xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision a1dd4931591ee327dd6bde04e7df6addbdb94513)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/InstVisitor.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/UnrollLoop.h"
35 #include <climits>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "loop-unroll"
40 
41 static cl::opt<unsigned>
42     UnrollThreshold("unroll-threshold", cl::Hidden,
43                     cl::desc("The baseline cost threshold for loop unrolling"));
44 
45 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
46     "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden,
47     cl::desc("The percentage of estimated dynamic cost which must be saved by "
48              "unrolling to allow unrolling up to the max threshold."));
49 
50 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
51     "unroll-dynamic-cost-savings-discount", cl::Hidden,
52     cl::desc("This is the amount discounted from the total unroll cost when "
53              "the unrolled form has a high dynamic cost savings (triggered by "
54              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
55 
56 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
57     "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
58     cl::desc("Don't allow loop unrolling to simulate more than this number of"
59              "iterations when checking full unroll profitability"));
60 
61 static cl::opt<unsigned>
62 UnrollCount("unroll-count", cl::Hidden,
63   cl::desc("Use this unroll count for all loops including those with "
64            "unroll_count pragma values, for testing purposes"));
65 
66 static cl::opt<bool>
67 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
68   cl::desc("Allows loops to be partially unrolled until "
69            "-unroll-threshold loop size is reached."));
70 
71 static cl::opt<bool>
72 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
73   cl::desc("Unroll loops with run-time trip counts"));
74 
75 static cl::opt<unsigned>
76 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
77   cl::desc("Unrolled size limit for loops with an unroll(full) or "
78            "unroll_count pragma."));
79 
80 
81 /// A magic value for use with the Threshold parameter to indicate
82 /// that the loop unroll should be performed regardless of how much
83 /// code expansion would result.
84 static const unsigned NoThreshold = UINT_MAX;
85 
86 /// Default unroll count for loops with run-time trip count if
87 /// -unroll-count is not set
88 static const unsigned DefaultUnrollRuntimeCount = 8;
89 
90 /// Gather the various unrolling parameters based on the defaults, compiler
91 /// flags, TTI overrides, pragmas, and user specified parameters.
92 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
93     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
94     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
95     Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll,
96     bool PragmaEnableUnroll, unsigned TripCount) {
97   TargetTransformInfo::UnrollingPreferences UP;
98 
99   // Set up the defaults
100   UP.Threshold = 150;
101   UP.PercentDynamicCostSavedThreshold = 20;
102   UP.DynamicCostSavingsDiscount = 2000;
103   UP.OptSizeThreshold = 50;
104   UP.PartialThreshold = UP.Threshold;
105   UP.PartialOptSizeThreshold = UP.OptSizeThreshold;
106   UP.Count = 0;
107   UP.MaxCount = UINT_MAX;
108   UP.Partial = false;
109   UP.Runtime = false;
110   UP.AllowExpensiveTripCount = false;
111 
112   // Override with any target specific settings
113   TTI.getUnrollingPreferences(L, UP);
114 
115   // Apply size attributes
116   if (L->getHeader()->getParent()->optForSize()) {
117     UP.Threshold = UP.OptSizeThreshold;
118     UP.PartialThreshold = UP.PartialOptSizeThreshold;
119   }
120 
121   // Apply unroll count pragmas
122   if (PragmaCount)
123     UP.Count = PragmaCount;
124   else if (PragmaFullUnroll)
125     UP.Count = TripCount;
126 
127   // Apply any user values specified by cl::opt
128   if (UnrollThreshold.getNumOccurrences() > 0) {
129     UP.Threshold = UnrollThreshold;
130     UP.PartialThreshold = UnrollThreshold;
131   }
132   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
133     UP.PercentDynamicCostSavedThreshold =
134         UnrollPercentDynamicCostSavedThreshold;
135   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
136     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
137   if (UnrollCount.getNumOccurrences() > 0)
138     UP.Count = UnrollCount;
139   if (UnrollAllowPartial.getNumOccurrences() > 0)
140     UP.Partial = UnrollAllowPartial;
141   if (UnrollRuntime.getNumOccurrences() > 0)
142     UP.Runtime = UnrollRuntime;
143 
144   // Apply user values provided by argument
145   if (UserThreshold.hasValue()) {
146     UP.Threshold = *UserThreshold;
147     UP.PartialThreshold = *UserThreshold;
148   }
149   if (UserCount.hasValue())
150     UP.Count = *UserCount;
151   if (UserAllowPartial.hasValue())
152     UP.Partial = *UserAllowPartial;
153   if (UserRuntime.hasValue())
154     UP.Runtime = *UserRuntime;
155 
156   if (PragmaCount > 0 ||
157       ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) {
158     // If the loop has an unrolling pragma, we want to be more aggressive with
159     // unrolling limits. Set thresholds to at least the PragmaTheshold value
160     // which is larger than the default limits.
