xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision bd63d436c148152aedf13818475e66892449662b)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The baseline cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
51     "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden,
52     cl::desc("The percentage of estimated dynamic cost which must be saved by "
53              "unrolling to allow unrolling up to the max threshold."));
54 
55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
56     "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden,
57     cl::desc("This is the amount discounted from the total unroll cost when "
58              "the unrolled form has a high dynamic cost savings (triggered by "
59              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
60 
61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
62     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
63     cl::desc("Don't allow loop unrolling to simulate more than this number of"
64              "iterations when checking full unroll profitability"));
65 
66 static cl::opt<unsigned> UnrollCount(
67     "unroll-count", cl::Hidden,
68     cl::desc("Use this unroll count for all loops including those with "
69              "unroll_count pragma values, for testing purposes"));
70 
71 static cl::opt<unsigned> UnrollMaxCount(
72     "unroll-max-count", cl::Hidden,
73     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
74              "testing purposes"));
75 
76 static cl::opt<unsigned> UnrollFullMaxCount(
77     "unroll-full-max-count", cl::Hidden,
78     cl::desc(
79         "Set the max unroll count for full unrolling, for testing purposes"));
80 
81 static cl::opt<bool>
82     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
83                        cl::desc("Allows loops to be partially unrolled until "
84                                 "-unroll-threshold loop size is reached."));
85 
86 static cl::opt<bool> UnrollAllowRemainder(
87     "unroll-allow-remainder", cl::Hidden,
88     cl::desc("Allow generation of a loop remainder (extra iterations) "
89              "when unrolling a loop."));
90 
91 static cl::opt<bool>
92     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
93                   cl::desc("Unroll loops with run-time trip counts"));
94 
95 static cl::opt<unsigned> PragmaUnrollThreshold(
96     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
97     cl::desc("Unrolled size limit for loops with an unroll(full) or "
98              "unroll_count pragma."));
99 
100 /// A magic value for use with the Threshold parameter to indicate
101 /// that the loop unroll should be performed regardless of how much
102 /// code expansion would result.
103 static const unsigned NoThreshold = UINT_MAX;
104 
105 /// Default unroll count for loops with run-time trip count if
106 /// -unroll-count is not set
107 static const unsigned DefaultUnrollRuntimeCount = 8;
108 
109 /// Gather the various unrolling parameters based on the defaults, compiler
110 /// flags, TTI overrides and user specified parameters.
111 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
112     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
113     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
114     Optional<bool> UserRuntime) {
115   TargetTransformInfo::UnrollingPreferences UP;
116 
117   // Set up the defaults
118   UP.Threshold = 150;
119   UP.PercentDynamicCostSavedThreshold = 50;
120   UP.DynamicCostSavingsDiscount = 100;
121   UP.OptSizeThreshold = 0;
122   UP.PartialThreshold = UP.Threshold;
123   UP.PartialOptSizeThreshold = 0;
124   UP.Count = 0;
125   UP.MaxCount = UINT_MAX;
126   UP.FullUnrollMaxCount = UINT_MAX;
127   UP.Partial = false;
128   UP.Runtime = false;
129   UP.AllowRemainder = true;
130   UP.AllowExpensiveTripCount = false;
131   UP.Force = false;
132 
133   // Override with any target specific settings
134   TTI.getUnrollingPreferences(L, UP);
135 
136   // Apply size attributes
137   if (L->getHeader()->getParent()->optForSize()) {
138     UP.Threshold = UP.OptSizeThreshold;
139     UP.PartialThreshold = UP.PartialOptSizeThreshold;
140   }
141 
142   // Apply any user values specified by cl::opt
143   if (UnrollThreshold.getNumOccurrences() > 0) {
144     UP.Threshold = UnrollThreshold;
145     UP.PartialThreshold = UnrollThreshold;
146   }
147   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
148     UP.PercentDynamicCostSavedThreshold =
149         UnrollPercentDynamicCostSavedThreshold;
150   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
151     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
152   if (UnrollMaxCount.getNumOccurrences() > 0)
153     UP.MaxCount = UnrollMaxCount;
154   if (UnrollFullMaxCount.getNumOccurrences() > 0)
155     UP.FullUnrollMaxCount = UnrollFullMaxCount;
156   if (UnrollAllowPartial.getNumOccurrences() > 0)
157     UP.Partial = UnrollAllowPartial;
158   if (UnrollAllowRemainder.getNumOccurrences() > 0)
159     UP.AllowRemainder = UnrollAllowRemainder;
160   if (UnrollRuntime.getNumOccurrences() > 0)
161     UP.Runtime = UnrollRuntime;
162 
163   // Apply user values provided by argument
164   if (UserThreshold.hasValue()) {
165     UP.Threshold = *UserThreshold;
166     UP.PartialThreshold = *UserThreshold;
167   }
168   if (UserCount.hasValue())
169     UP.Count = *UserCount;
170   if (UserAllowPartial.hasValue())
171     UP.Partial = *UserAllowPartial;
172   if (UserRuntime.hasValue())
173     UP.Runtime = *UserRuntime;
174 
175   return UP;
176 }
177 
178 namespace {
179 /// A struct to densely store the state of an instruction after unrolling at
180 /// each iteration.
