1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is somtimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> UnrollPartialThreshold( 87 "unroll-partial-threshold", cl::Hidden, 88 cl::desc("The cost threshold for partial loop unrolling")); 89 90 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 91 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 92 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 93 "to the threshold when aggressively unrolling a loop due to the " 94 "dynamic cost savings. If completely unrolling a loop will reduce " 95 "the total runtime from X to Y, we boost the loop unroll " 96 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 97 "X/Y). This limit avoids excessive code bloat.")); 98 99 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 100 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 101 cl::desc("Don't allow loop unrolling to simulate more than this number of" 102 "iterations when checking full unroll profitability")); 103 104 static cl::opt<unsigned> UnrollCount( 105 "unroll-count", cl::Hidden, 106 cl::desc("Use this unroll count for all loops including those with " 107 "unroll_count pragma values, for testing purposes")); 108 109 static cl::opt<unsigned> UnrollMaxCount( 110 "unroll-max-count", cl::Hidden, 111 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 112 "testing purposes")); 113 114 static cl::opt<unsigned> UnrollFullMaxCount( 115 "unroll-full-max-count", cl::Hidden, 116 cl::desc( 117 "Set the max unroll count for full unrolling, for testing purposes")); 118 119 static cl::opt<bool> 120 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 121 cl::desc("Allows loops to be partially unrolled until " 122 "-unroll-threshold loop size is reached.")); 123 124 static cl::opt<bool> UnrollAllowRemainder( 125 "unroll-allow-remainder", cl::Hidden, 126 cl::desc("Allow generation of a loop remainder (extra iterations) " 127 "when unrolling a loop.")); 128 129 static cl::opt<bool> 130 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 131 cl::desc("Unroll loops with run-time trip counts")); 132 133 static cl::opt<unsigned> UnrollMaxUpperBound( 134 "unroll-max-upperbound", cl::init(8), cl::Hidden, 135 cl::desc( 136 "The max of trip count upper bound that is considered in unrolling")); 137 138 static cl::opt<unsigned> PragmaUnrollThreshold( 139 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 140 cl::desc("Unrolled size limit for loops with an unroll(full) or " 141 "unroll_count pragma.")); 142 143 static cl::opt<unsigned> FlatLoopTripCountThreshold( 144 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 145 cl::desc("If the runtime tripcount for the loop is lower than the " 146 "threshold, the loop is considered as flat and will be less " 147 "aggressively unrolled.")); 148 149 static cl::opt<bool> UnrollUnrollRemainder( 150 "unroll-remainder", cl::Hidden, 151 cl::desc("Allow the loop remainder to be unrolled.")); 152 153 // This option isn't ever intended to be enabled, it serves to allow 154 // experiments to check the assumptions about when this kind of revisit is 155 // necessary. 156 static cl::opt<bool> UnrollRevisitChildLoops( 157 "unroll-revisit-child-loops", cl::Hidden, 158 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 159 "This shouldn't typically be needed as child loops (or their " 160 "clones) were already visited.")); 161 162 static cl::opt<unsigned> UnrollThresholdAggressive( 163 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 164 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 165 "optimizations")); 166 static cl::opt<unsigned> 167 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 168 cl::Hidden, 169 cl::desc("Default threshold (max size of unrolled " 170 "loop), used in all but O3 optimizations")); 171 172 /// A magic value for use with the Threshold parameter to indicate 173 /// that the loop unroll should be performed regardless of how much 174 /// code expansion would result. 175 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 176 177 /// Gather the various unrolling parameters based on the defaults, compiler 178 /// flags, TTI overrides and user specified parameters. 179 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 180 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 181 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 182 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 183 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 184 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 185 TargetTransformInfo::UnrollingPreferences UP; 186 187 // Set up the defaults 188 UP.Threshold = 189 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 190 UP.MaxPercentThresholdBoost = 400; 191 UP.OptSizeThreshold = 0; 192 UP.PartialThreshold = 150; 193 UP.PartialOptSizeThreshold = 0; 194 UP.Count = 0; 195 UP.DefaultUnrollRuntimeCount = 8; 196 UP.MaxCount = std::numeric_limits<unsigned>::max(); 197 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 198 UP.BEInsns = 2; 199 UP.Partial = false; 200 UP.Runtime = false; 201 UP.AllowRemainder = true; 202 UP.UnrollRemainder = false; 203 UP.AllowExpensiveTripCount = false; 204 UP.Force = false; 205 UP.UpperBound = false; 206 UP.UnrollAndJam = false; 207 UP.UnrollAndJamInnerLoopThreshold = 60; 208 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 209 210 // Override with any target specific settings 211 TTI.getUnrollingPreferences(L, SE, UP); 212 213 // Apply size attributes 214 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 215 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 216 PGSOQueryType::IRPass); 217 if (OptForSize) { 218 UP.Threshold = UP.OptSizeThreshold; 219 UP.PartialThreshold = UP.PartialOptSizeThreshold; 220 UP.MaxPercentThresholdBoost = 100; 221 } 222 223 // Apply any user values specified by cl::opt 224 if (UnrollThreshold.getNumOccurrences() > 0) 225 UP.Threshold = UnrollThreshold; 226 if (UnrollPartialThreshold.getNumOccurrences() > 0) 227 UP.PartialThreshold = UnrollPartialThreshold; 228 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 229 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 230 if (UnrollMaxCount.getNumOccurrences() > 0) 231 UP.MaxCount = UnrollMaxCount; 232 if (UnrollFullMaxCount.getNumOccurrences() > 0) 233 UP.FullUnrollMaxCount = UnrollFullMaxCount; 234 if (UnrollAllowPartial.getNumOccurrences() > 0) 235 UP.Partial = UnrollAllowPartial; 236 if (UnrollAllowRemainder.getNumOccurrences() > 0) 237 UP.AllowRemainder = UnrollAllowRemainder; 238 if (UnrollRuntime.getNumOccurrences() > 0) 239 UP.Runtime = UnrollRuntime; 240 if (UnrollMaxUpperBound == 0) 241 UP.UpperBound = false; 242 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 243 UP.UnrollRemainder = UnrollUnrollRemainder; 244 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 245 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 246 247 // Apply user values provided by argument 248 if (UserThreshold.hasValue()) { 249 UP.Threshold = *UserThreshold; 250 UP.PartialThreshold = *UserThreshold; 251 } 252 if (UserCount.hasValue()) 253 UP.Count = *UserCount; 254 if (UserAllowPartial.hasValue()) 255 UP.Partial = *UserAllowPartial; 256 if (UserRuntime.hasValue()) 257 UP.Runtime = *UserRuntime; 258 if (UserUpperBound.hasValue()) 259 UP.UpperBound = *UserUpperBound; 260 if (UserFullUnrollMaxCount.hasValue()) 261 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 262 263 return UP; 264 } 265 266 namespace { 267 268 /// A struct to densely store the state of an instruction after unrolling at 269 /// each iteration. 