1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is somtimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> UnrollPartialThreshold( 85 "unroll-partial-threshold", cl::Hidden, 86 cl::desc("The cost threshold for partial loop unrolling")); 87 88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 91 "to the threshold when aggressively unrolling a loop due to the " 92 "dynamic cost savings. If completely unrolling a loop will reduce " 93 "the total runtime from X to Y, we boost the loop unroll " 94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 95 "X/Y). This limit avoids excessive code bloat.")); 96 97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 99 cl::desc("Don't allow loop unrolling to simulate more than this number of" 100 "iterations when checking full unroll profitability")); 101 102 static cl::opt<unsigned> UnrollCount( 103 "unroll-count", cl::Hidden, 104 cl::desc("Use this unroll count for all loops including those with " 105 "unroll_count pragma values, for testing purposes")); 106 107 static cl::opt<unsigned> UnrollMaxCount( 108 "unroll-max-count", cl::Hidden, 109 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 110 "testing purposes")); 111 112 static cl::opt<unsigned> UnrollFullMaxCount( 113 "unroll-full-max-count", cl::Hidden, 114 cl::desc( 115 "Set the max unroll count for full unrolling, for testing purposes")); 116 117 static cl::opt<unsigned> UnrollPeelCount( 118 "unroll-peel-count", cl::Hidden, 119 cl::desc("Set the unroll peeling count, for testing purposes")); 120 121 static cl::opt<bool> 122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 123 cl::desc("Allows loops to be partially unrolled until " 124 "-unroll-threshold loop size is reached.")); 125 126 static cl::opt<bool> UnrollAllowRemainder( 127 "unroll-allow-remainder", cl::Hidden, 128 cl::desc("Allow generation of a loop remainder (extra iterations) " 129 "when unrolling a loop.")); 130 131 static cl::opt<bool> 132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 133 cl::desc("Unroll loops with run-time trip counts")); 134 135 static cl::opt<unsigned> UnrollMaxUpperBound( 136 "unroll-max-upperbound", cl::init(8), cl::Hidden, 137 cl::desc( 138 "The max of trip count upper bound that is considered in unrolling")); 139 140 static cl::opt<unsigned> PragmaUnrollThreshold( 141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 142 cl::desc("Unrolled size limit for loops with an unroll(full) or " 143 "unroll_count pragma.")); 144 145 static cl::opt<unsigned> FlatLoopTripCountThreshold( 146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 147 cl::desc("If the runtime tripcount for the loop is lower than the " 148 "threshold, the loop is considered as flat and will be less " 149 "aggressively unrolled.")); 150 151 static cl::opt<bool> 152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 153 cl::desc("Allows loops to be peeled when the dynamic " 154 "trip count is known to be low.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 /// A magic value for use with the Threshold parameter to indicate 170 /// that the loop unroll should be performed regardless of how much 171 /// code expansion would result. 172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 173 174 /// Gather the various unrolling parameters based on the defaults, compiler 175 /// flags, TTI overrides and user specified parameters. 176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 182 Optional<bool> UserAllowProfileBasedPeeling, 183 Optional<unsigned> UserFullUnrollMaxCount) { 184 TargetTransformInfo::UnrollingPreferences UP; 185 186 // Set up the defaults 187 UP.Threshold = OptLevel > 2 ? 300 : 150; 188 UP.MaxPercentThresholdBoost = 400; 189 UP.OptSizeThreshold = 0; 190 UP.PartialThreshold = 150; 191 UP.PartialOptSizeThreshold = 0; 192 UP.Count = 0; 193 UP.PeelCount = 0; 194 UP.DefaultUnrollRuntimeCount = 8; 195 UP.MaxCount = std::numeric_limits<unsigned>::max(); 196 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 197 UP.BEInsns = 2; 198 UP.Partial = false; 199 UP.Runtime = false; 200 UP.AllowRemainder = true; 201 UP.UnrollRemainder = false; 202 UP.AllowExpensiveTripCount = false; 203 UP.Force = false; 204 UP.UpperBound = false; 205 UP.AllowPeeling = true; 206 UP.UnrollAndJam = false; 207 UP.PeelProfiledIterations = true; 208 UP.UnrollAndJamInnerLoopThreshold = 60; 209 210 // Override with any target specific settings 211 TTI.getUnrollingPreferences(L, SE, UP); 212 213 // Apply size attributes 214 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 215 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 216 if (OptForSize) { 217 UP.Threshold = UP.OptSizeThreshold; 218 UP.PartialThreshold = UP.PartialOptSizeThreshold; 219 UP.MaxPercentThresholdBoost = 100; 220 } 221 222 // Apply any user values specified by cl::opt 223 if (UnrollThreshold.getNumOccurrences() > 0) 224 UP.Threshold = UnrollThreshold; 225 if (UnrollPartialThreshold.getNumOccurrences() > 0) 226 UP.PartialThreshold = UnrollPartialThreshold; 227 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 228 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 229 if (UnrollMaxCount.getNumOccurrences() > 0) 230 UP.MaxCount = UnrollMaxCount; 231 if (UnrollFullMaxCount.getNumOccurrences() > 0) 232 UP.FullUnrollMaxCount = UnrollFullMaxCount; 233 if (UnrollPeelCount.getNumOccurrences() > 0) 234 UP.PeelCount = UnrollPeelCount; 235 if (UnrollAllowPartial.getNumOccurrences() > 0) 236 UP.Partial = UnrollAllowPartial; 237 if (UnrollAllowRemainder.getNumOccurrences() > 0) 238 UP.AllowRemainder = UnrollAllowRemainder; 239 if (UnrollRuntime.getNumOccurrences() > 0) 240 UP.Runtime = UnrollRuntime; 241 if (UnrollMaxUpperBound == 0) 242 UP.UpperBound = false; 243 if (UnrollAllowPeeling.getNumOccurrences() > 0) 244 UP.AllowPeeling = UnrollAllowPeeling; 245 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 246 UP.UnrollRemainder = UnrollUnrollRemainder; 247 248 // Apply user values provided by argument 249 if (UserThreshold.hasValue()) { 250 UP.Threshold = *UserThreshold; 251 UP.PartialThreshold = *UserThreshold; 252 } 253 if (UserCount.hasValue()) 254 UP.Count = *UserCount; 255 if (UserAllowPartial.hasValue()) 256 UP.Partial = *UserAllowPartial; 257 if (UserRuntime.hasValue()) 258 UP.Runtime = *UserRuntime; 259 if (UserUpperBound.hasValue()) 260 UP.UpperBound = *UserUpperBound; 261 if (UserAllowPeeling.hasValue()) 262 UP.AllowPeeling = *UserAllowPeeling; 263 if (UserAllowProfileBasedPeeling.hasValue()) 264 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 265 if (UserFullUnrollMaxCount.hasValue()) 266 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 267 268 return UP; 269 } 270 271 namespace { 272 273 /// A struct to densely store the state of an instruction after unrolling at 274 /// each iteration. 