xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision aee7ad0cde0702e1ce942b2fb598fc4fa0d1edbf)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopPass.h"
31 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/UnrollLoop.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <limits>
64 #include <string>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-unroll"
71 
72 static cl::opt<unsigned>
73     UnrollThreshold("unroll-threshold", cl::Hidden,
74                     cl::desc("The cost threshold for loop unrolling"));
75 
76 static cl::opt<unsigned> UnrollPartialThreshold(
77     "unroll-partial-threshold", cl::Hidden,
78     cl::desc("The cost threshold for partial loop unrolling"));
79 
80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
81     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
82     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
83              "to the threshold when aggressively unrolling a loop due to the "
84              "dynamic cost savings. If completely unrolling a loop will reduce "
85              "the total runtime from X to Y, we boost the loop unroll "
86              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
87              "X/Y). This limit avoids excessive code bloat."));
88 
89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
90     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
91     cl::desc("Don't allow loop unrolling to simulate more than this number of"
92              "iterations when checking full unroll profitability"));
93 
94 static cl::opt<unsigned> UnrollCount(
95     "unroll-count", cl::Hidden,
96     cl::desc("Use this unroll count for all loops including those with "
97              "unroll_count pragma values, for testing purposes"));
98 
99 static cl::opt<unsigned> UnrollMaxCount(
100     "unroll-max-count", cl::Hidden,
101     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
102              "testing purposes"));
103 
104 static cl::opt<unsigned> UnrollFullMaxCount(
105     "unroll-full-max-count", cl::Hidden,
106     cl::desc(
107         "Set the max unroll count for full unrolling, for testing purposes"));
108 
109 static cl::opt<unsigned> UnrollPeelCount(
110     "unroll-peel-count", cl::Hidden,
111     cl::desc("Set the unroll peeling count, for testing purposes"));
112 
113 static cl::opt<bool>
114     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
115                        cl::desc("Allows loops to be partially unrolled until "
116                                 "-unroll-threshold loop size is reached."));
117 
118 static cl::opt<bool> UnrollAllowRemainder(
119     "unroll-allow-remainder", cl::Hidden,
120     cl::desc("Allow generation of a loop remainder (extra iterations) "
121              "when unrolling a loop."));
122 
123 static cl::opt<bool>
124     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
125                   cl::desc("Unroll loops with run-time trip counts"));
126 
127 static cl::opt<unsigned> UnrollMaxUpperBound(
128     "unroll-max-upperbound", cl::init(8), cl::Hidden,
129     cl::desc(
130         "The max of trip count upper bound that is considered in unrolling"));
131 
132 static cl::opt<unsigned> PragmaUnrollThreshold(
133     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
134     cl::desc("Unrolled size limit for loops with an unroll(full) or "
135              "unroll_count pragma."));
136 
137 static cl::opt<unsigned> FlatLoopTripCountThreshold(
138     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
139     cl::desc("If the runtime tripcount for the loop is lower than the "
140              "threshold, the loop is considered as flat and will be less "
141              "aggressively unrolled."));
142 
143 static cl::opt<bool>
144     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
145                        cl::desc("Allows loops to be peeled when the dynamic "
146                                 "trip count is known to be low."));
147 
148 static cl::opt<bool> UnrollUnrollRemainder(
149   "unroll-remainder", cl::Hidden,
150   cl::desc("Allow the loop remainder to be unrolled."));
151 
152 // This option isn't ever intended to be enabled, it serves to allow
153 // experiments to check the assumptions about when this kind of revisit is
154 // necessary.
155 static cl::opt<bool> UnrollRevisitChildLoops(
156     "unroll-revisit-child-loops", cl::Hidden,
157     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
158              "This shouldn't typically be needed as child loops (or their "
159              "clones) were already visited."));
160 
161 /// A magic value for use with the Threshold parameter to indicate
162 /// that the loop unroll should be performed regardless of how much
163 /// code expansion would result.
164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
165 
166 /// Gather the various unrolling parameters based on the defaults, compiler
167 /// flags, TTI overrides and user specified parameters.
