xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision b7cfa6ca92830b3c331cb44706bb279996663439)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is somtimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned> UnrollPartialThreshold(
87     "unroll-partial-threshold", cl::Hidden,
88     cl::desc("The cost threshold for partial loop unrolling"));
89 
90 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
91     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
92     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
93              "to the threshold when aggressively unrolling a loop due to the "
94              "dynamic cost savings. If completely unrolling a loop will reduce "
95              "the total runtime from X to Y, we boost the loop unroll "
96              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
97              "X/Y). This limit avoids excessive code bloat."));
98 
99 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
100     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
101     cl::desc("Don't allow loop unrolling to simulate more than this number of"
102              "iterations when checking full unroll profitability"));
103 
104 static cl::opt<unsigned> UnrollCount(
105     "unroll-count", cl::Hidden,
106     cl::desc("Use this unroll count for all loops including those with "
107              "unroll_count pragma values, for testing purposes"));
108 
109 static cl::opt<unsigned> UnrollMaxCount(
110     "unroll-max-count", cl::Hidden,
111     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
112              "testing purposes"));
113 
114 static cl::opt<unsigned> UnrollFullMaxCount(
115     "unroll-full-max-count", cl::Hidden,
116     cl::desc(
117         "Set the max unroll count for full unrolling, for testing purposes"));
118 
119 static cl::opt<bool>
120     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
121                        cl::desc("Allows loops to be partially unrolled until "
122                                 "-unroll-threshold loop size is reached."));
123 
124 static cl::opt<bool> UnrollAllowRemainder(
125     "unroll-allow-remainder", cl::Hidden,
126     cl::desc("Allow generation of a loop remainder (extra iterations) "
127              "when unrolling a loop."));
128 
129 static cl::opt<bool>
130     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
131                   cl::desc("Unroll loops with run-time trip counts"));
132 
133 static cl::opt<unsigned> UnrollMaxUpperBound(
134     "unroll-max-upperbound", cl::init(8), cl::Hidden,
135     cl::desc(
136         "The max of trip count upper bound that is considered in unrolling"));
137 
138 static cl::opt<unsigned> PragmaUnrollThreshold(
139     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
140     cl::desc("Unrolled size limit for loops with an unroll(full) or "
141              "unroll_count pragma."));
142 
143 static cl::opt<unsigned> FlatLoopTripCountThreshold(
144     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
145     cl::desc("If the runtime tripcount for the loop is lower than the "
146              "threshold, the loop is considered as flat and will be less "
147              "aggressively unrolled."));
148 
149 static cl::opt<bool> UnrollUnrollRemainder(
150   "unroll-remainder", cl::Hidden,
151   cl::desc("Allow the loop remainder to be unrolled."));
152 
153 // This option isn't ever intended to be enabled, it serves to allow
154 // experiments to check the assumptions about when this kind of revisit is
155 // necessary.
156 static cl::opt<bool> UnrollRevisitChildLoops(
157     "unroll-revisit-child-loops", cl::Hidden,
158     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
159              "This shouldn't typically be needed as child loops (or their "
160              "clones) were already visited."));
161 
162 static cl::opt<unsigned> UnrollThresholdAggressive(
163     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
164     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
165              "optimizations"));
166 static cl::opt<unsigned>
167     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
168                            cl::Hidden,
169                            cl::desc("Default threshold (max size of unrolled "
170                                     "loop), used in all but O3 optimizations"));
171 
172 /// A magic value for use with the Threshold parameter to indicate
173 /// that the loop unroll should be performed regardless of how much
174 /// code expansion would result.
175 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
176 
177 /// Gather the various unrolling parameters based on the defaults, compiler
178 /// flags, TTI overrides and user specified parameters.
179 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
180     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
181     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
182     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
183     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
184     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
185   TargetTransformInfo::UnrollingPreferences UP;
186 
187   // Set up the defaults
188   UP.Threshold =
189       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
190   UP.MaxPercentThresholdBoost = 400;
191   UP.OptSizeThreshold = 0;
192   UP.PartialThreshold = 150;
193   UP.PartialOptSizeThreshold = 0;
194   UP.Count = 0;
195   UP.DefaultUnrollRuntimeCount = 8;
196   UP.MaxCount = std::numeric_limits<unsigned>::max();
197   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
198   UP.BEInsns = 2;
199   UP.Partial = false;
200   UP.Runtime = false;
201   UP.AllowRemainder = true;
202   UP.UnrollRemainder = false;
203   UP.AllowExpensiveTripCount = false;
204   UP.Force = false;
205   UP.UpperBound = false;
206   UP.UnrollAndJam = false;
207   UP.UnrollAndJamInnerLoopThreshold = 60;
208   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
209 
210   // Override with any target specific settings
211   TTI.getUnrollingPreferences(L, SE, UP);
212 
213   // Apply size attributes
214   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
215                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
216                                                 PGSOQueryType::IRPass);
217   if (OptForSize) {
218     UP.Threshold = UP.OptSizeThreshold;
219     UP.PartialThreshold = UP.PartialOptSizeThreshold;
220     UP.MaxPercentThresholdBoost = 100;
221   }
222 
223   // Apply any user values specified by cl::opt
224   if (UnrollThreshold.getNumOccurrences() > 0)
225     UP.Threshold = UnrollThreshold;
226   if (UnrollPartialThreshold.getNumOccurrences() > 0)
227     UP.PartialThreshold = UnrollPartialThreshold;
228   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
229     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
230   if (UnrollMaxCount.getNumOccurrences() > 0)
231     UP.MaxCount = UnrollMaxCount;
232   if (UnrollFullMaxCount.getNumOccurrences() > 0)
233     UP.FullUnrollMaxCount = UnrollFullMaxCount;
234   if (UnrollAllowPartial.getNumOccurrences() > 0)
235     UP.Partial = UnrollAllowPartial;
236   if (UnrollAllowRemainder.getNumOccurrences() > 0)
237     UP.AllowRemainder = UnrollAllowRemainder;
238   if (UnrollRuntime.getNumOccurrences() > 0)
239     UP.Runtime = UnrollRuntime;
240   if (UnrollMaxUpperBound == 0)
241     UP.UpperBound = false;
242   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
243     UP.UnrollRemainder = UnrollUnrollRemainder;
244   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
245     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
246 
247   // Apply user values provided by argument
248   if (UserThreshold.hasValue()) {
249     UP.Threshold = *UserThreshold;
250     UP.PartialThreshold = *UserThreshold;
251   }
252   if (UserCount.hasValue())
253     UP.Count = *UserCount;
254   if (UserAllowPartial.hasValue())
255     UP.Partial = *UserAllowPartial;
256   if (UserRuntime.hasValue())
257     UP.Runtime = *UserRuntime;
258   if (UserUpperBound.hasValue())
259     UP.UpperBound = *UserUpperBound;
260   if (UserFullUnrollMaxCount.hasValue())
261     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
262 
263   return UP;
264 }
265 
266 namespace {
267 
268 /// A struct to densely store the state of an instruction after unrolling at
269 /// each iteration.
