xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision a44768858c75ae3e020bb2951af00743ae48742e)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <limits>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-unroll"
73 
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77              " the current top-most loop. This is somtimes preferred to reduce"
78              " compile time."));
79 
80 static cl::opt<unsigned>
81     UnrollThreshold("unroll-threshold", cl::Hidden,
82                     cl::desc("The cost threshold for loop unrolling"));
83 
84 static cl::opt<unsigned> UnrollPartialThreshold(
85     "unroll-partial-threshold", cl::Hidden,
86     cl::desc("The cost threshold for partial loop unrolling"));
87 
88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
89     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
90     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
91              "to the threshold when aggressively unrolling a loop due to the "
92              "dynamic cost savings. If completely unrolling a loop will reduce "
93              "the total runtime from X to Y, we boost the loop unroll "
94              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
95              "X/Y). This limit avoids excessive code bloat."));
96 
97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
98     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
99     cl::desc("Don't allow loop unrolling to simulate more than this number of"
100              "iterations when checking full unroll profitability"));
101 
102 static cl::opt<unsigned> UnrollCount(
103     "unroll-count", cl::Hidden,
104     cl::desc("Use this unroll count for all loops including those with "
105              "unroll_count pragma values, for testing purposes"));
106 
107 static cl::opt<unsigned> UnrollMaxCount(
108     "unroll-max-count", cl::Hidden,
109     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
110              "testing purposes"));
111 
112 static cl::opt<unsigned> UnrollFullMaxCount(
113     "unroll-full-max-count", cl::Hidden,
114     cl::desc(
115         "Set the max unroll count for full unrolling, for testing purposes"));
116 
117 static cl::opt<unsigned> UnrollPeelCount(
118     "unroll-peel-count", cl::Hidden,
119     cl::desc("Set the unroll peeling count, for testing purposes"));
120 
121 static cl::opt<bool>
122     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
123                        cl::desc("Allows loops to be partially unrolled until "
124                                 "-unroll-threshold loop size is reached."));
125 
126 static cl::opt<bool> UnrollAllowRemainder(
127     "unroll-allow-remainder", cl::Hidden,
128     cl::desc("Allow generation of a loop remainder (extra iterations) "
129              "when unrolling a loop."));
130 
131 static cl::opt<bool>
132     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
133                   cl::desc("Unroll loops with run-time trip counts"));
134 
135 static cl::opt<unsigned> UnrollMaxUpperBound(
136     "unroll-max-upperbound", cl::init(8), cl::Hidden,
137     cl::desc(
138         "The max of trip count upper bound that is considered in unrolling"));
139 
140 static cl::opt<unsigned> PragmaUnrollThreshold(
141     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
142     cl::desc("Unrolled size limit for loops with an unroll(full) or "
143              "unroll_count pragma."));
144 
145 static cl::opt<unsigned> FlatLoopTripCountThreshold(
146     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
147     cl::desc("If the runtime tripcount for the loop is lower than the "
148              "threshold, the loop is considered as flat and will be less "
149              "aggressively unrolled."));
150 
151 static cl::opt<bool>
152     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
153                        cl::desc("Allows loops to be peeled when the dynamic "
154                                 "trip count is known to be low."));
155 
156 static cl::opt<bool> UnrollUnrollRemainder(
157   "unroll-remainder", cl::Hidden,
158   cl::desc("Allow the loop remainder to be unrolled."));
159 
160 // This option isn't ever intended to be enabled, it serves to allow
161 // experiments to check the assumptions about when this kind of revisit is
162 // necessary.
163 static cl::opt<bool> UnrollRevisitChildLoops(
164     "unroll-revisit-child-loops", cl::Hidden,
165     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
166              "This shouldn't typically be needed as child loops (or their "
167              "clones) were already visited."));
168 
169 /// A magic value for use with the Threshold parameter to indicate
170 /// that the loop unroll should be performed regardless of how much
171 /// code expansion would result.
172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
173 
174 /// Gather the various unrolling parameters based on the defaults, compiler
175 /// flags, TTI overrides and user specified parameters.
176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
177     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
178     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
179     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
180     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
181     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
182     Optional<bool> UserAllowProfileBasedPeeling,
183     Optional<unsigned> UserFullUnrollMaxCount) {
184   TargetTransformInfo::UnrollingPreferences UP;
185 
186   // Set up the defaults
187   UP.Threshold = OptLevel > 2 ? 300 : 150;
188   UP.MaxPercentThresholdBoost = 400;
189   UP.OptSizeThreshold = 0;
190   UP.PartialThreshold = 150;
191   UP.PartialOptSizeThreshold = 0;
192   UP.Count = 0;
193   UP.PeelCount = 0;
194   UP.DefaultUnrollRuntimeCount = 8;
195   UP.MaxCount = std::numeric_limits<unsigned>::max();
196   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
197   UP.BEInsns = 2;
198   UP.Partial = false;
199   UP.Runtime = false;
200   UP.AllowRemainder = true;
201   UP.UnrollRemainder = false;
202   UP.AllowExpensiveTripCount = false;
203   UP.Force = false;
204   UP.UpperBound = false;
205   UP.AllowPeeling = true;
206   UP.UnrollAndJam = false;
207   UP.PeelProfiledIterations = true;
208   UP.UnrollAndJamInnerLoopThreshold = 60;
209 
210   // Override with any target specific settings
211   TTI.getUnrollingPreferences(L, SE, UP);
212 
213   // Apply size attributes
214   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
215                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
216   if (OptForSize) {
217     UP.Threshold = UP.OptSizeThreshold;
218     UP.PartialThreshold = UP.PartialOptSizeThreshold;
219     UP.MaxPercentThresholdBoost = 100;
220   }
221 
222   // Apply any user values specified by cl::opt
223   if (UnrollThreshold.getNumOccurrences() > 0)
224     UP.Threshold = UnrollThreshold;