168 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
169     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
170     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
171     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
172     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
173   TargetTransformInfo::UnrollingPreferences UP;
174 
175   // Set up the defaults
176   UP.Threshold = OptLevel > 2 ? 300 : 150;
177   UP.MaxPercentThresholdBoost = 400;
178   UP.OptSizeThreshold = 0;
179   UP.PartialThreshold = 150;
180   UP.PartialOptSizeThreshold = 0;
181   UP.Count = 0;
182   UP.PeelCount = 0;
183   UP.DefaultUnrollRuntimeCount = 8;
184   UP.MaxCount = std::numeric_limits<unsigned>::max();
185   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
186   UP.BEInsns = 2;
187   UP.Partial = false;
188   UP.Runtime = false;
189   UP.AllowRemainder = true;
190   UP.UnrollRemainder = false;
191   UP.AllowExpensiveTripCount = false;
192   UP.Force = false;
193   UP.UpperBound = false;
194   UP.AllowPeeling = true;
195 
196   // Override with any target specific settings
197   TTI.getUnrollingPreferences(L, SE, UP);
198 
199   // Apply size attributes
200   if (L->getHeader()->getParent()->optForSize()) {
201     UP.Threshold = UP.OptSizeThreshold;
202     UP.PartialThreshold = UP.PartialOptSizeThreshold;
203   }
204 
205   // Apply any user values specified by cl::opt
206   if (UnrollThreshold.getNumOccurrences() > 0)
207     UP.Threshold = UnrollThreshold;
208   if (UnrollPartialThreshold.getNumOccurrences() > 0)
209     UP.PartialThreshold = UnrollPartialThreshold;
210   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
211     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
212   if (UnrollMaxCount.getNumOccurrences() > 0)
213     UP.MaxCount = UnrollMaxCount;
214   if (UnrollFullMaxCount.getNumOccurrences() > 0)
215     UP.FullUnrollMaxCount = UnrollFullMaxCount;
216   if (UnrollPeelCount.getNumOccurrences() > 0)
217     UP.PeelCount = UnrollPeelCount;
218   if (UnrollAllowPartial.getNumOccurrences() > 0)
219     UP.Partial = UnrollAllowPartial;
220   if (UnrollAllowRemainder.getNumOccurrences() > 0)
221     UP.AllowRemainder = UnrollAllowRemainder;
222   if (UnrollRuntime.getNumOccurrences() > 0)
223     UP.Runtime = UnrollRuntime;
224   if (UnrollMaxUpperBound == 0)
225     UP.UpperBound = false;
226   if (UnrollAllowPeeling.getNumOccurrences() > 0)
227     UP.AllowPeeling = UnrollAllowPeeling;
228   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
229     UP.UnrollRemainder = UnrollUnrollRemainder;
230 
231   // Apply user values provided by argument
232   if (UserThreshold.hasValue()) {
233     UP.Threshold = *UserThreshold;
234     UP.PartialThreshold = *UserThreshold;
235   }
236   if (UserCount.hasValue())
237     UP.Count = *UserCount;
238   if (UserAllowPartial.hasValue())
239     UP.Partial = *UserAllowPartial;
240   if (UserRuntime.hasValue())
241     UP.Runtime = *UserRuntime;
242   if (UserUpperBound.hasValue())
243     UP.UpperBound = *UserUpperBound;
244   if (UserAllowPeeling.hasValue())
245     UP.AllowPeeling = *UserAllowPeeling;
246 
247   return UP;
248 }
249 
250 namespace {
251 
252 /// A struct to densely store the state of an instruction after unrolling at
253 /// each iteration.
254 ///
255 /// This is designed to work like a tuple of <Instruction *, int> for the
256 /// purposes of hashing and lookup, but to be able to associate two boolean
257 /// states with each key.
258 struct UnrolledInstState {
259   Instruction *I;
260   int Iteration : 30;
261   unsigned IsFree : 1;
262   unsigned IsCounted : 1;
263 };
264 
265 /// Hashing and equality testing for a set of the instruction states.
266 struct UnrolledInstStateKeyInfo {
267   using PtrInfo = DenseMapInfo<Instruction *>;
268   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
269 
270   static inline UnrolledInstState getEmptyKey() {
271     return {PtrInfo::getEmptyKey(), 0, 0, 0};
272   }
273 
274   static inline UnrolledInstState getTombstoneKey() {
275     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
276   }
277 
278   static inline unsigned getHashValue(const UnrolledInstState &S) {
279     return PairInfo::getHashValue({S.I, S.Iteration});
280   }
281 
282   static inline bool isEqual(const UnrolledInstState &LHS,
283                              const UnrolledInstState &RHS) {
284     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
285   }
286 };
287 
288 struct EstimatedUnrollCost {
289   /// The estimated cost after unrolling.
290   unsigned UnrolledCost;
291 
292   /// The estimated dynamic cost of executing the instructions in the
293   /// rolled form.
294   unsigned RolledDynamicCost;
295 };
296 
297 } // end anonymous namespace
298 
299 /// Figure out if the loop is worth full unrolling.
300 ///
301 /// Complete loop unrolling can make some loads constant, and we need to know
302 /// if that would expose any further optimization opportunities.  This routine
303 /// estimates this optimization.  It computes cost of unrolled loop
304 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
305 /// dynamic cost we mean that we won't count costs of blocks that are known not
306 /// to be executed (i.e. if we have a branch in the loop and we know that at the
307 /// given iteration its condition would be resolved to true, we won't add up the
308 /// cost of the 'false'-block).
309 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
310 /// the analysis failed (no benefits expected from the unrolling, or the loop is
311 /// too big to analyze), the returned value is None.
312 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
313     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
314     const SmallPtrSetImpl<const Value *> &EphValues,
315     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
316   // We want to be able to scale offsets by the trip count and add more offsets
317   // to them without checking for overflows, and we already don't want to
318   // analyze *massive* trip counts, so we force the max to be reasonably small.
319   assert(UnrollMaxIterationsCountToAnalyze <
320              (unsigned)(std::numeric_limits<int>::max() / 2) &&
321          "The unroll iterations max is too large!");
322 
323   // Only analyze inner loops. We can't properly estimate cost of nested loops
324   // and we won't visit inner loops again anyway.
325   if (!L->empty())
326     return None;
327 
328   // Don't simulate loops with a big or unknown tripcount
329   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
330       TripCount > UnrollMaxIterationsCountToAnalyze)
331     return None;
332 
333   SmallSetVector<BasicBlock *, 16> BBWorklist;
334   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
335   DenseMap<Value *, Constant *> SimplifiedValues;
336   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
337 
338   // The estimated cost of the unrolled form of the loop. We try to estimate
339   // this by simplifying as much as we can while computing the estimate.
340   unsigned UnrolledCost = 0;
341 
342   // We also track the estimated dynamic (that is, actually executed) cost in
343   // the rolled form. This helps identify cases when the savings from unrolling
344   // aren't just exposing dead control flows, but actual reduced dynamic
345   // instructions due to the simplifications which we expect to occur after
346   // unrolling.
347   unsigned RolledDynamicCost = 0;
348 
349   // We track the simplification of each instruction in each iteration. We use
350   // this to recursively merge costs into the unrolled cost on-demand so that
351   // we don't count the cost of any dead code. This is essentially a map from
352   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
353   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
354 
355   // A small worklist used to accumulate cost of instructions from each
356   // observable and reached root in the loop.