161     if (UP.Threshold != NoThreshold)
162       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
163     if (UP.PartialThreshold != NoThreshold)
164       UP.PartialThreshold =
165           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
166   }
167 
168   return UP;
169 }
170 
171 namespace {
172   class LoopUnroll : public LoopPass {
173   public:
174     static char ID; // Pass ID, replacement for typeid
175     LoopUnroll(Optional<unsigned> Threshold = None,
176                Optional<unsigned> Count = None,
177                Optional<bool> AllowPartial = None,
178                Optional<bool> Runtime = None)
179         : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold),
180           ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) {
181       initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
182     }
183 
184     Optional<unsigned> ProvidedCount;
185     Optional<unsigned> ProvidedThreshold;
186     Optional<bool> ProvidedAllowPartial;
187     Optional<bool> ProvidedRuntime;
188 
189     bool runOnLoop(Loop *L, LPPassManager &) override;
190 
191     /// This transformation requires natural loop information & requires that
192     /// loop preheaders be inserted into the CFG...
193     ///
194     void getAnalysisUsage(AnalysisUsage &AU) const override {
195       AU.addRequired<AssumptionCacheTracker>();
196       AU.addRequired<DominatorTreeWrapperPass>();
197       AU.addRequired<LoopInfoWrapperPass>();
198       AU.addPreserved<LoopInfoWrapperPass>();
199       AU.addRequiredID(LoopSimplifyID);
200       AU.addPreservedID(LoopSimplifyID);
201       AU.addRequiredID(LCSSAID);
202       AU.addPreservedID(LCSSAID);
203       AU.addRequired<ScalarEvolutionWrapperPass>();
204       AU.addPreserved<ScalarEvolutionWrapperPass>();
205       AU.addRequired<TargetTransformInfoWrapperPass>();
206       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
207       // If loop unroll does not preserve dom info then LCSSA pass on next
208       // loop will receive invalid dom info.
209       // For now, recreate dom info, if loop is unrolled.
210       AU.addPreserved<DominatorTreeWrapperPass>();
211       AU.addPreserved<GlobalsAAWrapperPass>();
212     }
213 
214     bool canUnrollCompletely(Loop *L, unsigned Threshold,
215                              unsigned PercentDynamicCostSavedThreshold,
216                              unsigned DynamicCostSavingsDiscount,
217                              uint64_t UnrolledCost, uint64_t RolledDynamicCost);
218   };
219 }
220 
221 char LoopUnroll::ID = 0;
222 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
223 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
224 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
228 INITIALIZE_PASS_DEPENDENCY(LCSSA)
229 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
230 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
231 
232 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
233                                  int Runtime) {
234   // TODO: It would make more sense for this function to take the optionals
235   // directly, but that's dangerous since it would silently break out of tree
236   // callers.
