (triggered by " 59 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 60 61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 62 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 63 cl::desc("Don't allow loop unrolling to simulate more than this number of" 64 "iterations when checking full unroll profitability")); 65 66 static cl::opt<unsigned> UnrollCount( 67 "unroll-count", cl::Hidden, 68 cl::desc("Use this unroll count for all loops including those with " 69 "unroll_count pragma values, for testing purposes")); 70 71 static cl::opt<unsigned> UnrollMaxCount( 72 "unroll-max-count", cl::Hidden, 73 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 74 "testing purposes")); 75 76 static cl::opt<unsigned> UnrollFullMaxCount( 77 "unroll-full-max-count", cl::Hidden, 78 cl::desc( 79 "Set the max unroll count for full unrolling, for testing purposes")); 80 81 static cl::opt<bool> 82 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 83 cl::desc("Allows loops to be partially unrolled until " 84 "-unroll-threshold loop size is reached.")); 85 86 static cl::opt<bool> UnrollAllowRemainder( 87 "unroll-allow-remainder", cl::Hidden, 88 cl::desc("Allow generation of a loop remainder (extra iterations) " 89 "when unrolling a loop.")); 90 91 static cl::opt<bool> 92 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 93 cl::desc("Unroll loops with run-time trip counts")); 94 95 static cl::opt<unsigned> UnrollMaxUpperBound( 96 "unroll-max-upperbound", cl::init(8), cl::Hidden, 97 cl::desc( 98 "The max of trip count upper bound that is considered in unrolling")); 99 100 static cl::opt<unsigned> PragmaUnrollThreshold( 101 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 102 cl::desc("Unrolled size limit for loops with an unroll(full) or " 103 "unroll_count pragma.")); 104 105 /// A magic value for use with the Threshold parameter to indicate 106 /// that the loop unroll should be performed regardless of how much 107 /// code expansion would result. 108 static const unsigned NoThreshold = UINT_MAX; 109 110 /// Gather the various unrolling parameters based on the defaults, compiler 111 /// flags, TTI overrides and user specified parameters. 112 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 113 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 114 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 115 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 116 TargetTransformInfo::UnrollingPreferences UP; 117 118 // Set up the defaults 119 UP.Threshold = 150; 120 UP.PercentDynamicCostSavedThreshold = 50; 121 UP.DynamicCostSavingsDiscount = 100; 122 UP.OptSizeThreshold = 0; 123 UP.PartialThreshold = UP.Threshold; 124 UP.PartialOptSizeThreshold = 0; 125 UP.Count = 0; 126 UP.DefaultUnrollRuntimeCount = 8; 127 UP.MaxCount = UINT_MAX; 128 UP.FullUnrollMaxCount = UINT_MAX; 129 UP.BEInsns = 2; 130 UP.Partial = false; 131 UP.Runtime = false; 132 UP.AllowRemainder = true; 133 UP.AllowExpensiveTripCount = false; 134 UP.Force = false; 135 UP.UpperBound = false; 136 137 // Override with any target specific settings 138 TTI.getUnrollingPreferences(L, UP); 139 140 // Apply size attributes 141 if (L->getHeader()->getParent()->optForSize()) { 142 UP.Threshold = UP.OptSizeThreshold; 143 UP.PartialThreshold = UP.PartialOptSizeThreshold; 144 } 145 146 // Apply any user values specified by cl::opt 147 if (UnrollThreshold.getNumOccurrences() > 0) { 148 UP.Threshold = UnrollThreshold; 149 UP.PartialThreshold = UnrollThreshold; 150 } 151 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 152 UP.PercentDynamicCostSavedThreshold = 153 UnrollPercentDynamicCostSavedThreshold; 154 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 155 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 156 if (UnrollMaxCount.getNumOccurrences() > 0) 157 UP.MaxCount = UnrollMaxCount; 158 if (UnrollFullMaxCount.getNumOccurrences() > 0) 159 UP.FullUnrollMaxCount = UnrollFullMaxCount; 160 if (UnrollAllowPartial.getNumOccurrences() > 0) 161 UP.Partial = UnrollAllowPartial; 162 if (UnrollAllowRemainder.getNumOccurrences() > 0) 163 UP.AllowRemainder = UnrollAllowRemainder; 164 if (UnrollRuntime.getNumOccurrences() > 0) 165 UP.Runtime = UnrollRuntime; 166 if (UnrollMaxUpperBound == 0) 167 UP.UpperBound = false; 168 169 // Apply user values provided by argument 170 if (UserThreshold.hasValue()) { 171 UP.Threshold = *UserThreshold; 172 UP.PartialThreshold = *UserThreshold; 173 } 174 if (UserCount.hasValue()) 175 UP.Count = *UserCount; 176 if (UserAllowPartial.hasValue()) 177 UP.Partial = *UserAllowPartial; 178 if (UserRuntime.hasValue()) 179 UP.Runtime = *UserRuntime; 180 if (UserUpperBound.hasValue()) 181 UP.UpperBound = *UserUpperBound; 182 183 return UP; 184 } 185 186 namespace { 187 /// A struct to densely store the state of an instruction after unrolling at 188 /// each iteration. 189 /// 190 /// This is designed to work like a tuple of <Instruction *, int> for the 191 /// purposes of hashing and lookup, but to be able to associate two boolean 192 /// states with each key. 193 struct UnrolledInstState { 194 Instruction *I; 195 int Iteration : 30; 196 unsigned IsFree : 1; 197 unsigned IsCounted : 1; 198 }; 199 200 /// Hashing and equality testing for a set of the instruction states. 