270 /// 271 /// This is designed to work like a tuple of <Instruction *, int> for the 272 /// purposes of hashing and lookup, but to be able to associate two boolean 273 /// states with each key. 274 struct UnrolledInstState { 275 Instruction *I; 276 int Iteration : 30; 277 unsigned IsFree : 1; 278 unsigned IsCounted : 1; 279 }; 280 281 /// Hashing and equality testing for a set of the instruction states. 282 struct UnrolledInstStateKeyInfo { 283 using PtrInfo = DenseMapInfo<Instruction *>; 284 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 285 286 static inline UnrolledInstState getEmptyKey() { 287 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 288 } 289 290 static inline UnrolledInstState getTombstoneKey() { 291 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 292 } 293 294 static inline unsigned getHashValue(const UnrolledInstState &S) { 295 return PairInfo::getHashValue({S.I, S.Iteration}); 296 } 297 298 static inline bool isEqual(const UnrolledInstState &LHS, 299 const UnrolledInstState &RHS) { 300 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 301 } 302 }; 303 304 struct EstimatedUnrollCost { 305 /// The estimated cost after unrolling. 306 unsigned UnrolledCost; 307 308 /// The estimated dynamic cost of executing the instructions in the 309 /// rolled form. 310 unsigned RolledDynamicCost; 311 }; 312 313 } // end anonymous namespace 314 315 /// Figure out if the loop is worth full unrolling. 316 /// 317 /// Complete loop unrolling can make some loads constant, and we need to know 318 /// if that would expose any further optimization opportunities. This routine 319 /// estimates this optimization. It computes cost of unrolled loop 320 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 321 /// dynamic cost we mean that we won't count costs of blocks that are known not 322 /// to be executed (i.e. if we have a branch in the loop and we know that at the 323 /// given iteration its condition would be resolved to true, we won't add up the 324 /// cost of the 'false'-block). 325 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 326 /// the analysis failed (no benefits expected from the unrolling, or the loop is 327 /// too big to analyze), the returned value is None. 328 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 329 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 330 const SmallPtrSetImpl<const Value *> &EphValues, 331 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 332 unsigned MaxIterationsCountToAnalyze) { 333 // We want to be able to scale offsets by the trip count and add more offsets 334 // to them without checking for overflows, and we already don't want to 335 // analyze *massive* trip counts, so we force the max to be reasonably small. 336 assert(MaxIterationsCountToAnalyze < 337 (unsigned)(std::numeric_limits<int>::max() / 2) && 338 "The unroll iterations max is too large!"); 339 340 // Only analyze inner loops. We can't properly estimate cost of nested loops 341 // and we won't visit inner loops again anyway. 342 if (!L->empty()) 343 return None; 344 345 // Don't simulate loops with a big or unknown tripcount 346 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 347 return None; 348 349 SmallSetVector<BasicBlock *, 16> BBWorklist; 350 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 351 DenseMap<Value *, Constant *> SimplifiedValues; 352 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 353 354 // The estimated cost of the unrolled form of the loop. We try to estimate 355 // this by simplifying as much as we can while computing the estimate. 356 unsigned UnrolledCost = 0; 357 358 // We also track the estimated dynamic (that is, actually executed) cost in 359 // the rolled form. This helps identify cases when the savings from unrolling 360 // aren't just exposing dead control flows, but actual reduced dynamic 361 // instructions due to the simplifications which we expect to occur after 362 // unrolling. 363 unsigned RolledDynamicCost = 0; 364 365 // We track the simplification of each instruction in each iteration. We use 366 // this to recursively merge costs into the unrolled cost on-demand so that 367 // we don't count the cost of any dead code. This is essentially a map from 368 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 369 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 370 371 // A small worklist used to accumulate cost of instructions from each 372 // observable and reached root in the loop. 373 SmallVector<Instruction *, 16> CostWorklist; 374 375 // PHI-used worklist used between iterations while accumulating cost. 376 SmallVector<Instruction *, 4> PHIUsedList; 377 378 // Helper function to accumulate cost for instructions in the loop. 379 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 380 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 381 assert(CostWorklist.empty() && "Must start with an empty cost list"); 382 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 383 CostWorklist.push_back(&RootI); 384 for (;; --Iteration) { 385 do { 386 Instruction *I = CostWorklist.pop_back_val(); 387 388 // InstCostMap only uses I and Iteration as a key, the other two values 389 // don't matter here. 390 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 391 if (CostIter == InstCostMap.end()) 392 // If an input to a PHI node comes from a dead path through the loop 393 // we may have no cost data for it here. What that actually means is 394 // that it is free. 395 continue; 396 auto &Cost = *CostIter; 397 if (Cost.IsCounted) 398 // Already counted this instruction. 399 continue; 400 401 // Mark that we are counting the cost of this instruction now. 402 Cost.IsCounted = true; 403 404 // If this is a PHI node in the loop header, just add it to the PHI set. 405 if (auto *PhiI = dyn_cast<PHINode>(I)) 406 if (PhiI->getParent() == L->getHeader()) { 407 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 408 "inherently simplify during unrolling."); 409 if (Iteration == 0) 410 continue; 411 412 // Push the incoming value from the backedge into the PHI used list 413 // if it is an in-loop instruction. We'll use this to populate the 414 // cost worklist for the next iteration (as we count backwards). 