237   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
238                         Count == -1 ? None : Optional<unsigned>(Count),
239                         AllowPartial == -1 ? None
240                                            : Optional<bool>(AllowPartial),
241                         Runtime == -1 ? None : Optional<bool>(Runtime));
242 }
243 
244 Pass *llvm::createSimpleLoopUnrollPass() {
245   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
246 }
247 
248 namespace {
249 // This class is used to get an estimate of the optimization effects that we
250 // could get from complete loop unrolling. It comes from the fact that some
251 // loads might be replaced with concrete constant values and that could trigger
252 // a chain of instruction simplifications.
253 //
254 // E.g. we might have:
255 //   int a[] = {0, 1, 0};
256 //   v = 0;
257 //   for (i = 0; i < 3; i ++)
258 //     v += b[i]*a[i];
259 // If we completely unroll the loop, we would get:
260 //   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
261 // Which then will be simplified to:
262 //   v = b[0]* 0 + b[1]* 1 + b[2]* 0
263 // And finally:
264 //   v = b[1]
265 class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
266   typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
267   friend class InstVisitor<UnrolledInstAnalyzer, bool>;
268   struct SimplifiedAddress {
269     Value *Base = nullptr;
270     ConstantInt *Offset = nullptr;
271   };
272 
273 public:
274   UnrolledInstAnalyzer(unsigned Iteration,
275                        DenseMap<Value *, Constant *> &SimplifiedValues,
276                        ScalarEvolution &SE)
277       : SimplifiedValues(SimplifiedValues), SE(SE) {
278       IterationNumber = SE.getConstant(APInt(64, Iteration));
279   }
280 
281   // Allow access to the initial visit method.
282   using Base::visit;
283 
284 private:
285   /// \brief A cache of pointer bases and constant-folded offsets corresponding
286   /// to GEP (or derived from GEP) instructions.
287   ///
288   /// In order to find the base pointer one needs to perform non-trivial
289   /// traversal of the corresponding SCEV expression, so it's good to have the
290   /// results saved.
291   DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
292 
293   /// \brief SCEV expression corresponding to number of currently simulated
294   /// iteration.
295   const SCEV *IterationNumber;
296 
297   /// \brief A Value->Constant map for keeping values that we managed to
298   /// constant-fold on the given iteration.
299   ///
300   /// While we walk the loop instructions, we build up and maintain a mapping
301   /// of simplified values specific to this iteration.  The idea is to propagate
302   /// any special information we have about loads that can be replaced with
303   /// constants after complete unrolling, and account for likely simplifications
304   /// post-unrolling.
305   DenseMap<Value *, Constant *> &SimplifiedValues;
306 
307   ScalarEvolution &SE;
308 
309   /// \brief Try to simplify instruction \param I using its SCEV expression.
310   ///
311   /// The idea is that some AddRec expressions become constants, which then
312   /// could trigger folding of other instructions. However, that only happens
313   /// for expressions whose start value is also constant, which isn't always the
314   /// case. In another common and important case the start value is just some
315   /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
316   /// it along with the base address instead.
317   bool simplifyInstWithSCEV(Instruction *I) {
318     if (!SE.isSCEVable(I->getType()))
319       return false;
320 
321     const SCEV *S = SE.getSCEV(I);
322     if (auto *SC = dyn_cast<SCEVConstant>(S)) {
323       SimplifiedValues[I] = SC->getValue();
324       return true;
325     }
326 
327     auto *AR = dyn_cast<SCEVAddRecExpr>(S);
328     if (!AR)
329       return false;
330 
331     const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
332     // Check if the AddRec expression becomes a constant.
333     if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
334       SimplifiedValues[I] = SC->getValue();
335       return true;
336     }
337 
338     // Check if the offset from the base address becomes a constant.
339     auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
340     if (!Base)
341       return false;
342     auto *Offset =
343         dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
344     if (!Offset)
345       return false;
346     SimplifiedAddress Address;
347     Address.Base = Base->getValue();
348     Address.Offset = Offset->getValue();
349     SimplifiedAddresses[I] = Address;
350     return true;
351   }
352 
353   /// Base case for the instruction visitor.
354   bool visitInstruction(Instruction &I) {
355     return simplifyInstWithSCEV(&I);
356   }
357 
358   /// Try to simplify binary operator I.
