1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopPass.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/UnrollLoop.h" 31 #include "llvm/IR/InstVisitor.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include <climits> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-unroll" 38 39 static cl::opt<unsigned> 40 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, 41 cl::desc("The cut-off point for automatic loop unrolling")); 42 43 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 44 "unroll-max-iteration-count-to-analyze", cl::init(1000), cl::Hidden, 45 cl::desc("Don't allow loop unrolling to simulate more than this number of" 46 "iterations when checking full unroll profitability")); 47 48 static cl::opt<unsigned> 49 UnrollCount("unroll-count", cl::init(0), cl::Hidden, 50 cl::desc("Use this unroll count for all loops including those with " 51 "unroll_count pragma values, for testing purposes")); 52 53 static cl::opt<bool> 54 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, 55 cl::desc("Allows loops to be partially unrolled until " 56 "-unroll-threshold loop size is reached.")); 57 58 static cl::opt<bool> 59 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, 60 cl::desc("Unroll loops with run-time trip counts")); 61 62 static cl::opt<unsigned> 63 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 64 cl::desc("Unrolled size limit for loops with an unroll(full) or " 65 "unroll_count pragma.")); 66 67 namespace { 68 class LoopUnroll : public LoopPass { 69 public: 70 static char ID; // Pass ID, replacement for typeid 71 LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { 72 CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); 73 CurrentCount = (C == -1) ? UnrollCount : unsigned(C); 74 CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; 75 CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; 76 77 UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); 78 UserAllowPartial = (P != -1) || 79 (UnrollAllowPartial.getNumOccurrences() > 0); 80 UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); 81 UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); 82 83 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 84 } 85 86 /// A magic value for use with the Threshold parameter to indicate 87 /// that the loop unroll should be performed regardless of how much 88 /// code expansion would result. 89 static const unsigned NoThreshold = UINT_MAX; 90 91 // Threshold to use when optsize is specified (and there is no 92 // explicit -unroll-threshold). 93 static const unsigned OptSizeUnrollThreshold = 50; 94 95 // Default unroll count for loops with run-time trip count if 96 // -unroll-count is not set 97 static const unsigned UnrollRuntimeCount = 8; 98 99 unsigned CurrentCount; 100 unsigned CurrentThreshold; 101 bool CurrentAllowPartial; 102 bool CurrentRuntime; 103 bool UserCount; // CurrentCount is user-specified. 104 bool UserThreshold; // CurrentThreshold is user-specified. 105 bool UserAllowPartial; // CurrentAllowPartial is user-specified. 106 bool UserRuntime; // CurrentRuntime is user-specified. 107 108 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 109 110 /// This transformation requires natural loop information & requires that 111 /// loop preheaders be inserted into the CFG... 112 /// 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.addRequired<AssumptionCacheTracker>(); 115 AU.addRequired<LoopInfoWrapperPass>(); 116 AU.addPreserved<LoopInfoWrapperPass>(); 117 AU.addRequiredID(LoopSimplifyID); 118 AU.addPreservedID(LoopSimplifyID); 119 AU.addRequiredID(LCSSAID); 120 AU.addPreservedID(LCSSAID); 121 AU.addRequired<ScalarEvolution>(); 122 AU.addPreserved<ScalarEvolution>(); 123 AU.addRequired<TargetTransformInfoWrapperPass>(); 124 // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. 125 // If loop unroll does not preserve dom info then LCSSA pass on next 126 // loop will receive invalid dom info. 127 // For now, recreate dom info, if loop is unrolled. 128 AU.addPreserved<DominatorTreeWrapperPass>(); 129 } 130 131 // Fill in the UnrollingPreferences parameter with values from the 132 // TargetTransformationInfo. 