225   if (UnrollPartialThreshold.getNumOccurrences() > 0)
226     UP.PartialThreshold = UnrollPartialThreshold;
227   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
228     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
229   if (UnrollMaxCount.getNumOccurrences() > 0)
230     UP.MaxCount = UnrollMaxCount;
231   if (UnrollFullMaxCount.getNumOccurrences() > 0)
232     UP.FullUnrollMaxCount = UnrollFullMaxCount;
233   if (UnrollPeelCount.getNumOccurrences() > 0)
234     UP.PeelCount = UnrollPeelCount;
235   if (UnrollAllowPartial.getNumOccurrences() > 0)
236     UP.Partial = UnrollAllowPartial;
237   if (UnrollAllowRemainder.getNumOccurrences() > 0)
238     UP.AllowRemainder = UnrollAllowRemainder;
239   if (UnrollRuntime.getNumOccurrences() > 0)
240     UP.Runtime = UnrollRuntime;
241   if (UnrollMaxUpperBound == 0)
242     UP.UpperBound = false;
243   if (UnrollAllowPeeling.getNumOccurrences() > 0)
244     UP.AllowPeeling = UnrollAllowPeeling;
245   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
246     UP.UnrollRemainder = UnrollUnrollRemainder;
247 
248   // Apply user values provided by argument
249   if (UserThreshold.hasValue()) {
250     UP.Threshold = *UserThreshold;
251     UP.PartialThreshold = *UserThreshold;
252   }
253   if (UserCount.hasValue())
254     UP.Count = *UserCount;
255   if (UserAllowPartial.hasValue())
256     UP.Partial = *UserAllowPartial;
257   if (UserRuntime.hasValue())
258     UP.Runtime = *UserRuntime;
259   if (UserUpperBound.hasValue())
260     UP.UpperBound = *UserUpperBound;
261   if (UserAllowPeeling.hasValue())
262     UP.AllowPeeling = *UserAllowPeeling;
263   if (UserAllowProfileBasedPeeling.hasValue())
264     UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
265   if (UserFullUnrollMaxCount.hasValue())
266     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
267 
268   return UP;
269 }
270 
271 namespace {
272 
273 /// A struct to densely store the state of an instruction after unrolling at
274 /// each iteration.
275 ///
276 /// This is designed to work like a tuple of <Instruction *, int> for the
277 /// purposes of hashing and lookup, but to be able to associate two boolean
278 /// states with each key.
279 struct UnrolledInstState {
280   Instruction *I;
281   int Iteration : 30;
282   unsigned IsFree : 1;
283   unsigned IsCounted : 1;
284 };
285 
286 /// Hashing and equality testing for a set of the instruction states.
287 struct UnrolledInstStateKeyInfo {
288   using PtrInfo = DenseMapInfo<Instruction *>;
289   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
290 
291   static inline UnrolledInstState getEmptyKey() {
292     return {PtrInfo::getEmptyKey(), 0, 0, 0};
293   }
294 
295   static inline UnrolledInstState getTombstoneKey() {
296     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
297   }
298 
299   static inline unsigned getHashValue(const UnrolledInstState &S) {
300     return PairInfo::getHashValue({S.I, S.Iteration});
301   }
302 
303   static inline bool isEqual(const UnrolledInstState &LHS,
304                              const UnrolledInstState &RHS) {
305     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
306   }
307 };
308 
309 struct EstimatedUnrollCost {
310   /// The estimated cost after unrolling.
311   unsigned UnrolledCost;
312 
313   /// The estimated dynamic cost of executing the instructions in the
314   /// rolled form.
315   unsigned RolledDynamicCost;
316 };
317 
318 } // end anonymous namespace
319 
320 /// Figure out if the loop is worth full unrolling.
321 ///
322 /// Complete loop unrolling can make some loads constant, and we need to know
323 /// if that would expose any further optimization opportunities.  This routine
324 /// estimates this optimization.  It computes cost of unrolled loop
325 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
326 /// dynamic cost we mean that we won't count costs of blocks that are known not
327 /// to be executed (i.e. if we have a branch in the loop and we know that at the
328 /// given iteration its condition would be resolved to true, we won't add up the
329 /// cost of the 'false'-block).
330 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
331 /// the analysis failed (no benefits expected from the unrolling, or the loop is
332 /// too big to analyze), the returned value is None.
333 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
334     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
335     const SmallPtrSetImpl<const Value *> &EphValues,
336     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
337   // We want to be able to scale offsets by the trip count and add more offsets
338   // to them without checking for overflows, and we already don't want to
339   // analyze *massive* trip counts, so we force the max to be reasonably small.
340   assert(UnrollMaxIterationsCountToAnalyze <
341              (unsigned)(std::numeric_limits<int>::max() / 2) &&
342          "The unroll iterations max is too large!");
343 
344   // Only analyze inner loops. We can't properly estimate cost of nested loops
345   // and we won't visit inner loops again anyway.
346   if (!L->empty())
347     return None;
348 
349   // Don't simulate loops with a big or unknown tripcount
350   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
351       TripCount > UnrollMaxIterationsCountToAnalyze)
352     return None;
353 
354   SmallSetVector<BasicBlock *, 16> BBWorklist;
355   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
356   DenseMap<Value *, Constant *> SimplifiedValues;
357   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
358 
359   // The estimated cost of the unrolled form of the loop. We try to estimate
360   // this by simplifying as much as we can while computing the estimate.
361   unsigned UnrolledCost = 0;
362 
363   // We also track the estimated dynamic (that is, actually executed) cost in
364   // the rolled form. This helps identify cases when the savings from unrolling
365   // aren't just exposing dead control flows, but actual reduced dynamic
366   // instructions due to the simplifications which we expect to occur after
367   // unrolling.
368   unsigned RolledDynamicCost = 0;
369 
370   // We track the simplification of each instruction in each iteration. We use
371   // this to recursively merge costs into the unrolled cost on-demand so that
372   // we don't count the cost of any dead code. This is essentially a map from
373   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
374   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
375 
376   // A small worklist used to accumulate cost of instructions from each
377   // observable and reached root in the loop.
378   SmallVector<Instruction *, 16> CostWorklist;
379 
380   // PHI-used worklist used between iterations while accumulating cost.
381   SmallVector<Instruction *, 4> PHIUsedList;
382 
383   // Helper function to accumulate cost for instructions in the loop.