415 if (auto *OpI = dyn_cast<Instruction>( 416 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 417 if (L->contains(OpI)) 418 PHIUsedList.push_back(OpI); 419 continue; 420 } 421 422 // First accumulate the cost of this instruction. 423 if (!Cost.IsFree) { 424 UnrolledCost += TTI.getUserCost(I, TargetTransformInfo::TCK_CodeSize); 425 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 426 << Iteration << "): "); 427 LLVM_DEBUG(I->dump()); 428 } 429 430 // We must count the cost of every operand which is not free, 431 // recursively. If we reach a loop PHI node, simply add it to the set 432 // to be considered on the next iteration (backwards!). 433 for (Value *Op : I->operands()) { 434 // Check whether this operand is free due to being a constant or 435 // outside the loop. 436 auto *OpI = dyn_cast<Instruction>(Op); 437 if (!OpI || !L->contains(OpI)) 438 continue; 439 440 // Otherwise accumulate its cost. 441 CostWorklist.push_back(OpI); 442 } 443 } while (!CostWorklist.empty()); 444 445 if (PHIUsedList.empty()) 446 // We've exhausted the search. 447 break; 448 449 assert(Iteration > 0 && 450 "Cannot track PHI-used values past the first iteration!"); 451 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 452 PHIUsedList.clear(); 453 } 454 }; 455 456 // Ensure that we don't violate the loop structure invariants relied on by 457 // this analysis. 458 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 459 assert(L->isLCSSAForm(DT) && 460 "Must have loops in LCSSA form to track live-out values."); 461 462 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 463 464 // Simulate execution of each iteration of the loop counting instructions, 465 // which would be simplified. 466 // Since the same load will take different values on different iterations, 467 // we literally have to go through all loop's iterations. 468 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 469 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 470 471 // Prepare for the iteration by collecting any simplified entry or backedge 472 // inputs. 473 for (Instruction &I : *L->getHeader()) { 474 auto *PHI = dyn_cast<PHINode>(&I); 475 if (!PHI) 476 break; 477 478 // The loop header PHI nodes must have exactly two input: one from the 479 // loop preheader and one from the loop latch. 480 assert( 481 PHI->getNumIncomingValues() == 2 && 482 "Must have an incoming value only for the preheader and the latch."); 483 484 Value *V = PHI->getIncomingValueForBlock( 485 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 486 Constant *C = dyn_cast<Constant>(V); 487 if (Iteration != 0 && !C) 488 C = SimplifiedValues.lookup(V); 489 if (C) 490 SimplifiedInputValues.push_back({PHI, C}); 491 } 492 493 // Now clear and re-populate the map for the next iteration. 494 SimplifiedValues.clear(); 495 while (!SimplifiedInputValues.empty()) 496 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 497 498 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 499 500 BBWorklist.clear(); 501 BBWorklist.insert(L->getHeader()); 502 // Note that we *must not* cache the size, this loop grows the worklist. 503 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 504 BasicBlock *BB = BBWorklist[Idx]; 505 506 // Visit all instructions in the given basic block and try to simplify 507 // it. We don't change the actual IR, just count optimization 508 // opportunities. 509 for (Instruction &I : *BB) { 510 // These won't get into the final code - don't even try calculating the 511 // cost for them. 512 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 513 continue; 514 515 // Track this instruction's expected baseline cost when executing the 516 // rolled loop form. 517 RolledDynamicCost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize); 518 519 // Visit the instruction to analyze its loop cost after unrolling, 520 // and if the visitor returns true, mark the instruction as free after 521 // unrolling and continue. 522 bool IsFree = Analyzer.visit(I); 523 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 524 (unsigned)IsFree, 525 /*IsCounted*/ false}).second; 526 (void)Inserted; 527 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 528 529 if (IsFree) 530 continue; 531 532 // Can't properly model a cost of a call. 533 // FIXME: With a proper cost model we should be able to do it. 534 if (auto *CI = dyn_cast<CallInst>(&I)) { 535 const Function *Callee = CI->getCalledFunction(); 536 if (!Callee || TTI.isLoweredToCall(Callee)) { 537 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 538 return None; 539 } 540 } 541 542 // If the instruction might have a side-effect recursively account for 543 // the cost of it and all the instructions leading up to it. 544 if (I.mayHaveSideEffects()) 545 AddCostRecursively(I, Iteration); 546 547 // If unrolled body turns out to be too big, bail out. 548 if (UnrolledCost > MaxUnrolledLoopSize) { 549 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 550 << " UnrolledCost: " << UnrolledCost 551 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 552 << "\n"); 553 return None; 554 } 555 } 556 557 Instruction *TI = BB->getTerminator(); 558 559 // Add in the live successors by first checking whether we have terminator 560 // that may be simplified based on the values simplified by this call. 561 BasicBlock *KnownSucc = nullptr; 562 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 563 if (BI->isConditional()) { 564 if (Constant *SimpleCond = 565 SimplifiedValues.lookup(BI->getCondition())) { 566 // Just take the first successor if condition is undef 567 if (isa<UndefValue>(SimpleCond)) 568 KnownSucc = BI->getSuccessor(0); 569 else if (ConstantInt *SimpleCondVal = 570 dyn_cast<ConstantInt>(SimpleCond)) 571 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 572 } 573 } 574 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 575 if (Constant *SimpleCond = 576 SimplifiedValues.lookup(SI->getCondition())) { 577 // Just take the first successor if condition is undef 578 if (isa<UndefValue>(SimpleCond)) 579 KnownSucc = SI->getSuccessor(0); 580 else if (ConstantInt *SimpleCondVal = 581 dyn_cast<ConstantInt>(SimpleCond)) 582 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 583 } 584 } 585 if (KnownSucc) { 586 if (L->contains(KnownSucc)) 587 BBWorklist.insert(KnownSucc); 588 else 589 ExitWorklist.insert({BB, KnownSucc}); 590 continue; 591 } 592 593 // Add BB's successors to the worklist. 