359   ///
360   /// TODO: Probably it's worth to hoist the code for estimating the
361   /// simplifications effects to a separate class, since we have a very similar
362   /// code in InlineCost already.
363   bool visitBinaryOperator(BinaryOperator &I) {
364     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
365     if (!isa<Constant>(LHS))
366       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
367         LHS = SimpleLHS;
368     if (!isa<Constant>(RHS))
369       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
370         RHS = SimpleRHS;
371 
372     Value *SimpleV = nullptr;
373     const DataLayout &DL = I.getModule()->getDataLayout();
374     if (auto FI = dyn_cast<FPMathOperator>(&I))
375       SimpleV =
376           SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
377     else
378       SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
379 
380     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
381       SimplifiedValues[&I] = C;
382 
383     if (SimpleV)
384       return true;
385     return Base::visitBinaryOperator(I);
386   }
387 
388   /// Try to fold load I.
389   bool visitLoad(LoadInst &I) {
390     Value *AddrOp = I.getPointerOperand();
391 
392     auto AddressIt = SimplifiedAddresses.find(AddrOp);
393     if (AddressIt == SimplifiedAddresses.end())
394       return false;
395     ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
396 
397     auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
398     // We're only interested in loads that can be completely folded to a
399     // constant.
400     if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
401       return false;
402 
403     ConstantDataSequential *CDS =
404         dyn_cast<ConstantDataSequential>(GV->getInitializer());
405     if (!CDS)
406       return false;
407 
408     // We might have a vector load from an array. FIXME: for now we just bail
409     // out in this case, but we should be able to resolve and simplify such
410     // loads.
411     if(!CDS->isElementTypeCompatible(I.getType()))
412       return false;
413 
414     int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
415     assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
416            "Unexpectedly large index value.");
417     int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
418     if (Index >= CDS->getNumElements()) {
419       // FIXME: For now we conservatively ignore out of bound accesses, but
420       // we're allowed to perform the optimization in this case.
421       return false;
422     }
423 
424     Constant *CV = CDS->getElementAsConstant(Index);
425     assert(CV && "Constant expected.");
426     SimplifiedValues[&I] = CV;
427 
428     return true;
429   }
430 
431   bool visitCastInst(CastInst &I) {
432     // Propagate constants through casts.
433     Constant *COp = dyn_cast<Constant>(I.getOperand(0));
434     if (!COp)
435       COp = SimplifiedValues.lookup(I.getOperand(0));
436     if (COp)
437       if (Constant *C =
438               ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
439         SimplifiedValues[&I] = C;
440         return true;
441       }
442 
443     return Base::visitCastInst(I);
444   }
445 
446   bool visitCmpInst(CmpInst &I) {
447     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
448 
449     // First try to handle simplified comparisons.
450     if (!isa<Constant>(LHS))
451       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
452         LHS = SimpleLHS;
453     if (!isa<Constant>(RHS))
454       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
455         RHS = SimpleRHS;
456 
457     if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
458       auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
459       if (SimplifiedLHS != SimplifiedAddresses.end()) {
460         auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
461         if (SimplifiedRHS != SimplifiedAddresses.end()) {
462           SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
463           SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
464           if (LHSAddr.Base == RHSAddr.Base) {
465             LHS = LHSAddr.Offset;
466             RHS = RHSAddr.Offset;
467           }
468         }
469       }
470     }
471 
472     if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
473       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
474         if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
475           SimplifiedValues[&I] = C;
476           return true;
477         }
478       }
479     }
480 
481     return Base::visitCmpInst(I);
482   }
483 };
484 } // namespace
485 
486 
487 namespace {
488 struct EstimatedUnrollCost {
489   /// \brief The estimated cost after unrolling.
490   int UnrolledCost;
491 
492   /// \brief The estimated dynamic cost of executing the instructions in the
493   /// rolled form.
494   int RolledDynamicCost;
495 };
496 }
497 
498 /// \brief Figure out if the loop is worth full unrolling.