201 struct UnrolledInstStateKeyInfo { 202 typedef DenseMapInfo<Instruction *> PtrInfo; 203 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 204 static inline UnrolledInstState getEmptyKey() { 205 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 206 } 207 static inline UnrolledInstState getTombstoneKey() { 208 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 209 } 210 static inline unsigned getHashValue(const UnrolledInstState &S) { 211 return PairInfo::getHashValue({S.I, S.Iteration}); 212 } 213 static inline bool isEqual(const UnrolledInstState &LHS, 214 const UnrolledInstState &RHS) { 215 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 216 } 217 }; 218 } 219 220 namespace { 221 struct EstimatedUnrollCost { 222 /// \brief The estimated cost after unrolling. 223 int UnrolledCost; 224 225 /// \brief The estimated dynamic cost of executing the instructions in the 226 /// rolled form. 227 int RolledDynamicCost; 228 }; 229 } 230 231 /// \brief Figure out if the loop is worth full unrolling. 232 /// 233 /// Complete loop unrolling can make some loads constant, and we need to know 234 /// if that would expose any further optimization opportunities. This routine 235 /// estimates this optimization. It computes cost of unrolled loop 236 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 237 /// dynamic cost we mean that we won't count costs of blocks that are known not 238 /// to be executed (i.e. if we have a branch in the loop and we know that at the 239 /// given iteration its condition would be resolved to true, we won't add up the 240 /// cost of the 'false'-block). 241 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 242 /// the analysis failed (no benefits expected from the unrolling, or the loop is 243 /// too big to analyze), the returned value is None. 244 static Optional<EstimatedUnrollCost> 245 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 246 ScalarEvolution &SE, const TargetTransformInfo &TTI, 247 int MaxUnrolledLoopSize) { 248 // We want to be able to scale offsets by the trip count and add more offsets 249 // to them without checking for overflows, and we already don't want to 250 // analyze *massive* trip counts, so we force the max to be reasonably small. 251 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 252 "The unroll iterations max is too large!"); 253 254 // Only analyze inner loops. We can't properly estimate cost of nested loops 255 // and we won't visit inner loops again anyway. 256 if (!L->empty()) 257 return None; 258 259 // Don't simulate loops with a big or unknown tripcount 260 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 261 TripCount > UnrollMaxIterationsCountToAnalyze) 262 return None; 263 264 SmallSetVector<BasicBlock *, 16> BBWorklist; 265 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 266 DenseMap<Value *, Constant *> SimplifiedValues; 267 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 268 269 // The estimated cost of the unrolled form of the loop. We try to estimate 270 // this by simplifying as much as we can while computing the estimate. 271 int UnrolledCost = 0; 272 273 // We also track the estimated dynamic (that is, actually executed) cost in 274 // the rolled form. This helps identify cases when the savings from unrolling 275 // aren't just exposing dead control flows, but actual reduced dynamic 276 // instructions due to the simplifications which we expect to occur after 277 // unrolling. 278 int RolledDynamicCost = 0; 279 280 // We track the simplification of each instruction in each iteration. We use 281 // this to recursively merge costs into the unrolled cost on-demand so that 282 // we don't count the cost of any dead code. This is essentially a map from 283 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 284 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 285 286 // A small worklist used to accumulate cost of instructions from each 287 // observable and reached root in the loop. 288 SmallVector<Instruction *, 16> CostWorklist; 289 290 // PHI-used worklist used between iterations while accumulating cost. 291 SmallVector<Instruction *, 4> PHIUsedList; 292 293 // Helper function to accumulate cost for instructions in the loop. 294 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 295 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 296 assert(CostWorklist.empty() && "Must start with an empty cost list"); 297 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 298 CostWorklist.push_back(&RootI); 299 for (;; --Iteration) { 300 do { 301 Instruction *I = CostWorklist.pop_back_val(); 302 303 // InstCostMap only uses I and Iteration as a key, the other two values 304 // don't matter here. 305 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 306 if (CostIter == InstCostMap.end()) 307 // If an input to a PHI node comes from a dead path through the loop 308 // we may have no cost data for it here. What that actually means is 309 // that it is free. 310 continue; 311 auto &Cost = *CostIter; 312 if (Cost.IsCounted) 313 // Already counted this instruction. 314 continue; 315 316 // Mark that we are counting the cost of this instruction now. 317 Cost.IsCounted = true; 318 319 // If this is a PHI node in the loop header, just add it to the PHI set. 320 if (auto *PhiI = dyn_cast<PHINode>(I)) 321 if (PhiI->getParent() == L->getHeader()) { 322 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 323 "inherently simplify during unrolling."); 324 if (Iteration == 0) 325 continue; 326 327 // Push the incoming value from the backedge into the PHI used list 328 // if it is an in-loop instruction. We'll use this to populate the 329 // cost worklist for the next iteration (as we count backwards). 