384   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
385     assert(Iteration >= 0 && "Cannot have a negative iteration!");
386     assert(CostWorklist.empty() && "Must start with an empty cost list");
387     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
388     CostWorklist.push_back(&RootI);
389     for (;; --Iteration) {
390       do {
391         Instruction *I = CostWorklist.pop_back_val();
392 
393         // InstCostMap only uses I and Iteration as a key, the other two values
394         // don't matter here.
395         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
396         if (CostIter == InstCostMap.end())
397           // If an input to a PHI node comes from a dead path through the loop
398           // we may have no cost data for it here. What that actually means is
399           // that it is free.
400           continue;
401         auto &Cost = *CostIter;
402         if (Cost.IsCounted)
403           // Already counted this instruction.
404           continue;
405 
406         // Mark that we are counting the cost of this instruction now.
407         Cost.IsCounted = true;
408 
409         // If this is a PHI node in the loop header, just add it to the PHI set.
410         if (auto *PhiI = dyn_cast<PHINode>(I))
411           if (PhiI->getParent() == L->getHeader()) {
412             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
413                                   "inherently simplify during unrolling.");
414             if (Iteration == 0)
415               continue;
416 
417             // Push the incoming value from the backedge into the PHI used list
418             // if it is an in-loop instruction. We'll use this to populate the
419             // cost worklist for the next iteration (as we count backwards).
420             if (auto *OpI = dyn_cast<Instruction>(
421                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
422               if (L->contains(OpI))
423                 PHIUsedList.push_back(OpI);
424             continue;
425           }
426 
427         // First accumulate the cost of this instruction.
428         if (!Cost.IsFree) {
429           UnrolledCost += TTI.getUserCost(I);
430           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
431                             << Iteration << "): ");
432           LLVM_DEBUG(I->dump());
433         }
434 
435         // We must count the cost of every operand which is not free,
436         // recursively. If we reach a loop PHI node, simply add it to the set
437         // to be considered on the next iteration (backwards!).
438         for (Value *Op : I->operands()) {
439           // Check whether this operand is free due to being a constant or
440           // outside the loop.
441           auto *OpI = dyn_cast<Instruction>(Op);
442           if (!OpI || !L->contains(OpI))
443             continue;
444 
445           // Otherwise accumulate its cost.
446           CostWorklist.push_back(OpI);
447         }
448       } while (!CostWorklist.empty());
449 
450       if (PHIUsedList.empty())
451         // We've exhausted the search.
452         break;
453 
454       assert(Iteration > 0 &&
455              "Cannot track PHI-used values past the first iteration!");
456       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
457       PHIUsedList.clear();
458     }
459   };
460 
461   // Ensure that we don't violate the loop structure invariants relied on by
462   // this analysis.
463   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
464   assert(L->isLCSSAForm(DT) &&
465          "Must have loops in LCSSA form to track live-out values.");
466 
467   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
468 
469   // Simulate execution of each iteration of the loop counting instructions,
470   // which would be simplified.
471   // Since the same load will take different values on different iterations,
472   // we literally have to go through all loop's iterations.
473   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
474     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
475 
476     // Prepare for the iteration by collecting any simplified entry or backedge
477     // inputs.
478     for (Instruction &I : *L->getHeader()) {
479       auto *PHI = dyn_cast<PHINode>(&I);
480       if (!PHI)
481         break;
482 
483       // The loop header PHI nodes must have exactly two input: one from the
484       // loop preheader and one from the loop latch.
485       assert(
486           PHI->getNumIncomingValues() == 2 &&
487           "Must have an incoming value only for the preheader and the latch.");
488 
489       Value *V = PHI->getIncomingValueForBlock(
490           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
491       Constant *C = dyn_cast<Constant>(V);
492       if (Iteration != 0 && !C)
493         C = SimplifiedValues.lookup(V);
494       if (C)
495         SimplifiedInputValues.push_back({PHI, C});
496     }
497 
498     // Now clear and re-populate the map for the next iteration.
499     SimplifiedValues.clear();
500     while (!SimplifiedInputValues.empty())
501       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
502 
503     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
504 
505     BBWorklist.clear();
506     BBWorklist.insert(L->getHeader());
507     // Note that we *must not* cache the size, this loop grows the worklist.
508     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
509       BasicBlock *BB = BBWorklist[Idx];
510 
511       // Visit all instructions in the given basic block and try to simplify
512       // it.  We don't change the actual IR, just count optimization
513       // opportunities.
514       for (Instruction &I : *BB) {
515         // These won't get into the final code - don't even try calculating the
516         // cost for them.
517         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
518           continue;
519 
520         // Track this instruction's expected baseline cost when executing the
521         // rolled loop form.
522         RolledDynamicCost += TTI.getUserCost(&I);
523 
524         // Visit the instruction to analyze its loop cost after unrolling,
525         // and if the visitor returns true, mark the instruction as free after
526         // unrolling and continue.
527         bool IsFree = Analyzer.visit(I);
528         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
529                                            (unsigned)IsFree,
530                                            /*IsCounted*/ false}).second;
531         (void)Inserted;
532         assert(Inserted && "Cannot have a state for an unvisited instruction!");
533 
534         if (IsFree)
535           continue;
536 
537         // Can't properly model a cost of a call.
538         // FIXME: With a proper cost model we should be able to do it.
539         if (auto *CI = dyn_cast<CallInst>(&I)) {
540           const Function *Callee = CI->getCalledFunction();
541           if (!Callee || TTI.isLoweredToCall(Callee)) {
542             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
543             return None;
544           }
545         }
546 
547         // If the instruction might have a side-effect recursively account for
548         // the cost of it and all the instructions leading up to it.
549         if (I.mayHaveSideEffects())
550           AddCostRecursively(I, Iteration);
551 
552         // If unrolled body turns out to be too big, bail out.
553         if (UnrolledCost > MaxUnrolledLoopSize) {
554           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
555                             << "  UnrolledCost: " << UnrolledCost
556                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
557                             << "\n");
558           return None;
559         }
560       }
561 
562       Instruction *TI = BB->getTerminator();
563 
564       // Add in the live successors by first checking whether we have terminator
565       // that may be simplified based on the values simplified by this call.