181 ///
182 /// This is designed to work like a tuple of <Instruction *, int> for the
183 /// purposes of hashing and lookup, but to be able to associate two boolean
184 /// states with each key.
185 struct UnrolledInstState {
186   Instruction *I;
187   int Iteration : 30;
188   unsigned IsFree : 1;
189   unsigned IsCounted : 1;
190 };
191 
192 /// Hashing and equality testing for a set of the instruction states.
193 struct UnrolledInstStateKeyInfo {
194   typedef DenseMapInfo<Instruction *> PtrInfo;
195   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
196   static inline UnrolledInstState getEmptyKey() {
197     return {PtrInfo::getEmptyKey(), 0, 0, 0};
198   }
199   static inline UnrolledInstState getTombstoneKey() {
200     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
201   }
202   static inline unsigned getHashValue(const UnrolledInstState &S) {
203     return PairInfo::getHashValue({S.I, S.Iteration});
204   }
205   static inline bool isEqual(const UnrolledInstState &LHS,
206                              const UnrolledInstState &RHS) {
207     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
208   }
209 };
210 }
211 
212 namespace {
213 struct EstimatedUnrollCost {
214   /// \brief The estimated cost after unrolling.
215   int UnrolledCost;
216 
217   /// \brief The estimated dynamic cost of executing the instructions in the
218   /// rolled form.
219   int RolledDynamicCost;
220 };
221 }
222 
223 /// \brief Figure out if the loop is worth full unrolling.
224 ///
225 /// Complete loop unrolling can make some loads constant, and we need to know
226 /// if that would expose any further optimization opportunities.  This routine
227 /// estimates this optimization.  It computes cost of unrolled loop
228 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
229 /// dynamic cost we mean that we won't count costs of blocks that are known not
230 /// to be executed (i.e. if we have a branch in the loop and we know that at the
231 /// given iteration its condition would be resolved to true, we won't add up the
232 /// cost of the 'false'-block).
233 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
234 /// the analysis failed (no benefits expected from the unrolling, or the loop is
235 /// too big to analyze), the returned value is None.
236 static Optional<EstimatedUnrollCost>
237 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
238                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
239                       int MaxUnrolledLoopSize) {
240   // We want to be able to scale offsets by the trip count and add more offsets
241   // to them without checking for overflows, and we already don't want to
242   // analyze *massive* trip counts, so we force the max to be reasonably small.
243   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
244          "The unroll iterations max is too large!");
245 
246   // Only analyze inner loops. We can't properly estimate cost of nested loops
247   // and we won't visit inner loops again anyway.
248   if (!L->empty())
249     return None;
250 
251   // Don't simulate loops with a big or unknown tripcount
252   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
253       TripCount > UnrollMaxIterationsCountToAnalyze)
254     return None;
255 
256   SmallSetVector<BasicBlock *, 16> BBWorklist;
257   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
258   DenseMap<Value *, Constant *> SimplifiedValues;
259   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
260 
261   // The estimated cost of the unrolled form of the loop. We try to estimate
262   // this by simplifying as much as we can while computing the estimate.
263   int UnrolledCost = 0;
264 
265   // We also track the estimated dynamic (that is, actually executed) cost in
266   // the rolled form. This helps identify cases when the savings from unrolling
267   // aren't just exposing dead control flows, but actual reduced dynamic
268   // instructions due to the simplifications which we expect to occur after
269   // unrolling.
270   int RolledDynamicCost = 0;
271 
272   // We track the simplification of each instruction in each iteration. We use
273   // this to recursively merge costs into the unrolled cost on-demand so that
274   // we don't count the cost of any dead code. This is essentially a map from
275   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
276   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
277 
278   // A small worklist used to accumulate cost of instructions from each
279   // observable and reached root in the loop.
280   SmallVector<Instruction *, 16> CostWorklist;
281 
282   // PHI-used worklist used between iterations while accumulating cost.
283   SmallVector<Instruction *, 4> PHIUsedList;
284 
285   // Helper function to accumulate cost for instructions in the loop.