330 if (auto *OpI = dyn_cast<Instruction>( 331 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 332 if (L->contains(OpI)) 333 PHIUsedList.push_back(OpI); 334 continue; 335 } 336 337 // First accumulate the cost of this instruction. 338 if (!Cost.IsFree) { 339 UnrolledCost += TTI.getUserCost(I); 340 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 341 << "): "); 342 DEBUG(I->dump()); 343 } 344 345 // We must count the cost of every operand which is not free, 346 // recursively. If we reach a loop PHI node, simply add it to the set 347 // to be considered on the next iteration (backwards!). 348 for (Value *Op : I->operands()) { 349 // Check whether this operand is free due to being a constant or 350 // outside the loop. 351 auto *OpI = dyn_cast<Instruction>(Op); 352 if (!OpI || !L->contains(OpI)) 353 continue; 354 355 // Otherwise accumulate its cost. 356 CostWorklist.push_back(OpI); 357 } 358 } while (!CostWorklist.empty()); 359 360 if (PHIUsedList.empty()) 361 // We've exhausted the search. 362 break; 363 364 assert(Iteration > 0 && 365 "Cannot track PHI-used values past the first iteration!"); 366 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 367 PHIUsedList.clear(); 368 } 369 }; 370 371 // Ensure that we don't violate the loop structure invariants relied on by 372 // this analysis. 373 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 374 assert(L->isLCSSAForm(DT) && 375 "Must have loops in LCSSA form to track live-out values."); 376 377 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 378 379 // Simulate execution of each iteration of the loop counting instructions, 380 // which would be simplified. 381 // Since the same load will take different values on different iterations, 382 // we literally have to go through all loop's iterations. 383 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 384 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 385 386 // Prepare for the iteration by collecting any simplified entry or backedge 387 // inputs. 388 for (Instruction &I : *L->getHeader()) { 389 auto *PHI = dyn_cast<PHINode>(&I); 390 if (!PHI) 391 break; 392 393 // The loop header PHI nodes must have exactly two input: one from the 394 // loop preheader and one from the loop latch. 395 assert( 396 PHI->getNumIncomingValues() == 2 && 397 "Must have an incoming value only for the preheader and the latch."); 398 399 Value *V = PHI->getIncomingValueForBlock( 400 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 401 Constant *C = dyn_cast<Constant>(V); 402 if (Iteration != 0 && !C) 403 C = SimplifiedValues.lookup(V); 404 if (C) 405 SimplifiedInputValues.push_back({PHI, C}); 406 } 407 408 // Now clear and re-populate the map for the next iteration. 409 SimplifiedValues.clear(); 410 while (!SimplifiedInputValues.empty()) 411 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 412 413 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 414 415 BBWorklist.clear(); 416 BBWorklist.insert(L->getHeader()); 417 // Note that we *must not* cache the size, this loop grows the worklist. 418 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 419 BasicBlock *BB = BBWorklist[Idx]; 420 421 // Visit all instructions in the given basic block and try to simplify 422 // it. We don't change the actual IR, just count optimization 423 // opportunities. 424 for (Instruction &I : *BB) { 425 if (isa<DbgInfoIntrinsic>(I)) 426 continue; 427 428 // Track this instruction's expected baseline cost when executing the 429 // rolled loop form. 430 RolledDynamicCost += TTI.getUserCost(&I); 431 432 // Visit the instruction to analyze its loop cost after unrolling, 433 // and if the visitor returns true, mark the instruction as free after 434 // unrolling and continue. 435 bool IsFree = Analyzer.visit(I); 436 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 437 (unsigned)IsFree, 438 /*IsCounted*/ false}).second; 439 (void)Inserted; 440 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 441 442 if (IsFree) 443 continue; 444 445 // Can't properly model a cost of a call. 446 // FIXME: With a proper cost model we should be able to do it. 447 if(isa<CallInst>(&I)) 448 return None; 449 450 // If the instruction might have a side-effect recursively account for 451 // the cost of it and all the instructions leading up to it. 452 if (I.mayHaveSideEffects()) 453 AddCostRecursively(I, Iteration); 454 455 // If unrolled body turns out to be too big, bail out. 456 if (UnrolledCost > MaxUnrolledLoopSize) { 457 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 458 << " UnrolledCost: " << UnrolledCost 459 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 460 << "\n"); 461 return None; 462 } 463 } 464 465 TerminatorInst *TI = BB->getTerminator(); 466 467 // Add in the live successors by first checking whether we have terminator 468 // that may be simplified based on the values simplified by this call. 469 BasicBlock *KnownSucc = nullptr; 470 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 471 if (BI->isConditional()) { 