133 void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, 134 TargetTransformInfo::UnrollingPreferences &UP) { 135 UP.Threshold = CurrentThreshold; 136 UP.OptSizeThreshold = OptSizeUnrollThreshold; 137 UP.PartialThreshold = CurrentThreshold; 138 UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; 139 UP.Count = CurrentCount; 140 UP.MaxCount = UINT_MAX; 141 UP.Partial = CurrentAllowPartial; 142 UP.Runtime = CurrentRuntime; 143 TTI.getUnrollingPreferences(L, UP); 144 } 145 146 // Select and return an unroll count based on parameters from 147 // user, unroll preferences, unroll pragmas, or a heuristic. 148 // SetExplicitly is set to true if the unroll count is is set by 149 // the user or a pragma rather than selected heuristically. 150 unsigned 151 selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 152 unsigned PragmaCount, 153 const TargetTransformInfo::UnrollingPreferences &UP, 154 bool &SetExplicitly); 155 156 // Select threshold values used to limit unrolling based on a 157 // total unrolled size. Parameters Threshold and PartialThreshold 158 // are set to the maximum unrolled size for fully and partially 159 // unrolled loops respectively. 160 void selectThresholds(const Loop *L, bool HasPragma, 161 const TargetTransformInfo::UnrollingPreferences &UP, 162 unsigned &Threshold, unsigned &PartialThreshold, 163 unsigned NumberOfSimplifiedInstructions) { 164 // Determine the current unrolling threshold. While this is 165 // normally set from UnrollThreshold, it is overridden to a 166 // smaller value if the current function is marked as 167 // optimize-for-size, and the unroll threshold was not user 168 // specified. 169 Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; 170 PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; 171 if (!UserThreshold && 172 L->getHeader()->getParent()->getAttributes(). 173 hasAttribute(AttributeSet::FunctionIndex, 174 Attribute::OptimizeForSize)) { 175 Threshold = UP.OptSizeThreshold; 176 PartialThreshold = UP.PartialOptSizeThreshold; 177 } 178 if (HasPragma) { 179 // If the loop has an unrolling pragma, we want to be more 180 // aggressive with unrolling limits. Set thresholds to at 181 // least the PragmaTheshold value which is larger than the 182 // default limits. 183 if (Threshold != NoThreshold) 184 Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold); 185 if (PartialThreshold != NoThreshold) 186 PartialThreshold = 187 std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold); 188 } 189 Threshold += NumberOfSimplifiedInstructions; 190 } 191 }; 192 } 193 194 char LoopUnroll::ID = 0; 195 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 196 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 198 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 200 INITIALIZE_PASS_DEPENDENCY(LCSSA) 201 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 202 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 203 204 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 205 int Runtime) { 206 return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); 207 } 208 209 Pass *llvm::createSimpleLoopUnrollPass() { 210 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 211 } 212 213 static bool IsLoadFromConstantInitializer(Value *V) { 214 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 215 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 216 return GV->getInitializer(); 217 return false; 218 } 219 220 struct FindConstantPointers { 221 bool LoadCanBeConstantFolded; 222 bool IndexIsConstant; 223 APInt Step; 224 APInt StartValue; 225 Value *BaseAddress; 226 const Loop *L; 227 ScalarEvolution &SE; 228 FindConstantPointers(const Loop *loop, ScalarEvolution &SE) 229 : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {} 230 231 bool follow(const SCEV *S) { 232 if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) { 233 // We've reached the leaf node of SCEV, it's most probably just a 234 // variable. Now it's time to see if it corresponds to a global constant 235 // global (in which case we can eliminate the load), or not. 236 BaseAddress = SC->getValue(); 237 LoadCanBeConstantFolded = 238 IndexIsConstant && IsLoadFromConstantInitializer(BaseAddress); 239 return false; 240 } 241 if (isa<SCEVConstant>(S)) 242 return true; 243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 244 // If the current SCEV expression is AddRec, and its loop isn't the loop 245 // we are about to unroll, then we won't get a constant address after 246 // unrolling, and thus, won't be able to eliminate the load. 247 if (AR->getLoop() != L) 248 return IndexIsConstant = false; 249 // If the step isn't constant, we won't get constant addresses in unrolled 250 // version. Bail out. 251 if (const SCEVConstant *StepSE = 252 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 253 Step = StepSE->getValue()->getValue(); 254 else 255 return IndexIsConstant = false; 256 257 return IndexIsConstant; 258 } 259 // If Result is true, continue traversal. 