357   SmallVector<Instruction *, 16> CostWorklist;
358 
359   // PHI-used worklist used between iterations while accumulating cost.
360   SmallVector<Instruction *, 4> PHIUsedList;
361 
362   // Helper function to accumulate cost for instructions in the loop.
363   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
364     assert(Iteration >= 0 && "Cannot have a negative iteration!");
365     assert(CostWorklist.empty() && "Must start with an empty cost list");
366     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
367     CostWorklist.push_back(&RootI);
368     for (;; --Iteration) {
369       do {
370         Instruction *I = CostWorklist.pop_back_val();
371 
372         // InstCostMap only uses I and Iteration as a key, the other two values
373         // don't matter here.
374         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
375         if (CostIter == InstCostMap.end())
376           // If an input to a PHI node comes from a dead path through the loop
377           // we may have no cost data for it here. What that actually means is
378           // that it is free.
379           continue;
380         auto &Cost = *CostIter;
381         if (Cost.IsCounted)
382           // Already counted this instruction.
383           continue;
384 
385         // Mark that we are counting the cost of this instruction now.
386         Cost.IsCounted = true;
387 
388         // If this is a PHI node in the loop header, just add it to the PHI set.
389         if (auto *PhiI = dyn_cast<PHINode>(I))
390           if (PhiI->getParent() == L->getHeader()) {
391             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
392                                   "inherently simplify during unrolling.");
393             if (Iteration == 0)
394               continue;
395 
396             // Push the incoming value from the backedge into the PHI used list
397             // if it is an in-loop instruction. We'll use this to populate the
398             // cost worklist for the next iteration (as we count backwards).
399             if (auto *OpI = dyn_cast<Instruction>(
400                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
401               if (L->contains(OpI))
402                 PHIUsedList.push_back(OpI);
403             continue;
404           }
405 
406         // First accumulate the cost of this instruction.
407         if (!Cost.IsFree) {
408           UnrolledCost += TTI.getUserCost(I);
409           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
410                             << Iteration << "): ");
411           LLVM_DEBUG(I->dump());
412         }
413 
414         // We must count the cost of every operand which is not free,
415         // recursively. If we reach a loop PHI node, simply add it to the set
416         // to be considered on the next iteration (backwards!).
417         for (Value *Op : I->operands()) {
418           // Check whether this operand is free due to being a constant or
419           // outside the loop.
420           auto *OpI = dyn_cast<Instruction>(Op);
421           if (!OpI || !L->contains(OpI))
422             continue;
423 
424           // Otherwise accumulate its cost.
425           CostWorklist.push_back(OpI);
426         }
427       } while (!CostWorklist.empty());
428 
429       if (PHIUsedList.empty())
430         // We've exhausted the search.
431         break;
432 
433       assert(Iteration > 0 &&
434              "Cannot track PHI-used values past the first iteration!");
435       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
436       PHIUsedList.clear();
437     }
438   };
439 
440   // Ensure that we don't violate the loop structure invariants relied on by
441   // this analysis.
442   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
443   assert(L->isLCSSAForm(DT) &&
444          "Must have loops in LCSSA form to track live-out values.");
445 
446   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
447 
448   // Simulate execution of each iteration of the loop counting instructions,
449   // which would be simplified.
450   // Since the same load will take different values on different iterations,
451   // we literally have to go through all loop's iterations.
452   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
453     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
454 
455     // Prepare for the iteration by collecting any simplified entry or backedge
456     // inputs.
457     for (Instruction &I : *L->getHeader()) {
458       auto *PHI = dyn_cast<PHINode>(&I);
459       if (!PHI)
460         break;
461 
462       // The loop header PHI nodes must have exactly two input: one from the
463       // loop preheader and one from the loop latch.
464       assert(
465           PHI->getNumIncomingValues() == 2 &&
466           "Must have an incoming value only for the preheader and the latch.");
467 
468       Value *V = PHI->getIncomingValueForBlock(
469           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
470       Constant *C = dyn_cast<Constant>(V);
471       if (Iteration != 0 && !C)
472         C = SimplifiedValues.lookup(V);
473       if (C)
474         SimplifiedInputValues.push_back({PHI, C});
475     }
476 
477     // Now clear and re-populate the map for the next iteration.
478     SimplifiedValues.clear();
479     while (!SimplifiedInputValues.empty())
480       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
481 
482     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
483 
484     BBWorklist.clear();
485     BBWorklist.insert(L->getHeader());
486     // Note that we *must not* cache the size, this loop grows the worklist.
487     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
488       BasicBlock *BB = BBWorklist[Idx];
489 
490       // Visit all instructions in the given basic block and try to simplify
491       // it.  We don't change the actual IR, just count optimization
492       // opportunities.
493       for (Instruction &I : *BB) {
494         // These won't get into the final code - don't even try calculating the
495         // cost for them.
496         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
497           continue;
498 
499         // Track this instruction's expected baseline cost when executing the
500         // rolled loop form.
501         RolledDynamicCost += TTI.getUserCost(&I);
502 
503         // Visit the instruction to analyze its loop cost after unrolling,
504         // and if the visitor returns true, mark the instruction as free after
505         // unrolling and continue.
506         bool IsFree = Analyzer.visit(I);
507         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
508                                            (unsigned)IsFree,
509                                            /*IsCounted*/ false}).second;
510         (void)Inserted;
511         assert(Inserted && "Cannot have a state for an unvisited instruction!");
512 
513         if (IsFree)
514           continue;
515 
516         // Can't properly model a cost of a call.
517         // FIXME: With a proper cost model we should be able to do it.
518         if(isa<CallInst>(&I))
519           return None;
520 
521         // If the instruction might have a side-effect recursively account for
522         // the cost of it and all the instructions leading up to it.