566       BasicBlock *KnownSucc = nullptr;
567       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
568         if (BI->isConditional()) {
569           if (Constant *SimpleCond =
570                   SimplifiedValues.lookup(BI->getCondition())) {
571             // Just take the first successor if condition is undef
572             if (isa<UndefValue>(SimpleCond))
573               KnownSucc = BI->getSuccessor(0);
574             else if (ConstantInt *SimpleCondVal =
575                          dyn_cast<ConstantInt>(SimpleCond))
576               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
577           }
578         }
579       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
580         if (Constant *SimpleCond =
581                 SimplifiedValues.lookup(SI->getCondition())) {
582           // Just take the first successor if condition is undef
583           if (isa<UndefValue>(SimpleCond))
584             KnownSucc = SI->getSuccessor(0);
585           else if (ConstantInt *SimpleCondVal =
586                        dyn_cast<ConstantInt>(SimpleCond))
587             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
588         }
589       }
590       if (KnownSucc) {
591         if (L->contains(KnownSucc))
592           BBWorklist.insert(KnownSucc);
593         else
594           ExitWorklist.insert({BB, KnownSucc});
595         continue;
596       }
597 
598       // Add BB's successors to the worklist.
599       for (BasicBlock *Succ : successors(BB))
600         if (L->contains(Succ))
601           BBWorklist.insert(Succ);
602         else
603           ExitWorklist.insert({BB, Succ});
604       AddCostRecursively(*TI, Iteration);
605     }
606 
607     // If we found no optimization opportunities on the first iteration, we
608     // won't find them on later ones too.
609     if (UnrolledCost == RolledDynamicCost) {
610       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
611                         << "  UnrolledCost: " << UnrolledCost << "\n");
612       return None;
613     }
614   }
615 
616   while (!ExitWorklist.empty()) {
617     BasicBlock *ExitingBB, *ExitBB;
618     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
619 
620     for (Instruction &I : *ExitBB) {
621       auto *PN = dyn_cast<PHINode>(&I);
622       if (!PN)
623         break;
624 
625       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
626       if (auto *OpI = dyn_cast<Instruction>(Op))
627         if (L->contains(OpI))
628           AddCostRecursively(*OpI, TripCount - 1);
629     }
630   }
631 
632   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
633                     << "UnrolledCost: " << UnrolledCost << ", "
634                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
635   return {{UnrolledCost, RolledDynamicCost}};
636 }
637 
638 /// ApproximateLoopSize - Approximate the size of the loop.
639 unsigned llvm::ApproximateLoopSize(
640     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
641     const TargetTransformInfo &TTI,
642     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
643   CodeMetrics Metrics;
644   for (BasicBlock *BB : L->blocks())
645     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
646   NumCalls = Metrics.NumInlineCandidates;
647   NotDuplicatable = Metrics.notDuplicatable;
648   Convergent = Metrics.convergent;
649 
650   unsigned LoopSize = Metrics.NumInsts;
651 
652   // Don't allow an estimate of size zero.  This would allows unrolling of loops
653   // with huge iteration counts, which is a compile time problem even if it's
654   // not a problem for code quality. Also, the code using this size may assume
655   // that each loop has at least three instructions (likely a conditional
656   // branch, a comparison feeding that branch, and some kind of loop increment
657   // feeding that comparison instruction).
658   LoopSize = std::max(LoopSize, BEInsns + 1);
659 
660   return LoopSize;
661 }
662 
663 // Returns the loop hint metadata node with the given name (for example,
664 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
665 // returned.
666 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
667   if (MDNode *LoopID = L->getLoopID())
668     return GetUnrollMetadata(LoopID, Name);
669   return nullptr;
670 }
671 
672 // Returns true if the loop has an unroll(full) pragma.
673 static bool HasUnrollFullPragma(const Loop *L) {
674   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
675 }
676 
677 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
678 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
679 static bool HasUnrollEnablePragma(const Loop *L) {
680   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
681 }
682 
683 // Returns true if the loop has an runtime unroll(disable) pragma.
684 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
685   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
686 }
687 
688 // If loop has an unroll_count pragma return the (necessarily
689 // positive) value from the pragma.  Otherwise return 0.
690 static unsigned UnrollCountPragmaValue(const Loop *L) {
691   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
692   if (MD) {
693     assert(MD->getNumOperands() == 2 &&
694            "Unroll count hint metadata should have two operands.");
695     unsigned Count =
696         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
697     assert(Count >= 1 && "Unroll count must be positive.");
698     return Count;
699   }
700   return 0;
701 }
702 
703 // Computes the boosting factor for complete unrolling.
704 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
705 // be beneficial to fully unroll the loop even if unrolledcost is large. We
706 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
707 // the unroll threshold.
708 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
709                                             unsigned MaxPercentThresholdBoost) {
710   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
711     return 100;
712   else if (Cost.UnrolledCost != 0)
713     // The boosting factor is RolledDynamicCost / UnrolledCost
714     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
715                     MaxPercentThresholdBoost);
716   else
717     return MaxPercentThresholdBoost;
718 }
719 
720 // Returns loop size estimation for unrolled loop.
721 static uint64_t getUnrolledLoopSize(
722     unsigned LoopSize,
723     TargetTransformInfo::UnrollingPreferences &UP) {
724   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
725   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
726 }
727 
728 // Returns true if unroll count was set explicitly.
729 // Calculates unroll count and writes it to UP.Count.
730 // Unless IgnoreUser is true, will also use metadata and command-line options
731 // that are specific to to the LoopUnroll pass (which, for instance, are
732 // irrelevant for the LoopUnrollAndJam pass).
733 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
734 // many LoopUnroll-specific options. The shared functionality should be
735 // refactored into it own function.
736 bool llvm::computeUnrollCount(
737     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
738     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
739     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
740     unsigned &TripMultiple, unsigned LoopSize,
741     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
742 
743   // Check for explicit Count.
744   // 1st priority is unroll count set by "unroll-count" option.
745   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
746   if (UserUnrollCount) {
747     UP.Count = UnrollCount;
748     UP.AllowExpensiveTripCount = true;
749     UP.Force = true;
750     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
751       return true;
752   }
753 
754   // 2nd priority is unroll count set by pragma.