260 // Otherwise, we have found something that prevents us from (possible) load 261 // elimination. 262 return IndexIsConstant; 263 } 264 bool isDone() const { return !IndexIsConstant; } 265 }; 266 267 // This class is used to get an estimate of the optimization effects that we 268 // could get from complete loop unrolling. It comes from the fact that some 269 // loads might be replaced with concrete constant values and that could trigger 270 // a chain of instruction simplifications. 271 // 272 // E.g. we might have: 273 // int a[] = {0, 1, 0}; 274 // v = 0; 275 // for (i = 0; i < 3; i ++) 276 // v += b[i]*a[i]; 277 // If we completely unroll the loop, we would get: 278 // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] 279 // Which then will be simplified to: 280 // v = b[0]* 0 + b[1]* 1 + b[2]* 0 281 // And finally: 282 // v = b[1] 283 class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> { 284 typedef InstVisitor<UnrollAnalyzer, bool> Base; 285 friend class InstVisitor<UnrollAnalyzer, bool>; 286 287 const Loop *L; 288 unsigned TripCount; 289 ScalarEvolution &SE; 290 const TargetTransformInfo &TTI; 291 unsigned NumberOfOptimizedInstructions; 292 293 DenseMap<Value *, Constant *> SimplifiedValues; 294 DenseMap<LoadInst *, Value *> LoadBaseAddresses; 295 SmallPtrSet<Instruction *, 32> CountedInsns; 296 297 // Provide base case for our instruction visit. 298 bool visitInstruction(Instruction &I) { return false; }; 299 // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt, 300 // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select, 301 // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue. 302 // 303 // Probaly it's worth to hoist the code for estimating the simplifications 304 // effects to a separate class, since we have a very similar code in 305 // InlineCost already. 306 bool visitBinaryOperator(BinaryOperator &I) { 307 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 308 if (!isa<Constant>(LHS)) 309 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 310 LHS = SimpleLHS; 311 if (!isa<Constant>(RHS)) 312 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 313 RHS = SimpleRHS; 314 Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS); 315 316 if (SimpleV && CountedInsns.insert(&I).second) 317 NumberOfOptimizedInstructions += TTI.getUserCost(&I); 318 319 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { 320 SimplifiedValues[&I] = C; 321 return true; 322 } 323 return false; 324 } 325 326 Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) { 327 if (!LI) 328 return nullptr; 329 Value *BaseAddr = LoadBaseAddresses[LI]; 330 if (!BaseAddr) 331 return nullptr; 332 333 auto GV = dyn_cast<GlobalVariable>(BaseAddr); 334 if (!GV) 335 return nullptr; 336 337 ConstantDataSequential *CDS = 338 dyn_cast<ConstantDataSequential>(GV->getInitializer()); 339 if (!CDS) 340 return nullptr; 341 342 const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr); 343 const SCEV *S = SE.getSCEV(LI->getPointerOperand()); 344 const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); 345 346 APInt StepC, StartC; 347 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE); 348 if (!AR) 349 return nullptr; 350 351 if (const SCEVConstant *StepSE = 352 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 353 StepC = StepSE->getValue()->getValue(); 354 else 355 return nullptr; 356 357 if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart())) 358 StartC = StartSE->getValue()->getValue(); 359 else 360 return nullptr; 361 362 unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; 363 unsigned Start = StartC.getLimitedValue(); 364 unsigned Step = StepC.getLimitedValue(); 365 366 unsigned Index = (Start + Step * Iteration) / ElemSize; 367 if (Index >= CDS->getNumElements()) 368 return nullptr; 369 370 Constant *CV = CDS->getElementAsConstant(Index); 371 372 return CV; 373 } 374 375 public: 376 UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE, 377 const TargetTransformInfo &TTI) 378 : L(L), TripCount(TripCount), SE(SE), TTI(TTI), 379 NumberOfOptimizedInstructions(0) {} 380 381 // Visit all loads the loop L, and for those that, after complete loop 382 // unrolling, would have a constant address and it will point to a known 383 // constant initializer, record its base address for future use. It is used 384 // when we estimate number of potentially simplified instructions. 385 void FindConstFoldableLoads() { 386 for (auto BB : L->getBlocks()) { 387 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (!LI->isSimple()) 390 continue; 391 Value *AddrOp = LI->getPointerOperand(); 392 const SCEV *S = SE.getSCEV(AddrOp); 393 FindConstantPointers Visitor(L, SE); 394 SCEVTraversal<FindConstantPointers> T(Visitor); 395 T.visitAll(S); 396 if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) { 397 LoadBaseAddresses[LI] = Visitor.BaseAddress; 398 } 399 } 400 } 401 } 402 } 403 404 // Given a list of loads that could be constant-folded (LoadBaseAddresses), 405 // estimate number of optimized instructions after substituting the concrete 406 // values for the given Iteration. 407 // Fill in SimplifiedInsns map for future use in DCE-estimation. 408 unsigned EstimateNumberOfSimplifiedInsns(unsigned Iteration) { 409 SmallVector<Instruction *, 8> Worklist; 410 SimplifiedValues.clear(); 411 CountedInsns.clear(); 412 413 NumberOfOptimizedInstructions = 0; 414 // We start by adding all loads to the worklist. 415 for (auto LoadDescr : LoadBaseAddresses) { 416 LoadInst *LI = LoadDescr.first; 417 SimplifiedValues[LI] = computeLoadValue(LI, Iteration); 418 if (CountedInsns.insert(LI).second) 419 NumberOfOptimizedInstructions += TTI.getUserCost(LI); 420 421 for (auto U : LI->users()) { 422 Instruction *UI = dyn_cast<Instruction>(U); 423 if (!UI) 424 continue; 425 if (!L->contains(UI)) 426 continue; 427 Worklist.push_back(UI); 428 } 429 } 430 431 // And then we try to simplify every user of every instruction from the 432 // worklist. If we do simplify a user, add it to the worklist to process 433 // its users as well. 434 while (!Worklist.empty()) { 435 Instruction *I = Worklist.pop_back_val(); 436 if (!visit(I)) 437 continue; 438 for (auto U : I->users()) { 439 Instruction *UI = dyn_cast<Instruction>(U); 440 if (!UI) 441 continue; 442 if (!L->contains(UI)) 443 continue; 444 Worklist.push_back(UI); 445 } 446 } 447 return NumberOfOptimizedInstructions; 448 } 449 450 // Given a list of potentially simplifed instructions, estimate number of 451 // instructions that would become dead if we do perform the simplification. 452 unsigned EstimateNumberOfDeadInsns() { 453 NumberOfOptimizedInstructions = 0; 454 SmallVector<Instruction *, 8> Worklist; 455 DenseMap<Instruction *, bool> DeadInstructions; 456 // Start by initializing worklist with simplified instructions. 457 for (auto Folded : SimplifiedValues) { 458 if (auto FoldedInsn = dyn_cast<Instruction>(Folded.first)) { 459 Worklist.push_back(FoldedInsn); 460 DeadInstructions[FoldedInsn] = true; 461 } 462 } 463 // If a definition of an insn is only used by simplified or dead 464 // instructions, it's also dead. Check defs of all instructions from the 465 // worklist. 466 while (!Worklist.empty()) { 467 Instruction *FoldedInsn = Worklist.pop_back_val(); 468 for (Value *Op : FoldedInsn->operands()) { 469 if (auto I = dyn_cast<Instruction>(Op)) { 470 if (!L->contains(I)) 471 continue; 472 if (SimplifiedValues[I]) 473 continue; // This insn has been counted already. 474 if (I->getNumUses() == 0) 475 continue; 476 bool AllUsersFolded = true; 477 for (auto U : I->users()) { 478 Instruction *UI = dyn_cast<Instruction>(U); 479 if (!SimplifiedValues[UI] && !DeadInstructions[UI]) { 480 AllUsersFolded = false; 481 break; 482 } 483 } 484 if (AllUsersFolded) { 485 NumberOfOptimizedInstructions += TTI.getUserCost(I); 486 Worklist.push_back(I); 487 DeadInstructions[I] = true; 488 } 489 } 490 } 491 } 492 return NumberOfOptimizedInstructions; 493 } 494 }; 495 496 // Complete loop unrolling can make some loads constant, and we need to know if 497 // that would expose any further optimization opportunities. 