270 ///
271 /// This is designed to work like a tuple of <Instruction *, int> for the
272 /// purposes of hashing and lookup, but to be able to associate two boolean
273 /// states with each key.
274 struct UnrolledInstState {
275   Instruction *I;
276   int Iteration : 30;
277   unsigned IsFree : 1;
278   unsigned IsCounted : 1;
279 };
280 
281 /// Hashing and equality testing for a set of the instruction states.
282 struct UnrolledInstStateKeyInfo {
283   using PtrInfo = DenseMapInfo<Instruction *>;
284   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
285 
286   static inline UnrolledInstState getEmptyKey() {
287     return {PtrInfo::getEmptyKey(), 0, 0, 0};
288   }
289 
290   static inline UnrolledInstState getTombstoneKey() {
291     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
292   }
293 
294   static inline unsigned getHashValue(const UnrolledInstState &S) {
295     return PairInfo::getHashValue({S.I, S.Iteration});
296   }
297 
298   static inline bool isEqual(const UnrolledInstState &LHS,
299                              const UnrolledInstState &RHS) {
300     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
301   }
302 };
303 
304 struct EstimatedUnrollCost {
305   /// The estimated cost after unrolling.
306   unsigned UnrolledCost;
307 
308   /// The estimated dynamic cost of executing the instructions in the
309   /// rolled form.
310   unsigned RolledDynamicCost;
311 };
312 
313 } // end anonymous namespace
314 
315 /// Figure out if the loop is worth full unrolling.
316 ///
317 /// Complete loop unrolling can make some loads constant, and we need to know
318 /// if that would expose any further optimization opportunities.  This routine
319 /// estimates this optimization.  It computes cost of unrolled loop
320 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
321 /// dynamic cost we mean that we won't count costs of blocks that are known not
322 /// to be executed (i.e. if we have a branch in the loop and we know that at the
323 /// given iteration its condition would be resolved to true, we won't add up the
324 /// cost of the 'false'-block).
325 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
326 /// the analysis failed (no benefits expected from the unrolling, or the loop is
327 /// too big to analyze), the returned value is None.
328 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
329     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
330     const SmallPtrSetImpl<const Value *> &EphValues,
331     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
332     unsigned MaxIterationsCountToAnalyze) {
333   // We want to be able to scale offsets by the trip count and add more offsets
334   // to them without checking for overflows, and we already don't want to
335   // analyze *massive* trip counts, so we force the max to be reasonably small.
336   assert(MaxIterationsCountToAnalyze <
337              (unsigned)(std::numeric_limits<int>::max() / 2) &&
338          "The unroll iterations max is too large!");
339 
340   // Only analyze inner loops. We can't properly estimate cost of nested loops
341   // and we won't visit inner loops again anyway.
342   if (!L->empty())
343     return None;
344 
345   // Don't simulate loops with a big or unknown tripcount
346   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
347     return None;
348 
349   SmallSetVector<BasicBlock *, 16> BBWorklist;
350   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
351   DenseMap<Value *, Constant *> SimplifiedValues;
352   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
353 
354   // The estimated cost of the unrolled form of the loop. We try to estimate
355   // this by simplifying as much as we can while computing the estimate.
356   unsigned UnrolledCost = 0;
357 
358   // We also track the estimated dynamic (that is, actually executed) cost in
359   // the rolled form. This helps identify cases when the savings from unrolling
360   // aren't just exposing dead control flows, but actual reduced dynamic
361   // instructions due to the simplifications which we expect to occur after
362   // unrolling.
363   unsigned RolledDynamicCost = 0;
364 
365   // We track the simplification of each instruction in each iteration. We use
366   // this to recursively merge costs into the unrolled cost on-demand so that
367   // we don't count the cost of any dead code. This is essentially a map from
368   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
369   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
370 
371   // A small worklist used to accumulate cost of instructions from each
372   // observable and reached root in the loop.
373   SmallVector<Instruction *, 16> CostWorklist;
374 
375   // PHI-used worklist used between iterations while accumulating cost.
376   SmallVector<Instruction *, 4> PHIUsedList;
377 
378   // Helper function to accumulate cost for instructions in the loop.
379   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
380     assert(Iteration >= 0 && "Cannot have a negative iteration!");
381     assert(CostWorklist.empty() && "Must start with an empty cost list");
382     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
383     CostWorklist.push_back(&RootI);
384     for (;; --Iteration) {
385       do {
386         Instruction *I = CostWorklist.pop_back_val();
387 
388         // InstCostMap only uses I and Iteration as a key, the other two values
389         // don't matter here.
390         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
391         if (CostIter == InstCostMap.end())
392           // If an input to a PHI node comes from a dead path through the loop
393           // we may have no cost data for it here. What that actually means is
394           // that it is free.
395           continue;
396         auto &Cost = *CostIter;
397         if (Cost.IsCounted)
398           // Already counted this instruction.