594 for (BasicBlock *Succ : successors(BB)) 595 if (L->contains(Succ)) 596 BBWorklist.insert(Succ); 597 else 598 ExitWorklist.insert({BB, Succ}); 599 AddCostRecursively(*TI, Iteration); 600 } 601 602 // If we found no optimization opportunities on the first iteration, we 603 // won't find them on later ones too. 604 if (UnrolledCost == RolledDynamicCost) { 605 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 606 << " UnrolledCost: " << UnrolledCost << "\n"); 607 return None; 608 } 609 } 610 611 while (!ExitWorklist.empty()) { 612 BasicBlock *ExitingBB, *ExitBB; 613 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 614 615 for (Instruction &I : *ExitBB) { 616 auto *PN = dyn_cast<PHINode>(&I); 617 if (!PN) 618 break; 619 620 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 621 if (auto *OpI = dyn_cast<Instruction>(Op)) 622 if (L->contains(OpI)) 623 AddCostRecursively(*OpI, TripCount - 1); 624 } 625 } 626 627 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 628 << "UnrolledCost: " << UnrolledCost << ", " 629 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 630 return {{UnrolledCost, RolledDynamicCost}}; 631 } 632 633 /// ApproximateLoopSize - Approximate the size of the loop. 634 unsigned llvm::ApproximateLoopSize( 635 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 636 const TargetTransformInfo &TTI, 637 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 638 CodeMetrics Metrics; 639 for (BasicBlock *BB : L->blocks()) 640 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 641 NumCalls = Metrics.NumInlineCandidates; 642 NotDuplicatable = Metrics.notDuplicatable; 643 Convergent = Metrics.convergent; 644 645 unsigned LoopSize = Metrics.NumInsts; 646 647 // Don't allow an estimate of size zero. This would allows unrolling of loops 648 // with huge iteration counts, which is a compile time problem even if it's 649 // not a problem for code quality. Also, the code using this size may assume 650 // that each loop has at least three instructions (likely a conditional 651 // branch, a comparison feeding that branch, and some kind of loop increment 652 // feeding that comparison instruction). 653 LoopSize = std::max(LoopSize, BEInsns + 1); 654 655 return LoopSize; 656 } 657 658 // Returns the loop hint metadata node with the given name (for example, 659 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 660 // returned. 661 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 662 if (MDNode *LoopID = L->getLoopID()) 663 return GetUnrollMetadata(LoopID, Name); 664 return nullptr; 665 } 666 667 // Returns true if the loop has an unroll(full) pragma. 668 static bool hasUnrollFullPragma(const Loop *L) { 669 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 670 } 671 672 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 673 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 674 static bool hasUnrollEnablePragma(const Loop *L) { 675 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 676 } 677 678 // Returns true if the loop has an runtime unroll(disable) pragma. 679 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 680 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 681 } 682 683 // If loop has an unroll_count pragma return the (necessarily 684 // positive) value from the pragma. Otherwise return 0. 685 static unsigned unrollCountPragmaValue(const Loop *L) { 686 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 687 if (MD) { 688 assert(MD->getNumOperands() == 2 && 689 "Unroll count hint metadata should have two operands."); 690 unsigned Count = 691 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 692 assert(Count >= 1 && "Unroll count must be positive."); 693 return Count; 694 } 695 return 0; 696 } 697 698 // Computes the boosting factor for complete unrolling. 699 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 700 // be beneficial to fully unroll the loop even if unrolledcost is large. We 701 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 702 // the unroll threshold. 703 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 704 unsigned MaxPercentThresholdBoost) { 705 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 706 return 100; 707 else if (Cost.UnrolledCost != 0) 708 // The boosting factor is RolledDynamicCost / UnrolledCost 709 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 710 MaxPercentThresholdBoost); 711 else 712 return MaxPercentThresholdBoost; 713 } 714 715 // Returns loop size estimation for unrolled loop. 716 static uint64_t getUnrolledLoopSize( 717 unsigned LoopSize, 718 TargetTransformInfo::UnrollingPreferences &UP) { 719 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 720 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 721 } 722 723 // Returns true if unroll count was set explicitly. 724 // Calculates unroll count and writes it to UP.Count. 725 // Unless IgnoreUser is true, will also use metadata and command-line options 726 // that are specific to to the LoopUnroll pass (which, for instance, are 727 // irrelevant for the LoopUnrollAndJam pass). 728 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 729 // many LoopUnroll-specific options. The shared functionality should be 730 // refactored into it own function. 731 bool llvm::computeUnrollCount( 732 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 733 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 734 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 735 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 736 TargetTransformInfo::UnrollingPreferences &UP, 737 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 738 739 // Check for explicit Count. 740 // 1st priority is unroll count set by "unroll-count" option. 741 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 742 if (UserUnrollCount) { 743 UP.Count = UnrollCount; 744 UP.AllowExpensiveTripCount = true; 745 UP.Force = true; 746 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 747 return true; 748 } 749 750 // 2nd priority is unroll count set by pragma. 751 unsigned PragmaCount = unrollCountPragmaValue(L); 752 if (PragmaCount > 0) { 753 UP.Count = PragmaCount; 754 UP.Runtime = true; 755 UP.AllowExpensiveTripCount = true; 756 UP.Force = true; 757 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 758 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 759 return true; 760 } 761 bool PragmaFullUnroll = hasUnrollFullPragma(L); 762 if (PragmaFullUnroll && TripCount != 0) { 763 UP.Count = TripCount; 764 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 765 return false; 766 } 767 768 bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 769 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 770 PragmaEnableUnroll || UserUnrollCount; 771 772 if (ExplicitUnroll && TripCount != 0) { 773 // If the loop has an unrolling pragma, we want to be more aggressive with 774 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 775 // value which is larger than the default limits. 