498 // This routine estimates this optimization effect and returns the number of 499 // instructions, that potentially might be optimized away. 500 static unsigned 501 ApproximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE, 502 unsigned TripCount, 503 const TargetTransformInfo &TTI) { 504 if (!TripCount) 505 return 0; 506 507 UnrollAnalyzer UA(L, TripCount, SE, TTI); 508 UA.FindConstFoldableLoads(); 509 510 // Estimate number of instructions, that could be simplified if we replace a 511 // load with the corresponding constant. Since the same load will take 512 // different values on different iterations, we have to go through all loop's 513 // iterations here. To limit ourselves here, we check only first N 514 // iterations, and then scale the found number, if necessary. 515 unsigned IterationsNumberForEstimate = 516 std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount); 517 unsigned NumberOfOptimizedInstructions = 0; 518 for (unsigned i = 0; i < IterationsNumberForEstimate; ++i) { 519 NumberOfOptimizedInstructions += UA.EstimateNumberOfSimplifiedInsns(i); 520 NumberOfOptimizedInstructions += UA.EstimateNumberOfDeadInsns(); 521 } 522 NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate; 523 524 return NumberOfOptimizedInstructions; 525 } 526 527 /// ApproximateLoopSize - Approximate the size of the loop. 528 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 529 bool &NotDuplicatable, 530 const TargetTransformInfo &TTI, 531 AssumptionCache *AC) { 532 SmallPtrSet<const Value *, 32> EphValues; 533 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 534 535 CodeMetrics Metrics; 536 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 537 I != E; ++I) 538 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 539 NumCalls = Metrics.NumInlineCandidates; 540 NotDuplicatable = Metrics.notDuplicatable; 541 542 unsigned LoopSize = Metrics.NumInsts; 543 544 // Don't allow an estimate of size zero. This would allows unrolling of loops 545 // with huge iteration counts, which is a compile time problem even if it's 546 // not a problem for code quality. Also, the code using this size may assume 547 // that each loop has at least three instructions (likely a conditional 548 // branch, a comparison feeding that branch, and some kind of loop increment 549 // feeding that comparison instruction). 550 LoopSize = std::max(LoopSize, 3u); 551 552 return LoopSize; 553 } 554 555 // Returns the loop hint metadata node with the given name (for example, 556 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 557 // returned. 558 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 559 if (MDNode *LoopID = L->getLoopID()) 560 return GetUnrollMetadata(LoopID, Name); 561 return nullptr; 562 } 563 564 // Returns true if the loop has an unroll(full) pragma. 565 static bool HasUnrollFullPragma(const Loop *L) { 566 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 567 } 568 569 // Returns true if the loop has an unroll(disable) pragma. 570 static bool HasUnrollDisablePragma(const Loop *L) { 571 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 572 } 573 574 // If loop has an unroll_count pragma return the (necessarily 575 // positive) value from the pragma. Otherwise return 0. 576 static unsigned UnrollCountPragmaValue(const Loop *L) { 577 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 578 if (MD) { 579 assert(MD->getNumOperands() == 2 && 580 "Unroll count hint metadata should have two operands."); 581 unsigned Count = 582 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 583 assert(Count >= 1 && "Unroll count must be positive."); 584 return Count; 585 } 586 return 0; 587 } 588 589 // Remove existing unroll metadata and add unroll disable metadata to 590 // indicate the loop has already been unrolled. This prevents a loop 591 // from being unrolled more than is directed by a pragma if the loop 592 // unrolling pass is run more than once (which it generally is). 593 static void SetLoopAlreadyUnrolled(Loop *L) { 594 MDNode *LoopID = L->getLoopID(); 595 if (!LoopID) return; 596 597 // First remove any existing loop unrolling metadata. 