275 /// 276 /// This is designed to work like a tuple of <Instruction *, int> for the 277 /// purposes of hashing and lookup, but to be able to associate two boolean 278 /// states with each key. 279 struct UnrolledInstState { 280 Instruction *I; 281 int Iteration : 30; 282 unsigned IsFree : 1; 283 unsigned IsCounted : 1; 284 }; 285 286 /// Hashing and equality testing for a set of the instruction states. 287 struct UnrolledInstStateKeyInfo { 288 using PtrInfo = DenseMapInfo<Instruction *>; 289 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 290 291 static inline UnrolledInstState getEmptyKey() { 292 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 293 } 294 295 static inline UnrolledInstState getTombstoneKey() { 296 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 297 } 298 299 static inline unsigned getHashValue(const UnrolledInstState &S) { 300 return PairInfo::getHashValue({S.I, S.Iteration}); 301 } 302 303 static inline bool isEqual(const UnrolledInstState &LHS, 304 const UnrolledInstState &RHS) { 305 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 306 } 307 }; 308 309 struct EstimatedUnrollCost { 310 /// The estimated cost after unrolling. 311 unsigned UnrolledCost; 312 313 /// The estimated dynamic cost of executing the instructions in the 314 /// rolled form. 315 unsigned RolledDynamicCost; 316 }; 317 318 } // end anonymous namespace 319 320 /// Figure out if the loop is worth full unrolling. 321 /// 322 /// Complete loop unrolling can make some loads constant, and we need to know 323 /// if that would expose any further optimization opportunities. This routine 324 /// estimates this optimization. It computes cost of unrolled loop 325 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 326 /// dynamic cost we mean that we won't count costs of blocks that are known not 327 /// to be executed (i.e. if we have a branch in the loop and we know that at the 328 /// given iteration its condition would be resolved to true, we won't add up the 329 /// cost of the 'false'-block). 330 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 331 /// the analysis failed (no benefits expected from the unrolling, or the loop is 332 /// too big to analyze), the returned value is None. 333 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 334 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 335 const SmallPtrSetImpl<const Value *> &EphValues, 336 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 337 // We want to be able to scale offsets by the trip count and add more offsets 338 // to them without checking for overflows, and we already don't want to 339 // analyze *massive* trip counts, so we force the max to be reasonably small. 340 assert(UnrollMaxIterationsCountToAnalyze < 341 (unsigned)(std::numeric_limits<int>::max() / 2) && 342 "The unroll iterations max is too large!"); 343 344 // Only analyze inner loops. We can't properly estimate cost of nested loops 345 // and we won't visit inner loops again anyway. 346 if (!L->empty()) 347 return None; 348 349 // Don't simulate loops with a big or unknown tripcount 350 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 351 TripCount > UnrollMaxIterationsCountToAnalyze) 352 return None; 353 354 SmallSetVector<BasicBlock *, 16> BBWorklist; 355 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 356 DenseMap<Value *, Constant *> SimplifiedValues; 357 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 358 359 // The estimated cost of the unrolled form of the loop. We try to estimate 360 // this by simplifying as much as we can while computing the estimate. 361 unsigned UnrolledCost = 0; 362 363 // We also track the estimated dynamic (that is, actually executed) cost in 364 // the rolled form. This helps identify cases when the savings from unrolling 365 // aren't just exposing dead control flows, but actual reduced dynamic 366 // instructions due to the simplifications which we expect to occur after 367 // unrolling. 368 unsigned RolledDynamicCost = 0; 369 370 // We track the simplification of each instruction in each iteration. We use 371 // this to recursively merge costs into the unrolled cost on-demand so that 372 // we don't count the cost of any dead code. This is essentially a map from 373 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 374 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 375 376 // A small worklist used to accumulate cost of instructions from each 377 // observable and reached root in the loop. 378 SmallVector<Instruction *, 16> CostWorklist; 379 380 // PHI-used worklist used between iterations while accumulating cost. 381 SmallVector<Instruction *, 4> PHIUsedList; 382 383 // Helper function to accumulate cost for instructions in the loop. 384 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 385 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 386 assert(CostWorklist.empty() && "Must start with an empty cost list"); 387 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 388 CostWorklist.push_back(&RootI); 389 for (;; --Iteration) { 390 do { 391 Instruction *I = CostWorklist.pop_back_val(); 392 393 // InstCostMap only uses I and Iteration as a key, the other two values 394 // don't matter here. 395 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 396 if (CostIter == InstCostMap.end()) 397 // If an input to a PHI node comes from a dead path through the loop 398 // we may have no cost data for it here. What that actually means is 399 // that it is free. 400 continue; 401 auto &Cost = *CostIter; 402 if (Cost.IsCounted) 403 // Already counted this instruction. 404 continue; 405 406 // Mark that we are counting the cost of this instruction now. 407 Cost.IsCounted = true; 408 409 // If this is a PHI node in the loop header, just add it to the PHI set. 410 if (auto *PhiI = dyn_cast<PHINode>(I)) 411 if (PhiI->getParent() == L->getHeader()) { 412 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 413 "inherently simplify during unrolling."); 414 if (Iteration == 0) 415 continue; 416 417 // Push the incoming value from the backedge into the PHI used list 418 // if it is an in-loop instruction. We'll use this to populate the 419 // cost worklist for the next iteration (as we count backwards). 420 if (auto *OpI = dyn_cast<Instruction>( 421 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 422 if (L->contains(OpI)) 423 PHIUsedList.push_back(OpI); 424 continue; 425 } 426 427 // First accumulate the cost of this instruction. 