776 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 777 UP.PartialThreshold = 778 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 779 } 780 781 // 3rd priority is full unroll count. 782 // Full unroll makes sense only when TripCount or its upper bound could be 783 // statically calculated. 784 // Also we need to check if we exceed FullUnrollMaxCount. 785 // If using the upper bound to unroll, TripMultiple should be set to 1 because 786 // we do not know when loop may exit. 787 788 // We can unroll by the upper bound amount if it's generally allowed or if 789 // we know that the loop is executed either the upper bound or zero times. 790 // (MaxOrZero unrolling keeps only the first loop test, so the number of 791 // loop tests remains the same compared to the non-unrolled version, whereas 792 // the generic upper bound unrolling keeps all but the last loop test so the 793 // number of loop tests goes up which may end up being worse on targets with 794 // constrained branch predictor resources so is controlled by an option.) 795 // In addition we only unroll small upper bounds. 796 unsigned FullUnrollMaxTripCount = MaxTripCount; 797 if (!(UP.UpperBound || MaxOrZero) || 798 FullUnrollMaxTripCount > UnrollMaxUpperBound) 799 FullUnrollMaxTripCount = 0; 800 801 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 802 // compute the former when the latter is zero. 803 unsigned ExactTripCount = TripCount; 804 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 805 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 806 807 unsigned FullUnrollTripCount = 808 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 809 UP.Count = FullUnrollTripCount; 810 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 811 // When computing the unrolled size, note that BEInsns are not replicated 812 // like the rest of the loop body. 813 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 814 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 815 TripCount = FullUnrollTripCount; 816 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 817 return ExplicitUnroll; 818 } else { 819 // The loop isn't that small, but we still can fully unroll it if that 820 // helps to remove a significant number of instructions. 821 // To check that, run additional analysis on the loop. 822 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 823 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 824 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 825 UP.MaxIterationsCountToAnalyze)) { 826 unsigned Boost = 827 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 828 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 829 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 830 TripCount = FullUnrollTripCount; 831 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 832 return ExplicitUnroll; 833 } 834 } 835 } 836 } 837 838 // 4th priority is loop peeling. 839 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold); 840 if (PP.PeelCount) { 841 UP.Runtime = false; 842 UP.Count = 1; 843 return ExplicitUnroll; 844 } 845 846 // 5th priority is partial unrolling. 847 // Try partial unroll only when TripCount could be statically calculated. 848 if (TripCount) { 849 UP.Partial |= ExplicitUnroll; 850 if (!UP.Partial) { 851 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 852 << "-unroll-allow-partial not given\n"); 853 UP.Count = 0; 854 return false; 855 } 856 if (UP.Count == 0) 857 UP.Count = TripCount; 858 if (UP.PartialThreshold != NoThreshold) { 859 // Reduce unroll count to be modulo of TripCount for partial unrolling. 860 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 861 UP.Count = 862 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 863 (LoopSize - UP.BEInsns); 864 if (UP.Count > UP.MaxCount) 865 UP.Count = UP.MaxCount; 866 while (UP.Count != 0 && TripCount % UP.Count != 0) 867 UP.Count--; 868 if (UP.AllowRemainder && UP.Count <= 1) { 869 // If there is no Count that is modulo of TripCount, set Count to 870 // largest power-of-two factor that satisfies the threshold limit. 871 // As we'll create fixup loop, do the type of unrolling only if 872 // remainder loop is allowed. 873 UP.Count = UP.DefaultUnrollRuntimeCount; 874 while (UP.Count != 0 && 875 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 876 UP.Count >>= 1; 877 } 878 if (UP.Count < 2) { 879 if (PragmaEnableUnroll) 880 ORE->emit([&]() { 881 return OptimizationRemarkMissed(DEBUG_TYPE, 882 "UnrollAsDirectedTooLarge", 883 L->getStartLoc(), L->getHeader()) 884 << "Unable to unroll loop as directed by unroll(enable) " 885 "pragma " 886 "because unrolled size is too large."; 887 }); 888 UP.Count = 0; 889 } 890 } else { 891 UP.Count = TripCount; 892 } 893 if (UP.Count > UP.MaxCount) 894 UP.Count = UP.MaxCount; 895 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 896 UP.Count != TripCount) 897 ORE->emit([&]() { 898 return OptimizationRemarkMissed(DEBUG_TYPE, 899 "FullUnrollAsDirectedTooLarge", 900 L->getStartLoc(), L->getHeader()) 901 << "Unable to fully unroll loop as directed by unroll pragma " 902 "because " 903 "unrolled size is too large."; 904 }); 905 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 906 << "\n"); 907 return ExplicitUnroll; 908 } 909 assert(TripCount == 0 && 910 "All cases when TripCount is constant should be covered here."); 911 if (PragmaFullUnroll) 912 ORE->emit([&]() { 913 return OptimizationRemarkMissed( 914 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 915 L->getStartLoc(), L->getHeader()) 916 << "Unable to fully unroll loop as directed by unroll(full) " 917 "pragma " 918 "because loop has a runtime trip count."; 919 }); 920 921 // 6th priority is runtime unrolling. 922 // Don't unroll a runtime trip count loop when it is disabled. 923 if (hasRuntimeUnrollDisablePragma(L)) { 924 UP.Count = 0; 925 return false; 926 } 927 928 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 929 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 930 UP.Count = 0; 931 return false; 932 } 933 934 // Check if the runtime trip count is too small when profile is available. 935 if (L->getHeader()->getParent()->hasProfileData()) { 936 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 937 if (*ProfileTripCount < FlatLoopTripCountThreshold) 938 return false; 939 else 940 UP.AllowExpensiveTripCount = true; 941 } 942 } 943 944 // Reduce count based on the type of unrolling and the threshold values. 