399           continue;
400 
401         // Mark that we are counting the cost of this instruction now.
402         Cost.IsCounted = true;
403 
404         // If this is a PHI node in the loop header, just add it to the PHI set.
405         if (auto *PhiI = dyn_cast<PHINode>(I))
406           if (PhiI->getParent() == L->getHeader()) {
407             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
408                                   "inherently simplify during unrolling.");
409             if (Iteration == 0)
410               continue;
411 
412             // Push the incoming value from the backedge into the PHI used list
413             // if it is an in-loop instruction. We'll use this to populate the
414             // cost worklist for the next iteration (as we count backwards).
415             if (auto *OpI = dyn_cast<Instruction>(
416                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
417               if (L->contains(OpI))
418                 PHIUsedList.push_back(OpI);
419             continue;
420           }
421 
422         // First accumulate the cost of this instruction.
423         if (!Cost.IsFree) {
424           UnrolledCost += TTI.getUserCost(I, TargetTransformInfo::TCK_CodeSize);
425           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
426                             << Iteration << "): ");
427           LLVM_DEBUG(I->dump());
428         }
429 
430         // We must count the cost of every operand which is not free,
431         // recursively. If we reach a loop PHI node, simply add it to the set
432         // to be considered on the next iteration (backwards!).
433         for (Value *Op : I->operands()) {
434           // Check whether this operand is free due to being a constant or
435           // outside the loop.
436           auto *OpI = dyn_cast<Instruction>(Op);
437           if (!OpI || !L->contains(OpI))
438             continue;
439 
440           // Otherwise accumulate its cost.
441           CostWorklist.push_back(OpI);
442         }
443       } while (!CostWorklist.empty());
444 
445       if (PHIUsedList.empty())
446         // We've exhausted the search.
447         break;
448 
449       assert(Iteration > 0 &&
450              "Cannot track PHI-used values past the first iteration!");
451       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
452       PHIUsedList.clear();
453     }
454   };
455 
456   // Ensure that we don't violate the loop structure invariants relied on by
457   // this analysis.
458   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
459   assert(L->isLCSSAForm(DT) &&
460          "Must have loops in LCSSA form to track live-out values.");
461 
462   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
463 
464   // Simulate execution of each iteration of the loop counting instructions,
465   // which would be simplified.
466   // Since the same load will take different values on different iterations,
467   // we literally have to go through all loop's iterations.
468   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
469     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
470 
471     // Prepare for the iteration by collecting any simplified entry or backedge
472     // inputs.
473     for (Instruction &I : *L->getHeader()) {
474       auto *PHI = dyn_cast<PHINode>(&I);
475       if (!PHI)
476         break;
477 
478       // The loop header PHI nodes must have exactly two input: one from the
479       // loop preheader and one from the loop latch.
480       assert(
481           PHI->getNumIncomingValues() == 2 &&
482           "Must have an incoming value only for the preheader and the latch.");
483 
484       Value *V = PHI->getIncomingValueForBlock(
485           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
486       Constant *C = dyn_cast<Constant>(V);
487       if (Iteration != 0 && !C)
488         C = SimplifiedValues.lookup(V);
489       if (C)
490         SimplifiedInputValues.push_back({PHI, C});
491     }
492 
493     // Now clear and re-populate the map for the next iteration.
494     SimplifiedValues.clear();
495     while (!SimplifiedInputValues.empty())
496       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
497 
498     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
499 
500     BBWorklist.clear();
501     BBWorklist.insert(L->getHeader());
502     // Note that we *must not* cache the size, this loop grows the worklist.
503     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
504       BasicBlock *BB = BBWorklist[Idx];
505 
506       // Visit all instructions in the given basic block and try to simplify
507       // it.  We don't change the actual IR, just count optimization
508       // opportunities.
509       for (Instruction &I : *BB) {
510         // These won't get into the final code - don't even try calculating the
511         // cost for them.
512         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
513           continue;
514 
515         // Track this instruction's expected baseline cost when executing the
516         // rolled loop form.
517         RolledDynamicCost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
518 
519         // Visit the instruction to analyze its loop cost after unrolling,
520         // and if the visitor returns true, mark the instruction as free after
521         // unrolling and continue.
522         bool IsFree = Analyzer.visit(I);
523         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
524                                            (unsigned)IsFree,
525                                            /*IsCounted*/ false}).second;
526         (void)Inserted;
527         assert(Inserted && "Cannot have a state for an unvisited instruction!");
528 
529         if (IsFree)
530           continue;
531 
532         // Can't properly model a cost of a call.
533         // FIXME: With a proper cost model we should be able to do it.
534         if (auto *CI = dyn_cast<CallInst>(&I)) {
535           const Function *Callee = CI->getCalledFunction();
536           if (!Callee || TTI.isLoweredToCall(Callee)) {
537             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
538             return None;
539           }
540         }
541 
542         // If the instruction might have a side-effect recursively account for
543         // the cost of it and all the instructions leading up to it.
544         if (I.mayHaveSideEffects())
545           AddCostRecursively(I, Iteration);
546 
547         // If unrolled body turns out to be too big, bail out.
548         if (UnrolledCost > MaxUnrolledLoopSize) {
549           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
550                             << "  UnrolledCost: " << UnrolledCost
551                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
552                             << "\n");
553           return None;
554         }
555       }
556 
557       Instruction *TI = BB->getTerminator();
558 
559       // Add in the live successors by first checking whether we have terminator
560       // that may be simplified based on the values simplified by this call.