428 if (!Cost.IsFree) { 429 UnrolledCost += TTI.getUserCost(I); 430 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 431 << Iteration << "): "); 432 LLVM_DEBUG(I->dump()); 433 } 434 435 // We must count the cost of every operand which is not free, 436 // recursively. If we reach a loop PHI node, simply add it to the set 437 // to be considered on the next iteration (backwards!). 438 for (Value *Op : I->operands()) { 439 // Check whether this operand is free due to being a constant or 440 // outside the loop. 441 auto *OpI = dyn_cast<Instruction>(Op); 442 if (!OpI || !L->contains(OpI)) 443 continue; 444 445 // Otherwise accumulate its cost. 446 CostWorklist.push_back(OpI); 447 } 448 } while (!CostWorklist.empty()); 449 450 if (PHIUsedList.empty()) 451 // We've exhausted the search. 452 break; 453 454 assert(Iteration > 0 && 455 "Cannot track PHI-used values past the first iteration!"); 456 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 457 PHIUsedList.clear(); 458 } 459 }; 460 461 // Ensure that we don't violate the loop structure invariants relied on by 462 // this analysis. 463 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 464 assert(L->isLCSSAForm(DT) && 465 "Must have loops in LCSSA form to track live-out values."); 466 467 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 468 469 // Simulate execution of each iteration of the loop counting instructions, 470 // which would be simplified. 471 // Since the same load will take different values on different iterations, 472 // we literally have to go through all loop's iterations. 473 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 474 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 475 476 // Prepare for the iteration by collecting any simplified entry or backedge 477 // inputs. 478 for (Instruction &I : *L->getHeader()) { 479 auto *PHI = dyn_cast<PHINode>(&I); 480 if (!PHI) 481 break; 482 483 // The loop header PHI nodes must have exactly two input: one from the 484 // loop preheader and one from the loop latch. 485 assert( 486 PHI->getNumIncomingValues() == 2 && 487 "Must have an incoming value only for the preheader and the latch."); 488 489 Value *V = PHI->getIncomingValueForBlock( 490 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 491 Constant *C = dyn_cast<Constant>(V); 492 if (Iteration != 0 && !C) 493 C = SimplifiedValues.lookup(V); 494 if (C) 495 SimplifiedInputValues.push_back({PHI, C}); 496 } 497 498 // Now clear and re-populate the map for the next iteration. 499 SimplifiedValues.clear(); 500 while (!SimplifiedInputValues.empty()) 501 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 502 503 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 504 505 BBWorklist.clear(); 506 BBWorklist.insert(L->getHeader()); 507 // Note that we *must not* cache the size, this loop grows the worklist. 508 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 509 BasicBlock *BB = BBWorklist[Idx]; 510 511 // Visit all instructions in the given basic block and try to simplify 512 // it. We don't change the actual IR, just count optimization 513 // opportunities. 514 for (Instruction &I : *BB) { 515 // These won't get into the final code - don't even try calculating the 516 // cost for them. 517 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 518 continue; 519 520 // Track this instruction's expected baseline cost when executing the 521 // rolled loop form. 522 RolledDynamicCost += TTI.getUserCost(&I); 523 524 // Visit the instruction to analyze its loop cost after unrolling, 525 // and if the visitor returns true, mark the instruction as free after 526 // unrolling and continue. 527 bool IsFree = Analyzer.visit(I); 528 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 529 (unsigned)IsFree, 530 /*IsCounted*/ false}).second; 531 (void)Inserted; 532 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 533 534 if (IsFree) 535 continue; 536 537 // Can't properly model a cost of a call. 538 // FIXME: With a proper cost model we should be able to do it. 539 if (auto *CI = dyn_cast<CallInst>(&I)) { 540 const Function *Callee = CI->getCalledFunction(); 541 if (!Callee || TTI.isLoweredToCall(Callee)) { 542 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 543 return None; 544 } 545 } 546 547 // If the instruction might have a side-effect recursively account for 548 // the cost of it and all the instructions leading up to it. 549 if (I.mayHaveSideEffects()) 550 AddCostRecursively(I, Iteration); 551 552 // If unrolled body turns out to be too big, bail out. 553 if (UnrolledCost > MaxUnrolledLoopSize) { 554 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 555 << " UnrolledCost: " << UnrolledCost 556 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 557 << "\n"); 558 return None; 559 } 560 } 561 562 Instruction *TI = BB->getTerminator(); 563 564 // Add in the live successors by first checking whether we have terminator 565 // that may be simplified based on the values simplified by this call. 566 BasicBlock *KnownSucc = nullptr; 567 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 568 if (BI->isConditional()) { 569 if (Constant *SimpleCond = 570 SimplifiedValues.lookup(BI->getCondition())) { 571 // Just take the first successor if condition is undef 572 if (isa<UndefValue>(SimpleCond)) 573 KnownSucc = BI->getSuccessor(0); 574 else if (ConstantInt *SimpleCondVal = 575 dyn_cast<ConstantInt>(SimpleCond)) 576 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 577 } 578 } 579 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 580 if (Constant *SimpleCond = 581 SimplifiedValues.lookup(SI->getCondition())) { 582 // Just take the first successor if condition is undef 583 if (isa<UndefValue>(SimpleCond)) 584 KnownSucc = SI->getSuccessor(0); 585 else if (ConstantInt *SimpleCondVal = 586 dyn_cast<ConstantInt>(SimpleCond)) 587 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 588 } 589 } 590 if (KnownSucc) { 591 if (L->contains(KnownSucc)) 592 BBWorklist.insert(KnownSucc); 593 else 594 ExitWorklist.insert({BB, KnownSucc}); 595 continue; 596 } 597 598 // Add BB's successors to the worklist. 