945 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 946 if (!UP.Runtime) { 947 LLVM_DEBUG( 948 dbgs() << " will not try to unroll loop with runtime trip count " 949 << "-unroll-runtime not given\n"); 950 UP.Count = 0; 951 return false; 952 } 953 if (UP.Count == 0) 954 UP.Count = UP.DefaultUnrollRuntimeCount; 955 956 // Reduce unroll count to be the largest power-of-two factor of 957 // the original count which satisfies the threshold limit. 958 while (UP.Count != 0 && 959 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 960 UP.Count >>= 1; 961 962 #ifndef NDEBUG 963 unsigned OrigCount = UP.Count; 964 #endif 965 966 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 967 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 968 UP.Count >>= 1; 969 LLVM_DEBUG( 970 dbgs() << "Remainder loop is restricted (that could architecture " 971 "specific or because the loop contains a convergent " 972 "instruction), so unroll count must divide the trip " 973 "multiple, " 974 << TripMultiple << ". Reducing unroll count from " << OrigCount 975 << " to " << UP.Count << ".\n"); 976 977 using namespace ore; 978 979 if (PragmaCount > 0 && !UP.AllowRemainder) 980 ORE->emit([&]() { 981 return OptimizationRemarkMissed(DEBUG_TYPE, 982 "DifferentUnrollCountFromDirected", 983 L->getStartLoc(), L->getHeader()) 984 << "Unable to unroll loop the number of times directed by " 985 "unroll_count pragma because remainder loop is restricted " 986 "(that could architecture specific or because the loop " 987 "contains a convergent instruction) and so must have an " 988 "unroll " 989 "count that divides the loop trip multiple of " 990 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 991 << NV("UnrollCount", UP.Count) << " time(s)."; 992 }); 993 } 994 995 if (UP.Count > UP.MaxCount) 996 UP.Count = UP.MaxCount; 997 998 if (MaxTripCount && UP.Count > MaxTripCount) 999 UP.Count = MaxTripCount; 1000 1001 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1002 << "\n"); 1003 if (UP.Count < 2) 1004 UP.Count = 0; 1005 return ExplicitUnroll; 1006 } 1007 1008 static LoopUnrollResult tryToUnrollLoop( 1009 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1010 const TargetTransformInfo &TTI, AssumptionCache &AC, 1011 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1012 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1013 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1014 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1015 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1016 Optional<bool> ProvidedAllowPeeling, 1017 Optional<bool> ProvidedAllowProfileBasedPeeling, 1018 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1019 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1020 << L->getHeader()->getParent()->getName() << "] Loop %" 1021 << L->getHeader()->getName() << "\n"); 1022 TransformationMode TM = hasUnrollTransformation(L); 1023 if (TM & TM_Disable) 1024 return LoopUnrollResult::Unmodified; 1025 if (!L->isLoopSimplifyForm()) { 1026 LLVM_DEBUG( 1027 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1028 return LoopUnrollResult::Unmodified; 1029 } 1030 1031 // When automtatic unrolling is disabled, do not unroll unless overridden for 1032 // this loop. 1033 if (OnlyWhenForced && !(TM & TM_Enable)) 1034 return LoopUnrollResult::Unmodified; 1035 1036 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1037 unsigned NumInlineCandidates; 1038 bool NotDuplicatable; 1039 bool Convergent; 1040 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1041 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1042 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1043 ProvidedFullUnrollMaxCount); 1044 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1045 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1046 1047 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1048 // as threshold later on. 1049 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1050 !OptForSize) 1051 return LoopUnrollResult::Unmodified; 1052 1053 SmallPtrSet<const Value *, 32> EphValues; 1054 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1055 1056 unsigned LoopSize = 1057 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1058 TTI, EphValues, UP.BEInsns); 1059 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1060 if (NotDuplicatable) { 1061 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1062 << " instructions.\n"); 1063 return LoopUnrollResult::Unmodified; 1064 } 1065 1066 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1067 // later), to (fully) unroll loops, if it does not increase code size. 1068 if (OptForSize) 1069 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1070 1071 if (NumInlineCandidates != 0) { 1072 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1073 return LoopUnrollResult::Unmodified; 1074 } 1075 1076 // Find trip count and trip multiple if count is not available 1077 unsigned TripCount = 0; 1078 unsigned TripMultiple = 1; 1079 // If there are multiple exiting blocks but one of them is the latch, use the 1080 // latch for the trip count estimation. Otherwise insist on a single exiting 1081 // block for the trip count estimation. 1082 BasicBlock *ExitingBlock = L->getLoopLatch(); 1083 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1084 ExitingBlock = L->getExitingBlock(); 1085 if (ExitingBlock) { 1086 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1087 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1088 } 1089 1090 // If the loop contains a convergent operation, the prelude we'd add 1091 // to do the first few instructions before we hit the unrolled loop 1092 // is unsafe -- it adds a control-flow dependency to the convergent 1093 // operation. Therefore restrict remainder loop (try unrollig without). 1094 // 1095 // TODO: This is quite conservative. In practice, convergent_op() 1096 // is likely to be called unconditionally in the loop. In this 1097 // case, the program would be ill-formed (on most architectures) 1098 // unless n were the same on all threads in a thread group. 1099 // Assuming n is the same on all threads, any kind of unrolling is 1100 // safe. But currently llvm's notion of convergence isn't powerful 1101 // enough to express this. 1102 if (Convergent) 1103 UP.AllowRemainder = false; 1104 1105 // Try to find the trip count upper bound if we cannot find the exact trip 1106 // count. 1107 unsigned MaxTripCount = 0; 1108 bool MaxOrZero = false; 1109 if (!TripCount) { 1110 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1111 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1112 } 1113 1114 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1115 // fully unroll the loop. 1116 bool UseUpperBound = false; 1117 bool IsCountSetExplicitly = computeUnrollCount( 1118 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1119 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1120 if (!UP.Count) 1121 return LoopUnrollResult::Unmodified; 1122 // Unroll factor (Count) must be less or equal to TripCount. 