523         if (I.mayHaveSideEffects())
524           AddCostRecursively(I, Iteration);
525 
526         // If unrolled body turns out to be too big, bail out.
527         if (UnrolledCost > MaxUnrolledLoopSize) {
528           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
529                             << "  UnrolledCost: " << UnrolledCost
530                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
531                             << "\n");
532           return None;
533         }
534       }
535 
536       TerminatorInst *TI = BB->getTerminator();
537 
538       // Add in the live successors by first checking whether we have terminator
539       // that may be simplified based on the values simplified by this call.
540       BasicBlock *KnownSucc = nullptr;
541       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
542         if (BI->isConditional()) {
543           if (Constant *SimpleCond =
544                   SimplifiedValues.lookup(BI->getCondition())) {
545             // Just take the first successor if condition is undef
546             if (isa<UndefValue>(SimpleCond))
547               KnownSucc = BI->getSuccessor(0);
548             else if (ConstantInt *SimpleCondVal =
549                          dyn_cast<ConstantInt>(SimpleCond))
550               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
551           }
552         }
553       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
554         if (Constant *SimpleCond =
555                 SimplifiedValues.lookup(SI->getCondition())) {
556           // Just take the first successor if condition is undef
557           if (isa<UndefValue>(SimpleCond))
558             KnownSucc = SI->getSuccessor(0);
559           else if (ConstantInt *SimpleCondVal =
560                        dyn_cast<ConstantInt>(SimpleCond))
561             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
562         }
563       }
564       if (KnownSucc) {
565         if (L->contains(KnownSucc))
566           BBWorklist.insert(KnownSucc);
567         else
568           ExitWorklist.insert({BB, KnownSucc});
569         continue;
570       }
571 
572       // Add BB's successors to the worklist.
573       for (BasicBlock *Succ : successors(BB))
574         if (L->contains(Succ))
575           BBWorklist.insert(Succ);
576         else
577           ExitWorklist.insert({BB, Succ});
578       AddCostRecursively(*TI, Iteration);
579     }
580 
581     // If we found no optimization opportunities on the first iteration, we
582     // won't find them on later ones too.
583     if (UnrolledCost == RolledDynamicCost) {
584       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
585                         << "  UnrolledCost: " << UnrolledCost << "\n");
586       return None;
587     }
588   }
589 
590   while (!ExitWorklist.empty()) {
591     BasicBlock *ExitingBB, *ExitBB;
592     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
593 
594     for (Instruction &I : *ExitBB) {
595       auto *PN = dyn_cast<PHINode>(&I);
596       if (!PN)
597         break;
598 
599       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
600       if (auto *OpI = dyn_cast<Instruction>(Op))
601         if (L->contains(OpI))
602           AddCostRecursively(*OpI, TripCount - 1);
603     }
604   }
605 
606   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
607                     << "UnrolledCost: " << UnrolledCost << ", "
608                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
609   return {{UnrolledCost, RolledDynamicCost}};
610 }
611 
612 /// ApproximateLoopSize - Approximate the size of the loop.
613 static unsigned
614 ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable,
615                     bool &Convergent, const TargetTransformInfo &TTI,
616                     const SmallPtrSetImpl<const Value *> &EphValues,
617                     unsigned BEInsns) {
618   CodeMetrics Metrics;
619   for (BasicBlock *BB : L->blocks())
620     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
621   NumCalls = Metrics.NumInlineCandidates;
622   NotDuplicatable = Metrics.notDuplicatable;
623   Convergent = Metrics.convergent;
624 
625   unsigned LoopSize = Metrics.NumInsts;
626 
627   // Don't allow an estimate of size zero.  This would allows unrolling of loops
628   // with huge iteration counts, which is a compile time problem even if it's
629   // not a problem for code quality. Also, the code using this size may assume
630   // that each loop has at least three instructions (likely a conditional
631   // branch, a comparison feeding that branch, and some kind of loop increment
632   // feeding that comparison instruction).
633   LoopSize = std::max(LoopSize, BEInsns + 1);
634 
635   return LoopSize;
636 }
637 
638 // Returns the loop hint metadata node with the given name (for example,
639 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
640 // returned.
641 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
642   if (MDNode *LoopID = L->getLoopID())
643     return GetUnrollMetadata(LoopID, Name);
644   return nullptr;
645 }
646 
647 // Returns true if the loop has an unroll(full) pragma.
648 static bool HasUnrollFullPragma(const Loop *L) {
649   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
650 }
651 
652 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
653 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
654 static bool HasUnrollEnablePragma(const Loop *L) {
655   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
656 }
657 
658 // Returns true if the loop has an unroll(disable) pragma.
659 static bool HasUnrollDisablePragma(const Loop *L) {
660   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
661 }
662 
663 // Returns true if the loop has an runtime unroll(disable) pragma.
664 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
665   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
666 }
667 
668 // If loop has an unroll_count pragma return the (necessarily
669 // positive) value from the pragma.  Otherwise return 0.
670 static unsigned UnrollCountPragmaValue(const Loop *L) {
671   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
672   if (MD) {
673     assert(MD->getNumOperands() == 2 &&
674            "Unroll count hint metadata should have two operands.");
675     unsigned Count =
676         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
677     assert(Count >= 1 && "Unroll count must be positive.");
678     return Count;
679   }
680   return 0;
681 }
682 
683 // Computes the boosting factor for complete unrolling.
684 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
685 // be beneficial to fully unroll the loop even if unrolledcost is large. We
686 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
687 // the unroll threshold.