286   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
287     assert(Iteration >= 0 && "Cannot have a negative iteration!");
288     assert(CostWorklist.empty() && "Must start with an empty cost list");
289     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
290     CostWorklist.push_back(&RootI);
291     for (;; --Iteration) {
292       do {
293         Instruction *I = CostWorklist.pop_back_val();
294 
295         // InstCostMap only uses I and Iteration as a key, the other two values
296         // don't matter here.
297         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
298         if (CostIter == InstCostMap.end())
299           // If an input to a PHI node comes from a dead path through the loop
300           // we may have no cost data for it here. What that actually means is
301           // that it is free.
302           continue;
303         auto &Cost = *CostIter;
304         if (Cost.IsCounted)
305           // Already counted this instruction.
306           continue;
307 
308         // Mark that we are counting the cost of this instruction now.
309         Cost.IsCounted = true;
310 
311         // If this is a PHI node in the loop header, just add it to the PHI set.
312         if (auto *PhiI = dyn_cast<PHINode>(I))
313           if (PhiI->getParent() == L->getHeader()) {
314             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
315                                   "inherently simplify during unrolling.");
316             if (Iteration == 0)
317               continue;
318 
319             // Push the incoming value from the backedge into the PHI used list
320             // if it is an in-loop instruction. We'll use this to populate the
321             // cost worklist for the next iteration (as we count backwards).
322             if (auto *OpI = dyn_cast<Instruction>(
323                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
324               if (L->contains(OpI))
325                 PHIUsedList.push_back(OpI);
326             continue;
327           }
328 
329         // First accumulate the cost of this instruction.
330         if (!Cost.IsFree) {
331           UnrolledCost += TTI.getUserCost(I);
332           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
333                        << "): ");
334           DEBUG(I->dump());
335         }
336 
337         // We must count the cost of every operand which is not free,
338         // recursively. If we reach a loop PHI node, simply add it to the set
339         // to be considered on the next iteration (backwards!).
340         for (Value *Op : I->operands()) {
341           // Check whether this operand is free due to being a constant or
342           // outside the loop.
343           auto *OpI = dyn_cast<Instruction>(Op);
344           if (!OpI || !L->contains(OpI))
345             continue;
346 
347           // Otherwise accumulate its cost.
348           CostWorklist.push_back(OpI);
349         }
350       } while (!CostWorklist.empty());
351 
352       if (PHIUsedList.empty())
353         // We've exhausted the search.
354         break;
355 
356       assert(Iteration > 0 &&
357              "Cannot track PHI-used values past the first iteration!");
358       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
359       PHIUsedList.clear();
360     }
361   };
362 
363   // Ensure that we don't violate the loop structure invariants relied on by
364   // this analysis.
365   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
366   assert(L->isLCSSAForm(DT) &&
367          "Must have loops in LCSSA form to track live-out values.");
368 
369   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
370 
371   // Simulate execution of each iteration of the loop counting instructions,
372   // which would be simplified.
373   // Since the same load will take different values on different iterations,
374   // we literally have to go through all loop's iterations.
375   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
376     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
377 
378     // Prepare for the iteration by collecting any simplified entry or backedge
379     // inputs.
380     for (Instruction &I : *L->getHeader()) {
381       auto *PHI = dyn_cast<PHINode>(&I);
382       if (!PHI)
383         break;
384 
385       // The loop header PHI nodes must have exactly two input: one from the
386       // loop preheader and one from the loop latch.
387       assert(
388           PHI->getNumIncomingValues() == 2 &&
389           "Must have an incoming value only for the preheader and the latch.");
390 
391       Value *V = PHI->getIncomingValueForBlock(
392           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
393       Constant *C = dyn_cast<Constant>(V);
394       if (Iteration != 0 && !C)
395         C = SimplifiedValues.lookup(V);
396       if (C)
397         SimplifiedInputValues.push_back({PHI, C});
398     }
399 
400     // Now clear and re-populate the map for the next iteration.
401     SimplifiedValues.clear();
402     while (!SimplifiedInputValues.empty())
403       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
404 
405     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
406 
407     BBWorklist.clear();
408     BBWorklist.insert(L->getHeader());
409     // Note that we *must not* cache the size, this loop grows the worklist.
410     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
411       BasicBlock *BB = BBWorklist[Idx];
412 
413       // Visit all instructions in the given basic block and try to simplify
414       // it.  We don't change the actual IR, just count optimization
415       // opportunities.
416       for (Instruction &I : *BB) {
417         // Track this instruction's expected baseline cost when executing the
418         // rolled loop form.
419         RolledDynamicCost += TTI.getUserCost(&I);
420 
421         // Visit the instruction to analyze its loop cost after unrolling,
422         // and if the visitor returns true, mark the instruction as free after
423         // unrolling and continue.