1123 if (TripCount && UP.Count > TripCount) 1124 UP.Count = TripCount; 1125 1126 // Save loop properties before it is transformed. 1127 MDNode *OrigLoopID = L->getLoopID(); 1128 1129 // Unroll the loop. 1130 Loop *RemainderLoop = nullptr; 1131 LoopUnrollResult UnrollResult = UnrollLoop( 1132 L, 1133 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1134 UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder, 1135 ForgetAllSCEV}, 1136 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1137 if (UnrollResult == LoopUnrollResult::Unmodified) 1138 return LoopUnrollResult::Unmodified; 1139 1140 if (RemainderLoop) { 1141 Optional<MDNode *> RemainderLoopID = 1142 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1143 LLVMLoopUnrollFollowupRemainder}); 1144 if (RemainderLoopID.hasValue()) 1145 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1146 } 1147 1148 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1149 Optional<MDNode *> NewLoopID = 1150 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1151 LLVMLoopUnrollFollowupUnrolled}); 1152 if (NewLoopID.hasValue()) { 1153 L->setLoopID(NewLoopID.getValue()); 1154 1155 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1156 // explicitly. 1157 return UnrollResult; 1158 } 1159 } 1160 1161 // If loop has an unroll count pragma or unrolled by explicitly set count 1162 // mark loop as unrolled to prevent unrolling beyond that requested. 1163 // If the loop was peeled, we already "used up" the profile information 1164 // we had, so we don't want to unroll or peel again. 1165 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1166 (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount))) 1167 L->setLoopAlreadyUnrolled(); 1168 1169 return UnrollResult; 1170 } 1171 1172 namespace { 1173 1174 class LoopUnroll : public LoopPass { 1175 public: 1176 static char ID; // Pass ID, replacement for typeid 1177 1178 int OptLevel; 1179 1180 /// If false, use a cost model to determine whether unrolling of a loop is 1181 /// profitable. If true, only loops that explicitly request unrolling via 1182 /// metadata are considered. All other loops are skipped. 1183 bool OnlyWhenForced; 1184 1185 /// If false, when SCEV is invalidated, only forget everything in the 1186 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1187 /// Otherwise, forgetAllLoops and rebuild when needed next. 1188 bool ForgetAllSCEV; 1189 1190 Optional<unsigned> ProvidedCount; 1191 Optional<unsigned> ProvidedThreshold; 1192 Optional<bool> ProvidedAllowPartial; 1193 Optional<bool> ProvidedRuntime; 1194 Optional<bool> ProvidedUpperBound; 1195 Optional<bool> ProvidedAllowPeeling; 1196 Optional<bool> ProvidedAllowProfileBasedPeeling; 1197 Optional<unsigned> ProvidedFullUnrollMaxCount; 1198 1199 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1200 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1201 Optional<unsigned> Count = None, 1202 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1203 Optional<bool> UpperBound = None, 1204 Optional<bool> AllowPeeling = None, 1205 Optional<bool> AllowProfileBasedPeeling = None, 1206 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1207 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1208 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1209 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1210 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1211 ProvidedAllowPeeling(AllowPeeling), 1212 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1213 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1214 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1215 } 1216 1217 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1218 if (skipLoop(L)) 1219 return false; 1220 1221 Function &F = *L->getHeader()->getParent(); 1222 1223 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1224 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1225 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1226 const TargetTransformInfo &TTI = 1227 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1228 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1229 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1230 // pass. Function analyses need to be preserved across loop transformations 1231 // but ORE cannot be preserved (see comment before the pass definition). 1232 OptimizationRemarkEmitter ORE(&F); 1233 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1234 1235 LoopUnrollResult Result = tryToUnrollLoop( 1236 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1237 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1238 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1239 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1240 ProvidedFullUnrollMaxCount); 1241 1242 if (Result == LoopUnrollResult::FullyUnrolled) 1243 LPM.markLoopAsDeleted(*L); 1244 1245 return Result != LoopUnrollResult::Unmodified; 1246 } 1247 1248 /// This transformation requires natural loop information & requires that 1249 /// loop preheaders be inserted into the CFG... 1250 void getAnalysisUsage(AnalysisUsage &AU) const override { 1251 AU.addRequired<AssumptionCacheTracker>(); 1252 AU.addRequired<TargetTransformInfoWrapperPass>(); 1253 // FIXME: Loop passes are required to preserve domtree, and for now we just 1254 // recreate dom info if anything gets unrolled. 1255 getLoopAnalysisUsage(AU); 1256 } 1257 }; 1258 1259 } // end anonymous namespace 1260 1261 char LoopUnroll::ID = 0; 1262 1263 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1264 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1265 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1266 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1267 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1268 1269 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1270 bool ForgetAllSCEV, int Threshold, int Count, 1271 int AllowPartial, int Runtime, int UpperBound, 1272 int AllowPeeling) { 1273 // TODO: It would make more sense for this function to take the optionals 1274 // directly, but that's dangerous since it would silently break out of tree 1275 // callers. 1276 return new LoopUnroll( 1277 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1278 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1279 Count == -1 ? None : Optional<unsigned>(Count), 1280 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1281 Runtime == -1 ? None : Optional<bool>(Runtime), 1282 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1283 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1284 } 1285 1286 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1287 bool ForgetAllSCEV) { 1288 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1289 0, 0, 0, 0); 1290 } 1291 1292 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1293 LoopStandardAnalysisResults &AR, 1294 LPMUpdater &Updater) { 1295 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1296 // pass. Function analyses need to be preserved across loop transformations 1297 // but ORE cannot be preserved (see comment before the pass definition). 