499 ///
500 /// Complete loop unrolling can make some loads constant, and we need to know
501 /// if that would expose any further optimization opportunities.  This routine
502 /// estimates this optimization.  It computes cost of unrolled loop
503 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
504 /// dynamic cost we mean that we won't count costs of blocks that are known not
505 /// to be executed (i.e. if we have a branch in the loop and we know that at the
506 /// given iteration its condition would be resolved to true, we won't add up the
507 /// cost of the 'false'-block).
508 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
509 /// the analysis failed (no benefits expected from the unrolling, or the loop is
510 /// too big to analyze), the returned value is None.
511 static Optional<EstimatedUnrollCost>
512 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
513                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
514                       int MaxUnrolledLoopSize) {
515   // We want to be able to scale offsets by the trip count and add more offsets
516   // to them without checking for overflows, and we already don't want to
517   // analyze *massive* trip counts, so we force the max to be reasonably small.
518   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
519          "The unroll iterations max is too large!");
520 
521   // Don't simulate loops with a big or unknown tripcount
522   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
523       TripCount > UnrollMaxIterationsCountToAnalyze)
524     return None;
525 
526   SmallSetVector<BasicBlock *, 16> BBWorklist;
527   DenseMap<Value *, Constant *> SimplifiedValues;
528   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
529 
530   // The estimated cost of the unrolled form of the loop. We try to estimate
531   // this by simplifying as much as we can while computing the estimate.
532   int UnrolledCost = 0;
533   // We also track the estimated dynamic (that is, actually executed) cost in
534   // the rolled form. This helps identify cases when the savings from unrolling
535   // aren't just exposing dead control flows, but actual reduced dynamic
536   // instructions due to the simplifications which we expect to occur after
537   // unrolling.
538   int RolledDynamicCost = 0;
539 
540   // Ensure that we don't violate the loop structure invariants relied on by
541   // this analysis.
542   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
543   assert(L->isLCSSAForm(DT) &&
544          "Must have loops in LCSSA form to track live-out values.");
545 
546   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
547 
548   // Simulate execution of each iteration of the loop counting instructions,
549   // which would be simplified.
550   // Since the same load will take different values on different iterations,
551   // we literally have to go through all loop's iterations.
552   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
553     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
554 
555     // Prepare for the iteration by collecting any simplified entry or backedge
556     // inputs.
557     for (Instruction &I : *L->getHeader()) {
558       auto *PHI = dyn_cast<PHINode>(&I);
559       if (!PHI)
560         break;
561 
562       // The loop header PHI nodes must have exactly two input: one from the
563       // loop preheader and one from the loop latch.
564       assert(
565           PHI->getNumIncomingValues() == 2 &&
566           "Must have an incoming value only for the preheader and the latch.");
567 
568       Value *V = PHI->getIncomingValueForBlock(
569           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
570       Constant *C = dyn_cast<Constant>(V);
571       if (Iteration != 0 && !C)
572         C = SimplifiedValues.lookup(V);
573       if (C)
574         SimplifiedInputValues.push_back({PHI, C});
575     }
576 
577     // Now clear and re-populate the map for the next iteration.
578     SimplifiedValues.clear();
579     while (!SimplifiedInputValues.empty())
580       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
581 
582     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE);
583 
584     BBWorklist.clear();
585     BBWorklist.insert(L->getHeader());
586     // Note that we *must not* cache the size, this loop grows the worklist.
587     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
588       BasicBlock *BB = BBWorklist[Idx];
589 
590       // Visit all instructions in the given basic block and try to simplify
591       // it.  We don't change the actual IR, just count optimization
592       // opportunities.
593       for (Instruction &I : *BB) {
594         int InstCost = TTI.getUserCost(&I);
595 
596         // Visit the instruction to analyze its loop cost after unrolling,
597         // and if the visitor returns false, include this instruction in the
598         // unrolled cost.