688 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
689                                             unsigned MaxPercentThresholdBoost) {
690   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
691     return 100;
692   else if (Cost.UnrolledCost != 0)
693     // The boosting factor is RolledDynamicCost / UnrolledCost
694     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
695                     MaxPercentThresholdBoost);
696   else
697     return MaxPercentThresholdBoost;
698 }
699 
700 // Returns loop size estimation for unrolled loop.
701 static uint64_t getUnrolledLoopSize(
702     unsigned LoopSize,
703     TargetTransformInfo::UnrollingPreferences &UP) {
704   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
705   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
706 }
707 
708 // Returns true if unroll count was set explicitly.
709 // Calculates unroll count and writes it to UP.Count.
710 static bool computeUnrollCount(
711     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
712     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
713     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
714     unsigned &TripMultiple, unsigned LoopSize,
715     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
716   // Check for explicit Count.
717   // 1st priority is unroll count set by "unroll-count" option.
718   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
719   if (UserUnrollCount) {
720     UP.Count = UnrollCount;
721     UP.AllowExpensiveTripCount = true;
722     UP.Force = true;
723     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
724       return true;
725   }
726 
727   // 2nd priority is unroll count set by pragma.
728   unsigned PragmaCount = UnrollCountPragmaValue(L);
729   if (PragmaCount > 0) {
730     UP.Count = PragmaCount;
731     UP.Runtime = true;
732     UP.AllowExpensiveTripCount = true;
733     UP.Force = true;
734     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
735         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
736       return true;
737   }
738   bool PragmaFullUnroll = HasUnrollFullPragma(L);
739   if (PragmaFullUnroll && TripCount != 0) {
740     UP.Count = TripCount;
741     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
742       return false;
743   }
744 
745   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
746   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
747                         PragmaEnableUnroll || UserUnrollCount;
748 
749   if (ExplicitUnroll && TripCount != 0) {
750     // If the loop has an unrolling pragma, we want to be more aggressive with
751     // unrolling limits. Set thresholds to at least the PragmaThreshold value
752     // which is larger than the default limits.
753     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
754     UP.PartialThreshold =
755         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
756   }
757 
758   // 3rd priority is full unroll count.
759   // Full unroll makes sense only when TripCount or its upper bound could be
760   // statically calculated.
761   // Also we need to check if we exceed FullUnrollMaxCount.
762   // If using the upper bound to unroll, TripMultiple should be set to 1 because
763   // we do not know when loop may exit.
764   // MaxTripCount and ExactTripCount cannot both be non zero since we only
765   // compute the former when the latter is zero.
766   unsigned ExactTripCount = TripCount;
767   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
768          "ExtractTripCound and MaxTripCount cannot both be non zero.");
769   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
770   UP.Count = FullUnrollTripCount;
771   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
772     // When computing the unrolled size, note that BEInsns are not replicated
773     // like the rest of the loop body.
774     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
775       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
776       TripCount = FullUnrollTripCount;
777       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
778       return ExplicitUnroll;
779     } else {
780       // The loop isn't that small, but we still can fully unroll it if that
781       // helps to remove a significant number of instructions.
782       // To check that, run additional analysis on the loop.
783       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
784               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
785               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
786         unsigned Boost =
787             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
788         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
789           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
790           TripCount = FullUnrollTripCount;
791           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
792           return ExplicitUnroll;
793         }
794       }
795     }
796   }
797 
798   // 4th priority is loop peeling
799   computePeelCount(L, LoopSize, UP, TripCount, SE);
800   if (UP.PeelCount) {
801     UP.Runtime = false;
802     UP.Count = 1;
803     return ExplicitUnroll;
804   }
805 
806   // 5th priority is partial unrolling.
807   // Try partial unroll only when TripCount could be staticaly calculated.
808   if (TripCount) {
809     UP.Partial |= ExplicitUnroll;
810     if (!UP.Partial) {
811       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
812                         << "-unroll-allow-partial not given\n");
813       UP.Count = 0;
814       return false;
815     }
816     if (UP.Count == 0)
817       UP.Count = TripCount;
818     if (UP.PartialThreshold != NoThreshold) {
819       // Reduce unroll count to be modulo of TripCount for partial unrolling.
820       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
821         UP.Count =
822             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
823             (LoopSize - UP.BEInsns);
824       if (UP.Count > UP.MaxCount)
825         UP.Count = UP.MaxCount;
826       while (UP.Count != 0 && TripCount % UP.Count != 0)
827         UP.Count--;
828       if (UP.AllowRemainder && UP.Count <= 1) {
829         // If there is no Count that is modulo of TripCount, set Count to
830         // largest power-of-two factor that satisfies the threshold limit.
831         // As we'll create fixup loop, do the type of unrolling only if
832         // remainder loop is allowed.
833         UP.Count = UP.DefaultUnrollRuntimeCount;
834         while (UP.Count != 0 &&
835                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
836           UP.Count >>= 1;
837       }
838       if (UP.Count < 2) {
839         if (PragmaEnableUnroll)
840           ORE->emit([&]() {
841             return OptimizationRemarkMissed(DEBUG_TYPE,
842                                             "UnrollAsDirectedTooLarge",
843                                             L->getStartLoc(), L->getHeader())
844                    << "Unable to unroll loop as directed by unroll(enable) "
845                       "pragma "
846                       "because unrolled size is too large.";
847           });
848         UP.Count = 0;
849       }
850     } else {
851       UP.Count = TripCount;
852     }
853     if (UP.Count > UP.MaxCount)
854       UP.Count = UP.MaxCount;
855     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
856         UP.Count != TripCount)
857       ORE->emit([&]() {
858         return OptimizationRemarkMissed(DEBUG_TYPE,
859                                         "FullUnrollAsDirectedTooLarge",
860                                         L->getStartLoc(), L->getHeader())
861                << "Unable to fully unroll loop as directed by unroll pragma "
862                   "because "
863                   "unrolled size is too large.";
864       });
865     return ExplicitUnroll;
866   }
867   assert(TripCount == 0 &&
868          "All cases when TripCount is constant should be covered here.");
869   if (PragmaFullUnroll)
870     ORE->emit([&]() {
871       return OptimizationRemarkMissed(
872                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
873                  L->getStartLoc(), L->getHeader())
874              << "Unable to fully unroll loop as directed by unroll(full) "
875                 "pragma "
876                 "because loop has a runtime trip count.";
877     });
878 
879   // 6th priority is runtime unrolling.