561       BasicBlock *KnownSucc = nullptr;
562       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
563         if (BI->isConditional()) {
564           if (Constant *SimpleCond =
565                   SimplifiedValues.lookup(BI->getCondition())) {
566             // Just take the first successor if condition is undef
567             if (isa<UndefValue>(SimpleCond))
568               KnownSucc = BI->getSuccessor(0);
569             else if (ConstantInt *SimpleCondVal =
570                          dyn_cast<ConstantInt>(SimpleCond))
571               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
572           }
573         }
574       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
575         if (Constant *SimpleCond =
576                 SimplifiedValues.lookup(SI->getCondition())) {
577           // Just take the first successor if condition is undef
578           if (isa<UndefValue>(SimpleCond))
579             KnownSucc = SI->getSuccessor(0);
580           else if (ConstantInt *SimpleCondVal =
581                        dyn_cast<ConstantInt>(SimpleCond))
582             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
583         }
584       }
585       if (KnownSucc) {
586         if (L->contains(KnownSucc))
587           BBWorklist.insert(KnownSucc);
588         else
589           ExitWorklist.insert({BB, KnownSucc});
590         continue;
591       }
592 
593       // Add BB's successors to the worklist.
594       for (BasicBlock *Succ : successors(BB))
595         if (L->contains(Succ))
596           BBWorklist.insert(Succ);
597         else
598           ExitWorklist.insert({BB, Succ});
599       AddCostRecursively(*TI, Iteration);
600     }
601 
602     // If we found no optimization opportunities on the first iteration, we
603     // won't find them on later ones too.
604     if (UnrolledCost == RolledDynamicCost) {
605       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
606                         << "  UnrolledCost: " << UnrolledCost << "\n");
607       return None;
608     }
609   }
610 
611   while (!ExitWorklist.empty()) {
612     BasicBlock *ExitingBB, *ExitBB;
613     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
614 
615     for (Instruction &I : *ExitBB) {
616       auto *PN = dyn_cast<PHINode>(&I);
617       if (!PN)
618         break;
619 
620       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
621       if (auto *OpI = dyn_cast<Instruction>(Op))
622         if (L->contains(OpI))
623           AddCostRecursively(*OpI, TripCount - 1);
624     }
625   }
626 
627   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
628                     << "UnrolledCost: " << UnrolledCost << ", "
629                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
630   return {{UnrolledCost, RolledDynamicCost}};
631 }
632 
633 /// ApproximateLoopSize - Approximate the size of the loop.
634 unsigned llvm::ApproximateLoopSize(
635     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
636     const TargetTransformInfo &TTI,
637     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
638   CodeMetrics Metrics;
639   for (BasicBlock *BB : L->blocks())
640     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
641   NumCalls = Metrics.NumInlineCandidates;
642   NotDuplicatable = Metrics.notDuplicatable;
643   Convergent = Metrics.convergent;
644 
645   unsigned LoopSize = Metrics.NumInsts;
646 
647   // Don't allow an estimate of size zero.  This would allows unrolling of loops
648   // with huge iteration counts, which is a compile time problem even if it's
649   // not a problem for code quality. Also, the code using this size may assume
650   // that each loop has at least three instructions (likely a conditional
651   // branch, a comparison feeding that branch, and some kind of loop increment
652   // feeding that comparison instruction).
653   LoopSize = std::max(LoopSize, BEInsns + 1);
654 
655   return LoopSize;
656 }
657 
658 // Returns the loop hint metadata node with the given name (for example,
659 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
660 // returned.
661 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
662   if (MDNode *LoopID = L->getLoopID())
663     return GetUnrollMetadata(LoopID, Name);
664   return nullptr;
665 }
666 
667 // Returns true if the loop has an unroll(full) pragma.
668 static bool hasUnrollFullPragma(const Loop *L) {
669   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
670 }
671 
672 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
673 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
674 static bool hasUnrollEnablePragma(const Loop *L) {
675   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
676 }
677 
678 // Returns true if the loop has an runtime unroll(disable) pragma.
679 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
680   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
681 }
682 
683 // If loop has an unroll_count pragma return the (necessarily
684 // positive) value from the pragma.  Otherwise return 0.
685 static unsigned unrollCountPragmaValue(const Loop *L) {
686   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
687   if (MD) {
688     assert(MD->getNumOperands() == 2 &&
689            "Unroll count hint metadata should have two operands.");
690     unsigned Count =
691         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
692     assert(Count >= 1 && "Unroll count must be positive.");
693     return Count;
694   }
695   return 0;
696 }
697 
698 // Computes the boosting factor for complete unrolling.
699 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
700 // be beneficial to fully unroll the loop even if unrolledcost is large. We
701 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
702 // the unroll threshold.
703 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
704                                             unsigned MaxPercentThresholdBoost) {
705   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
706     return 100;
707   else if (Cost.UnrolledCost != 0)
708     // The boosting factor is RolledDynamicCost / UnrolledCost
709     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
710                     MaxPercentThresholdBoost);
711   else
712     return MaxPercentThresholdBoost;
713 }
714 
715 // Returns loop size estimation for unrolled loop.
716 static uint64_t getUnrolledLoopSize(
717     unsigned LoopSize,
718     TargetTransformInfo::UnrollingPreferences &UP) {
719   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
720   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
721 }
722 
723 // Returns true if unroll count was set explicitly.
724 // Calculates unroll count and writes it to UP.Count.
725 // Unless IgnoreUser is true, will also use metadata and command-line options
726 // that are specific to to the LoopUnroll pass (which, for instance, are
727 // irrelevant for the LoopUnrollAndJam pass).
728 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
729 // many LoopUnroll-specific options. The shared functionality should be
730 // refactored into it own function.
731 bool llvm::computeUnrollCount(
732     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
733     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
734     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
735     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
736     TargetTransformInfo::UnrollingPreferences &UP,
737     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
738 
739   // Check for explicit Count.
740   // 1st priority is unroll count set by "unroll-count" option.
741   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
742   if (UserUnrollCount) {
743     UP.Count = UnrollCount;
744     UP.AllowExpensiveTripCount = true;
745     UP.Force = true;
746     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
747       return true;
748   }
749 
750   // 2nd priority is unroll count set by pragma.