599         if (!Analyzer.visit(I))
600           UnrolledCost += InstCost;
601         else {
602           DEBUG(dbgs() << "  " << I
603                        << " would be simplified if loop is unrolled.\n");
604           (void)0;
605         }
606 
607         // Also track this instructions expected cost when executing the rolled
608         // loop form.
609         RolledDynamicCost += InstCost;
610 
611         // If unrolled body turns out to be too big, bail out.
612         if (UnrolledCost > MaxUnrolledLoopSize) {
613           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
614                        << "  UnrolledCost: " << UnrolledCost
615                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
616                        << "\n");
617           return None;
618         }
619       }
620 
621       TerminatorInst *TI = BB->getTerminator();
622 
623       // Add in the live successors by first checking whether we have terminator
624       // that may be simplified based on the values simplified by this call.
625       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
626         if (BI->isConditional()) {
627           if (Constant *SimpleCond =
628                   SimplifiedValues.lookup(BI->getCondition())) {
629             BasicBlock *Succ = nullptr;
630             // Just take the first successor if condition is undef
631             if (isa<UndefValue>(SimpleCond))
632               Succ = BI->getSuccessor(0);
633             else
634               Succ = BI->getSuccessor(
635                   cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
636             if (L->contains(Succ))
637               BBWorklist.insert(Succ);
638             continue;
639           }
640         }
641       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
642         if (Constant *SimpleCond =
643                 SimplifiedValues.lookup(SI->getCondition())) {
644           BasicBlock *Succ = nullptr;
645           // Just take the first successor if condition is undef
646           if (isa<UndefValue>(SimpleCond))
647             Succ = SI->getSuccessor(0);
648           else
649             Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
650                        .getCaseSuccessor();
651           if (L->contains(Succ))
652             BBWorklist.insert(Succ);
653           continue;
654         }
655       }
656 
657       // Add BB's successors to the worklist.
658       for (BasicBlock *Succ : successors(BB))
659         if (L->contains(Succ))
660           BBWorklist.insert(Succ);
661     }
662 
663     // If we found no optimization opportunities on the first iteration, we
664     // won't find them on later ones too.
665     if (UnrolledCost == RolledDynamicCost) {
666       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
667                    << "  UnrolledCost: " << UnrolledCost << "\n");
668       return None;
669     }
670   }
671   DEBUG(dbgs() << "Analysis finished:\n"
672                << "UnrolledCost: " << UnrolledCost << ", "
673                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
674   return {{UnrolledCost, RolledDynamicCost}};
675 }
676 
677 /// ApproximateLoopSize - Approximate the size of the loop.
678 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
679                                     bool &NotDuplicatable,
680                                     const TargetTransformInfo &TTI,
681                                     AssumptionCache *AC) {
682   SmallPtrSet<const Value *, 32> EphValues;
683   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
684 
685   CodeMetrics Metrics;
686   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
687        I != E; ++I)
688     Metrics.analyzeBasicBlock(*I, TTI, EphValues);
689   NumCalls = Metrics.NumInlineCandidates;
690   NotDuplicatable = Metrics.notDuplicatable;
691 
692   unsigned LoopSize = Metrics.NumInsts;
693 
694   // Don't allow an estimate of size zero.  This would allows unrolling of loops
695   // with huge iteration counts, which is a compile time problem even if it's
696   // not a problem for code quality. Also, the code using this size may assume
697   // that each loop has at least three instructions (likely a conditional
698   // branch, a comparison feeding that branch, and some kind of loop increment
699   // feeding that comparison instruction).
700   LoopSize = std::max(LoopSize, 3u);
701 
702   return LoopSize;
703 }
704 
705 // Returns the loop hint metadata node with the given name (for example,
706 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
707 // returned.
708 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
709   if (MDNode *LoopID = L->getLoopID())
710     return GetUnrollMetadata(LoopID, Name);
711   return nullptr;
712 }
713 
714 // Returns true if the loop has an unroll(full) pragma.
