1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopPassManager.h" 23 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 #include "llvm/Transforms/Utils/UnrollLoop.h" 38 #include <climits> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 static cl::opt<unsigned> 46 UnrollThreshold("unroll-threshold", cl::Hidden, 47 cl::desc("The baseline cost threshold for loop unrolling")); 48 49 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 50 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 51 cl::desc("The percentage of estimated dynamic cost which must be saved by " 52 "unrolling to allow unrolling up to the max threshold.")); 53 54 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 55 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 56 cl::desc("This is the amount discounted from the total unroll cost when " 57 "the unrolled form has a high dynamic cost savings (triggered by " 58 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 59 60 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 61 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 62 cl::desc("Don't allow loop unrolling to simulate more than this number of" 63 "iterations when checking full unroll profitability")); 64 65 static cl::opt<unsigned> UnrollCount( 66 "unroll-count", cl::Hidden, 67 cl::desc("Use this unroll count for all loops including those with " 68 "unroll_count pragma values, for testing purposes")); 69 70 static cl::opt<unsigned> UnrollMaxCount( 71 "unroll-max-count", cl::Hidden, 72 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 73 "testing purposes")); 74 75 static cl::opt<unsigned> UnrollFullMaxCount( 76 "unroll-full-max-count", cl::Hidden, 77 cl::desc( 78 "Set the max unroll count for full unrolling, for testing purposes")); 79 80 static cl::opt<bool> 81 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 82 cl::desc("Allows loops to be partially unrolled until " 83 "-unroll-threshold loop size is reached.")); 84 85 static cl::opt<bool> UnrollAllowRemainder( 86 "unroll-allow-remainder", cl::Hidden, 87 cl::desc("Allow generation of a loop remainder (extra iterations) " 88 "when unrolling a loop.")); 89 90 static cl::opt<bool> 91 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 92 cl::desc("Unroll loops with run-time trip counts")); 93 94 static cl::opt<unsigned> UnrollMaxUpperBound( 95 "unroll-max-upperbound", cl::init(8), cl::Hidden, 96 cl::desc( 97 "The max of trip count upper bound that is considered in unrolling")); 98 99 static cl::opt<unsigned> PragmaUnrollThreshold( 100 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 101 cl::desc("Unrolled size limit for loops with an unroll(full) or " 102 "unroll_count pragma.")); 103 104 static cl::opt<unsigned> FlatLoopTripCountThreshold( 105 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 106 cl::desc("If the runtime tripcount for the loop is lower than the " 107 "threshold, the loop is considered as flat and will be less " 108 "aggressively unrolled.")); 109 110 static cl::opt<bool> 111 UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden, 112 cl::desc("Allows loops to be peeled when the dynamic " 113 "trip count is known to be low.")); 114 115 /// A magic value for use with the Threshold parameter to indicate 116 /// that the loop unroll should be performed regardless of how much 117 /// code expansion would result. 118 static const unsigned NoThreshold = UINT_MAX; 119 120 /// Gather the various unrolling parameters based on the defaults, compiler 121 /// flags, TTI overrides and user specified parameters. 122 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 123 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 124 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 125 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 126 TargetTransformInfo::UnrollingPreferences UP; 127 128 // Set up the defaults 129 UP.Threshold = 150; 130 UP.PercentDynamicCostSavedThreshold = 50; 131 UP.DynamicCostSavingsDiscount = 100; 132 UP.OptSizeThreshold = 0; 133 UP.PartialThreshold = UP.Threshold; 134 UP.PartialOptSizeThreshold = 0; 135 UP.Count = 0; 136 UP.PeelCount = 0; 137 UP.DefaultUnrollRuntimeCount = 8; 138 UP.MaxCount = UINT_MAX; 139 UP.FullUnrollMaxCount = UINT_MAX; 140 UP.BEInsns = 2; 141 UP.Partial = false; 142 UP.Runtime = false; 143 UP.AllowRemainder = true; 144 UP.AllowExpensiveTripCount = false; 145 UP.Force = false; 146 UP.UpperBound = false; 147 UP.AllowPeeling = false; 148 149 // Override with any target specific settings 150 TTI.getUnrollingPreferences(L, UP); 151 152 // Apply size attributes 153 if (L->getHeader()->getParent()->optForSize()) { 154 UP.Threshold = UP.OptSizeThreshold; 155 UP.PartialThreshold = UP.PartialOptSizeThreshold; 156 } 157 158 // Apply any user values specified by cl::opt 159 if (UnrollThreshold.getNumOccurrences() > 0) { 160 UP.Threshold = UnrollThreshold; 161 UP.PartialThreshold = UnrollThreshold; 162 } 163 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 164 UP.PercentDynamicCostSavedThreshold = 165 UnrollPercentDynamicCostSavedThreshold; 166 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 167 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 168 if (UnrollMaxCount.getNumOccurrences() > 0) 169 UP.MaxCount = UnrollMaxCount; 170 if (UnrollFullMaxCount.getNumOccurrences() > 0) 171 UP.FullUnrollMaxCount = UnrollFullMaxCount; 172 if (UnrollAllowPartial.getNumOccurrences() > 0) 173 UP.Partial = UnrollAllowPartial; 174 if (UnrollAllowRemainder.getNumOccurrences() > 0) 175 UP.AllowRemainder = UnrollAllowRemainder; 176 if (UnrollRuntime.getNumOccurrences() > 0) 177 UP.Runtime = UnrollRuntime; 178 if (UnrollMaxUpperBound == 0) 179 UP.UpperBound = false; 180 if (UnrollAllowPeeling.getNumOccurrences() > 0) 181 UP.AllowPeeling = UnrollAllowPeeling; 182 183 // Apply user values provided by argument 184 if (UserThreshold.hasValue()) { 185 UP.Threshold = *UserThreshold; 186 UP.PartialThreshold = *UserThreshold; 187 } 188 if (UserCount.hasValue()) 189 UP.Count = *UserCount; 190 if (UserAllowPartial.hasValue()) 191 UP.Partial = *UserAllowPartial; 192 if (UserRuntime.hasValue()) 193 UP.Runtime = *UserRuntime; 194 if (UserUpperBound.hasValue()) 195 UP.UpperBound = *UserUpperBound; 196 197 return UP; 198 } 199 200 namespace { 201 /// A struct to densely store the state of an instruction after unrolling at 202 /// each iteration. 