424         bool IsFree = Analyzer.visit(I);
425         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
426                                            (unsigned)IsFree,
427                                            /*IsCounted*/ false}).second;
428         (void)Inserted;
429         assert(Inserted && "Cannot have a state for an unvisited instruction!");
430 
431         if (IsFree)
432           continue;
433 
434         // Can't properly model a cost of a call.
435         // FIXME: With a proper cost model we should be able to do it.
436         if(isa<CallInst>(&I))
437           return None;
438 
439         // If the instruction might have a side-effect recursively account for
440         // the cost of it and all the instructions leading up to it.
441         if (I.mayHaveSideEffects())
442           AddCostRecursively(I, Iteration);
443 
444         // If unrolled body turns out to be too big, bail out.
445         if (UnrolledCost > MaxUnrolledLoopSize) {
446           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
447                        << "  UnrolledCost: " << UnrolledCost
448                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
449                        << "\n");
450           return None;
451         }
452       }
453 
454       TerminatorInst *TI = BB->getTerminator();
455 
456       // Add in the live successors by first checking whether we have terminator
457       // that may be simplified based on the values simplified by this call.
458       BasicBlock *KnownSucc = nullptr;
459       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
460         if (BI->isConditional()) {
461           if (Constant *SimpleCond =
462                   SimplifiedValues.lookup(BI->getCondition())) {
463             // Just take the first successor if condition is undef
464             if (isa<UndefValue>(SimpleCond))
465               KnownSucc = BI->getSuccessor(0);
466             else if (ConstantInt *SimpleCondVal =
467                          dyn_cast<ConstantInt>(SimpleCond))
468               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
469           }
470         }
471       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
472         if (Constant *SimpleCond =
473                 SimplifiedValues.lookup(SI->getCondition())) {
474           // Just take the first successor if condition is undef
475           if (isa<UndefValue>(SimpleCond))
476             KnownSucc = SI->getSuccessor(0);
477           else if (ConstantInt *SimpleCondVal =
478                        dyn_cast<ConstantInt>(SimpleCond))
479             KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
480         }
481       }
482       if (KnownSucc) {
483         if (L->contains(KnownSucc))
484           BBWorklist.insert(KnownSucc);
485         else
486           ExitWorklist.insert({BB, KnownSucc});
487         continue;
488       }
489 
490       // Add BB's successors to the worklist.
491       for (BasicBlock *Succ : successors(BB))
492         if (L->contains(Succ))
493           BBWorklist.insert(Succ);
494         else
495           ExitWorklist.insert({BB, Succ});
496       AddCostRecursively(*TI, Iteration);
497     }
498 
499     // If we found no optimization opportunities on the first iteration, we
500     // won't find them on later ones too.
501     if (UnrolledCost == RolledDynamicCost) {
502       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
503                    << "  UnrolledCost: " << UnrolledCost << "\n");
504       return None;
505     }
506   }
507 
508   while (!ExitWorklist.empty()) {
509     BasicBlock *ExitingBB, *ExitBB;
510     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
511 
512     for (Instruction &I : *ExitBB) {
513       auto *PN = dyn_cast<PHINode>(&I);
514       if (!PN)
515         break;
516 
517       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
518       if (auto *OpI = dyn_cast<Instruction>(Op))
519         if (L->contains(OpI))
520           AddCostRecursively(*OpI, TripCount - 1);
521     }
522   }
523 
524   DEBUG(dbgs() << "Analysis finished:\n"
525                << "UnrolledCost: " << UnrolledCost << ", "
526                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
527   return {{UnrolledCost, RolledDynamicCost}};
528 }
529 
530 /// ApproximateLoopSize - Approximate the size of the loop.
531 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
532                                     bool &NotDuplicatable, bool &Convergent,
533                                     const TargetTransformInfo &TTI,
534                                     AssumptionCache *AC) {
535   SmallPtrSet<const Value *, 32> EphValues;
536   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
537 
538   CodeMetrics Metrics;
539   for (BasicBlock *BB : L->blocks())
540     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
541   NumCalls = Metrics.NumInlineCandidates;
542   NotDuplicatable = Metrics.notDuplicatable;
543   Convergent = Metrics.convergent;
544 
545   unsigned LoopSize = Metrics.NumInsts;
546 
547   // Don't allow an estimate of size zero.  This would allows unrolling of loops
548   // with huge iteration counts, which is a compile time problem even if it's
549   // not a problem for code quality. Also, the code using this size may assume
550   // that each loop has at least three instructions (likely a conditional
551   // branch, a comparison feeding that branch, and some kind of loop increment
552   // feeding that comparison instruction).
553   LoopSize = std::max(LoopSize, 3u);
554 
555   return LoopSize;
556 }
557 
558 // Returns the loop hint metadata node with the given name (for example,
559 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
560 // returned.