751   unsigned PragmaCount = unrollCountPragmaValue(L);
752   if (PragmaCount > 0) {
753     UP.Count = PragmaCount;
754     UP.Runtime = true;
755     UP.AllowExpensiveTripCount = true;
756     UP.Force = true;
757     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
758         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
759       return true;
760   }
761   bool PragmaFullUnroll = hasUnrollFullPragma(L);
762   if (PragmaFullUnroll && TripCount != 0) {
763     UP.Count = TripCount;
764     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
765       return false;
766   }
767 
768   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
769   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
770                         PragmaEnableUnroll || UserUnrollCount;
771 
772   if (ExplicitUnroll && TripCount != 0) {
773     // If the loop has an unrolling pragma, we want to be more aggressive with
774     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
775     // value which is larger than the default limits.
776     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
777     UP.PartialThreshold =
778         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
779   }
780 
781   // 3rd priority is full unroll count.
782   // Full unroll makes sense only when TripCount or its upper bound could be
783   // statically calculated.
784   // Also we need to check if we exceed FullUnrollMaxCount.
785   // If using the upper bound to unroll, TripMultiple should be set to 1 because
786   // we do not know when loop may exit.
787 
788   // We can unroll by the upper bound amount if it's generally allowed or if
789   // we know that the loop is executed either the upper bound or zero times.
790   // (MaxOrZero unrolling keeps only the first loop test, so the number of
791   // loop tests remains the same compared to the non-unrolled version, whereas
792   // the generic upper bound unrolling keeps all but the last loop test so the
793   // number of loop tests goes up which may end up being worse on targets with
794   // constrained branch predictor resources so is controlled by an option.)
795   // In addition we only unroll small upper bounds.
796   unsigned FullUnrollMaxTripCount = MaxTripCount;
797   if (!(UP.UpperBound || MaxOrZero) ||
798       FullUnrollMaxTripCount > UnrollMaxUpperBound)
799     FullUnrollMaxTripCount = 0;
800 
801   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
802   // compute the former when the latter is zero.
803   unsigned ExactTripCount = TripCount;
804   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
805          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
806 
807   unsigned FullUnrollTripCount =
808       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
809   UP.Count = FullUnrollTripCount;
810   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
811     // When computing the unrolled size, note that BEInsns are not replicated
812     // like the rest of the loop body.
813     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
814       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
815       TripCount = FullUnrollTripCount;
816       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
817       return ExplicitUnroll;
818     } else {
819       // The loop isn't that small, but we still can fully unroll it if that
820       // helps to remove a significant number of instructions.
821       // To check that, run additional analysis on the loop.
822       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
823               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
824               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
825               UP.MaxIterationsCountToAnalyze)) {
826         unsigned Boost =
827             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
828         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
829           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
830           TripCount = FullUnrollTripCount;
831           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
832           return ExplicitUnroll;
833         }
834       }
835     }
836   }
837 
838   // 4th priority is loop peeling.
839   computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
840   if (PP.PeelCount) {
841     UP.Runtime = false;
842     UP.Count = 1;
843     return ExplicitUnroll;
844   }
845 
846   // 5th priority is partial unrolling.
847   // Try partial unroll only when TripCount could be statically calculated.
848   if (TripCount) {
849     UP.Partial |= ExplicitUnroll;
850     if (!UP.Partial) {
851       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
852                         << "-unroll-allow-partial not given\n");
853       UP.Count = 0;
854       return false;
855     }
856     if (UP.Count == 0)
857       UP.Count = TripCount;
858     if (UP.PartialThreshold != NoThreshold) {
859       // Reduce unroll count to be modulo of TripCount for partial unrolling.
860       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
861         UP.Count =
862             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
863             (LoopSize - UP.BEInsns);
864       if (UP.Count > UP.MaxCount)
865         UP.Count = UP.MaxCount;
866       while (UP.Count != 0 && TripCount % UP.Count != 0)
867         UP.Count--;
868       if (UP.AllowRemainder && UP.Count <= 1) {
869         // If there is no Count that is modulo of TripCount, set Count to
870         // largest power-of-two factor that satisfies the threshold limit.
871         // As we'll create fixup loop, do the type of unrolling only if
872         // remainder loop is allowed.
873         UP.Count = UP.DefaultUnrollRuntimeCount;
874         while (UP.Count != 0 &&
875                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
876           UP.Count >>= 1;
877       }
878       if (UP.Count < 2) {
879         if (PragmaEnableUnroll)
880           ORE->emit([&]() {
881             return OptimizationRemarkMissed(DEBUG_TYPE,
882                                             "UnrollAsDirectedTooLarge",
883                                             L->getStartLoc(), L->getHeader())
884                    << "Unable to unroll loop as directed by unroll(enable) "
885                       "pragma "
886                       "because unrolled size is too large.";
887           });
888         UP.Count = 0;
889       }
890     } else {
891       UP.Count = TripCount;
892     }
893     if (UP.Count > UP.MaxCount)
894       UP.Count = UP.MaxCount;
895     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
896         UP.Count != TripCount)
897       ORE->emit([&]() {
898         return OptimizationRemarkMissed(DEBUG_TYPE,
899                                         "FullUnrollAsDirectedTooLarge",
900                                         L->getStartLoc(), L->getHeader())
901                << "Unable to fully unroll loop as directed by unroll pragma "
902                   "because "
903                   "unrolled size is too large.";
904       });
905     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
906                       << "\n");
907     return ExplicitUnroll;
908   }
909   assert(TripCount == 0 &&
910          "All cases when TripCount is constant should be covered here.");
911   if (PragmaFullUnroll)
912     ORE->emit([&]() {
913       return OptimizationRemarkMissed(
914                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
915                  L->getStartLoc(), L->getHeader())
916              << "Unable to fully unroll loop as directed by unroll(full) "
917                 "pragma "
918                 "because loop has a runtime trip count.";
919     });
920 
921   // 6th priority is runtime unrolling.
922   // Don't unroll a runtime trip count loop when it is disabled.
923   if (hasRuntimeUnrollDisablePragma(L)) {
924     UP.Count = 0;
925     return false;
926   }
927 
928   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
929   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
930     UP.Count = 0;
931     return false;
932   }
933 
934   // Check if the runtime trip count is too small when profile is available.