472 if (Constant *SimpleCond = 473 SimplifiedValues.lookup(BI->getCondition())) { 474 // Just take the first successor if condition is undef 475 if (isa<UndefValue>(SimpleCond)) 476 KnownSucc = BI->getSuccessor(0); 477 else if (ConstantInt *SimpleCondVal = 478 dyn_cast<ConstantInt>(SimpleCond)) 479 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 480 } 481 } 482 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 483 if (Constant *SimpleCond = 484 SimplifiedValues.lookup(SI->getCondition())) { 485 // Just take the first successor if condition is undef 486 if (isa<UndefValue>(SimpleCond)) 487 KnownSucc = SI->getSuccessor(0); 488 else if (ConstantInt *SimpleCondVal = 489 dyn_cast<ConstantInt>(SimpleCond)) 490 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 491 } 492 } 493 if (KnownSucc) { 494 if (L->contains(KnownSucc)) 495 BBWorklist.insert(KnownSucc); 496 else 497 ExitWorklist.insert({BB, KnownSucc}); 498 continue; 499 } 500 501 // Add BB's successors to the worklist. 502 for (BasicBlock *Succ : successors(BB)) 503 if (L->contains(Succ)) 504 BBWorklist.insert(Succ); 505 else 506 ExitWorklist.insert({BB, Succ}); 507 AddCostRecursively(*TI, Iteration); 508 } 509 510 // If we found no optimization opportunities on the first iteration, we 511 // won't find them on later ones too. 512 if (UnrolledCost == RolledDynamicCost) { 513 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 514 << " UnrolledCost: " << UnrolledCost << "\n"); 515 return None; 516 } 517 } 518 519 while (!ExitWorklist.empty()) { 520 BasicBlock *ExitingBB, *ExitBB; 521 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 522 523 for (Instruction &I : *ExitBB) { 524 auto *PN = dyn_cast<PHINode>(&I); 525 if (!PN) 526 break; 527 528 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 529 if (auto *OpI = dyn_cast<Instruction>(Op)) 530 if (L->contains(OpI)) 531 AddCostRecursively(*OpI, TripCount - 1); 532 } 533 } 534 535 DEBUG(dbgs() << "Analysis finished:\n" 536 << "UnrolledCost: " << UnrolledCost << ", " 537 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 538 return {{UnrolledCost, RolledDynamicCost}}; 539 } 540 541 /// ApproximateLoopSize - Approximate the size of the loop. 542 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 543 bool &NotDuplicatable, bool &Convergent, 544 const TargetTransformInfo &TTI, 545 AssumptionCache *AC, unsigned BEInsns) { 546 SmallPtrSet<const Value *, 32> EphValues; 547 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 548 549 CodeMetrics Metrics; 550 for (BasicBlock *BB : L->blocks()) 551 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 552 NumCalls = Metrics.NumInlineCandidates; 553 NotDuplicatable = Metrics.notDuplicatable; 554 Convergent = Metrics.convergent; 555 556 unsigned LoopSize = Metrics.NumInsts; 557 558 // Don't allow an estimate of size zero. This would allows unrolling of loops 559 // with huge iteration counts, which is a compile time problem even if it's 560 // not a problem for code quality. Also, the code using this size may assume 561 // that each loop has at least three instructions (likely a conditional 562 // branch, a comparison feeding that branch, and some kind of loop increment 563 // feeding that comparison instruction). 564 LoopSize = std::max(LoopSize, BEInsns + 1); 565 566 return LoopSize; 567 } 568 569 // Returns the loop hint metadata node with the given name (for example, 570 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 571 // returned. 572 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 573 if (MDNode *LoopID = L->getLoopID()) 574 return GetUnrollMetadata(LoopID, Name); 575 return nullptr; 576 } 577 578 // Returns true if the loop has an unroll(full) pragma. 579 static bool HasUnrollFullPragma(const Loop *L) { 580 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 581 } 582 583 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 584 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 585 static bool HasUnrollEnablePragma(const Loop *L) { 586 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 587 } 588 589 // Returns true if the loop has an unroll(disable) pragma. 590 static bool HasUnrollDisablePragma(const Loop *L) { 591 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 592 } 593 594 // Returns true if the loop has an runtime unroll(disable) pragma. 595 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 596 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 597 } 598 599 // If loop has an unroll_count pragma return the (necessarily 600 // positive) value from the pragma. Otherwise return 0. 601 static unsigned UnrollCountPragmaValue(const Loop *L) { 602 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 603 if (MD) { 604 assert(MD->getNumOperands() == 2 && 605 "Unroll count hint metadata should have two operands."); 606 unsigned Count = 607 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 608 assert(Count >= 1 && "Unroll count must be positive."); 609 return Count; 610 } 611 return 0; 612 } 613 614 // Remove existing unroll metadata and add unroll disable metadata to 615 // indicate the loop has already been unrolled. This prevents a loop 616 // from being unrolled more than is directed by a pragma if the loop 617 // unrolling pass is run more than once (which it generally is). 