599 for (BasicBlock *Succ : successors(BB)) 600 if (L->contains(Succ)) 601 BBWorklist.insert(Succ); 602 else 603 ExitWorklist.insert({BB, Succ}); 604 AddCostRecursively(*TI, Iteration); 605 } 606 607 // If we found no optimization opportunities on the first iteration, we 608 // won't find them on later ones too. 609 if (UnrolledCost == RolledDynamicCost) { 610 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 611 << " UnrolledCost: " << UnrolledCost << "\n"); 612 return None; 613 } 614 } 615 616 while (!ExitWorklist.empty()) { 617 BasicBlock *ExitingBB, *ExitBB; 618 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 619 620 for (Instruction &I : *ExitBB) { 621 auto *PN = dyn_cast<PHINode>(&I); 622 if (!PN) 623 break; 624 625 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 626 if (auto *OpI = dyn_cast<Instruction>(Op)) 627 if (L->contains(OpI)) 628 AddCostRecursively(*OpI, TripCount - 1); 629 } 630 } 631 632 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 633 << "UnrolledCost: " << UnrolledCost << ", " 634 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 635 return {{UnrolledCost, RolledDynamicCost}}; 636 } 637 638 /// ApproximateLoopSize - Approximate the size of the loop. 639 unsigned llvm::ApproximateLoopSize( 640 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 641 const TargetTransformInfo &TTI, 642 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 643 CodeMetrics Metrics; 644 for (BasicBlock *BB : L->blocks()) 645 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 646 NumCalls = Metrics.NumInlineCandidates; 647 NotDuplicatable = Metrics.notDuplicatable; 648 Convergent = Metrics.convergent; 649 650 unsigned LoopSize = Metrics.NumInsts; 651 652 // Don't allow an estimate of size zero. This would allows unrolling of loops 653 // with huge iteration counts, which is a compile time problem even if it's 654 // not a problem for code quality. Also, the code using this size may assume 655 // that each loop has at least three instructions (likely a conditional 656 // branch, a comparison feeding that branch, and some kind of loop increment 657 // feeding that comparison instruction). 658 LoopSize = std::max(LoopSize, BEInsns + 1); 659 660 return LoopSize; 661 } 662 663 // Returns the loop hint metadata node with the given name (for example, 664 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 665 // returned. 666 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 667 if (MDNode *LoopID = L->getLoopID()) 668 return GetUnrollMetadata(LoopID, Name); 669 return nullptr; 670 } 671 672 // Returns true if the loop has an unroll(full) pragma. 673 static bool HasUnrollFullPragma(const Loop *L) { 674 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 675 } 676 677 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 678 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 679 static bool HasUnrollEnablePragma(const Loop *L) { 680 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 681 } 682 683 // Returns true if the loop has an runtime unroll(disable) pragma. 684 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 685 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 686 } 687 688 // If loop has an unroll_count pragma return the (necessarily 689 // positive) value from the pragma. Otherwise return 0. 690 static unsigned UnrollCountPragmaValue(const Loop *L) { 691 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 692 if (MD) { 693 assert(MD->getNumOperands() == 2 && 694 "Unroll count hint metadata should have two operands."); 695 unsigned Count = 696 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 697 assert(Count >= 1 && "Unroll count must be positive."); 698 return Count; 699 } 700 return 0; 701 } 702 703 // Computes the boosting factor for complete unrolling. 704 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 705 // be beneficial to fully unroll the loop even if unrolledcost is large. We 706 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 707 // the unroll threshold. 708 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 709 unsigned MaxPercentThresholdBoost) { 710 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 711 return 100; 712 else if (Cost.UnrolledCost != 0) 713 // The boosting factor is RolledDynamicCost / UnrolledCost 714 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 715 MaxPercentThresholdBoost); 716 else 717 return MaxPercentThresholdBoost; 718 } 719 720 // Returns loop size estimation for unrolled loop. 721 static uint64_t getUnrolledLoopSize( 722 unsigned LoopSize, 723 TargetTransformInfo::UnrollingPreferences &UP) { 724 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 725 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 726 } 727 728 // Returns true if unroll count was set explicitly. 729 // Calculates unroll count and writes it to UP.Count. 730 // Unless IgnoreUser is true, will also use metadata and command-line options 731 // that are specific to to the LoopUnroll pass (which, for instance, are 732 // irrelevant for the LoopUnrollAndJam pass). 733 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 734 // many LoopUnroll-specific options. The shared functionality should be 735 // refactored into it own function. 736 bool llvm::computeUnrollCount( 737 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 738 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 739 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 740 unsigned &TripMultiple, unsigned LoopSize, 741 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 742 743 // Check for explicit Count. 744 // 1st priority is unroll count set by "unroll-count" option. 745 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 746 if (UserUnrollCount) { 747 UP.Count = UnrollCount; 748 UP.AllowExpensiveTripCount = true; 749 UP.Force = true; 750 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 751 return true; 752 } 753 754 // 2nd priority is unroll count set by pragma. 755 unsigned PragmaCount = UnrollCountPragmaValue(L); 756 if (PragmaCount > 0) { 757 UP.Count = PragmaCount; 758 UP.Runtime = true; 759 UP.AllowExpensiveTripCount = true; 760 UP.Force = true; 761 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 762 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 763 return true; 764 } 765 bool PragmaFullUnroll = HasUnrollFullPragma(L); 766 if (PragmaFullUnroll && TripCount != 0) { 767 UP.Count = TripCount; 768 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 769 return false; 770 } 771 772 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 773 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 774 PragmaEnableUnroll || UserUnrollCount; 775 776 if (ExplicitUnroll && TripCount != 0) { 777 // If the loop has an unrolling pragma, we want to be more aggressive with 778 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 779 // value which is larger than the default limits. 780 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 781 UP.PartialThreshold = 782 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 783 } 784 785 // 3rd priority is full unroll count. 786 // Full unroll makes sense only when TripCount or its upper bound could be 787 // statically calculated. 788 // Also we need to check if we exceed FullUnrollMaxCount. 