880   // Don't unroll a runtime trip count loop when it is disabled.
881   if (HasRuntimeUnrollDisablePragma(L)) {
882     UP.Count = 0;
883     return false;
884   }
885 
886   // Check if the runtime trip count is too small when profile is available.
887   if (L->getHeader()->getParent()->hasProfileData()) {
888     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
889       if (*ProfileTripCount < FlatLoopTripCountThreshold)
890         return false;
891       else
892         UP.AllowExpensiveTripCount = true;
893     }
894   }
895 
896   // Reduce count based on the type of unrolling and the threshold values.
897   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
898   if (!UP.Runtime) {
899     LLVM_DEBUG(
900         dbgs() << "  will not try to unroll loop with runtime trip count "
901                << "-unroll-runtime not given\n");
902     UP.Count = 0;
903     return false;
904   }
905   if (UP.Count == 0)
906     UP.Count = UP.DefaultUnrollRuntimeCount;
907 
908   // Reduce unroll count to be the largest power-of-two factor of
909   // the original count which satisfies the threshold limit.
910   while (UP.Count != 0 &&
911          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
912     UP.Count >>= 1;
913 
914 #ifndef NDEBUG
915   unsigned OrigCount = UP.Count;
916 #endif
917 
918   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
919     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
920       UP.Count >>= 1;
921     LLVM_DEBUG(
922         dbgs() << "Remainder loop is restricted (that could architecture "
923                   "specific or because the loop contains a convergent "
924                   "instruction), so unroll count must divide the trip "
925                   "multiple, "
926                << TripMultiple << ".  Reducing unroll count from " << OrigCount
927                << " to " << UP.Count << ".\n");
928 
929     using namespace ore;
930 
931     if (PragmaCount > 0 && !UP.AllowRemainder)
932       ORE->emit([&]() {
933         return OptimizationRemarkMissed(DEBUG_TYPE,
934                                         "DifferentUnrollCountFromDirected",
935                                         L->getStartLoc(), L->getHeader())
936                << "Unable to unroll loop the number of times directed by "
937                   "unroll_count pragma because remainder loop is restricted "
938                   "(that could architecture specific or because the loop "
939                   "contains a convergent instruction) and so must have an "
940                   "unroll "
941                   "count that divides the loop trip multiple of "
942                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
943                << NV("UnrollCount", UP.Count) << " time(s).";
944       });
945   }
946 
947   if (UP.Count > UP.MaxCount)
948     UP.Count = UP.MaxCount;
949   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
950                     << "\n");
951   if (UP.Count < 2)
952     UP.Count = 0;
953   return ExplicitUnroll;
954 }
955 
956 static LoopUnrollResult tryToUnrollLoop(
957     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
958     const TargetTransformInfo &TTI, AssumptionCache &AC,
959     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
960     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
961     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
962     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
963   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
964                     << L->getHeader()->getParent()->getName() << "] Loop %"
965                     << L->getHeader()->getName() << "\n");
966   if (HasUnrollDisablePragma(L))
967     return LoopUnrollResult::Unmodified;
968   if (!L->isLoopSimplifyForm()) {
969     LLVM_DEBUG(
970         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
971     return LoopUnrollResult::Unmodified;
972   }
973 
974   unsigned NumInlineCandidates;
975   bool NotDuplicatable;
976   bool Convergent;
977   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
978       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
979       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
980       ProvidedAllowPeeling);
981   // Exit early if unrolling is disabled.
982   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
983     return LoopUnrollResult::Unmodified;
984 
985   SmallPtrSet<const Value *, 32> EphValues;
986   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
987 
988   unsigned LoopSize =
989       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
990                           TTI, EphValues, UP.BEInsns);
991   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
992   if (NotDuplicatable) {
993     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
994                       << " instructions.\n");
995     return LoopUnrollResult::Unmodified;
996   }
997   if (NumInlineCandidates != 0) {
998     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
999     return LoopUnrollResult::Unmodified;
1000   }
1001 
1002   // Find trip count and trip multiple if count is not available
1003   unsigned TripCount = 0;
1004   unsigned MaxTripCount = 0;
1005   unsigned TripMultiple = 1;
1006   // If there are multiple exiting blocks but one of them is the latch, use the
1007   // latch for the trip count estimation. Otherwise insist on a single exiting
1008   // block for the trip count estimation.
1009   BasicBlock *ExitingBlock = L->getLoopLatch();
1010   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1011     ExitingBlock = L->getExitingBlock();
1012   if (ExitingBlock) {
1013     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1014     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1015   }
1016 
1017   // If the loop contains a convergent operation, the prelude we'd add
1018   // to do the first few instructions before we hit the unrolled loop
1019   // is unsafe -- it adds a control-flow dependency to the convergent
1020   // operation.  Therefore restrict remainder loop (try unrollig without).
1021   //
1022   // TODO: This is quite conservative.  In practice, convergent_op()
1023   // is likely to be called unconditionally in the loop.  In this
1024   // case, the program would be ill-formed (on most architectures)
1025   // unless n were the same on all threads in a thread group.
1026   // Assuming n is the same on all threads, any kind of unrolling is
1027   // safe.  But currently llvm's notion of convergence isn't powerful
1028   // enough to express this.