935   if (L->getHeader()->getParent()->hasProfileData()) {
936     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
937       if (*ProfileTripCount < FlatLoopTripCountThreshold)
938         return false;
939       else
940         UP.AllowExpensiveTripCount = true;
941     }
942   }
943 
944   // Reduce count based on the type of unrolling and the threshold values.
945   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
946   if (!UP.Runtime) {
947     LLVM_DEBUG(
948         dbgs() << "  will not try to unroll loop with runtime trip count "
949                << "-unroll-runtime not given\n");
950     UP.Count = 0;
951     return false;
952   }
953   if (UP.Count == 0)
954     UP.Count = UP.DefaultUnrollRuntimeCount;
955 
956   // Reduce unroll count to be the largest power-of-two factor of
957   // the original count which satisfies the threshold limit.
958   while (UP.Count != 0 &&
959          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
960     UP.Count >>= 1;
961 
962 #ifndef NDEBUG
963   unsigned OrigCount = UP.Count;
964 #endif
965 
966   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
967     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
968       UP.Count >>= 1;
969     LLVM_DEBUG(
970         dbgs() << "Remainder loop is restricted (that could architecture "
971                   "specific or because the loop contains a convergent "
972                   "instruction), so unroll count must divide the trip "
973                   "multiple, "
974                << TripMultiple << ".  Reducing unroll count from " << OrigCount
975                << " to " << UP.Count << ".\n");
976 
977     using namespace ore;
978 
979     if (PragmaCount > 0 && !UP.AllowRemainder)
980       ORE->emit([&]() {
981         return OptimizationRemarkMissed(DEBUG_TYPE,
982                                         "DifferentUnrollCountFromDirected",
983                                         L->getStartLoc(), L->getHeader())
984                << "Unable to unroll loop the number of times directed by "
985                   "unroll_count pragma because remainder loop is restricted "
986                   "(that could architecture specific or because the loop "
987                   "contains a convergent instruction) and so must have an "
988                   "unroll "
989                   "count that divides the loop trip multiple of "
990                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
991                << NV("UnrollCount", UP.Count) << " time(s).";
992       });
993   }
994 
995   if (UP.Count > UP.MaxCount)
996     UP.Count = UP.MaxCount;
997 
998   if (MaxTripCount && UP.Count > MaxTripCount)
999     UP.Count = MaxTripCount;
1000 
1001   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1002                     << "\n");
1003   if (UP.Count < 2)
1004     UP.Count = 0;
1005   return ExplicitUnroll;
1006 }
1007 
1008 static LoopUnrollResult tryToUnrollLoop(
1009     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1010     const TargetTransformInfo &TTI, AssumptionCache &AC,
1011     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1012     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1013     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1014     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1015     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1016     Optional<bool> ProvidedAllowPeeling,
1017     Optional<bool> ProvidedAllowProfileBasedPeeling,
1018     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1019   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1020                     << L->getHeader()->getParent()->getName() << "] Loop %"
1021                     << L->getHeader()->getName() << "\n");
1022   TransformationMode TM = hasUnrollTransformation(L);
1023   if (TM & TM_Disable)
1024     return LoopUnrollResult::Unmodified;
1025   if (!L->isLoopSimplifyForm()) {
1026     LLVM_DEBUG(
1027         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1028     return LoopUnrollResult::Unmodified;
1029   }
1030 
1031   // When automtatic unrolling is disabled, do not unroll unless overridden for
1032   // this loop.
1033   if (OnlyWhenForced && !(TM & TM_Enable))
1034     return LoopUnrollResult::Unmodified;
1035 
1036   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1037   unsigned NumInlineCandidates;
1038   bool NotDuplicatable;
1039   bool Convergent;
1040   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1041       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1042       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1043       ProvidedFullUnrollMaxCount);
1044   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1045       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1046 
1047   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1048   // as threshold later on.
1049   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1050       !OptForSize)
1051     return LoopUnrollResult::Unmodified;
1052 
1053   SmallPtrSet<const Value *, 32> EphValues;
1054   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1055 
1056   unsigned LoopSize =
1057       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1058                           TTI, EphValues, UP.BEInsns);
1059   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1060   if (NotDuplicatable) {
1061     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1062                       << " instructions.\n");
1063     return LoopUnrollResult::Unmodified;
1064   }
1065 
1066   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1067   // later), to (fully) unroll loops, if it does not increase code size.
1068   if (OptForSize)
1069     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1070 
1071   if (NumInlineCandidates != 0) {
1072     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1073     return LoopUnrollResult::Unmodified;
1074   }
1075 
1076   // Find trip count and trip multiple if count is not available
1077   unsigned TripCount = 0;
1078   unsigned TripMultiple = 1;
1079   // If there are multiple exiting blocks but one of them is the latch, use the
1080   // latch for the trip count estimation. Otherwise insist on a single exiting
1081   // block for the trip count estimation.
1082   BasicBlock *ExitingBlock = L->getLoopLatch();
1083   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1084     ExitingBlock = L->getExitingBlock();
1085   if (ExitingBlock) {
1086     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1087     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1088   }
1089 
1090   // If the loop contains a convergent operation, the prelude we'd add
1091   // to do the first few instructions before we hit the unrolled loop
1092   // is unsafe -- it adds a control-flow dependency to the convergent
1093   // operation.  Therefore restrict remainder loop (try unrollig without).
1094   //
1095   // TODO: This is quite conservative.  In practice, convergent_op()
1096   // is likely to be called unconditionally in the loop.  In this
1097   // case, the program would be ill-formed (on most architectures)
1098   // unless n were the same on all threads in a thread group.
1099   // Assuming n is the same on all threads, any kind of unrolling is
1100   // safe.  But currently llvm's notion of convergence isn't powerful
1101   // enough to express this.
1102   if (Convergent)
1103     UP.AllowRemainder = false;
1104 
1105   // Try to find the trip count upper bound if we cannot find the exact trip
1106   // count.