789 // If using the upper bound to unroll, TripMultiple should be set to 1 because 790 // we do not know when loop may exit. 791 // MaxTripCount and ExactTripCount cannot both be non zero since we only 792 // compute the former when the latter is zero. 793 unsigned ExactTripCount = TripCount; 794 assert((ExactTripCount == 0 || MaxTripCount == 0) && 795 "ExtractTripCount and MaxTripCount cannot both be non zero."); 796 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 797 UP.Count = FullUnrollTripCount; 798 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 799 // When computing the unrolled size, note that BEInsns are not replicated 800 // like the rest of the loop body. 801 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 802 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 803 TripCount = FullUnrollTripCount; 804 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 805 return ExplicitUnroll; 806 } else { 807 // The loop isn't that small, but we still can fully unroll it if that 808 // helps to remove a significant number of instructions. 809 // To check that, run additional analysis on the loop. 810 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 811 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 812 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 813 unsigned Boost = 814 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 815 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 816 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 817 TripCount = FullUnrollTripCount; 818 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 819 return ExplicitUnroll; 820 } 821 } 822 } 823 } 824 825 // 4th priority is loop peeling. 826 computePeelCount(L, LoopSize, UP, TripCount, SE); 827 if (UP.PeelCount) { 828 UP.Runtime = false; 829 UP.Count = 1; 830 return ExplicitUnroll; 831 } 832 833 // 5th priority is partial unrolling. 834 // Try partial unroll only when TripCount could be statically calculated. 835 if (TripCount) { 836 UP.Partial |= ExplicitUnroll; 837 if (!UP.Partial) { 838 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 839 << "-unroll-allow-partial not given\n"); 840 UP.Count = 0; 841 return false; 842 } 843 if (UP.Count == 0) 844 UP.Count = TripCount; 845 if (UP.PartialThreshold != NoThreshold) { 846 // Reduce unroll count to be modulo of TripCount for partial unrolling. 847 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 848 UP.Count = 849 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 850 (LoopSize - UP.BEInsns); 851 if (UP.Count > UP.MaxCount) 852 UP.Count = UP.MaxCount; 853 while (UP.Count != 0 && TripCount % UP.Count != 0) 854 UP.Count--; 855 if (UP.AllowRemainder && UP.Count <= 1) { 856 // If there is no Count that is modulo of TripCount, set Count to 857 // largest power-of-two factor that satisfies the threshold limit. 858 // As we'll create fixup loop, do the type of unrolling only if 859 // remainder loop is allowed. 860 UP.Count = UP.DefaultUnrollRuntimeCount; 861 while (UP.Count != 0 && 862 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 863 UP.Count >>= 1; 864 } 865 if (UP.Count < 2) { 866 if (PragmaEnableUnroll) 867 ORE->emit([&]() { 868 return OptimizationRemarkMissed(DEBUG_TYPE, 869 "UnrollAsDirectedTooLarge", 870 L->getStartLoc(), L->getHeader()) 871 << "Unable to unroll loop as directed by unroll(enable) " 872 "pragma " 873 "because unrolled size is too large."; 874 }); 875 UP.Count = 0; 876 } 877 } else { 878 UP.Count = TripCount; 879 } 880 if (UP.Count > UP.MaxCount) 881 UP.Count = UP.MaxCount; 882 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 883 UP.Count != TripCount) 884 ORE->emit([&]() { 885 return OptimizationRemarkMissed(DEBUG_TYPE, 886 "FullUnrollAsDirectedTooLarge", 887 L->getStartLoc(), L->getHeader()) 888 << "Unable to fully unroll loop as directed by unroll pragma " 889 "because " 890 "unrolled size is too large."; 891 }); 892 return ExplicitUnroll; 893 } 894 assert(TripCount == 0 && 895 "All cases when TripCount is constant should be covered here."); 896 if (PragmaFullUnroll) 897 ORE->emit([&]() { 898 return OptimizationRemarkMissed( 899 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 900 L->getStartLoc(), L->getHeader()) 901 << "Unable to fully unroll loop as directed by unroll(full) " 902 "pragma " 903 "because loop has a runtime trip count."; 904 }); 905 906 // 6th priority is runtime unrolling. 907 // Don't unroll a runtime trip count loop when it is disabled. 908 if (HasRuntimeUnrollDisablePragma(L)) { 909 UP.Count = 0; 910 return false; 911 } 912 913 // Check if the runtime trip count is too small when profile is available. 914 if (L->getHeader()->getParent()->hasProfileData()) { 915 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 916 if (*ProfileTripCount < FlatLoopTripCountThreshold) 917 return false; 918 else 919 UP.AllowExpensiveTripCount = true; 920 } 921 } 922 923 // Reduce count based on the type of unrolling and the threshold values. 924 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 925 if (!UP.Runtime) { 926 LLVM_DEBUG( 927 dbgs() << " will not try to unroll loop with runtime trip count " 928 << "-unroll-runtime not given\n"); 929 UP.Count = 0; 930 return false; 931 } 932 if (UP.Count == 0) 933 UP.Count = UP.DefaultUnrollRuntimeCount; 934 935 // Reduce unroll count to be the largest power-of-two factor of 936 // the original count which satisfies the threshold limit. 937 while (UP.Count != 0 && 938 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 939 UP.Count >>= 1; 940 941 #ifndef NDEBUG 942 unsigned OrigCount = UP.Count; 943 #endif 944 945 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 946 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 947 UP.Count >>= 1; 948 LLVM_DEBUG( 949 dbgs() << "Remainder loop is restricted (that could architecture " 950 "specific or because the loop contains a convergent " 951 "instruction), so unroll count must divide the trip " 952 "multiple, " 953 << TripMultiple << ". Reducing unroll count from " << OrigCount 954 << " to " << UP.Count << ".