203 /// 204 /// This is designed to work like a tuple of <Instruction *, int> for the 205 /// purposes of hashing and lookup, but to be able to associate two boolean 206 /// states with each key. 207 struct UnrolledInstState { 208 Instruction *I; 209 int Iteration : 30; 210 unsigned IsFree : 1; 211 unsigned IsCounted : 1; 212 }; 213 214 /// Hashing and equality testing for a set of the instruction states. 215 struct UnrolledInstStateKeyInfo { 216 typedef DenseMapInfo<Instruction *> PtrInfo; 217 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 218 static inline UnrolledInstState getEmptyKey() { 219 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 220 } 221 static inline UnrolledInstState getTombstoneKey() { 222 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 223 } 224 static inline unsigned getHashValue(const UnrolledInstState &S) { 225 return PairInfo::getHashValue({S.I, S.Iteration}); 226 } 227 static inline bool isEqual(const UnrolledInstState &LHS, 228 const UnrolledInstState &RHS) { 229 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 230 } 231 }; 232 } 233 234 namespace { 235 struct EstimatedUnrollCost { 236 /// \brief The estimated cost after unrolling. 237 unsigned UnrolledCost; 238 239 /// \brief The estimated dynamic cost of executing the instructions in the 240 /// rolled form. 241 unsigned RolledDynamicCost; 242 }; 243 } 244 245 /// \brief Figure out if the loop is worth full unrolling. 246 /// 247 /// Complete loop unrolling can make some loads constant, and we need to know 248 /// if that would expose any further optimization opportunities. This routine 249 /// estimates this optimization. It computes cost of unrolled loop 250 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 251 /// dynamic cost we mean that we won't count costs of blocks that are known not 252 /// to be executed (i.e. if we have a branch in the loop and we know that at the 253 /// given iteration its condition would be resolved to true, we won't add up the 254 /// cost of the 'false'-block). 255 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 256 /// the analysis failed (no benefits expected from the unrolling, or the loop is 257 /// too big to analyze), the returned value is None. 258 static Optional<EstimatedUnrollCost> 259 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 260 ScalarEvolution &SE, const TargetTransformInfo &TTI, 261 unsigned MaxUnrolledLoopSize) { 262 // We want to be able to scale offsets by the trip count and add more offsets 263 // to them without checking for overflows, and we already don't want to 264 // analyze *massive* trip counts, so we force the max to be reasonably small. 265 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 266 "The unroll iterations max is too large!"); 267 268 // Only analyze inner loops. We can't properly estimate cost of nested loops 269 // and we won't visit inner loops again anyway. 270 if (!L->empty()) 271 return None; 272 273 // Don't simulate loops with a big or unknown tripcount 274 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 275 TripCount > UnrollMaxIterationsCountToAnalyze) 276 return None; 277 278 SmallSetVector<BasicBlock *, 16> BBWorklist; 279 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 280 DenseMap<Value *, Constant *> SimplifiedValues; 281 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 282 283 // The estimated cost of the unrolled form of the loop. We try to estimate 284 // this by simplifying as much as we can while computing the estimate. 285 unsigned UnrolledCost = 0; 286 287 // We also track the estimated dynamic (that is, actually executed) cost in 288 // the rolled form. This helps identify cases when the savings from unrolling 289 // aren't just exposing dead control flows, but actual reduced dynamic 290 // instructions due to the simplifications which we expect to occur after 291 // unrolling. 292 unsigned RolledDynamicCost = 0; 293 294 // We track the simplification of each instruction in each iteration. We use 295 // this to recursively merge costs into the unrolled cost on-demand so that 296 // we don't count the cost of any dead code. This is essentially a map from 297 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 298 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 299 300 // A small worklist used to accumulate cost of instructions from each 301 // observable and reached root in the loop. 302 SmallVector<Instruction *, 16> CostWorklist; 303 304 // PHI-used worklist used between iterations while accumulating cost. 305 SmallVector<Instruction *, 4> PHIUsedList; 306 307 // Helper function to accumulate cost for instructions in the loop. 308 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 309 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 310 assert(CostWorklist.empty() && "Must start with an empty cost list"); 311 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 312 CostWorklist.push_back(&RootI); 313 for (;; --Iteration) { 314 do { 315 Instruction *I = CostWorklist.pop_back_val(); 316 317 // InstCostMap only uses I and Iteration as a key, the other two values 318 // don't matter here. 319 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 320 if (CostIter == InstCostMap.end()) 321 // If an input to a PHI node comes from a dead path through the loop 322 // we may have no cost data for it here. What that actually means is 323 // that it is free. 324 continue; 325 auto &Cost = *CostIter; 326 if (Cost.IsCounted) 327 // Already counted this instruction. 