755   unsigned PragmaCount = UnrollCountPragmaValue(L);
756   if (PragmaCount > 0) {
757     UP.Count = PragmaCount;
758     UP.Runtime = true;
759     UP.AllowExpensiveTripCount = true;
760     UP.Force = true;
761     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
762         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
763       return true;
764   }
765   bool PragmaFullUnroll = HasUnrollFullPragma(L);
766   if (PragmaFullUnroll && TripCount != 0) {
767     UP.Count = TripCount;
768     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
769       return false;
770   }
771 
772   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
773   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
774                         PragmaEnableUnroll || UserUnrollCount;
775 
776   if (ExplicitUnroll && TripCount != 0) {
777     // If the loop has an unrolling pragma, we want to be more aggressive with
778     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
779     // value which is larger than the default limits.
780     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
781     UP.PartialThreshold =
782         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
783   }
784 
785   // 3rd priority is full unroll count.
786   // Full unroll makes sense only when TripCount or its upper bound could be
787   // statically calculated.
788   // Also we need to check if we exceed FullUnrollMaxCount.
789   // If using the upper bound to unroll, TripMultiple should be set to 1 because
790   // we do not know when loop may exit.
791   // MaxTripCount and ExactTripCount cannot both be non zero since we only
792   // compute the former when the latter is zero.
793   unsigned ExactTripCount = TripCount;
794   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
795          "ExtractTripCount and MaxTripCount cannot both be non zero.");
796   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
797   UP.Count = FullUnrollTripCount;
798   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
799     // When computing the unrolled size, note that BEInsns are not replicated
800     // like the rest of the loop body.
801     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
802       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
803       TripCount = FullUnrollTripCount;
804       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
805       return ExplicitUnroll;
806     } else {
807       // The loop isn't that small, but we still can fully unroll it if that
808       // helps to remove a significant number of instructions.
809       // To check that, run additional analysis on the loop.
810       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
811               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
812               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
813         unsigned Boost =
814             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
815         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
816           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
817           TripCount = FullUnrollTripCount;
818           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
819           return ExplicitUnroll;
820         }
821       }
822     }
823   }
824 
825   // 4th priority is loop peeling.
826   computePeelCount(L, LoopSize, UP, TripCount, SE);
827   if (UP.PeelCount) {
828     UP.Runtime = false;
829     UP.Count = 1;
830     return ExplicitUnroll;
831   }
832 
833   // 5th priority is partial unrolling.
834   // Try partial unroll only when TripCount could be statically calculated.
835   if (TripCount) {
836     UP.Partial |= ExplicitUnroll;
837     if (!UP.Partial) {
838       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
839                         << "-unroll-allow-partial not given\n");
840       UP.Count = 0;
841       return false;
842     }
843     if (UP.Count == 0)
844       UP.Count = TripCount;
845     if (UP.PartialThreshold != NoThreshold) {
846       // Reduce unroll count to be modulo of TripCount for partial unrolling.
847       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
848         UP.Count =
849             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
850             (LoopSize - UP.BEInsns);
851       if (UP.Count > UP.MaxCount)
852         UP.Count = UP.MaxCount;
853       while (UP.Count != 0 && TripCount % UP.Count != 0)
854         UP.Count--;
855       if (UP.AllowRemainder && UP.Count <= 1) {
856         // If there is no Count that is modulo of TripCount, set Count to
857         // largest power-of-two factor that satisfies the threshold limit.
858         // As we'll create fixup loop, do the type of unrolling only if
859         // remainder loop is allowed.
860         UP.Count = UP.DefaultUnrollRuntimeCount;
861         while (UP.Count != 0 &&
862                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
863           UP.Count >>= 1;
864       }
865       if (UP.Count < 2) {
866         if (PragmaEnableUnroll)
867           ORE->emit([&]() {
868             return OptimizationRemarkMissed(DEBUG_TYPE,
869                                             "UnrollAsDirectedTooLarge",
870                                             L->getStartLoc(), L->getHeader())
871                    << "Unable to unroll loop as directed by unroll(enable) "
872                       "pragma "
873                       "because unrolled size is too large.";
874           });
875         UP.Count = 0;
876       }
877     } else {
878       UP.Count = TripCount;
879     }
880     if (UP.Count > UP.MaxCount)
881       UP.Count = UP.MaxCount;
882     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
883         UP.Count != TripCount)
884       ORE->emit([&]() {
885         return OptimizationRemarkMissed(DEBUG_TYPE,
886                                         "FullUnrollAsDirectedTooLarge",
887                                         L->getStartLoc(), L->getHeader())
888                << "Unable to fully unroll loop as directed by unroll pragma "
889                   "because "
890                   "unrolled size is too large.";
891       });
892     return ExplicitUnroll;
893   }
894   assert(TripCount == 0 &&
895          "All cases when TripCount is constant should be covered here.");
896   if (PragmaFullUnroll)
897     ORE->emit([&]() {
898       return OptimizationRemarkMissed(
899                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
900                  L->getStartLoc(), L->getHeader())
901              << "Unable to fully unroll loop as directed by unroll(full) "
902                 "pragma "
903                 "because loop has a runtime trip count.";
904     });
905 
906   // 6th priority is runtime unrolling.
907   // Don't unroll a runtime trip count loop when it is disabled.
908   if (HasRuntimeUnrollDisablePragma(L)) {
909     UP.Count = 0;
910     return false;
911   }
912 
913   // Check if the runtime trip count is too small when profile is available.
914   if (L->getHeader()->getParent()->hasProfileData()) {
915     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
916       if (*ProfileTripCount < FlatLoopTripCountThreshold)
917         return false;
918       else
919         UP.AllowExpensiveTripCount = true;
920     }
921   }
922 
923   // Reduce count based on the type of unrolling and the threshold values.
924   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
925   if (!UP.Runtime) {
926     LLVM_DEBUG(
927         dbgs() << "  will not try to unroll loop with runtime trip count "
928                << "-unroll-runtime not given\n");
929     UP.Count = 0;
930     return false;
931   }
932   if (UP.Count == 0)
933     UP.Count = UP.DefaultUnrollRuntimeCount;
934 
935   // Reduce unroll count to be the largest power-of-two factor of
936   // the original count which satisfies the threshold limit.