\n"); 955 956 using namespace ore; 957 958 if (PragmaCount > 0 && !UP.AllowRemainder) 959 ORE->emit([&]() { 960 return OptimizationRemarkMissed(DEBUG_TYPE, 961 "DifferentUnrollCountFromDirected", 962 L->getStartLoc(), L->getHeader()) 963 << "Unable to unroll loop the number of times directed by " 964 "unroll_count pragma because remainder loop is restricted " 965 "(that could architecture specific or because the loop " 966 "contains a convergent instruction) and so must have an " 967 "unroll " 968 "count that divides the loop trip multiple of " 969 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 970 << NV("UnrollCount", UP.Count) << " time(s)."; 971 }); 972 } 973 974 if (UP.Count > UP.MaxCount) 975 UP.Count = UP.MaxCount; 976 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 977 << "\n"); 978 if (UP.Count < 2) 979 UP.Count = 0; 980 return ExplicitUnroll; 981 } 982 983 static LoopUnrollResult tryToUnrollLoop( 984 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 985 const TargetTransformInfo &TTI, AssumptionCache &AC, 986 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 987 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 988 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 989 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 990 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 991 Optional<bool> ProvidedAllowPeeling, 992 Optional<bool> ProvidedAllowProfileBasedPeeling, 993 Optional<unsigned> ProvidedFullUnrollMaxCount) { 994 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 995 << L->getHeader()->getParent()->getName() << "] Loop %" 996 << L->getHeader()->getName() << "\n"); 997 TransformationMode TM = hasUnrollTransformation(L); 998 if (TM & TM_Disable) 999 return LoopUnrollResult::Unmodified; 1000 if (!L->isLoopSimplifyForm()) { 1001 LLVM_DEBUG( 1002 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1003 return LoopUnrollResult::Unmodified; 1004 } 1005 1006 // When automtatic unrolling is disabled, do not unroll unless overridden for 1007 // this loop. 1008 if (OnlyWhenForced && !(TM & TM_Enable)) 1009 return LoopUnrollResult::Unmodified; 1010 1011 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1012 unsigned NumInlineCandidates; 1013 bool NotDuplicatable; 1014 bool Convergent; 1015 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1016 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1017 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1018 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1019 ProvidedFullUnrollMaxCount); 1020 1021 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1022 // as threshold later on. 1023 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1024 !OptForSize) 1025 return LoopUnrollResult::Unmodified; 1026 1027 SmallPtrSet<const Value *, 32> EphValues; 1028 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1029 1030 unsigned LoopSize = 1031 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1032 TTI, EphValues, UP.BEInsns); 1033 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1034 if (NotDuplicatable) { 1035 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1036 << " instructions.\n"); 1037 return LoopUnrollResult::Unmodified; 1038 } 1039 1040 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1041 // later), to (fully) unroll loops, if it does not increase code size. 1042 if (OptForSize) 1043 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1044 1045 if (NumInlineCandidates != 0) { 1046 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1047 return LoopUnrollResult::Unmodified; 1048 } 1049 1050 // Find trip count and trip multiple if count is not available 1051 unsigned TripCount = 0; 1052 unsigned MaxTripCount = 0; 1053 unsigned TripMultiple = 1; 1054 // If there are multiple exiting blocks but one of them is the latch, use the 1055 // latch for the trip count estimation. Otherwise insist on a single exiting 1056 // block for the trip count estimation. 1057 BasicBlock *ExitingBlock = L->getLoopLatch(); 1058 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1059 ExitingBlock = L->getExitingBlock(); 1060 if (ExitingBlock) { 1061 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1062 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1063 } 1064 1065 // If the loop contains a convergent operation, the prelude we'd add 1066 // to do the first few instructions before we hit the unrolled loop 1067 // is unsafe -- it adds a control-flow dependency to the convergent 1068 // operation. Therefore restrict remainder loop (try unrollig without). 1069 // 1070 // TODO: This is quite conservative. In practice, convergent_op() 1071 // is likely to be called unconditionally in the loop. In this 1072 // case, the program would be ill-formed (on most architectures) 1073 // unless n were the same on all threads in a thread group. 1074 // Assuming n is the same on all threads, any kind of unrolling is 1075 // safe. But currently llvm's notion of convergence isn't powerful 1076 // enough to express this. 1077 if (Convergent) 1078 UP.AllowRemainder = false; 1079 1080 // Try to find the trip count upper bound if we cannot find the exact trip 1081 // count. 1082 bool MaxOrZero = false; 1083 if (!TripCount) { 1084 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1085 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1086 // We can unroll by the upper bound amount if it's generally allowed or if 1087 // we know that the loop is executed either the upper bound or zero times. 1088 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1089 // loop tests remains the same compared to the non-unrolled version, whereas 1090 // the generic upper bound unrolling keeps all but the last loop test so the 1091 // number of loop tests goes up which may end up being worse on targets with 1092 // constrained branch predictor resources so is controlled by an option.) 1093 // In addition we only unroll small upper bounds. 1094 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1095 MaxTripCount = 0; 1096 } 1097 } 1098 1099 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1100 // fully unroll the loop. 1101 bool UseUpperBound = false; 1102 bool IsCountSetExplicitly = computeUnrollCount( 1103 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1104 TripMultiple, LoopSize, UP, UseUpperBound); 1105 if (!UP.Count) 1106 return LoopUnrollResult::Unmodified; 1107 // Unroll factor (Count) must be less or equal to TripCount. 1108 if (TripCount && UP.Count > TripCount) 1109 UP.Count = TripCount; 1110 1111 // Save loop properties before it is transformed. 1112 MDNode *OrigLoopID = L->getLoopID(); 1113 1114 // Unroll the loop. 1115 Loop *RemainderLoop = nullptr; 1116 LoopUnrollResult UnrollResult = UnrollLoop( 1117 L, 1118 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1119 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1120 ForgetAllSCEV}, 1121 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1122 if (UnrollResult == LoopUnrollResult::Unmodified) 1123 return LoopUnrollResult::Unmodified; 1124 1125 if (RemainderLoop) { 1126 Optional<MDNode *> RemainderLoopID = 1127 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1128 LLVMLoopUnrollFollowupRemainder}); 1129 if (RemainderLoopID.hasValue()) 1130 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1131 } 1132 1133 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1134 Optional<MDNode *> NewLoopID = 1135 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1136 LLVMLoopUnrollFollowupUnrolled}); 1137 if (NewLoopID.hasValue()) { 1138 L->setLoopID(NewLoopID.getValue()); 1139 1140 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1141 // explicitly. 