328 continue; 329 330 // Mark that we are counting the cost of this instruction now. 331 Cost.IsCounted = true; 332 333 // If this is a PHI node in the loop header, just add it to the PHI set. 334 if (auto *PhiI = dyn_cast<PHINode>(I)) 335 if (PhiI->getParent() == L->getHeader()) { 336 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 337 "inherently simplify during unrolling."); 338 if (Iteration == 0) 339 continue; 340 341 // Push the incoming value from the backedge into the PHI used list 342 // if it is an in-loop instruction. We'll use this to populate the 343 // cost worklist for the next iteration (as we count backwards). 344 if (auto *OpI = dyn_cast<Instruction>( 345 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 346 if (L->contains(OpI)) 347 PHIUsedList.push_back(OpI); 348 continue; 349 } 350 351 // First accumulate the cost of this instruction. 352 if (!Cost.IsFree) { 353 UnrolledCost += TTI.getUserCost(I); 354 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 355 << "): "); 356 DEBUG(I->dump()); 357 } 358 359 // We must count the cost of every operand which is not free, 360 // recursively. If we reach a loop PHI node, simply add it to the set 361 // to be considered on the next iteration (backwards!). 362 for (Value *Op : I->operands()) { 363 // Check whether this operand is free due to being a constant or 364 // outside the loop. 365 auto *OpI = dyn_cast<Instruction>(Op); 366 if (!OpI || !L->contains(OpI)) 367 continue; 368 369 // Otherwise accumulate its cost. 370 CostWorklist.push_back(OpI); 371 } 372 } while (!CostWorklist.empty()); 373 374 if (PHIUsedList.empty()) 375 // We've exhausted the search. 376 break; 377 378 assert(Iteration > 0 && 379 "Cannot track PHI-used values past the first iteration!"); 380 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 381 PHIUsedList.clear(); 382 } 383 }; 384 385 // Ensure that we don't violate the loop structure invariants relied on by 386 // this analysis. 387 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 388 assert(L->isLCSSAForm(DT) && 389 "Must have loops in LCSSA form to track live-out values."); 390 391 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 392 393 // Simulate execution of each iteration of the loop counting instructions, 394 // which would be simplified. 395 // Since the same load will take different values on different iterations, 396 // we literally have to go through all loop's iterations. 397 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 398 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 399 400 // Prepare for the iteration by collecting any simplified entry or backedge 401 // inputs. 402 for (Instruction &I : *L->getHeader()) { 403 auto *PHI = dyn_cast<PHINode>(&I); 404 if (!PHI) 405 break; 406 407 // The loop header PHI nodes must have exactly two input: one from the 408 // loop preheader and one from the loop latch. 409 assert( 410 PHI->getNumIncomingValues() == 2 && 411 "Must have an incoming value only for the preheader and the latch."); 412 413 Value *V = PHI->getIncomingValueForBlock( 414 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 415 Constant *C = dyn_cast<Constant>(V); 416 if (Iteration != 0 && !C) 417 C = SimplifiedValues.lookup(V); 418 if (C) 419 SimplifiedInputValues.push_back({PHI, C}); 420 } 421 422 // Now clear and re-populate the map for the next iteration. 423 SimplifiedValues.clear(); 424 while (!SimplifiedInputValues.empty()) 425 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 426 427 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 428 429 BBWorklist.clear(); 430 BBWorklist.insert(L->getHeader()); 431 // Note that we *must not* cache the size, this loop grows the worklist. 432 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 433 BasicBlock *BB = BBWorklist[Idx]; 434 435 // Visit all instructions in the given basic block and try to simplify 436 // it. We don't change the actual IR, just count optimization 437 // opportunities. 438 for (Instruction &I : *BB) { 439 if (isa<DbgInfoIntrinsic>(I)) 440 continue; 441 442 // Track this instruction's expected baseline cost when executing the 443 // rolled loop form. 444 RolledDynamicCost += TTI.getUserCost(&I); 445 446 // Visit the instruction to analyze its loop cost after unrolling, 447 // and if the visitor returns true, mark the instruction as free after 448 // unrolling and continue. 