618 static void SetLoopAlreadyUnrolled(Loop *L) { 619 MDNode *LoopID = L->getLoopID(); 620 // First remove any existing loop unrolling metadata. 621 SmallVector<Metadata *, 4> MDs; 622 // Reserve first location for self reference to the LoopID metadata node. 623 MDs.push_back(nullptr); 624 625 if (LoopID) { 626 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 627 bool IsUnrollMetadata = false; 628 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 629 if (MD) { 630 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 631 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 632 } 633 if (!IsUnrollMetadata) 634 MDs.push_back(LoopID->getOperand(i)); 635 } 636 } 637 638 // Add unroll(disable) metadata to disable future unrolling. 639 LLVMContext &Context = L->getHeader()->getContext(); 640 SmallVector<Metadata *, 1> DisableOperands; 641 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 642 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 643 MDs.push_back(DisableNode); 644 645 MDNode *NewLoopID = MDNode::get(Context, MDs); 646 // Set operand 0 to refer to the loop id itself. 647 NewLoopID->replaceOperandWith(0, NewLoopID); 648 L->setLoopID(NewLoopID); 649 } 650 651 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 652 unsigned PercentDynamicCostSavedThreshold, 653 unsigned DynamicCostSavingsDiscount, 654 uint64_t UnrolledCost, 655 uint64_t RolledDynamicCost) { 656 if (Threshold == NoThreshold) { 657 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 658 return true; 659 } 660 661 if (UnrolledCost <= Threshold) { 662 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 663 << UnrolledCost << "<=" << Threshold << "\n"); 664 return true; 665 } 666 667 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 668 assert(RolledDynamicCost >= UnrolledCost && 669 "Cannot have a higher unrolled cost than a rolled cost!"); 670 671 // Compute the percentage of the dynamic cost in the rolled form that is 672 // saved when unrolled. If unrolling dramatically reduces the estimated 673 // dynamic cost of the loop, we use a higher threshold to allow more 674 // unrolling. 675 unsigned PercentDynamicCostSaved = 676 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 677 678 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 679 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 680 (int64_t)Threshold) { 681 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 682 "expected dynamic cost by " 683 << PercentDynamicCostSaved << "% (threshold: " 684 << PercentDynamicCostSavedThreshold << "%)\n" 685 << " and the unrolled cost (" << UnrolledCost 686 << ") is less than the max threshold (" 687 << DynamicCostSavingsDiscount << ").\n"); 688 return true; 689 } 690 691 DEBUG(dbgs() << " Too large to fully unroll:\n"); 692 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 693 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 694 DEBUG(dbgs() << " Percent cost saved threshold: " 695 << PercentDynamicCostSavedThreshold << "%\n"); 696 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 697 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 698 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 699 << "\n"); 700 return false; 701 } 702 703 // Returns loop size estimation for unrolled loop. 704 static uint64_t getUnrolledLoopSize( 705 unsigned LoopSize, 706 TargetTransformInfo::UnrollingPreferences &UP) { 707 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 708 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 709 } 710 711 // Returns true if unroll count was set explicitly. 712 // Calculates unroll count and writes it to UP.Count. 713 static bool computeUnrollCount( 714 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 715 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 716 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 717 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 718 // Check for explicit Count. 719 // 1st priority is unroll count set by "unroll-count" option. 720 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 721 if (UserUnrollCount) { 722 UP.Count = UnrollCount; 723 UP.AllowExpensiveTripCount = true; 724 UP.Force = true; 725 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 726 return true; 727 } 728 729 // 2nd priority is unroll count set by pragma. 730 unsigned PragmaCount = UnrollCountPragmaValue(L); 731 if (PragmaCount > 0) { 732 UP.Count = PragmaCount; 733 UP.Runtime = true; 734 UP.AllowExpensiveTripCount = true; 735 UP.Force = true; 736 if (UP.AllowRemainder && 737 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 738 return true; 739 } 740 bool PragmaFullUnroll = HasUnrollFullPragma(L); 741 if (PragmaFullUnroll && TripCount != 0) { 742 UP.Count = TripCount; 743 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 744 return false; 745 } 746 747 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 748 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 749 PragmaEnableUnroll || UserUnrollCount; 750 751 if (ExplicitUnroll && TripCount != 0) { 752 // If the loop has an unrolling pragma, we want to be more aggressive with 753 // unrolling limits. Set thresholds to at least the PragmaThreshold value 754 // which is larger than the default limits. 755 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 756 UP.PartialThreshold = 757 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 758 } 759 760 // 3rd priority is full unroll count. 