561 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
562   if (MDNode *LoopID = L->getLoopID())
563     return GetUnrollMetadata(LoopID, Name);
564   return nullptr;
565 }
566 
567 // Returns true if the loop has an unroll(full) pragma.
568 static bool HasUnrollFullPragma(const Loop *L) {
569   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
570 }
571 
572 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
573 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
574 static bool HasUnrollEnablePragma(const Loop *L) {
575   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
576 }
577 
578 // Returns true if the loop has an unroll(disable) pragma.
579 static bool HasUnrollDisablePragma(const Loop *L) {
580   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
581 }
582 
583 // Returns true if the loop has an runtime unroll(disable) pragma.
584 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
585   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
586 }
587 
588 // If loop has an unroll_count pragma return the (necessarily
589 // positive) value from the pragma.  Otherwise return 0.
590 static unsigned UnrollCountPragmaValue(const Loop *L) {
591   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
592   if (MD) {
593     assert(MD->getNumOperands() == 2 &&
594            "Unroll count hint metadata should have two operands.");
595     unsigned Count =
596         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
597     assert(Count >= 1 && "Unroll count must be positive.");
598     return Count;
599   }
600   return 0;
601 }
602 
603 // Remove existing unroll metadata and add unroll disable metadata to
604 // indicate the loop has already been unrolled.  This prevents a loop
605 // from being unrolled more than is directed by a pragma if the loop
606 // unrolling pass is run more than once (which it generally is).
607 static void SetLoopAlreadyUnrolled(Loop *L) {
608   MDNode *LoopID = L->getLoopID();
609   // First remove any existing loop unrolling metadata.
610   SmallVector<Metadata *, 4> MDs;
611   // Reserve first location for self reference to the LoopID metadata node.
612   MDs.push_back(nullptr);
613 
614   if (LoopID) {
615     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
616       bool IsUnrollMetadata = false;
617       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
618       if (MD) {
619         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
620         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
621       }
622       if (!IsUnrollMetadata)
623         MDs.push_back(LoopID->getOperand(i));
624     }
625   }
626 
627   // Add unroll(disable) metadata to disable future unrolling.
628   LLVMContext &Context = L->getHeader()->getContext();
629   SmallVector<Metadata *, 1> DisableOperands;
630   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
631   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
632   MDs.push_back(DisableNode);
633 
634   MDNode *NewLoopID = MDNode::get(Context, MDs);
635   // Set operand 0 to refer to the loop id itself.
636   NewLoopID->replaceOperandWith(0, NewLoopID);
637   L->setLoopID(NewLoopID);
638 }
639 
640 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
641                                 unsigned PercentDynamicCostSavedThreshold,
642                                 unsigned DynamicCostSavingsDiscount,
643                                 uint64_t UnrolledCost,
644                                 uint64_t RolledDynamicCost) {
645   if (Threshold == NoThreshold) {
646     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
647     return true;
648   }
649 
650   if (UnrolledCost <= Threshold) {
651     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
652                  << UnrolledCost << "<" << Threshold << "\n");
653     return true;
654   }
655 
656   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
657   assert(RolledDynamicCost >= UnrolledCost &&
658          "Cannot have a higher unrolled cost than a rolled cost!");
659 
660   // Compute the percentage of the dynamic cost in the rolled form that is
661   // saved when unrolled. If unrolling dramatically reduces the estimated
662   // dynamic cost of the loop, we use a higher threshold to allow more
663   // unrolling.
664   unsigned PercentDynamicCostSaved =
665       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
666 
667   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
668       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
669           (int64_t)Threshold) {
670     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
671                     "expected dynamic cost by "
672                  << PercentDynamicCostSaved << "% (threshold: "
673                  << PercentDynamicCostSavedThreshold << "%)\n"
674                  << "  and the unrolled cost (" << UnrolledCost
675                  << ") is less than the max threshold ("
676                  << DynamicCostSavingsDiscount << ").\n");
677     return true;
678   }
679 
680   DEBUG(dbgs() << "  Too large to fully unroll:\n");
681   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
682   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
683   DEBUG(dbgs() << "    Percent cost saved threshold: "
684                << PercentDynamicCostSavedThreshold << "%\n");
685   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
686   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
687   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
688                << "\n");
689   return false;
690 }
691 
692 // Returns true if unroll count was set explicitly.
693 // Calculates unroll count and writes it to UP.Count.
694 static bool computeUnrollCount(Loop *L, const TargetTransformInfo &TTI,
695                                DominatorTree &DT, LoopInfo *LI,
696                                ScalarEvolution *SE,
697                                OptimizationRemarkEmitter *ORE,
698                                unsigned TripCount, unsigned TripMultiple,
699                                unsigned LoopSize,
700                                TargetTransformInfo::UnrollingPreferences &UP) {
701   // BEInsns represents number of instructions optimized when "back edge"
702   // becomes "fall through" in unrolled loop.