449 bool IsFree = Analyzer.visit(I); 450 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 451 (unsigned)IsFree, 452 /*IsCounted*/ false}).second; 453 (void)Inserted; 454 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 455 456 if (IsFree) 457 continue; 458 459 // Can't properly model a cost of a call. 460 // FIXME: With a proper cost model we should be able to do it. 461 if(isa<CallInst>(&I)) 462 return None; 463 464 // If the instruction might have a side-effect recursively account for 465 // the cost of it and all the instructions leading up to it. 466 if (I.mayHaveSideEffects()) 467 AddCostRecursively(I, Iteration); 468 469 // If unrolled body turns out to be too big, bail out. 470 if (UnrolledCost > MaxUnrolledLoopSize) { 471 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 472 << " UnrolledCost: " << UnrolledCost 473 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 474 << "\n"); 475 return None; 476 } 477 } 478 479 TerminatorInst *TI = BB->getTerminator(); 480 481 // Add in the live successors by first checking whether we have terminator 482 // that may be simplified based on the values simplified by this call. 483 BasicBlock *KnownSucc = nullptr; 484 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 485 if (BI->isConditional()) { 486 if (Constant *SimpleCond = 487 SimplifiedValues.lookup(BI->getCondition())) { 488 // Just take the first successor if condition is undef 489 if (isa<UndefValue>(SimpleCond)) 490 KnownSucc = BI->getSuccessor(0); 491 else if (ConstantInt *SimpleCondVal = 492 dyn_cast<ConstantInt>(SimpleCond)) 493 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 494 } 495 } 496 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 497 if (Constant *SimpleCond = 498 SimplifiedValues.lookup(SI->getCondition())) { 499 // Just take the first successor if condition is undef 500 if (isa<UndefValue>(SimpleCond)) 501 KnownSucc = SI->getSuccessor(0); 502 else if (ConstantInt *SimpleCondVal = 503 dyn_cast<ConstantInt>(SimpleCond)) 504 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 505 } 506 } 507 if (KnownSucc) { 508 if (L->contains(KnownSucc)) 509 BBWorklist.insert(KnownSucc); 510 else 511 ExitWorklist.insert({BB, KnownSucc}); 512 continue; 513 } 514 515 // Add BB's successors to the worklist. 516 for (BasicBlock *Succ : successors(BB)) 517 if (L->contains(Succ)) 518 BBWorklist.insert(Succ); 519 else 520 ExitWorklist.insert({BB, Succ}); 521 AddCostRecursively(*TI, Iteration); 522 } 523 524 // If we found no optimization opportunities on the first iteration, we 525 // won't find them on later ones too. 526 if (UnrolledCost == RolledDynamicCost) { 527 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 528 << " UnrolledCost: " << UnrolledCost << "\n"); 529 return None; 530 } 531 } 532 533 while (!ExitWorklist.empty()) { 534 BasicBlock *ExitingBB, *ExitBB; 535 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 536 537 for (Instruction &I : *ExitBB) { 538 auto *PN = dyn_cast<PHINode>(&I); 539 if (!PN) 540 break; 541 542 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 543 if (auto *OpI = dyn_cast<Instruction>(Op)) 544 if (L->contains(OpI)) 545 AddCostRecursively(*OpI, TripCount - 1); 546 } 547 } 548 549 DEBUG(dbgs() << "Analysis finished:\n" 550 << "UnrolledCost: " << UnrolledCost << ", " 551 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 552 return {{UnrolledCost, RolledDynamicCost}}; 553 } 554 555 /// ApproximateLoopSize - Approximate the size of the loop. 556 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 557 bool &NotDuplicatable, bool &Convergent, 558 const TargetTransformInfo &TTI, 559 AssumptionCache *AC, unsigned BEInsns) { 560 SmallPtrSet<const Value *, 32> EphValues; 561 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 562 563 CodeMetrics Metrics; 564 for (BasicBlock *BB : L->blocks()) 565 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 566 NumCalls = Metrics.NumInlineCandidates; 567 NotDuplicatable = Metrics.notDuplicatable; 568 Convergent = Metrics.convergent; 569 570 unsigned LoopSize = Metrics.NumInsts; 571 572 // Don't allow an estimate of size zero. This would allows unrolling of loops 573 // with huge iteration counts, which is a compile time problem even if it's 574 // not a problem for code quality. Also, the code using this size may assume 575 // that each loop has at least three instructions (likely a conditional 576 // branch, a comparison feeding that branch, and some kind of loop increment 577 // feeding that comparison instruction). 578 LoopSize = std::max(LoopSize, BEInsns + 1); 579 580 return LoopSize; 581 } 582 583 // Returns the loop hint metadata node with the given name (for example, 584 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 585 // returned. 586 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 587 if (MDNode *LoopID = L->getLoopID()) 588 return GetUnrollMetadata(LoopID, Name); 589 return nullptr; 590 } 591 592 // Returns true if the loop has an unroll(full) pragma. 593 static bool HasUnrollFullPragma(const Loop *L) { 594 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 595 } 596 597 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 598 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 599 static bool HasUnrollEnablePragma(const Loop *L) { 600 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 601 } 602 603 // Returns true if the loop has an unroll(disable) pragma. 604 static bool HasUnrollDisablePragma(const Loop *L) { 605 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 606 } 607 608 // Returns true if the loop has an runtime unroll(disable) pragma. 609 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 610 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 611 } 612 613 // If loop has an unroll_count pragma return the (necessarily 614 // positive) value from the pragma. Otherwise return 0. 