937   while (UP.Count != 0 &&
938          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
939     UP.Count >>= 1;
940 
941 #ifndef NDEBUG
942   unsigned OrigCount = UP.Count;
943 #endif
944 
945   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
946     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
947       UP.Count >>= 1;
948     LLVM_DEBUG(
949         dbgs() << "Remainder loop is restricted (that could architecture "
950                   "specific or because the loop contains a convergent "
951                   "instruction), so unroll count must divide the trip "
952                   "multiple, "
953                << TripMultiple << ".  Reducing unroll count from " << OrigCount
954                << " to " << UP.Count << ".\n");
955 
956     using namespace ore;
957 
958     if (PragmaCount > 0 && !UP.AllowRemainder)
959       ORE->emit([&]() {
960         return OptimizationRemarkMissed(DEBUG_TYPE,
961                                         "DifferentUnrollCountFromDirected",
962                                         L->getStartLoc(), L->getHeader())
963                << "Unable to unroll loop the number of times directed by "
964                   "unroll_count pragma because remainder loop is restricted "
965                   "(that could architecture specific or because the loop "
966                   "contains a convergent instruction) and so must have an "
967                   "unroll "
968                   "count that divides the loop trip multiple of "
969                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
970                << NV("UnrollCount", UP.Count) << " time(s).";
971       });
972   }
973 
974   if (UP.Count > UP.MaxCount)
975     UP.Count = UP.MaxCount;
976   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
977                     << "\n");
978   if (UP.Count < 2)
979     UP.Count = 0;
980   return ExplicitUnroll;
981 }
982 
983 static LoopUnrollResult tryToUnrollLoop(
984     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
985     const TargetTransformInfo &TTI, AssumptionCache &AC,
986     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
987     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
988     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
989     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
990     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
991     Optional<bool> ProvidedAllowPeeling,
992     Optional<bool> ProvidedAllowProfileBasedPeeling,
993     Optional<unsigned> ProvidedFullUnrollMaxCount) {
994   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
995                     << L->getHeader()->getParent()->getName() << "] Loop %"
996                     << L->getHeader()->getName() << "\n");
997   TransformationMode TM = hasUnrollTransformation(L);
998   if (TM & TM_Disable)
999     return LoopUnrollResult::Unmodified;
1000   if (!L->isLoopSimplifyForm()) {
1001     LLVM_DEBUG(
1002         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1003     return LoopUnrollResult::Unmodified;
1004   }
1005 
1006   // When automtatic unrolling is disabled, do not unroll unless overridden for
1007   // this loop.
1008   if (OnlyWhenForced && !(TM & TM_Enable))
1009     return LoopUnrollResult::Unmodified;
1010 
1011   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1012   unsigned NumInlineCandidates;
1013   bool NotDuplicatable;
1014   bool Convergent;
1015   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1016       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1017       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1018       ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1019       ProvidedFullUnrollMaxCount);
1020 
1021   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1022   // as threshold later on.
1023   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1024       !OptForSize)
1025     return LoopUnrollResult::Unmodified;
1026 
1027   SmallPtrSet<const Value *, 32> EphValues;
1028   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1029 
1030   unsigned LoopSize =
1031       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1032                           TTI, EphValues, UP.BEInsns);
1033   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1034   if (NotDuplicatable) {
1035     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1036                       << " instructions.\n");
1037     return LoopUnrollResult::Unmodified;
1038   }
1039 
1040   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1041   // later), to (fully) unroll loops, if it does not increase code size.
1042   if (OptForSize)
1043     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1044 
1045   if (NumInlineCandidates != 0) {
1046     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1047     return LoopUnrollResult::Unmodified;
1048   }
1049 
1050   // Find trip count and trip multiple if count is not available
1051   unsigned TripCount = 0;
1052   unsigned MaxTripCount = 0;
1053   unsigned TripMultiple = 1;
1054   // If there are multiple exiting blocks but one of them is the latch, use the
1055   // latch for the trip count estimation. Otherwise insist on a single exiting
1056   // block for the trip count estimation.
1057   BasicBlock *ExitingBlock = L->getLoopLatch();
1058   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1059     ExitingBlock = L->getExitingBlock();
1060   if (ExitingBlock) {
1061     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1062     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1063   }
1064 
1065   // If the loop contains a convergent operation, the prelude we'd add
1066   // to do the first few instructions before we hit the unrolled loop
1067   // is unsafe -- it adds a control-flow dependency to the convergent
1068   // operation.  Therefore restrict remainder loop (try unrollig without).
1069   //
1070   // TODO: This is quite conservative.  In practice, convergent_op()
1071   // is likely to be called unconditionally in the loop.  In this
1072   // case, the program would be ill-formed (on most architectures)
1073   // unless n were the same on all threads in a thread group.
1074   // Assuming n is the same on all threads, any kind of unrolling is
1075   // safe.  But currently llvm's notion of convergence isn't powerful
1076   // enough to express this.
1077   if (Convergent)
1078     UP.AllowRemainder = false;
1079 
1080   // Try to find the trip count upper bound if we cannot find the exact trip
1081   // count.
1082   bool MaxOrZero = false;
1083   if (!TripCount) {
1084     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1085     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1086     // We can unroll by the upper bound amount if it's generally allowed or if
1087     // we know that the loop is executed either the upper bound or zero times.
1088     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1089     // loop tests remains the same compared to the non-unrolled version, whereas
1090     // the generic upper bound unrolling keeps all but the last loop test so the
1091     // number of loop tests goes up which may end up being worse on targets with
1092     // constrained branch predictor resources so is controlled by an option.)
1093     // In addition we only unroll small upper bounds.
1094     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1095       MaxTripCount = 0;
1096     }
1097   }
1098 
1099   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1100   // fully unroll the loop.
1101   bool UseUpperBound = false;
1102   bool IsCountSetExplicitly = computeUnrollCount(
1103       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1104       TripMultiple, LoopSize, UP, UseUpperBound);
1105   if (!UP.Count)
1106     return LoopUnrollResult::Unmodified;
1107   // Unroll factor (Count) must be less or equal to TripCount.