1298 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1299 1300 // Keep track of the previous loop structure so we can identify new loops 1301 // created by unrolling. 1302 Loop *ParentL = L.getParentLoop(); 1303 SmallPtrSet<Loop *, 4> OldLoops; 1304 if (ParentL) 1305 OldLoops.insert(ParentL->begin(), ParentL->end()); 1306 else 1307 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1308 1309 std::string LoopName = std::string(L.getName()); 1310 1311 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1312 /*BFI*/ nullptr, /*PSI*/ nullptr, 1313 /*PreserveLCSSA*/ true, OptLevel, 1314 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1315 /*Threshold*/ None, /*AllowPartial*/ false, 1316 /*Runtime*/ false, /*UpperBound*/ false, 1317 /*AllowPeeling*/ false, 1318 /*AllowProfileBasedPeeling*/ false, 1319 /*FullUnrollMaxCount*/ None) != 1320 LoopUnrollResult::Unmodified; 1321 if (!Changed) 1322 return PreservedAnalyses::all(); 1323 1324 // The parent must not be damaged by unrolling! 1325 #ifndef NDEBUG 1326 if (ParentL) 1327 ParentL->verifyLoop(); 1328 #endif 1329 1330 // Unrolling can do several things to introduce new loops into a loop nest: 1331 // - Full unrolling clones child loops within the current loop but then 1332 // removes the current loop making all of the children appear to be new 1333 // sibling loops. 1334 // 1335 // When a new loop appears as a sibling loop after fully unrolling, 1336 // its nesting structure has fundamentally changed and we want to revisit 1337 // it to reflect that. 1338 // 1339 // When unrolling has removed the current loop, we need to tell the 1340 // infrastructure that it is gone. 1341 // 1342 // Finally, we support a debugging/testing mode where we revisit child loops 1343 // as well. These are not expected to require further optimizations as either 1344 // they or the loop they were cloned from have been directly visited already. 1345 // But the debugging mode allows us to check this assumption. 1346 bool IsCurrentLoopValid = false; 1347 SmallVector<Loop *, 4> SibLoops; 1348 if (ParentL) 1349 SibLoops.append(ParentL->begin(), ParentL->end()); 1350 else 1351 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1352 erase_if(SibLoops, [&](Loop *SibLoop) { 1353 if (SibLoop == &L) { 1354 IsCurrentLoopValid = true; 1355 return true; 1356 } 1357 1358 // Otherwise erase the loop from the list if it was in the old loops. 1359 return OldLoops.count(SibLoop) != 0; 1360 }); 1361 Updater.addSiblingLoops(SibLoops); 1362 1363 if (!IsCurrentLoopValid) { 1364 Updater.markLoopAsDeleted(L, LoopName); 1365 } else { 1366 // We can only walk child loops if the current loop remained valid. 1367 if (UnrollRevisitChildLoops) { 1368 // Walk *all* of the child loops. 1369 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1370 Updater.addChildLoops(ChildLoops); 1371 } 1372 } 1373 1374 return getLoopPassPreservedAnalyses(); 1375 } 1376 1377 PreservedAnalyses LoopUnrollPass::run(Function &F, 1378 FunctionAnalysisManager &AM) { 1379 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1380 auto &LI = AM.getResult<LoopAnalysis>(F); 1381 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1382 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1383 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1384 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1385 1386 LoopAnalysisManager *LAM = nullptr; 1387 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1388 LAM = &LAMProxy->getManager(); 1389 1390 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1391 ProfileSummaryInfo *PSI = 1392 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1393 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1394 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1395 1396 bool Changed = false; 1397 1398 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1399 // Since simplification may add new inner loops, it has to run before the 1400 // legality and profitability checks. This means running the loop unroller 1401 // will simplify all loops, regardless of whether anything end up being 1402 // unrolled. 1403 for (auto &L : LI) { 1404 Changed |= 1405 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1406 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1407 } 1408 1409 // Add the loop nests in the reverse order of LoopInfo. See method 1410 // declaration. 1411 SmallPriorityWorklist<Loop *, 4> Worklist; 1412 appendLoopsToWorklist(LI, Worklist); 1413 1414 while (!Worklist.empty()) { 1415 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1416 // from back to front so that we work forward across the CFG, which 1417 // for unrolling is only needed to get optimization remarks emitted in 1418 // a forward order. 1419 Loop &L = *Worklist.pop_back_val(); 1420 #ifndef NDEBUG 1421 Loop *ParentL = L.getParentLoop(); 1422 #endif 1423 1424 // Check if the profile summary indicates that the profiled application 1425 // has a huge working set size, in which case we disable peeling to avoid 1426 // bloating it further. 1427 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1428 if (PSI && PSI->hasHugeWorkingSetSize()) 1429 LocalAllowPeeling = false; 1430 std::string LoopName = std::string(L.getName()); 1431 // The API here is quite complex to call and we allow to select some 1432 // flavors of unrolling during construction time (by setting UnrollOpts). 1433 LoopUnrollResult Result = tryToUnrollLoop( 1434 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1435 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1436 UnrollOpts.ForgetSCEV, /*Count*/ None, 1437 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1438 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1439 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1440 Changed |= Result != LoopUnrollResult::Unmodified; 1441 1442 // The parent must not be damaged by unrolling! 1443 #ifndef NDEBUG 1444 if (Result != LoopUnrollResult::Unmodified && ParentL) 1445 ParentL->verifyLoop(); 1446 #endif 1447 1448 // Clear any cached analysis results for L if we removed it completely. 1449 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1450 LAM->clear(L, LoopName); 1451 } 1452 1453 if (!Changed) 1454 return PreservedAnalyses::all(); 1455 1456 return getLoopPassPreservedAnalyses(); 1457 } 1458