615 static unsigned UnrollCountPragmaValue(const Loop *L) { 616 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 617 if (MD) { 618 assert(MD->getNumOperands() == 2 && 619 "Unroll count hint metadata should have two operands."); 620 unsigned Count = 621 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 622 assert(Count >= 1 && "Unroll count must be positive."); 623 return Count; 624 } 625 return 0; 626 } 627 628 // Remove existing unroll metadata and add unroll disable metadata to 629 // indicate the loop has already been unrolled. This prevents a loop 630 // from being unrolled more than is directed by a pragma if the loop 631 // unrolling pass is run more than once (which it generally is). 632 static void SetLoopAlreadyUnrolled(Loop *L) { 633 MDNode *LoopID = L->getLoopID(); 634 // First remove any existing loop unrolling metadata. 635 SmallVector<Metadata *, 4> MDs; 636 // Reserve first location for self reference to the LoopID metadata node. 637 MDs.push_back(nullptr); 638 639 if (LoopID) { 640 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 641 bool IsUnrollMetadata = false; 642 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 643 if (MD) { 644 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 645 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 646 } 647 if (!IsUnrollMetadata) 648 MDs.push_back(LoopID->getOperand(i)); 649 } 650 } 651 652 // Add unroll(disable) metadata to disable future unrolling. 653 LLVMContext &Context = L->getHeader()->getContext(); 654 SmallVector<Metadata *, 1> DisableOperands; 655 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 656 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 657 MDs.push_back(DisableNode); 658 659 MDNode *NewLoopID = MDNode::get(Context, MDs); 660 // Set operand 0 to refer to the loop id itself. 661 NewLoopID->replaceOperandWith(0, NewLoopID); 662 L->setLoopID(NewLoopID); 663 } 664 665 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 666 unsigned PercentDynamicCostSavedThreshold, 667 unsigned DynamicCostSavingsDiscount, 668 uint64_t UnrolledCost, 669 uint64_t RolledDynamicCost) { 670 if (Threshold == NoThreshold) { 671 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 672 return true; 673 } 674 675 if (UnrolledCost <= Threshold) { 676 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 677 << UnrolledCost << "<=" << Threshold << "\n"); 678 return true; 679 } 680 681 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 682 assert(RolledDynamicCost >= UnrolledCost && 683 "Cannot have a higher unrolled cost than a rolled cost!"); 684 685 // Compute the percentage of the dynamic cost in the rolled form that is 686 // saved when unrolled. If unrolling dramatically reduces the estimated 687 // dynamic cost of the loop, we use a higher threshold to allow more 688 // unrolling. 689 unsigned PercentDynamicCostSaved = 690 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 691 692 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 693 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 694 (int64_t)Threshold) { 695 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 696 "expected dynamic cost by " 697 << PercentDynamicCostSaved << "% (threshold: " 698 << PercentDynamicCostSavedThreshold << "%)\n" 699 << " and the unrolled cost (" << UnrolledCost 700 << ") is less than the max threshold (" 701 << DynamicCostSavingsDiscount << ").\n"); 702 return true; 703 } 704 705 DEBUG(dbgs() << " Too large to fully unroll:\n"); 706 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 707 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 708 DEBUG(dbgs() << " Percent cost saved threshold: " 709 << PercentDynamicCostSavedThreshold << "%\n"); 710 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 711 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 712 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 713 << "\n"); 714 return false; 715 } 716 717 // Returns loop size estimation for unrolled loop. 718 static uint64_t getUnrolledLoopSize( 719 unsigned LoopSize, 720 TargetTransformInfo::UnrollingPreferences &UP) { 721 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 722 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 723 } 724 725 // Returns true if unroll count was set explicitly. 726 // Calculates unroll count and writes it to UP.Count. 727 static bool computeUnrollCount( 728 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 729 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 730 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 731 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 732 // Check for explicit Count. 733 // 1st priority is unroll count set by "unroll-count" option. 734 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 735 if (UserUnrollCount) { 736 UP.Count = UnrollCount; 737 UP.AllowExpensiveTripCount = true; 738 UP.Force = true; 739 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 740 return true; 741 } 742 743 // 2nd priority is unroll count set by pragma. 744 unsigned PragmaCount = UnrollCountPragmaValue(L); 745 if (PragmaCount > 0) { 746 UP.Count = PragmaCount; 747 UP.Runtime = true; 748 UP.AllowExpensiveTripCount = true; 749 UP.Force = true; 750 if (UP.AllowRemainder && 751 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 752 return true; 753 } 754 bool PragmaFullUnroll = HasUnrollFullPragma(L); 755 if (PragmaFullUnroll && TripCount != 0) { 756 UP.Count = TripCount; 757 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 758 return false; 759 } 760 761 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 762 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 763 PragmaEnableUnroll || UserUnrollCount; 764 765 if (ExplicitUnroll && TripCount != 0) { 766 // If the loop has an unrolling pragma, we want to be more aggressive with 767 // unrolling limits. Set thresholds to at least the PragmaThreshold value 768 // which is larger than the default limits. 