1108   if (TripCount && UP.Count > TripCount)
1109     UP.Count = TripCount;
1110 
1111   // Save loop properties before it is transformed.
1112   MDNode *OrigLoopID = L->getLoopID();
1113 
1114   // Unroll the loop.
1115   Loop *RemainderLoop = nullptr;
1116   LoopUnrollResult UnrollResult = UnrollLoop(
1117       L,
1118       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1119        UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1120        ForgetAllSCEV},
1121       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1122   if (UnrollResult == LoopUnrollResult::Unmodified)
1123     return LoopUnrollResult::Unmodified;
1124 
1125   if (RemainderLoop) {
1126     Optional<MDNode *> RemainderLoopID =
1127         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1128                                         LLVMLoopUnrollFollowupRemainder});
1129     if (RemainderLoopID.hasValue())
1130       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1131   }
1132 
1133   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1134     Optional<MDNode *> NewLoopID =
1135         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1136                                         LLVMLoopUnrollFollowupUnrolled});
1137     if (NewLoopID.hasValue()) {
1138       L->setLoopID(NewLoopID.getValue());
1139 
1140       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1141       // explicitly.
1142       return UnrollResult;
1143     }
1144   }
1145 
1146   // If loop has an unroll count pragma or unrolled by explicitly set count
1147   // mark loop as unrolled to prevent unrolling beyond that requested.
1148   // If the loop was peeled, we already "used up" the profile information
1149   // we had, so we don't want to unroll or peel again.
1150   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1151       (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1152     L->setLoopAlreadyUnrolled();
1153 
1154   return UnrollResult;
1155 }
1156 
1157 namespace {
1158 
1159 class LoopUnroll : public LoopPass {
1160 public:
1161   static char ID; // Pass ID, replacement for typeid
1162 
1163   int OptLevel;
1164 
1165   /// If false, use a cost model to determine whether unrolling of a loop is
1166   /// profitable. If true, only loops that explicitly request unrolling via
1167   /// metadata are considered. All other loops are skipped.
1168   bool OnlyWhenForced;
1169 
1170   /// If false, when SCEV is invalidated, only forget everything in the
1171   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1172   /// Otherwise, forgetAllLoops and rebuild when needed next.
1173   bool ForgetAllSCEV;
1174 
1175   Optional<unsigned> ProvidedCount;
1176   Optional<unsigned> ProvidedThreshold;
1177   Optional<bool> ProvidedAllowPartial;
1178   Optional<bool> ProvidedRuntime;
1179   Optional<bool> ProvidedUpperBound;
1180   Optional<bool> ProvidedAllowPeeling;
1181   Optional<bool> ProvidedAllowProfileBasedPeeling;
1182   Optional<unsigned> ProvidedFullUnrollMaxCount;
1183 
1184   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1185              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1186              Optional<unsigned> Count = None,
1187              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1188              Optional<bool> UpperBound = None,
1189              Optional<bool> AllowPeeling = None,
1190              Optional<bool> AllowProfileBasedPeeling = None,
1191              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1192       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1193         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1194         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1195         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1196         ProvidedAllowPeeling(AllowPeeling),
1197         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1198         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1199     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1200   }
1201 
1202   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1203     if (skipLoop(L))
1204       return false;
1205 
1206     Function &F = *L->getHeader()->getParent();
1207 
1208     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1209     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1210     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1211     const TargetTransformInfo &TTI =
1212         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1213     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1214     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1215     // pass.  Function analyses need to be preserved across loop transformations
1216     // but ORE cannot be preserved (see comment before the pass definition).
1217     OptimizationRemarkEmitter ORE(&F);
1218     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1219 
1220     LoopUnrollResult Result = tryToUnrollLoop(
1221         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1222         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1223         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1224         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1225         ProvidedFullUnrollMaxCount);
1226 
1227     if (Result == LoopUnrollResult::FullyUnrolled)
1228       LPM.markLoopAsDeleted(*L);
1229 
1230     return Result != LoopUnrollResult::Unmodified;
1231   }
1232 
1233   /// This transformation requires natural loop information & requires that
1234   /// loop preheaders be inserted into the CFG...
1235   void getAnalysisUsage(AnalysisUsage &AU) const override {
1236     AU.addRequired<AssumptionCacheTracker>();
1237     AU.addRequired<TargetTransformInfoWrapperPass>();
1238     // FIXME: Loop passes are required to preserve domtree, and for now we just
1239     // recreate dom info if anything gets unrolled.
1240     getLoopAnalysisUsage(AU);
1241   }
1242 };
1243 
1244 } // end anonymous namespace
1245 
1246 char LoopUnroll::ID = 0;
1247 
1248 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1249 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1250 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1252 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1253 
1254 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1255                                  bool ForgetAllSCEV, int Threshold, int Count,
1256                                  int AllowPartial, int Runtime, int UpperBound,
1257                                  int AllowPeeling) {
1258   // TODO: It would make more sense for this function to take the optionals
1259   // directly, but that's dangerous since it would silently break out of tree
1260   // callers.
1261   return new LoopUnroll(
1262       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1263       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1264       Count == -1 ? None : Optional<unsigned>(Count),
1265       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1266       Runtime == -1 ? None : Optional<bool>(Runtime),
1267       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1268       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1269 }
1270 
1271 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1272                                        bool ForgetAllSCEV) {
1273   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1274                               0, 0, 0, 0);
1275 }
1276 
1277 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1278                                           LoopStandardAnalysisResults &AR,
1279                                           LPMUpdater &Updater) {
1280   const auto &FAM =
1281       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1282   Function *F = L.getHeader()->getParent();
1283 
1284   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1285   // FIXME: This should probably be optional rather than required.
1286   if (!ORE)
1287     report_fatal_error(
1288         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1289         "cached at a higher level");
1290 
1291   // Keep track of the previous loop structure so we can identify new loops
1292   // created by unrolling.