761 // Full unroll makes sense only when TripCount or its upper bound could be 762 // statically calculated. 763 // Also we need to check if we exceed FullUnrollMaxCount. 764 // If using the upper bound to unroll, TripMultiple should be set to 1 because 765 // we do not know when loop may exit. 766 // MaxTripCount and ExactTripCount cannot both be non zero since we only 767 // compute the former when the latter is zero. 768 unsigned ExactTripCount = TripCount; 769 assert((ExactTripCount == 0 || MaxTripCount == 0) && 770 "ExtractTripCound and MaxTripCount cannot both be non zero."); 771 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 772 UP.Count = FullUnrollTripCount; 773 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 774 // When computing the unrolled size, note that BEInsns are not replicated 775 // like the rest of the loop body. 776 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 777 getUnrolledLoopSize(LoopSize, UP), 778 getUnrolledLoopSize(LoopSize, UP))) { 779 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 780 TripCount = FullUnrollTripCount; 781 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 782 return ExplicitUnroll; 783 } else { 784 // The loop isn't that small, but we still can fully unroll it if that 785 // helps to remove a significant number of instructions. 786 // To check that, run additional analysis on the loop. 787 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 788 L, FullUnrollTripCount, DT, *SE, TTI, 789 UP.Threshold + UP.DynamicCostSavingsDiscount)) 790 if (canUnrollCompletely(L, UP.Threshold, 791 UP.PercentDynamicCostSavedThreshold, 792 UP.DynamicCostSavingsDiscount, 793 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 794 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 795 TripCount = FullUnrollTripCount; 796 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 797 return ExplicitUnroll; 798 } 799 } 800 } 801 802 // 4rd priority is partial unrolling. 803 // Try partial unroll only when TripCount could be staticaly calculated. 804 if (TripCount) { 805 UP.Partial |= ExplicitUnroll; 806 if (!UP.Partial) { 807 DEBUG(dbgs() << " will not try to unroll partially because " 808 << "-unroll-allow-partial not given\n"); 809 UP.Count = 0; 810 return false; 811 } 812 if (UP.Count == 0) 813 UP.Count = TripCount; 814 if (UP.PartialThreshold != NoThreshold) { 815 // Reduce unroll count to be modulo of TripCount for partial unrolling. 816 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 817 UP.Count = 818 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 819 (LoopSize - UP.BEInsns); 820 if (UP.Count > UP.MaxCount) 821 UP.Count = UP.MaxCount; 822 while (UP.Count != 0 && TripCount % UP.Count != 0) 823 UP.Count--; 824 if (UP.AllowRemainder && UP.Count <= 1) { 825 // If there is no Count that is modulo of TripCount, set Count to 826 // largest power-of-two factor that satisfies the threshold limit. 827 // As we'll create fixup loop, do the type of unrolling only if 828 // remainder loop is allowed. 829 UP.Count = UP.DefaultUnrollRuntimeCount; 830 while (UP.Count != 0 && 831 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 832 UP.Count >>= 1; 833 } 834 if (UP.Count < 2) { 835 if (PragmaEnableUnroll) 836 ORE->emit( 837 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 838 L->getStartLoc(), L->getHeader()) 839 << "Unable to unroll loop as directed by unroll(enable) pragma " 840 "because unrolled size is too large."); 841 UP.Count = 0; 842 } 843 } else { 844 UP.Count = TripCount; 845 } 846 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 847 UP.Count != TripCount) 848 ORE->emit( 849 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 850 L->getStartLoc(), L->getHeader()) 851 << "Unable to fully unroll loop as directed by unroll pragma because " 852 "unrolled size is too large."); 853 return ExplicitUnroll; 854 } 855 assert(TripCount == 0 && 856 "All cases when TripCount is constant should be covered here."); 857 if (PragmaFullUnroll) 858 ORE->emit( 859 OptimizationRemarkMissed(DEBUG_TYPE, 860 "CantFullUnrollAsDirectedRuntimeTripCount", 861 L->getStartLoc(), L->getHeader()) 862 << "Unable to fully unroll loop as directed by unroll(full) pragma " 863 "because loop has a runtime trip count."); 864 865 // 5th priority is runtime unrolling. 866 // Don't unroll a runtime trip count loop when it is disabled. 867 if (HasRuntimeUnrollDisablePragma(L)) { 868 UP.Count = 0; 869 return false; 870 } 871 // Reduce count based on the type of unrolling and the threshold values. 872 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 873 if (!UP.Runtime) { 874 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 875 << "-unroll-runtime not given\n"); 876 UP.Count = 0; 877 return false; 878 } 879 if (UP.Count == 0) 880 UP.Count = UP.DefaultUnrollRuntimeCount; 881 882 // Reduce unroll count to be the largest power-of-two factor of 883 // the original count which satisfies the threshold limit. 884 while (UP.Count != 0 && 885 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 886 UP.Count >>= 1; 887 888 #ifndef NDEBUG 889 unsigned OrigCount = UP.Count; 890 #endif 891 892 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 893 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 894 UP.Count >>= 1; 895 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 896 "specific or because the loop contains a convergent " 897 "instruction), so unroll count must divide the trip " 898 "multiple, " 899 << TripMultiple << ". Reducing unroll count from " 900 << OrigCount << " to " << UP.Count << ".