769 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 770 UP.PartialThreshold = 771 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 772 } 773 774 // 3rd priority is full unroll count. 775 // Full unroll makes sense only when TripCount or its upper bound could be 776 // statically calculated. 777 // Also we need to check if we exceed FullUnrollMaxCount. 778 // If using the upper bound to unroll, TripMultiple should be set to 1 because 779 // we do not know when loop may exit. 780 // MaxTripCount and ExactTripCount cannot both be non zero since we only 781 // compute the former when the latter is zero. 782 unsigned ExactTripCount = TripCount; 783 assert((ExactTripCount == 0 || MaxTripCount == 0) && 784 "ExtractTripCound and MaxTripCount cannot both be non zero."); 785 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 786 UP.Count = FullUnrollTripCount; 787 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 788 // When computing the unrolled size, note that BEInsns are not replicated 789 // like the rest of the loop body. 790 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 791 getUnrolledLoopSize(LoopSize, UP), 792 getUnrolledLoopSize(LoopSize, UP))) { 793 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 794 TripCount = FullUnrollTripCount; 795 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 796 return ExplicitUnroll; 797 } else { 798 // The loop isn't that small, but we still can fully unroll it if that 799 // helps to remove a significant number of instructions. 800 // To check that, run additional analysis on the loop. 801 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 802 L, FullUnrollTripCount, DT, *SE, TTI, 803 UP.Threshold + UP.DynamicCostSavingsDiscount)) 804 if (canUnrollCompletely(L, UP.Threshold, 805 UP.PercentDynamicCostSavedThreshold, 806 UP.DynamicCostSavingsDiscount, 807 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 808 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 809 TripCount = FullUnrollTripCount; 810 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 811 return ExplicitUnroll; 812 } 813 } 814 } 815 816 // 4rd priority is partial unrolling. 817 // Try partial unroll only when TripCount could be staticaly calculated. 818 if (TripCount) { 819 UP.Partial |= ExplicitUnroll; 820 if (!UP.Partial) { 821 DEBUG(dbgs() << " will not try to unroll partially because " 822 << "-unroll-allow-partial not given\n"); 823 UP.Count = 0; 824 return false; 825 } 826 if (UP.Count == 0) 827 UP.Count = TripCount; 828 if (UP.PartialThreshold != NoThreshold) { 829 // Reduce unroll count to be modulo of TripCount for partial unrolling. 830 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 831 UP.Count = 832 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 833 (LoopSize - UP.BEInsns); 834 if (UP.Count > UP.MaxCount) 835 UP.Count = UP.MaxCount; 836 while (UP.Count != 0 && TripCount % UP.Count != 0) 837 UP.Count--; 838 if (UP.AllowRemainder && UP.Count <= 1) { 839 // If there is no Count that is modulo of TripCount, set Count to 840 // largest power-of-two factor that satisfies the threshold limit. 841 // As we'll create fixup loop, do the type of unrolling only if 842 // remainder loop is allowed. 843 UP.Count = UP.DefaultUnrollRuntimeCount; 844 while (UP.Count != 0 && 845 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 846 UP.Count >>= 1; 847 } 848 if (UP.Count < 2) { 849 if (PragmaEnableUnroll) 850 ORE->emit( 851 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 852 L->getStartLoc(), L->getHeader()) 853 << "Unable to unroll loop as directed by unroll(enable) pragma " 854 "because unrolled size is too large."); 855 UP.Count = 0; 856 } 857 } else { 858 UP.Count = TripCount; 859 } 860 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 861 UP.Count != TripCount) 862 ORE->emit( 863 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 864 L->getStartLoc(), L->getHeader()) 865 << "Unable to fully unroll loop as directed by unroll pragma because " 866 "unrolled size is too large."); 867 return ExplicitUnroll; 868 } 869 assert(TripCount == 0 && 870 "All cases when TripCount is constant should be covered here."); 871 if (PragmaFullUnroll) 872 ORE->emit( 873 OptimizationRemarkMissed(DEBUG_TYPE, 874 "CantFullUnrollAsDirectedRuntimeTripCount", 875 L->getStartLoc(), L->getHeader()) 876 << "Unable to fully unroll loop as directed by unroll(full) pragma " 877 "because loop has a runtime trip count."); 878 879 // 5th priority is loop peeling 880 computePeelCount(L, LoopSize, UP); 881 if (UP.PeelCount) { 882 UP.Runtime = false; 883 UP.Count = 1; 884 return ExplicitUnroll; 885 } 886 887 // 6th priority is runtime unrolling. 888 // Don't unroll a runtime trip count loop when it is disabled. 889 if (HasRuntimeUnrollDisablePragma(L)) { 890 UP.Count = 0; 891 return false; 892 } 893 894 // Check if the runtime trip count is too small when profile is available. 895 if (L->getHeader()->getParent()->getEntryCount()) { 896 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 897 if (*ProfileTripCount < FlatLoopTripCountThreshold) 898 return false; 899 else 900 UP.AllowExpensiveTripCount = true; 901 } 902 } 903 904 // Reduce count based on the type of unrolling and the threshold values. 905 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 906 if (!UP.Runtime) { 907 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 908 << "-unroll-runtime not given\n"); 909 UP.Count = 0; 910 return false; 911 } 912 if (UP.Count == 0) 913 UP.Count = UP.DefaultUnrollRuntimeCount; 914 915 // Reduce unroll count to be the largest power-of-two factor of 916 // the original count which satisfies the threshold limit. 