1293   Loop *ParentL = L.getParentLoop();
1294   SmallPtrSet<Loop *, 4> OldLoops;
1295   if (ParentL)
1296     OldLoops.insert(ParentL->begin(), ParentL->end());
1297   else
1298     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1299 
1300   std::string LoopName = L.getName();
1301 
1302   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1303                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1304                                  /*PreserveLCSSA*/ true, OptLevel,
1305                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1306                                  /*Threshold*/ None, /*AllowPartial*/ false,
1307                                  /*Runtime*/ false, /*UpperBound*/ false,
1308                                  /*AllowPeeling*/ false,
1309                                  /*AllowProfileBasedPeeling*/ false,
1310                                  /*FullUnrollMaxCount*/ None) !=
1311                  LoopUnrollResult::Unmodified;
1312   if (!Changed)
1313     return PreservedAnalyses::all();
1314 
1315   // The parent must not be damaged by unrolling!
1316 #ifndef NDEBUG
1317   if (ParentL)
1318     ParentL->verifyLoop();
1319 #endif
1320 
1321   // Unrolling can do several things to introduce new loops into a loop nest:
1322   // - Full unrolling clones child loops within the current loop but then
1323   //   removes the current loop making all of the children appear to be new
1324   //   sibling loops.
1325   //
1326   // When a new loop appears as a sibling loop after fully unrolling,
1327   // its nesting structure has fundamentally changed and we want to revisit
1328   // it to reflect that.
1329   //
1330   // When unrolling has removed the current loop, we need to tell the
1331   // infrastructure that it is gone.
1332   //
1333   // Finally, we support a debugging/testing mode where we revisit child loops
1334   // as well. These are not expected to require further optimizations as either
1335   // they or the loop they were cloned from have been directly visited already.
1336   // But the debugging mode allows us to check this assumption.
1337   bool IsCurrentLoopValid = false;
1338   SmallVector<Loop *, 4> SibLoops;
1339   if (ParentL)
1340     SibLoops.append(ParentL->begin(), ParentL->end());
1341   else
1342     SibLoops.append(AR.LI.begin(), AR.LI.end());
1343   erase_if(SibLoops, [&](Loop *SibLoop) {
1344     if (SibLoop == &L) {
1345       IsCurrentLoopValid = true;
1346       return true;
1347     }
1348 
1349     // Otherwise erase the loop from the list if it was in the old loops.
1350     return OldLoops.count(SibLoop) != 0;
1351   });
1352   Updater.addSiblingLoops(SibLoops);
1353 
1354   if (!IsCurrentLoopValid) {
1355     Updater.markLoopAsDeleted(L, LoopName);
1356   } else {
1357     // We can only walk child loops if the current loop remained valid.
1358     if (UnrollRevisitChildLoops) {
1359       // Walk *all* of the child loops.
1360       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1361       Updater.addChildLoops(ChildLoops);
1362     }
1363   }
1364 
1365   return getLoopPassPreservedAnalyses();
1366 }
1367 
1368 template <typename RangeT>
1369 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1370   SmallVector<Loop *, 8> Worklist;
1371   // We use an internal worklist to build up the preorder traversal without
1372   // recursion.
1373   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1374 
1375   for (Loop *RootL : Loops) {
1376     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1377     assert(PreOrderWorklist.empty() &&
1378            "Must start with an empty preorder walk worklist.");
1379     PreOrderWorklist.push_back(RootL);
1380     do {
1381       Loop *L = PreOrderWorklist.pop_back_val();
1382       PreOrderWorklist.append(L->begin(), L->end());
1383       PreOrderLoops.push_back(L);
1384     } while (!PreOrderWorklist.empty());
1385 
1386     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1387     PreOrderLoops.clear();
1388   }
1389   return Worklist;
1390 }
1391 
1392 PreservedAnalyses LoopUnrollPass::run(Function &F,
1393                                       FunctionAnalysisManager &AM) {
1394   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1395   auto &LI = AM.getResult<LoopAnalysis>(F);
1396   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1397   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1398   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1399   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1400 
1401   LoopAnalysisManager *LAM = nullptr;
1402   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1403     LAM = &LAMProxy->getManager();
1404 
1405   const ModuleAnalysisManager &MAM =
1406       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1407   ProfileSummaryInfo *PSI =
1408       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1409   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1410       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1411 
1412   bool Changed = false;
1413 
1414   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1415   // Since simplification may add new inner loops, it has to run before the
1416   // legality and profitability checks. This means running the loop unroller
1417   // will simplify all loops, regardless of whether anything end up being
1418   // unrolled.
1419   for (auto &L : LI) {
1420     Changed |=
1421         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1422     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1423   }
1424 
1425   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1426 
1427   while (!Worklist.empty()) {
1428     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1429     // from back to front so that we work forward across the CFG, which
1430     // for unrolling is only needed to get optimization remarks emitted in
1431     // a forward order.
1432     Loop &L = *Worklist.pop_back_val();
1433 #ifndef NDEBUG
1434     Loop *ParentL = L.getParentLoop();
1435 #endif
1436 
1437     // Check if the profile summary indicates that the profiled application
1438     // has a huge working set size, in which case we disable peeling to avoid
1439     // bloating it further.
1440     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1441     if (PSI && PSI->hasHugeWorkingSetSize())
1442       LocalAllowPeeling = false;
1443     std::string LoopName = L.getName();
1444     // The API here is quite complex to call and we allow to select some
1445     // flavors of unrolling during construction time (by setting UnrollOpts).
1446     LoopUnrollResult Result = tryToUnrollLoop(
1447         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1448         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1449         UnrollOpts.ForgetSCEV, /*Count*/ None,
1450         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1451         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1452         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1453     Changed |= Result != LoopUnrollResult::Unmodified;
1454 
1455     // The parent must not be damaged by unrolling!
1456 #ifndef NDEBUG
1457     if (Result != LoopUnrollResult::Unmodified && ParentL)
1458       ParentL->verifyLoop();
1459 #endif
1460 
1461     // Clear any cached analysis results for L if we removed it completely.
1462     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1463       LAM->clear(L, LoopName);
1464   }
1465 
1466   if (!Changed)
1467     return PreservedAnalyses::all();
1468 
1469   return getLoopPassPreservedAnalyses();
1470 }
1471