1142 return UnrollResult; 1143 } 1144 } 1145 1146 // If loop has an unroll count pragma or unrolled by explicitly set count 1147 // mark loop as unrolled to prevent unrolling beyond that requested. 1148 // If the loop was peeled, we already "used up" the profile information 1149 // we had, so we don't want to unroll or peel again. 1150 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1151 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1152 L->setLoopAlreadyUnrolled(); 1153 1154 return UnrollResult; 1155 } 1156 1157 namespace { 1158 1159 class LoopUnroll : public LoopPass { 1160 public: 1161 static char ID; // Pass ID, replacement for typeid 1162 1163 int OptLevel; 1164 1165 /// If false, use a cost model to determine whether unrolling of a loop is 1166 /// profitable. If true, only loops that explicitly request unrolling via 1167 /// metadata are considered. All other loops are skipped. 1168 bool OnlyWhenForced; 1169 1170 /// If false, when SCEV is invalidated, only forget everything in the 1171 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1172 /// Otherwise, forgetAllLoops and rebuild when needed next. 1173 bool ForgetAllSCEV; 1174 1175 Optional<unsigned> ProvidedCount; 1176 Optional<unsigned> ProvidedThreshold; 1177 Optional<bool> ProvidedAllowPartial; 1178 Optional<bool> ProvidedRuntime; 1179 Optional<bool> ProvidedUpperBound; 1180 Optional<bool> ProvidedAllowPeeling; 1181 Optional<bool> ProvidedAllowProfileBasedPeeling; 1182 Optional<unsigned> ProvidedFullUnrollMaxCount; 1183 1184 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1185 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1186 Optional<unsigned> Count = None, 1187 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1188 Optional<bool> UpperBound = None, 1189 Optional<bool> AllowPeeling = None, 1190 Optional<bool> AllowProfileBasedPeeling = None, 1191 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1192 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1193 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1194 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1195 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1196 ProvidedAllowPeeling(AllowPeeling), 1197 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1198 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1199 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1200 } 1201 1202 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1203 if (skipLoop(L)) 1204 return false; 1205 1206 Function &F = *L->getHeader()->getParent(); 1207 1208 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1209 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1210 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1211 const TargetTransformInfo &TTI = 1212 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1213 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1214 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1215 // pass. Function analyses need to be preserved across loop transformations 1216 // but ORE cannot be preserved (see comment before the pass definition). 1217 OptimizationRemarkEmitter ORE(&F); 1218 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1219 1220 LoopUnrollResult Result = tryToUnrollLoop( 1221 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1222 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1223 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1224 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1225 ProvidedFullUnrollMaxCount); 1226 1227 if (Result == LoopUnrollResult::FullyUnrolled) 1228 LPM.markLoopAsDeleted(*L); 1229 1230 return Result != LoopUnrollResult::Unmodified; 1231 } 1232 1233 /// This transformation requires natural loop information & requires that 1234 /// loop preheaders be inserted into the CFG... 1235 void getAnalysisUsage(AnalysisUsage &AU) const override { 1236 AU.addRequired<AssumptionCacheTracker>(); 1237 AU.addRequired<TargetTransformInfoWrapperPass>(); 1238 // FIXME: Loop passes are required to preserve domtree, and for now we just 1239 // recreate dom info if anything gets unrolled. 1240 getLoopAnalysisUsage(AU); 1241 } 1242 }; 1243 1244 } // end anonymous namespace 1245 1246 char LoopUnroll::ID = 0; 1247 1248 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1249 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1250 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1252 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1253 1254 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1255 bool ForgetAllSCEV, int Threshold, int Count, 1256 int AllowPartial, int Runtime, int UpperBound, 1257 int AllowPeeling) { 1258 // TODO: It would make more sense for this function to take the optionals 1259 // directly, but that's dangerous since it would silently break out of tree 1260 // callers. 1261 return new LoopUnroll( 1262 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1263 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1264 Count == -1 ? None : Optional<unsigned>(Count), 1265 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1266 Runtime == -1 ? None : Optional<bool>(Runtime), 1267 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1268 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1269 } 1270 1271 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1272 bool ForgetAllSCEV) { 1273 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1274 0, 0, 0, 0); 1275 } 1276 1277 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1278 LoopStandardAnalysisResults &AR, 1279 LPMUpdater &Updater) { 1280 const auto &FAM = 1281 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1282 Function *F = L.getHeader()->getParent(); 1283 1284 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1285 // FIXME: This should probably be optional rather than required. 1286 if (!ORE) 1287 report_fatal_error( 1288 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1289 "cached at a higher level"); 1290 1291 // Keep track of the previous loop structure so we can identify new loops 1292 // created by unrolling. 