1107   unsigned MaxTripCount = 0;
1108   bool MaxOrZero = false;
1109   if (!TripCount) {
1110     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1111     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1112   }
1113 
1114   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1115   // fully unroll the loop.
1116   bool UseUpperBound = false;
1117   bool IsCountSetExplicitly = computeUnrollCount(
1118       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1119       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1120   if (!UP.Count)
1121     return LoopUnrollResult::Unmodified;
1122   // Unroll factor (Count) must be less or equal to TripCount.
1123   if (TripCount && UP.Count > TripCount)
1124     UP.Count = TripCount;
1125 
1126   // Save loop properties before it is transformed.
1127   MDNode *OrigLoopID = L->getLoopID();
1128 
1129   // Unroll the loop.
1130   Loop *RemainderLoop = nullptr;
1131   LoopUnrollResult UnrollResult = UnrollLoop(
1132       L,
1133       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1134        UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
1135        ForgetAllSCEV},
1136       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1137   if (UnrollResult == LoopUnrollResult::Unmodified)
1138     return LoopUnrollResult::Unmodified;
1139 
1140   if (RemainderLoop) {
1141     Optional<MDNode *> RemainderLoopID =
1142         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1143                                         LLVMLoopUnrollFollowupRemainder});
1144     if (RemainderLoopID.hasValue())
1145       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1146   }
1147 
1148   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1149     Optional<MDNode *> NewLoopID =
1150         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1151                                         LLVMLoopUnrollFollowupUnrolled});
1152     if (NewLoopID.hasValue()) {
1153       L->setLoopID(NewLoopID.getValue());
1154 
1155       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1156       // explicitly.
1157       return UnrollResult;
1158     }
1159   }
1160 
1161   // If loop has an unroll count pragma or unrolled by explicitly set count
1162   // mark loop as unrolled to prevent unrolling beyond that requested.
1163   // If the loop was peeled, we already "used up" the profile information
1164   // we had, so we don't want to unroll or peel again.
1165   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1166       (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
1167     L->setLoopAlreadyUnrolled();
1168 
1169   return UnrollResult;
1170 }
1171 
1172 namespace {
1173 
1174 class LoopUnroll : public LoopPass {
1175 public:
1176   static char ID; // Pass ID, replacement for typeid
1177 
1178   int OptLevel;
1179 
1180   /// If false, use a cost model to determine whether unrolling of a loop is
1181   /// profitable. If true, only loops that explicitly request unrolling via
1182   /// metadata are considered. All other loops are skipped.
1183   bool OnlyWhenForced;
1184 
1185   /// If false, when SCEV is invalidated, only forget everything in the
1186   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1187   /// Otherwise, forgetAllLoops and rebuild when needed next.
1188   bool ForgetAllSCEV;
1189 
1190   Optional<unsigned> ProvidedCount;
1191   Optional<unsigned> ProvidedThreshold;
1192   Optional<bool> ProvidedAllowPartial;
1193   Optional<bool> ProvidedRuntime;
1194   Optional<bool> ProvidedUpperBound;
1195   Optional<bool> ProvidedAllowPeeling;
1196   Optional<bool> ProvidedAllowProfileBasedPeeling;
1197   Optional<unsigned> ProvidedFullUnrollMaxCount;
1198 
1199   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1200              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1201              Optional<unsigned> Count = None,
1202              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1203              Optional<bool> UpperBound = None,
1204              Optional<bool> AllowPeeling = None,
1205              Optional<bool> AllowProfileBasedPeeling = None,
1206              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1207       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1208         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1209         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1210         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1211         ProvidedAllowPeeling(AllowPeeling),
1212         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1213         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1214     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1215   }
1216 
1217   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1218     if (skipLoop(L))
1219       return false;
1220 
1221     Function &F = *L->getHeader()->getParent();
1222 
1223     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1224     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1225     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1226     const TargetTransformInfo &TTI =
1227         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1228     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1229     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1230     // pass.  Function analyses need to be preserved across loop transformations
1231     // but ORE cannot be preserved (see comment before the pass definition).
1232     OptimizationRemarkEmitter ORE(&F);
1233     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1234 
1235     LoopUnrollResult Result = tryToUnrollLoop(
1236         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1237         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1238         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1239         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1240         ProvidedFullUnrollMaxCount);
1241 
1242     if (Result == LoopUnrollResult::FullyUnrolled)
1243       LPM.markLoopAsDeleted(*L);
1244 
1245     return Result != LoopUnrollResult::Unmodified;
1246   }
1247 
1248   /// This transformation requires natural loop information & requires that
1249   /// loop preheaders be inserted into the CFG...
1250   void getAnalysisUsage(AnalysisUsage &AU) const override {
1251     AU.addRequired<AssumptionCacheTracker>();
1252     AU.addRequired<TargetTransformInfoWrapperPass>();
1253     // FIXME: Loop passes are required to preserve domtree, and for now we just
1254     // recreate dom info if anything gets unrolled.
1255     getLoopAnalysisUsage(AU);
1256   }
1257 };
1258 
1259 } // end anonymous namespace
1260 
1261 char LoopUnroll::ID = 0;
1262 
1263 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1264 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1265 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1266 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1267 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1268 
1269 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1270                                  bool ForgetAllSCEV, int Threshold, int Count,
1271                                  int AllowPartial, int Runtime, int UpperBound,
1272                                  int AllowPeeling) {
1273   // TODO: It would make more sense for this function to take the optionals
1274   // directly, but that's dangerous since it would silently break out of tree
1275   // callers.
1276   return new LoopUnroll(
1277       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1278       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1279       Count == -1 ? None : Optional<unsigned>(Count),
1280       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1281       Runtime == -1 ? None : Optional<bool>(Runtime),
1282       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1283       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1284 }
1285 
1286 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1287                                        bool ForgetAllSCEV) {
1288   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1289                               0, 0, 0, 0);
1290 }
1291 
1292 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1293                                           LoopStandardAnalysisResults &AR,
1294                                           LPMUpdater &Updater) {
1295   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1296   // pass. Function analyses need to be preserved across loop transformations
1297   // but ORE cannot be preserved (see comment before the pass definition).