598 SmallVector<Metadata *, 4> MDs; 599 // Reserve first location for self reference to the LoopID metadata node. 600 MDs.push_back(nullptr); 601 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 602 bool IsUnrollMetadata = false; 603 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 604 if (MD) { 605 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 606 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 607 } 608 if (!IsUnrollMetadata) 609 MDs.push_back(LoopID->getOperand(i)); 610 } 611 612 // Add unroll(disable) metadata to disable future unrolling. 613 LLVMContext &Context = L->getHeader()->getContext(); 614 SmallVector<Metadata *, 1> DisableOperands; 615 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 616 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 617 MDs.push_back(DisableNode); 618 619 MDNode *NewLoopID = MDNode::get(Context, MDs); 620 // Set operand 0 to refer to the loop id itself. 621 NewLoopID->replaceOperandWith(0, NewLoopID); 622 L->setLoopID(NewLoopID); 623 } 624 625 unsigned LoopUnroll::selectUnrollCount( 626 const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 627 unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, 628 bool &SetExplicitly) { 629 SetExplicitly = true; 630 631 // User-specified count (either as a command-line option or 632 // constructor parameter) has highest precedence. 633 unsigned Count = UserCount ? CurrentCount : 0; 634 635 // If there is no user-specified count, unroll pragmas have the next 636 // highest precendence. 637 if (Count == 0) { 638 if (PragmaCount) { 639 Count = PragmaCount; 640 } else if (PragmaFullUnroll) { 641 Count = TripCount; 642 } 643 } 644 645 if (Count == 0) 646 Count = UP.Count; 647 648 if (Count == 0) { 649 SetExplicitly = false; 650 if (TripCount == 0) 651 // Runtime trip count. 652 Count = UnrollRuntimeCount; 653 else 654 // Conservative heuristic: if we know the trip count, see if we can 655 // completely unroll (subject to the threshold, checked below); otherwise 656 // try to find greatest modulo of the trip count which is still under 657 // threshold value. 658 Count = TripCount; 659 } 660 if (TripCount && Count > TripCount) 661 return TripCount; 662 return Count; 663 } 664 665 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { 666 if (skipOptnoneFunction(L)) 667 return false; 668 669 Function &F = *L->getHeader()->getParent(); 670 671 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 672 ScalarEvolution *SE = &getAnalysis<ScalarEvolution>(); 673 const TargetTransformInfo &TTI = 674 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 675 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 676 677 BasicBlock *Header = L->getHeader(); 678 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 679 << "] Loop %" << Header->getName() << "\n"); 680 681 if (HasUnrollDisablePragma(L)) { 682 return false; 683 } 684 bool PragmaFullUnroll = HasUnrollFullPragma(L); 685 unsigned PragmaCount = UnrollCountPragmaValue(L); 686 bool HasPragma = PragmaFullUnroll || PragmaCount > 0; 687 688 TargetTransformInfo::UnrollingPreferences UP; 689 getUnrollingPreferences(L, TTI, UP); 690 691 // Find trip count and trip multiple if count is not available 692 unsigned TripCount = 0; 693 unsigned TripMultiple = 1; 694 // If there are multiple exiting blocks but one of them is the latch, use the 695 // latch for the trip count estimation. Otherwise insist on a single exiting 696 // block for the trip count estimation. 697 BasicBlock *ExitingBlock = L->getLoopLatch(); 698 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 699 ExitingBlock = L->getExitingBlock(); 700 if (ExitingBlock) { 701 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 702 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 703 } 704 705 // Select an initial unroll count. This may be reduced later based 706 // on size thresholds. 707 bool CountSetExplicitly; 708 unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, 709 PragmaCount, UP, CountSetExplicitly); 710 711 unsigned NumInlineCandidates; 712 bool notDuplicatable; 713 unsigned LoopSize = 714 ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); 715 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 716 717 // When computing the unrolled size, note that the conditional branch on the 718 // backedge and the comparison feeding it are not replicated like the rest of 719 // the loop body (which is why 2 is subtracted). 