\n"); 901 using namespace ore; 902 if (PragmaCount > 0 && !UP.AllowRemainder) 903 ORE->emit( 904 OptimizationRemarkMissed(DEBUG_TYPE, 905 "DifferentUnrollCountFromDirected", 906 L->getStartLoc(), L->getHeader()) 907 << "Unable to unroll loop the number of times directed by " 908 "unroll_count pragma because remainder loop is restricted " 909 "(that could architecture specific or because the loop " 910 "contains a convergent instruction) and so must have an unroll " 911 "count that divides the loop trip multiple of " 912 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 913 << NV("UnrollCount", UP.Count) << " time(s)."); 914 } 915 916 if (UP.Count > UP.MaxCount) 917 UP.Count = UP.MaxCount; 918 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 919 if (UP.Count < 2) 920 UP.Count = 0; 921 return ExplicitUnroll; 922 } 923 924 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 925 ScalarEvolution *SE, const TargetTransformInfo &TTI, 926 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 927 bool PreserveLCSSA, 928 Optional<unsigned> ProvidedCount, 929 Optional<unsigned> ProvidedThreshold, 930 Optional<bool> ProvidedAllowPartial, 931 Optional<bool> ProvidedRuntime, 932 Optional<bool> ProvidedUpperBound) { 933 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 934 << "] Loop %" << L->getHeader()->getName() << "\n"); 935 if (HasUnrollDisablePragma(L)) { 936 return false; 937 } 938 939 unsigned NumInlineCandidates; 940 bool NotDuplicatable; 941 bool Convergent; 942 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 943 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 944 ProvidedRuntime, ProvidedUpperBound); 945 unsigned LoopSize = ApproximateLoopSize( 946 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 947 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 948 if (NotDuplicatable) { 949 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 950 << " instructions.\n"); 951 return false; 952 } 953 if (NumInlineCandidates != 0) { 954 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 955 return false; 956 } 957 if (!L->isLoopSimplifyForm()) { 958 DEBUG( 959 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 960 return false; 961 } 962 963 // Find trip count and trip multiple if count is not available 964 unsigned TripCount = 0; 965 unsigned MaxTripCount = 0; 966 unsigned TripMultiple = 1; 967 // If there are multiple exiting blocks but one of them is the latch, use the 968 // latch for the trip count estimation. Otherwise insist on a single exiting 969 // block for the trip count estimation. 970 BasicBlock *ExitingBlock = L->getLoopLatch(); 971 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 972 ExitingBlock = L->getExitingBlock(); 973 if (ExitingBlock) { 974 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 975 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 976 } 977 978 // Exit early if unrolling is disabled. 979 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 980 return false; 981 982 // If the loop contains a convergent operation, the prelude we'd add 983 // to do the first few instructions before we hit the unrolled loop 984 // is unsafe -- it adds a control-flow dependency to the convergent 985 // operation. Therefore restrict remainder loop (try unrollig without). 986 // 987 // TODO: This is quite conservative. In practice, convergent_op() 988 // is likely to be called unconditionally in the loop. In this 989 // case, the program would be ill-formed (on most architectures) 990 // unless n were the same on all threads in a thread group. 991 // Assuming n is the same on all threads, any kind of unrolling is 992 // safe. But currently llvm's notion of convergence isn't powerful 993 // enough to express this. 994 if (Convergent) 995 UP.AllowRemainder = false; 996 997 // Try to find the trip count upper bound if we cannot find the exact trip 998 // count. 999 bool MaxOrZero = false; 1000 if (!TripCount) { 1001 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1002 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1003 // We can unroll by the upper bound amount if it's generally allowed or if 1004 // we know that the loop is executed either the upper bound or zero times. 1005 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1006 // loop tests remains the same compared to the non-unrolled version, whereas 1007 // the generic upper bound unrolling keeps all but the last loop test so the 1008 // number of loop tests goes up which may end up being worse on targets with 1009 // constriained branch predictor resources so is controlled by an option.) 1010 // In addition we only unroll small upper bounds. 1011 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1012 MaxTripCount = 0; 1013 } 1014 } 1015 1016 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1017 // fully unroll the loop. 1018 bool UseUpperBound = false; 1019 bool IsCountSetExplicitly = 1020 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1021 TripMultiple, LoopSize, UP, UseUpperBound); 1022 if (!UP.Count) 1023 return false; 1024 // Unroll factor (Count) must be less or equal to TripCount. 