917 while (UP.Count != 0 && 918 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 919 UP.Count >>= 1; 920 921 #ifndef NDEBUG 922 unsigned OrigCount = UP.Count; 923 #endif 924 925 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 926 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 927 UP.Count >>= 1; 928 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 929 "specific or because the loop contains a convergent " 930 "instruction), so unroll count must divide the trip " 931 "multiple, " 932 << TripMultiple << ". Reducing unroll count from " 933 << OrigCount << " to " << UP.Count << ".\n"); 934 using namespace ore; 935 if (PragmaCount > 0 && !UP.AllowRemainder) 936 ORE->emit( 937 OptimizationRemarkMissed(DEBUG_TYPE, 938 "DifferentUnrollCountFromDirected", 939 L->getStartLoc(), L->getHeader()) 940 << "Unable to unroll loop the number of times directed by " 941 "unroll_count pragma because remainder loop is restricted " 942 "(that could architecture specific or because the loop " 943 "contains a convergent instruction) and so must have an unroll " 944 "count that divides the loop trip multiple of " 945 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 946 << NV("UnrollCount", UP.Count) << " time(s)."); 947 } 948 949 if (UP.Count > UP.MaxCount) 950 UP.Count = UP.MaxCount; 951 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 952 if (UP.Count < 2) 953 UP.Count = 0; 954 return ExplicitUnroll; 955 } 956 957 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 958 ScalarEvolution *SE, const TargetTransformInfo &TTI, 959 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 960 bool PreserveLCSSA, 961 Optional<unsigned> ProvidedCount, 962 Optional<unsigned> ProvidedThreshold, 963 Optional<bool> ProvidedAllowPartial, 964 Optional<bool> ProvidedRuntime, 965 Optional<bool> ProvidedUpperBound) { 966 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 967 << "] Loop %" << L->getHeader()->getName() << "\n"); 968 if (HasUnrollDisablePragma(L)) 969 return false; 970 if (!L->isLoopSimplifyForm()) { 971 DEBUG( 972 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 973 return false; 974 } 975 976 unsigned NumInlineCandidates; 977 bool NotDuplicatable; 978 bool Convergent; 979 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 980 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 981 ProvidedRuntime, ProvidedUpperBound); 982 // Exit early if unrolling is disabled. 983 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 984 return false; 985 unsigned LoopSize = ApproximateLoopSize( 986 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 987 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 988 if (NotDuplicatable) { 989 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 990 << " instructions.\n"); 991 return false; 992 } 993 if (NumInlineCandidates != 0) { 994 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 995 return false; 996 } 997 998 // Find trip count and trip multiple if count is not available 999 unsigned TripCount = 0; 1000 unsigned MaxTripCount = 0; 1001 unsigned TripMultiple = 1; 1002 // If there are multiple exiting blocks but one of them is the latch, use the 1003 // latch for the trip count estimation. Otherwise insist on a single exiting 1004 // block for the trip count estimation. 1005 BasicBlock *ExitingBlock = L->getLoopLatch(); 1006 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1007 ExitingBlock = L->getExitingBlock(); 1008 if (ExitingBlock) { 1009 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 1010 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 1011 } 1012 1013 // If the loop contains a convergent operation, the prelude we'd add 1014 // to do the first few instructions before we hit the unrolled loop 1015 // is unsafe -- it adds a control-flow dependency to the convergent 1016 // operation. Therefore restrict remainder loop (try unrollig without). 1017 // 1018 // TODO: This is quite conservative. In practice, convergent_op() 1019 // is likely to be called unconditionally in the loop. In this 1020 // case, the program would be ill-formed (on most architectures) 1021 // unless n were the same on all threads in a thread group. 1022 // Assuming n is the same on all threads, any kind of unrolling is 1023 // safe. But currently llvm's notion of convergence isn't powerful 1024 // enough to express this. 1025 if (Convergent) 1026 UP.AllowRemainder = false; 1027 1028 // Try to find the trip count upper bound if we cannot find the exact trip 1029 // count. 1030 bool MaxOrZero = false; 1031 if (!TripCount) { 1032 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1033 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1034 // We can unroll by the upper bound amount if it's generally allowed or if 1035 // we know that the loop is executed either the upper bound or zero times. 1036 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1037 // loop tests remains the same compared to the non-unrolled version, whereas 1038 // the generic upper bound unrolling keeps all but the last loop test so the 1039 // number of loop tests goes up which may end up being worse on targets with 1040 // constriained branch predictor resources so is controlled by an option.) 1041 // In addition we only unroll small upper bounds. 1042 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1043 MaxTripCount = 0; 1044 } 1045 } 1046 1047 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1048 // fully unroll the loop. 1049 bool UseUpperBound = false; 1050 bool IsCountSetExplicitly = 1051 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1052 TripMultiple, LoopSize, UP, UseUpperBound); 1053 if (!UP.Count) 1054 return false; 1055 // Unroll factor (Count) must be less or equal to TripCount. 