1029   if (Convergent)
1030     UP.AllowRemainder = false;
1031 
1032   // Try to find the trip count upper bound if we cannot find the exact trip
1033   // count.
1034   bool MaxOrZero = false;
1035   if (!TripCount) {
1036     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1037     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1038     // We can unroll by the upper bound amount if it's generally allowed or if
1039     // we know that the loop is executed either the upper bound or zero times.
1040     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1041     // loop tests remains the same compared to the non-unrolled version, whereas
1042     // the generic upper bound unrolling keeps all but the last loop test so the
1043     // number of loop tests goes up which may end up being worse on targets with
1044     // constriained branch predictor resources so is controlled by an option.)
1045     // In addition we only unroll small upper bounds.
1046     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1047       MaxTripCount = 0;
1048     }
1049   }
1050 
1051   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1052   // fully unroll the loop.
1053   bool UseUpperBound = false;
1054   bool IsCountSetExplicitly = computeUnrollCount(
1055       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1056       TripMultiple, LoopSize, UP, UseUpperBound);
1057   if (!UP.Count)
1058     return LoopUnrollResult::Unmodified;
1059   // Unroll factor (Count) must be less or equal to TripCount.
1060   if (TripCount && UP.Count > TripCount)
1061     UP.Count = TripCount;
1062 
1063   // Unroll the loop.
1064   LoopUnrollResult UnrollResult = UnrollLoop(
1065       L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1066       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1067       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA);
1068   if (UnrollResult == LoopUnrollResult::Unmodified)
1069     return LoopUnrollResult::Unmodified;
1070 
1071   // If loop has an unroll count pragma or unrolled by explicitly set count
1072   // mark loop as unrolled to prevent unrolling beyond that requested.
1073   // If the loop was peeled, we already "used up" the profile information
1074   // we had, so we don't want to unroll or peel again.
1075   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1076       (IsCountSetExplicitly || UP.PeelCount))
1077     L->setLoopAlreadyUnrolled();
1078 
1079   return UnrollResult;
1080 }
1081 
1082 namespace {
1083 
1084 class LoopUnroll : public LoopPass {
1085 public:
1086   static char ID; // Pass ID, replacement for typeid
1087 
1088   int OptLevel;
1089   Optional<unsigned> ProvidedCount;
1090   Optional<unsigned> ProvidedThreshold;
1091   Optional<bool> ProvidedAllowPartial;
1092   Optional<bool> ProvidedRuntime;
1093   Optional<bool> ProvidedUpperBound;
1094   Optional<bool> ProvidedAllowPeeling;
1095 
1096   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1097              Optional<unsigned> Count = None,
1098              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1099              Optional<bool> UpperBound = None,
1100              Optional<bool> AllowPeeling = None)
1101       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1102         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1103         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1104         ProvidedAllowPeeling(AllowPeeling) {
1105     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1106   }
1107 
1108   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1109     if (skipLoop(L))
1110       return false;
1111 
1112     Function &F = *L->getHeader()->getParent();
1113 
1114     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1115     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1116     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1117     const TargetTransformInfo &TTI =
1118         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1119     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1120     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1121     // pass.  Function analyses need to be preserved across loop transformations
1122     // but ORE cannot be preserved (see comment before the pass definition).
1123     OptimizationRemarkEmitter ORE(&F);
1124     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1125 
1126     LoopUnrollResult Result = tryToUnrollLoop(
1127         L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount,
1128         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1129         ProvidedUpperBound, ProvidedAllowPeeling);
1130 
1131     if (Result == LoopUnrollResult::FullyUnrolled)
1132       LPM.markLoopAsDeleted(*L);
1133 
1134     return Result != LoopUnrollResult::Unmodified;
1135   }
1136 
1137   /// This transformation requires natural loop information & requires that
1138   /// loop preheaders be inserted into the CFG...
1139   void getAnalysisUsage(AnalysisUsage &AU) const override {
1140     AU.addRequired<AssumptionCacheTracker>();
1141     AU.addRequired<TargetTransformInfoWrapperPass>();
1142     // FIXME: Loop passes are required to preserve domtree, and for now we just
1143     // recreate dom info if anything gets unrolled.
1144     getLoopAnalysisUsage(AU);
1145   }
1146 };
1147 
1148 } // end anonymous namespace
1149 
1150 char LoopUnroll::ID = 0;
1151 
1152 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1153 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1154 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1155 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1156 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1157 
1158 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1159                                  int AllowPartial, int Runtime, int UpperBound,
1160                                  int AllowPeeling) {
1161   // TODO: It would make more sense for this function to take the optionals
1162   // directly, but that's dangerous since it would silently break out of tree
1163   // callers.
1164   return new LoopUnroll(
1165       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1166       Count == -1 ? None : Optional<unsigned>(Count),
1167       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1168       Runtime == -1 ? None : Optional<bool>(Runtime),
1169       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1170       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1171 }
1172 
1173 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1174   return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1175 }
1176 
1177 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1178                                           LoopStandardAnalysisResults &AR,
1179                                           LPMUpdater &Updater) {
1180   const auto &FAM =
1181       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1182   Function *F = L.getHeader()->getParent();
1183 
1184   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1185   // FIXME: This should probably be optional rather than required.
1186   if (!ORE)
1187     report_fatal_error(
1188         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1189         "cached at a higher level");
1190 
1191   // Keep track of the previous loop structure so we can identify new loops
1192   // created by unrolling.