1025 if (TripCount && UP.Count > TripCount) 1026 UP.Count = TripCount; 1027 1028 // Unroll the loop. 1029 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1030 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1031 TripMultiple, LI, SE, &DT, &AC, &ORE, PreserveLCSSA)) 1032 return false; 1033 1034 // If loop has an unroll count pragma or unrolled by explicitly set count 1035 // mark loop as unrolled to prevent unrolling beyond that requested. 1036 if (IsCountSetExplicitly) 1037 SetLoopAlreadyUnrolled(L); 1038 return true; 1039 } 1040 1041 namespace { 1042 class LoopUnroll : public LoopPass { 1043 public: 1044 static char ID; // Pass ID, replacement for typeid 1045 LoopUnroll(Optional<unsigned> Threshold = None, 1046 Optional<unsigned> Count = None, 1047 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1048 Optional<bool> UpperBound = None) 1049 : LoopPass(ID), ProvidedCount(std::move(Count)), 1050 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1051 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1052 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1053 } 1054 1055 Optional<unsigned> ProvidedCount; 1056 Optional<unsigned> ProvidedThreshold; 1057 Optional<bool> ProvidedAllowPartial; 1058 Optional<bool> ProvidedRuntime; 1059 Optional<bool> ProvidedUpperBound; 1060 1061 bool runOnLoop(Loop *L, LPPassManager &) override { 1062 if (skipLoop(L)) 1063 return false; 1064 1065 Function &F = *L->getHeader()->getParent(); 1066 1067 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1068 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1069 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1070 const TargetTransformInfo &TTI = 1071 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1072 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1073 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1074 // pass. Function analyses need to be preserved across loop transformations 1075 // but ORE cannot be preserved (see comment before the pass definition). 1076 OptimizationRemarkEmitter ORE(&F); 1077 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1078 1079 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1080 ProvidedCount, ProvidedThreshold, 1081 ProvidedAllowPartial, ProvidedRuntime, 1082 ProvidedUpperBound); 1083 } 1084 1085 /// This transformation requires natural loop information & requires that 1086 /// loop preheaders be inserted into the CFG... 1087 /// 1088 void getAnalysisUsage(AnalysisUsage &AU) const override { 1089 AU.addRequired<AssumptionCacheTracker>(); 1090 AU.addRequired<TargetTransformInfoWrapperPass>(); 1091 // FIXME: Loop passes are required to preserve domtree, and for now we just 1092 // recreate dom info if anything gets unrolled. 1093 getLoopAnalysisUsage(AU); 1094 } 1095 }; 1096 } 1097 1098 char LoopUnroll::ID = 0; 1099 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1100 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1101 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1102 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1103 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1104 1105 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1106 int Runtime, int UpperBound) { 1107 // TODO: It would make more sense for this function to take the optionals 1108 // directly, but that's dangerous since it would silently break out of tree 1109 // callers. 1110 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1111 Count == -1 ? None : Optional<unsigned>(Count), 1112 AllowPartial == -1 ? None 1113 : Optional<bool>(AllowPartial), 1114 Runtime == -1 ? None : Optional<bool>(Runtime), 1115 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1116 } 1117 1118 Pass *llvm::createSimpleLoopUnrollPass() { 1119 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1120 } 1121 1122 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1123 const auto &FAM = 1124 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1125 Function *F = L.getHeader()->getParent(); 1126 1127 1128 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1129 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1130 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1131 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1132 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 1133 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1134 if (!DT) 1135 report_fatal_error( 1136 "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1137 if (!LI) 1138 report_fatal_error( 1139 "LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1140 if (!SE) 1141 report_fatal_error( 1142 "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1143 if (!TTI) 1144 report_fatal_error( 1145 "LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1146 if (!AC) 1147 report_fatal_error( 1148 "LoopUnrollPass: AssumptionAnalysis not cached at a higher level"); 1149 if (!ORE) 1150 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1151 "cached at a higher level"); 1152 1153 bool Changed = 1154 tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, 1155 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1156 ProvidedRuntime, ProvidedUpperBound); 1157 1158 if (!Changed) 1159 return PreservedAnalyses::all(); 1160 return getLoopPassPreservedAnalyses(); 1161 } 1162