1298   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1299 
1300   // Keep track of the previous loop structure so we can identify new loops
1301   // created by unrolling.
1302   Loop *ParentL = L.getParentLoop();
1303   SmallPtrSet<Loop *, 4> OldLoops;
1304   if (ParentL)
1305     OldLoops.insert(ParentL->begin(), ParentL->end());
1306   else
1307     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1308 
1309   std::string LoopName = std::string(L.getName());
1310 
1311   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1312                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1313                                  /*PreserveLCSSA*/ true, OptLevel,
1314                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1315                                  /*Threshold*/ None, /*AllowPartial*/ false,
1316                                  /*Runtime*/ false, /*UpperBound*/ false,
1317                                  /*AllowPeeling*/ false,
1318                                  /*AllowProfileBasedPeeling*/ false,
1319                                  /*FullUnrollMaxCount*/ None) !=
1320                  LoopUnrollResult::Unmodified;
1321   if (!Changed)
1322     return PreservedAnalyses::all();
1323 
1324   // The parent must not be damaged by unrolling!
1325 #ifndef NDEBUG
1326   if (ParentL)
1327     ParentL->verifyLoop();
1328 #endif
1329 
1330   // Unrolling can do several things to introduce new loops into a loop nest:
1331   // - Full unrolling clones child loops within the current loop but then
1332   //   removes the current loop making all of the children appear to be new
1333   //   sibling loops.
1334   //
1335   // When a new loop appears as a sibling loop after fully unrolling,
1336   // its nesting structure has fundamentally changed and we want to revisit
1337   // it to reflect that.
1338   //
1339   // When unrolling has removed the current loop, we need to tell the
1340   // infrastructure that it is gone.
1341   //
1342   // Finally, we support a debugging/testing mode where we revisit child loops
1343   // as well. These are not expected to require further optimizations as either
1344   // they or the loop they were cloned from have been directly visited already.
1345   // But the debugging mode allows us to check this assumption.
1346   bool IsCurrentLoopValid = false;
1347   SmallVector<Loop *, 4> SibLoops;
1348   if (ParentL)
1349     SibLoops.append(ParentL->begin(), ParentL->end());
1350   else
1351     SibLoops.append(AR.LI.begin(), AR.LI.end());
1352   erase_if(SibLoops, [&](Loop *SibLoop) {
1353     if (SibLoop == &L) {
1354       IsCurrentLoopValid = true;
1355       return true;
1356     }
1357 
1358     // Otherwise erase the loop from the list if it was in the old loops.
1359     return OldLoops.count(SibLoop) != 0;
1360   });
1361   Updater.addSiblingLoops(SibLoops);
1362 
1363   if (!IsCurrentLoopValid) {
1364     Updater.markLoopAsDeleted(L, LoopName);
1365   } else {
1366     // We can only walk child loops if the current loop remained valid.
1367     if (UnrollRevisitChildLoops) {
1368       // Walk *all* of the child loops.
1369       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1370       Updater.addChildLoops(ChildLoops);
1371     }
1372   }
1373 
1374   return getLoopPassPreservedAnalyses();
1375 }
1376 
1377 PreservedAnalyses LoopUnrollPass::run(Function &F,
1378                                       FunctionAnalysisManager &AM) {
1379   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1380   auto &LI = AM.getResult<LoopAnalysis>(F);
1381   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1382   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1383   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1384   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1385 
1386   LoopAnalysisManager *LAM = nullptr;
1387   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1388     LAM = &LAMProxy->getManager();
1389 
1390   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1391   ProfileSummaryInfo *PSI =
1392       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1393   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1394       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1395 
1396   bool Changed = false;
1397 
1398   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1399   // Since simplification may add new inner loops, it has to run before the
1400   // legality and profitability checks. This means running the loop unroller
1401   // will simplify all loops, regardless of whether anything end up being
1402   // unrolled.
1403   for (auto &L : LI) {
1404     Changed |=
1405         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1406     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1407   }
1408 
1409   // Add the loop nests in the reverse order of LoopInfo. See method
1410   // declaration.
1411   SmallPriorityWorklist<Loop *, 4> Worklist;
1412   appendLoopsToWorklist(LI, Worklist);
1413 
1414   while (!Worklist.empty()) {
1415     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1416     // from back to front so that we work forward across the CFG, which
1417     // for unrolling is only needed to get optimization remarks emitted in
1418     // a forward order.
1419     Loop &L = *Worklist.pop_back_val();
1420 #ifndef NDEBUG
1421     Loop *ParentL = L.getParentLoop();
1422 #endif
1423 
1424     // Check if the profile summary indicates that the profiled application
1425     // has a huge working set size, in which case we disable peeling to avoid
1426     // bloating it further.
1427     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1428     if (PSI && PSI->hasHugeWorkingSetSize())
1429       LocalAllowPeeling = false;
1430     std::string LoopName = std::string(L.getName());
1431     // The API here is quite complex to call and we allow to select some
1432     // flavors of unrolling during construction time (by setting UnrollOpts).
1433     LoopUnrollResult Result = tryToUnrollLoop(
1434         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1435         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1436         UnrollOpts.ForgetSCEV, /*Count*/ None,
1437         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1438         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1439         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1440     Changed |= Result != LoopUnrollResult::Unmodified;
1441 
1442     // The parent must not be damaged by unrolling!
1443 #ifndef NDEBUG
1444     if (Result != LoopUnrollResult::Unmodified && ParentL)
1445       ParentL->verifyLoop();
1446 #endif
1447 
1448     // Clear any cached analysis results for L if we removed it completely.
1449     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1450       LAM->clear(L, LoopName);
1451   }
1452 
1453   if (!Changed)
1454     return PreservedAnalyses::all();
1455 
1456   return getLoopPassPreservedAnalyses();
1457 }
1458