1193   Loop *ParentL = L.getParentLoop();
1194   SmallPtrSet<Loop *, 4> OldLoops;
1195   if (ParentL)
1196     OldLoops.insert(ParentL->begin(), ParentL->end());
1197   else
1198     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1199 
1200   std::string LoopName = L.getName();
1201 
1202   bool Changed =
1203       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1204                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1205                       /*Threshold*/ None, /*AllowPartial*/ false,
1206                       /*Runtime*/ false, /*UpperBound*/ false,
1207                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1208   if (!Changed)
1209     return PreservedAnalyses::all();
1210 
1211   // The parent must not be damaged by unrolling!
1212 #ifndef NDEBUG
1213   if (ParentL)
1214     ParentL->verifyLoop();
1215 #endif
1216 
1217   // Unrolling can do several things to introduce new loops into a loop nest:
1218   // - Full unrolling clones child loops within the current loop but then
1219   //   removes the current loop making all of the children appear to be new
1220   //   sibling loops.
1221   //
1222   // When a new loop appears as a sibling loop after fully unrolling,
1223   // its nesting structure has fundamentally changed and we want to revisit
1224   // it to reflect that.
1225   //
1226   // When unrolling has removed the current loop, we need to tell the
1227   // infrastructure that it is gone.
1228   //
1229   // Finally, we support a debugging/testing mode where we revisit child loops
1230   // as well. These are not expected to require further optimizations as either
1231   // they or the loop they were cloned from have been directly visited already.
1232   // But the debugging mode allows us to check this assumption.
1233   bool IsCurrentLoopValid = false;
1234   SmallVector<Loop *, 4> SibLoops;
1235   if (ParentL)
1236     SibLoops.append(ParentL->begin(), ParentL->end());
1237   else
1238     SibLoops.append(AR.LI.begin(), AR.LI.end());
1239   erase_if(SibLoops, [&](Loop *SibLoop) {
1240     if (SibLoop == &L) {
1241       IsCurrentLoopValid = true;
1242       return true;
1243     }
1244 
1245     // Otherwise erase the loop from the list if it was in the old loops.
1246     return OldLoops.count(SibLoop) != 0;
1247   });
1248   Updater.addSiblingLoops(SibLoops);
1249 
1250   if (!IsCurrentLoopValid) {
1251     Updater.markLoopAsDeleted(L, LoopName);
1252   } else {
1253     // We can only walk child loops if the current loop remained valid.
1254     if (UnrollRevisitChildLoops) {
1255       // Walk *all* of the child loops.
1256       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1257       Updater.addChildLoops(ChildLoops);
1258     }
1259   }
1260 
1261   return getLoopPassPreservedAnalyses();
1262 }
1263 
1264 template <typename RangeT>
1265 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1266   SmallVector<Loop *, 8> Worklist;
1267   // We use an internal worklist to build up the preorder traversal without
1268   // recursion.
1269   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1270 
1271   for (Loop *RootL : Loops) {
1272     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1273     assert(PreOrderWorklist.empty() &&
1274            "Must start with an empty preorder walk worklist.");
1275     PreOrderWorklist.push_back(RootL);
1276     do {
1277       Loop *L = PreOrderWorklist.pop_back_val();
1278       PreOrderWorklist.append(L->begin(), L->end());
1279       PreOrderLoops.push_back(L);
1280     } while (!PreOrderWorklist.empty());
1281 
1282     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1283     PreOrderLoops.clear();
1284   }
1285   return Worklist;
1286 }
1287 
1288 PreservedAnalyses LoopUnrollPass::run(Function &F,
1289                                       FunctionAnalysisManager &AM) {
1290   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1291   auto &LI = AM.getResult<LoopAnalysis>(F);
1292   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1293   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1294   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1295   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1296 
1297   LoopAnalysisManager *LAM = nullptr;
1298   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1299     LAM = &LAMProxy->getManager();
1300 
1301   const ModuleAnalysisManager &MAM =
1302       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1303   ProfileSummaryInfo *PSI =
1304       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1305 
1306   bool Changed = false;
1307 
1308   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1309   // Since simplification may add new inner loops, it has to run before the
1310   // legality and profitability checks. This means running the loop unroller
1311   // will simplify all loops, regardless of whether anything end up being
1312   // unrolled.
1313   for (auto &L : LI) {
1314     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1315     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1316   }
1317 
1318   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1319 
1320   while (!Worklist.empty()) {
1321     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1322     // from back to front so that we work forward across the CFG, which
1323     // for unrolling is only needed to get optimization remarks emitted in
1324     // a forward order.
1325     Loop &L = *Worklist.pop_back_val();
1326 #ifndef NDEBUG
1327     Loop *ParentL = L.getParentLoop();
1328 #endif
1329 
1330     // The API here is quite complex to call, but there are only two interesting
1331     // states we support: partial and full (or "simple") unrolling. However, to
1332     // enable these things we actually pass "None" in for the optional to avoid
1333     // providing an explicit choice.
1334     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1335         AllowPeeling;
1336     // Check if the profile summary indicates that the profiled application
1337     // has a huge working set size, in which case we disable peeling to avoid
1338     // bloating it further.
1339     if (PSI && PSI->hasHugeWorkingSetSize())
1340       AllowPeeling = false;
1341     std::string LoopName = L.getName();
1342     LoopUnrollResult Result =
1343         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1344                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1345                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1346                         UpperBoundParam, AllowPeeling);
1347     Changed |= Result != LoopUnrollResult::Unmodified;
1348 
1349     // The parent must not be damaged by unrolling!
1350 #ifndef NDEBUG
1351     if (Result != LoopUnrollResult::Unmodified && ParentL)
1352       ParentL->verifyLoop();
1353 #endif
1354 
1355     // Clear any cached analysis results for L if we removed it completely.
1356     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1357       LAM->clear(L, LoopName);
1358   }
1359 
1360   if (!Changed)
1361     return PreservedAnalyses::all();
1362 
1363   return getLoopPassPreservedAnalyses();
1364 }
1365