703   // For now we count a conditional branch on a backedge and a comparison
704   // feeding it.
705   unsigned BEInsns = 2;
706   // Check for explicit Count.
707   // 1st priority is unroll count set by "unroll-count" option.
708   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
709   if (UserUnrollCount) {
710     UP.Count = UnrollCount;
711     UP.AllowExpensiveTripCount = true;
712     UP.Force = true;
713     if (UP.AllowRemainder &&
714         (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold)
715       return true;
716   }
717 
718   // 2nd priority is unroll count set by pragma.
719   unsigned PragmaCount = UnrollCountPragmaValue(L);
720   if (PragmaCount > 0) {
721     UP.Count = PragmaCount;
722     UP.Runtime = true;
723     UP.AllowExpensiveTripCount = true;
724     UP.Force = true;
725     if (UP.AllowRemainder &&
726         (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
727       return true;
728   }
729   bool PragmaFullUnroll = HasUnrollFullPragma(L);
730   if (PragmaFullUnroll && TripCount != 0) {
731     UP.Count = TripCount;
732     if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
733       return false;
734   }
735 
736   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
737   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
738                         PragmaEnableUnroll || UserUnrollCount;
739 
740   uint64_t UnrolledSize;
741 
742   if (ExplicitUnroll && TripCount != 0) {
743     // If the loop has an unrolling pragma, we want to be more aggressive with
744     // unrolling limits. Set thresholds to at least the PragmaThreshold value
745     // which is larger than the default limits.
746     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
747     UP.PartialThreshold =
748         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
749   }
750 
751   // 3rd priority is full unroll count.
752   // Full unroll make sense only when TripCount could be staticaly calculated.
753   // Also we need to check if we exceed FullUnrollMaxCount.
754   if (TripCount && TripCount <= UP.FullUnrollMaxCount) {
755     // When computing the unrolled size, note that BEInsns are not replicated
756     // like the rest of the loop body.
757     UnrolledSize = (uint64_t)(LoopSize - BEInsns) * TripCount + BEInsns;
758     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
759                             UnrolledSize, UnrolledSize)) {
760       UP.Count = TripCount;
761       return ExplicitUnroll;
762     } else {
763       // The loop isn't that small, but we still can fully unroll it if that
764       // helps to remove a significant number of instructions.
765       // To check that, run additional analysis on the loop.
766       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
767               L, TripCount, DT, *SE, TTI,
768               UP.Threshold + UP.DynamicCostSavingsDiscount))
769         if (canUnrollCompletely(L, UP.Threshold,
770                                 UP.PercentDynamicCostSavedThreshold,
771                                 UP.DynamicCostSavingsDiscount,
772                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
773           UP.Count = TripCount;
774           return ExplicitUnroll;
775         }
776     }
777   }
778 
779   // 4rd priority is partial unrolling.
780   // Try partial unroll only when TripCount could be staticaly calculated.
781   if (TripCount) {
782     if (UP.Count == 0)
783       UP.Count = TripCount;
784     UP.Partial |= ExplicitUnroll;
785     if (!UP.Partial) {
786       DEBUG(dbgs() << "  will not try to unroll partially because "
787                    << "-unroll-allow-partial not given\n");
788       UP.Count = 0;
789       return false;
790     }
791     if (UP.PartialThreshold != NoThreshold) {
792       // Reduce unroll count to be modulo of TripCount for partial unrolling.
793       UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns;
794       if (UnrolledSize > UP.PartialThreshold)
795         UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) /
796                    (LoopSize - BEInsns);
797       if (UP.Count > UP.MaxCount)
798         UP.Count = UP.MaxCount;
799       while (UP.Count != 0 && TripCount % UP.Count != 0)
800         UP.Count--;
801       if (UP.AllowRemainder && UP.Count <= 1) {
802         // If there is no Count that is modulo of TripCount, set Count to
803         // largest power-of-two factor that satisfies the threshold limit.
804         // As we'll create fixup loop, do the type of unrolling only if
805         // remainder loop is allowed.