1056 if (TripCount && UP.Count > TripCount) 1057 UP.Count = TripCount; 1058 1059 // Unroll the loop. 1060 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1061 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1062 TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE, 1063 PreserveLCSSA)) 1064 return false; 1065 1066 // If loop has an unroll count pragma or unrolled by explicitly set count 1067 // mark loop as unrolled to prevent unrolling beyond that requested. 1068 // If the loop was peeled, we already "used up" the profile information 1069 // we had, so we don't want to unroll or peel again. 1070 if (IsCountSetExplicitly || UP.PeelCount) 1071 SetLoopAlreadyUnrolled(L); 1072 1073 return true; 1074 } 1075 1076 namespace { 1077 class LoopUnroll : public LoopPass { 1078 public: 1079 static char ID; // Pass ID, replacement for typeid 1080 LoopUnroll(Optional<unsigned> Threshold = None, 1081 Optional<unsigned> Count = None, 1082 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1083 Optional<bool> UpperBound = None) 1084 : LoopPass(ID), ProvidedCount(std::move(Count)), 1085 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1086 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1087 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1088 } 1089 1090 Optional<unsigned> ProvidedCount; 1091 Optional<unsigned> ProvidedThreshold; 1092 Optional<bool> ProvidedAllowPartial; 1093 Optional<bool> ProvidedRuntime; 1094 Optional<bool> ProvidedUpperBound; 1095 1096 bool runOnLoop(Loop *L, LPPassManager &) override { 1097 if (skipLoop(L)) 1098 return false; 1099 1100 Function &F = *L->getHeader()->getParent(); 1101 1102 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1103 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1104 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1105 const TargetTransformInfo &TTI = 1106 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1107 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1108 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1109 // pass. Function analyses need to be preserved across loop transformations 1110 // but ORE cannot be preserved (see comment before the pass definition). 1111 OptimizationRemarkEmitter ORE(&F); 1112 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1113 1114 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1115 ProvidedCount, ProvidedThreshold, 1116 ProvidedAllowPartial, ProvidedRuntime, 1117 ProvidedUpperBound); 1118 } 1119 1120 /// This transformation requires natural loop information & requires that 1121 /// loop preheaders be inserted into the CFG... 1122 /// 1123 void getAnalysisUsage(AnalysisUsage &AU) const override { 1124 AU.addRequired<AssumptionCacheTracker>(); 1125 AU.addRequired<TargetTransformInfoWrapperPass>(); 1126 // FIXME: Loop passes are required to preserve domtree, and for now we just 1127 // recreate dom info if anything gets unrolled. 1128 getLoopAnalysisUsage(AU); 1129 } 1130 }; 1131 } 1132 1133 char LoopUnroll::ID = 0; 1134 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1135 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1136 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1137 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1138 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1139 1140 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1141 int Runtime, int UpperBound) { 1142 // TODO: It would make more sense for this function to take the optionals 1143 // directly, but that's dangerous since it would silently break out of tree 1144 // callers. 1145 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1146 Count == -1 ? None : Optional<unsigned>(Count), 1147 AllowPartial == -1 ? None 1148 : Optional<bool>(AllowPartial), 1149 Runtime == -1 ? None : Optional<bool>(Runtime), 1150 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1151 } 1152 1153 Pass *llvm::createSimpleLoopUnrollPass() { 1154 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1155 } 1156 1157 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1158 const auto &FAM = 1159 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1160 Function *F = L.getHeader()->getParent(); 1161 1162 1163 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1164 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1165 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1166 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1167 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 1168 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1169 if (!DT) 1170 report_fatal_error( 1171 "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1172 if (!LI) 1173 report_fatal_error( 1174 "LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1175 if (!SE) 1176 report_fatal_error( 1177 "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1178 if (!TTI) 1179 report_fatal_error( 1180 "LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1181 if (!AC) 1182 report_fatal_error( 1183 "LoopUnrollPass: AssumptionAnalysis not cached at a higher level"); 1184 if (!ORE) 1185 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1186 "cached at a higher level"); 1187 1188 bool Changed = 1189 tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, 1190 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1191 ProvidedRuntime, ProvidedUpperBound); 1192 1193 if (!Changed) 1194 return PreservedAnalyses::all(); 1195 return getLoopPassPreservedAnalyses(); 1196 } 1197