720 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; 721 if (notDuplicatable) { 722 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 723 << " instructions.\n"); 724 return false; 725 } 726 if (NumInlineCandidates != 0) { 727 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 728 return false; 729 } 730 731 unsigned NumberOfOptimizedInstructions = 732 ApproximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI); 733 DEBUG(dbgs() << " Complete unrolling could save: " 734 << NumberOfOptimizedInstructions << "\n"); 735 736 unsigned Threshold, PartialThreshold; 737 selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, 738 NumberOfOptimizedInstructions); 739 740 // Given Count, TripCount and thresholds determine the type of 741 // unrolling which is to be performed. 742 enum { Full = 0, Partial = 1, Runtime = 2 }; 743 int Unrolling; 744 if (TripCount && Count == TripCount) { 745 if (Threshold != NoThreshold && UnrolledSize > Threshold) { 746 DEBUG(dbgs() << " Too large to fully unroll with count: " << Count 747 << " because size: " << UnrolledSize << ">" << Threshold 748 << "\n"); 749 Unrolling = Partial; 750 } else { 751 Unrolling = Full; 752 } 753 } else if (TripCount && Count < TripCount) { 754 Unrolling = Partial; 755 } else { 756 Unrolling = Runtime; 757 } 758 759 // Reduce count based on the type of unrolling and the threshold values. 760 unsigned OriginalCount = Count; 761 bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; 762 if (Unrolling == Partial) { 763 bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; 764 if (!AllowPartial && !CountSetExplicitly) { 765 DEBUG(dbgs() << " will not try to unroll partially because " 766 << "-unroll-allow-partial not given\n"); 767 return false; 768 } 769 if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { 770 // Reduce unroll count to be modulo of TripCount for partial unrolling. 771 Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); 772 while (Count != 0 && TripCount % Count != 0) 773 Count--; 774 } 775 } else if (Unrolling == Runtime) { 776 if (!AllowRuntime && !CountSetExplicitly) { 777 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 778 << "-unroll-runtime not given\n"); 779 return false; 780 } 781 // Reduce unroll count to be the largest power-of-two factor of 782 // the original count which satisfies the threshold limit. 783 while (Count != 0 && UnrolledSize > PartialThreshold) { 784 Count >>= 1; 785 UnrolledSize = (LoopSize-2) * Count + 2; 786 } 787 if (Count > UP.MaxCount) 788 Count = UP.MaxCount; 789 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 790 } 791 792 if (HasPragma) { 793 if (PragmaCount != 0) 794 // If loop has an unroll count pragma mark loop as unrolled to prevent 795 // unrolling beyond that requested by the pragma. 796 SetLoopAlreadyUnrolled(L); 797 798 // Emit optimization remarks if we are unable to unroll the loop 799 // as directed by a pragma. 800 DebugLoc LoopLoc = L->getStartLoc(); 801 Function *F = Header->getParent(); 802 LLVMContext &Ctx = F->getContext(); 803 if (PragmaFullUnroll && PragmaCount == 0) { 804 if (TripCount && Count != TripCount) { 805 emitOptimizationRemarkMissed( 806 Ctx, DEBUG_TYPE, *F, LoopLoc, 807 "Unable to fully unroll loop as directed by unroll(full) pragma " 808 "because unrolled size is too large."); 809 } else if (!TripCount) { 810 emitOptimizationRemarkMissed( 811 Ctx, DEBUG_TYPE, *F, LoopLoc, 812 "Unable to fully unroll loop as directed by unroll(full) pragma " 813 "because loop has a runtime trip count."); 814 } 815 } else if (PragmaCount > 0 && Count != OriginalCount) { 816 emitOptimizationRemarkMissed( 817 Ctx, DEBUG_TYPE, *F, LoopLoc, 818 "Unable to unroll loop the number of times directed by " 819 "unroll_count pragma because unrolled size is too large."); 820 } 821 } 822 823 if (Unrolling != Full && Count < 2) { 824 // Partial unrolling by 1 is a nop. For full unrolling, a factor 825 // of 1 makes sense because loop control can be eliminated. 826 return false; 827 } 828 829 // Unroll the loop. 830 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this, 831 &LPM, &AC)) 832 return false; 833 834 return true; 835 } 836