806         UP.Count = DefaultUnrollRuntimeCount;
807         UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
808         while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
809           UP.Count >>= 1;
810           UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
811         }
812       }
813       if (UP.Count < 2) {
814         if (PragmaEnableUnroll)
815           ORE->emitOptimizationRemarkMissed(
816               DEBUG_TYPE, L,
817               "Unable to unroll loop as directed by unroll(enable) pragma "
818               "because unrolled size is too large.");
819         UP.Count = 0;
820       }
821     } else {
822       UP.Count = TripCount;
823     }
824     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
825         UP.Count != TripCount)
826       ORE->emitOptimizationRemarkMissed(
827           DEBUG_TYPE, L,
828           "Unable to fully unroll loop as directed by unroll pragma because "
829           "unrolled size is too large.");
830     return ExplicitUnroll;
831   }
832   assert(TripCount == 0 &&
833          "All cases when TripCount is constant should be covered here.");
834   if (PragmaFullUnroll)
835     ORE->emitOptimizationRemarkMissed(
836         DEBUG_TYPE, L,
837         "Unable to fully unroll loop as directed by unroll(full) pragma "
838         "because loop has a runtime trip count.");
839 
840   // 5th priority is runtime unrolling.
841   // Don't unroll a runtime trip count loop when it is disabled.
842   if (HasRuntimeUnrollDisablePragma(L)) {
843     UP.Count = 0;
844     return false;
845   }
846   // Reduce count based on the type of unrolling and the threshold values.
847   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
848   if (!UP.Runtime) {
849     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
850                  << "-unroll-runtime not given\n");
851     UP.Count = 0;
852     return false;
853   }
854   if (UP.Count == 0)
855     UP.Count = DefaultUnrollRuntimeCount;
856   UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
857 
858   // Reduce unroll count to be the largest power-of-two factor of
859   // the original count which satisfies the threshold limit.
860   while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
861     UP.Count >>= 1;
862     UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
863   }
864 
865 #ifndef NDEBUG
866   unsigned OrigCount = UP.Count;
867 #endif
868 
869   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
870     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
871       UP.Count >>= 1;
872     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
873                     "specific or because the loop contains a convergent "
874                     "instruction), so unroll count must divide the trip "
875                     "multiple, "
876                  << TripMultiple << ".  Reducing unroll count from "
877                  << OrigCount << " to " << UP.Count << ".\n");
878     if (PragmaCount > 0 && !UP.AllowRemainder)
879       ORE->emitOptimizationRemarkMissed(
880           DEBUG_TYPE, L,
881           Twine("Unable to unroll loop the number of times directed by "
882                 "unroll_count pragma because remainder loop is restricted "
883                 "(that could architecture specific or because the loop "
884                 "contains a convergent instruction) and so must have an unroll "
885                 "count that divides the loop trip multiple of ") +
886               Twine(TripMultiple) + ".  Unrolling instead " + Twine(UP.Count) +
887               " time(s).");
888   }
889 
890   if (UP.Count > UP.MaxCount)
891     UP.Count = UP.MaxCount;
892   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
893   if (UP.Count < 2)
894     UP.Count = 0;
895   return ExplicitUnroll;
896 }
897 
898 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
899                             ScalarEvolution *SE, const TargetTransformInfo &TTI,
900                             AssumptionCache &AC, OptimizationRemarkEmitter &ORE,
901                             bool PreserveLCSSA,
902                             Optional<unsigned> ProvidedCount,
903                             Optional<unsigned> ProvidedThreshold,
904                             Optional<bool> ProvidedAllowPartial,
905                             Optional<bool> ProvidedRuntime) {
906   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
907                << "] Loop %" << L->getHeader()->getName() << "\n");
908   if (HasUnrollDisablePragma(L)) {
909     return false;
910   }
911 
912   unsigned NumInlineCandidates;
913   bool NotDuplicatable;
914   bool Convergent;
915   unsigned LoopSize = ApproximateLoopSize(
916       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
917   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
918   if (NotDuplicatable) {
919     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
920                  << " instructions.\n");
921     return false;
922   }
923   if (NumInlineCandidates != 0) {
924     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
925     return false;
926   }
927   if (!L->isLoopSimplifyForm()) {
928     DEBUG(
929         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
930     return false;
931   }
932 
933   // Find trip count and trip multiple if count is not available
934   unsigned TripCount = 0;
935   unsigned TripMultiple = 1;
936   // If there are multiple exiting blocks but one of them is the latch, use the
937   // latch for the trip count estimation. Otherwise insist on a single exiting
938   // block for the trip count estimation.
939   BasicBlock *ExitingBlock = L->getLoopLatch();
940   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
941     ExitingBlock = L->getExitingBlock();
942   if (ExitingBlock) {
943     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
944     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
945   }
946 
947   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
948       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
949       ProvidedRuntime);
950 
951   // Exit early if unrolling is disabled.
952   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
953     return false;
954 
955   // If the loop contains a convergent operation, the prelude we'd add
956   // to do the first few instructions before we hit the unrolled loop
957   // is unsafe -- it adds a control-flow dependency to the convergent
958   // operation.  Therefore restrict remainder loop (try unrollig without).