1293 Loop *ParentL = L.getParentLoop(); 1294 SmallPtrSet<Loop *, 4> OldLoops; 1295 if (ParentL) 1296 OldLoops.insert(ParentL->begin(), ParentL->end()); 1297 else 1298 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1299 1300 std::string LoopName = L.getName(); 1301 1302 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1303 /*BFI*/ nullptr, /*PSI*/ nullptr, 1304 /*PreserveLCSSA*/ true, OptLevel, 1305 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1306 /*Threshold*/ None, /*AllowPartial*/ false, 1307 /*Runtime*/ false, /*UpperBound*/ false, 1308 /*AllowPeeling*/ false, 1309 /*AllowProfileBasedPeeling*/ false, 1310 /*FullUnrollMaxCount*/ None) != 1311 LoopUnrollResult::Unmodified; 1312 if (!Changed) 1313 return PreservedAnalyses::all(); 1314 1315 // The parent must not be damaged by unrolling! 1316 #ifndef NDEBUG 1317 if (ParentL) 1318 ParentL->verifyLoop(); 1319 #endif 1320 1321 // Unrolling can do several things to introduce new loops into a loop nest: 1322 // - Full unrolling clones child loops within the current loop but then 1323 // removes the current loop making all of the children appear to be new 1324 // sibling loops. 1325 // 1326 // When a new loop appears as a sibling loop after fully unrolling, 1327 // its nesting structure has fundamentally changed and we want to revisit 1328 // it to reflect that. 1329 // 1330 // When unrolling has removed the current loop, we need to tell the 1331 // infrastructure that it is gone. 1332 // 1333 // Finally, we support a debugging/testing mode where we revisit child loops 1334 // as well. These are not expected to require further optimizations as either 1335 // they or the loop they were cloned from have been directly visited already. 1336 // But the debugging mode allows us to check this assumption. 1337 bool IsCurrentLoopValid = false; 1338 SmallVector<Loop *, 4> SibLoops; 1339 if (ParentL) 1340 SibLoops.append(ParentL->begin(), ParentL->end()); 1341 else 1342 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1343 erase_if(SibLoops, [&](Loop *SibLoop) { 1344 if (SibLoop == &L) { 1345 IsCurrentLoopValid = true; 1346 return true; 1347 } 1348 1349 // Otherwise erase the loop from the list if it was in the old loops. 1350 return OldLoops.count(SibLoop) != 0; 1351 }); 1352 Updater.addSiblingLoops(SibLoops); 1353 1354 if (!IsCurrentLoopValid) { 1355 Updater.markLoopAsDeleted(L, LoopName); 1356 } else { 1357 // We can only walk child loops if the current loop remained valid. 1358 if (UnrollRevisitChildLoops) { 1359 // Walk *all* of the child loops. 1360 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1361 Updater.addChildLoops(ChildLoops); 1362 } 1363 } 1364 1365 return getLoopPassPreservedAnalyses(); 1366 } 1367 1368 template <typename RangeT> 1369 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1370 SmallVector<Loop *, 8> Worklist; 1371 // We use an internal worklist to build up the preorder traversal without 1372 // recursion. 1373 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1374 1375 for (Loop *RootL : Loops) { 1376 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1377 assert(PreOrderWorklist.empty() && 1378 "Must start with an empty preorder walk worklist."); 1379 PreOrderWorklist.push_back(RootL); 1380 do { 1381 Loop *L = PreOrderWorklist.pop_back_val(); 1382 PreOrderWorklist.append(L->begin(), L->end()); 1383 PreOrderLoops.push_back(L); 1384 } while (!PreOrderWorklist.empty()); 1385 1386 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1387 PreOrderLoops.clear(); 1388 } 1389 return Worklist; 1390 } 1391 1392 PreservedAnalyses LoopUnrollPass::run(Function &F, 1393 FunctionAnalysisManager &AM) { 1394 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1395 auto &LI = AM.getResult<LoopAnalysis>(F); 1396 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1397 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1398 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1399 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1400 1401 LoopAnalysisManager *LAM = nullptr; 1402 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1403 LAM = &LAMProxy->getManager(); 1404 1405 const ModuleAnalysisManager &MAM = 1406 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1407 ProfileSummaryInfo *PSI = 1408 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1409 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1410 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1411 1412 bool Changed = false; 1413 1414 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1415 // Since simplification may add new inner loops, it has to run before the 1416 // legality and profitability checks. This means running the loop unroller 1417 // will simplify all loops, regardless of whether anything end up being 1418 // unrolled. 1419 for (auto &L : LI) { 1420 Changed |= 1421 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1422 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1423 } 1424 1425 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1426 1427 while (!Worklist.empty()) { 1428 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1429 // from back to front so that we work forward across the CFG, which 1430 // for unrolling is only needed to get optimization remarks emitted in 1431 // a forward order. 1432 Loop &L = *Worklist.pop_back_val(); 1433 #ifndef NDEBUG 1434 Loop *ParentL = L.getParentLoop(); 1435 #endif 1436 1437 // Check if the profile summary indicates that the profiled application 1438 // has a huge working set size, in which case we disable peeling to avoid 1439 // bloating it further. 1440 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1441 if (PSI && PSI->hasHugeWorkingSetSize()) 1442 LocalAllowPeeling = false; 1443 std::string LoopName = L.getName(); 1444 // The API here is quite complex to call and we allow to select some 1445 // flavors of unrolling during construction time (by setting UnrollOpts). 1446 LoopUnrollResult Result = tryToUnrollLoop( 1447 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1448 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1449 UnrollOpts.ForgetSCEV, /*Count*/ None, 1450 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1451 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1452 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1453 Changed |= Result != LoopUnrollResult::Unmodified; 1454 1455 // The parent must not be damaged by unrolling! 1456 #ifndef NDEBUG 1457 if (Result != LoopUnrollResult::Unmodified && ParentL) 1458 ParentL->verifyLoop(); 1459 #endif 1460 1461 // Clear any cached analysis results for L if we removed it completely. 1462 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1463 LAM->clear(L, LoopName); 1464 } 1465 1466 if (!Changed) 1467 return PreservedAnalyses::all(); 1468 1469 return getLoopPassPreservedAnalyses(); 1470 } 1471