959   //
960   // TODO: This is quite conservative.  In practice, convergent_op()
961   // is likely to be called unconditionally in the loop.  In this
962   // case, the program would be ill-formed (on most architectures)
963   // unless n were the same on all threads in a thread group.
964   // Assuming n is the same on all threads, any kind of unrolling is
965   // safe.  But currently llvm's notion of convergence isn't powerful
966   // enough to express this.
967   if (Convergent)
968     UP.AllowRemainder = false;
969 
970   bool IsCountSetExplicitly = computeUnrollCount(
971       L, TTI, DT, LI, SE, &ORE, TripCount, TripMultiple, LoopSize, UP);
972   if (!UP.Count)
973     return false;
974   // Unroll factor (Count) must be less or equal to TripCount.
975   if (TripCount && UP.Count > TripCount)
976     UP.Count = TripCount;
977 
978   // Unroll the loop.
979   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
980                   UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC,
981                   &ORE, PreserveLCSSA))
982     return false;
983 
984   // If loop has an unroll count pragma or unrolled by explicitly set count
985   // mark loop as unrolled to prevent unrolling beyond that requested.
986   if (IsCountSetExplicitly)
987     SetLoopAlreadyUnrolled(L);
988   return true;
989 }
990 
991 namespace {
992 class LoopUnroll : public LoopPass {
993 public:
994   static char ID; // Pass ID, replacement for typeid
995   LoopUnroll(Optional<unsigned> Threshold = None,
996              Optional<unsigned> Count = None,
997              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
998       : LoopPass(ID), ProvidedCount(std::move(Count)),
999         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1000         ProvidedRuntime(Runtime) {
1001     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1002   }
1003 
1004   Optional<unsigned> ProvidedCount;
1005   Optional<unsigned> ProvidedThreshold;
1006   Optional<bool> ProvidedAllowPartial;
1007   Optional<bool> ProvidedRuntime;
1008 
1009   bool runOnLoop(Loop *L, LPPassManager &) override {
1010     if (skipLoop(L))
1011       return false;
1012 
1013     Function &F = *L->getHeader()->getParent();
1014 
1015     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1016     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1017     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1018     const TargetTransformInfo &TTI =
1019         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1020     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1021     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1022     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1023 
1024     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA,
1025                            ProvidedCount, ProvidedThreshold,
1026                            ProvidedAllowPartial, ProvidedRuntime);
1027   }
1028 
1029   /// This transformation requires natural loop information & requires that
1030   /// loop preheaders be inserted into the CFG...
1031   ///
1032   void getAnalysisUsage(AnalysisUsage &AU) const override {
1033     AU.addRequired<AssumptionCacheTracker>();
1034     AU.addRequired<TargetTransformInfoWrapperPass>();
1035     // FIXME: Loop passes are required to preserve domtree, and for now we just
1036     // recreate dom info if anything gets unrolled.
1037     getLoopAnalysisUsage(AU);
1038   }
1039 };
1040 }
1041 
1042 char LoopUnroll::ID = 0;
1043 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1044 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1045 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1046 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1047 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1048 
1049 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
1050                                  int Runtime) {
1051   // TODO: It would make more sense for this function to take the optionals
1052   // directly, but that's dangerous since it would silently break out of tree
1053   // callers.
1054   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
1055                         Count == -1 ? None : Optional<unsigned>(Count),
1056                         AllowPartial == -1 ? None
1057                                            : Optional<bool>(AllowPartial),
1058                         Runtime == -1 ? None : Optional<bool>(Runtime));
1059 }
1060 
1061 Pass *llvm::createSimpleLoopUnrollPass() {
1062   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
1063 }
1064 
1065 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) {
1066   const auto &FAM =
1067       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
1068   Function *F = L.getHeader()->getParent();
1069 
1070 
1071   DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
1072   LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F);
1073   ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
1074   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
1075   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
1076   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1077   if (!DT)
1078     report_fatal_error("LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level");
1079   if (!LI)
1080     report_fatal_error("LoopUnrollPass: LoopAnalysis not cached at a higher level");
1081   if (!SE)
1082     report_fatal_error("LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level");
1083   if (!TTI)
1084     report_fatal_error("LoopUnrollPass: TargetIRAnalysis not cached at a higher level");
1085   if (!AC)
1086     report_fatal_error("LoopUnrollPass: AssumptionAnalysis not cached at a higher level");
1087   if (!ORE)
1088     report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not "
1089                        "cached at a higher level");
1090 
1091   bool Changed = tryToUnrollLoop(
1092       &L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, ProvidedCount,
1093       ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime);
1094 
1095   if (!Changed)
1096     return PreservedAnalyses::all();
1097   return getLoopPassPreservedAnalyses();
1098 }
1099