715 static bool HasUnrollFullPragma(const Loop *L) {
716   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
717 }
718 
719 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
720 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
721 static bool HasUnrollEnablePragma(const Loop *L) {
722   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
723 }
724 
725 // Returns true if the loop has an unroll(disable) pragma.
726 static bool HasUnrollDisablePragma(const Loop *L) {
727   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
728 }
729 
730 // Returns true if the loop has an runtime unroll(disable) pragma.
731 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
732   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
733 }
734 
735 // If loop has an unroll_count pragma return the (necessarily
736 // positive) value from the pragma.  Otherwise return 0.
737 static unsigned UnrollCountPragmaValue(const Loop *L) {
738   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
739   if (MD) {
740     assert(MD->getNumOperands() == 2 &&
741            "Unroll count hint metadata should have two operands.");
742     unsigned Count =
743         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
744     assert(Count >= 1 && "Unroll count must be positive.");
745     return Count;
746   }
747   return 0;
748 }
749 
750 // Remove existing unroll metadata and add unroll disable metadata to
751 // indicate the loop has already been unrolled.  This prevents a loop
752 // from being unrolled more than is directed by a pragma if the loop
753 // unrolling pass is run more than once (which it generally is).
754 static void SetLoopAlreadyUnrolled(Loop *L) {
755   MDNode *LoopID = L->getLoopID();
756   if (!LoopID) return;
757 
758   // First remove any existing loop unrolling metadata.
759   SmallVector<Metadata *, 4> MDs;
760   // Reserve first location for self reference to the LoopID metadata node.
761   MDs.push_back(nullptr);
762   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
763     bool IsUnrollMetadata = false;
764     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
765     if (MD) {
766       const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
767       IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
768     }
769     if (!IsUnrollMetadata)
770       MDs.push_back(LoopID->getOperand(i));
771   }
772 
773   // Add unroll(disable) metadata to disable future unrolling.
774   LLVMContext &Context = L->getHeader()->getContext();
775   SmallVector<Metadata *, 1> DisableOperands;
776   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
777   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
778   MDs.push_back(DisableNode);
779 
780   MDNode *NewLoopID = MDNode::get(Context, MDs);
781   // Set operand 0 to refer to the loop id itself.
782   NewLoopID->replaceOperandWith(0, NewLoopID);
783   L->setLoopID(NewLoopID);
784 }
785 
786 bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
787                                      unsigned PercentDynamicCostSavedThreshold,
788                                      unsigned DynamicCostSavingsDiscount,
789                                      uint64_t UnrolledCost,
790                                      uint64_t RolledDynamicCost) {
791 
792   if (Threshold == NoThreshold) {
793     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
794     return true;
795   }
796 
797   if (UnrolledCost <= Threshold) {
798     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
799                  << UnrolledCost << "<" << Threshold << "\n");
800     return true;
801   }
802 
803   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
804   assert(RolledDynamicCost >= UnrolledCost &&
805          "Cannot have a higher unrolled cost than a rolled cost!");
806 
807   // Compute the percentage of the dynamic cost in the rolled form that is
808   // saved when unrolled. If unrolling dramatically reduces the estimated
809   // dynamic cost of the loop, we use a higher threshold to allow more
810   // unrolling.
811   unsigned PercentDynamicCostSaved =
812       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
813 
814   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
815       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
816           (int64_t)Threshold) {
817     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
818                     "expected dynamic cost by " << PercentDynamicCostSaved
819                  << "% (threshold: " << PercentDynamicCostSavedThreshold
820                  << "%)\n"
821                  << "  and the unrolled cost (" << UnrolledCost
822                  << ") is less than the max threshold ("
823                  << DynamicCostSavingsDiscount << ").\n");
824     return true;
825   }
826 
827   DEBUG(dbgs() << "  Too large to fully unroll:\n");
828   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
829   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
830   DEBUG(dbgs() << "    Percent cost saved threshold: "
831                << PercentDynamicCostSavedThreshold << "%\n");
832   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
833   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
834   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
835                << "\n");
836   return false;
837 }
838 
839 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &) {
840   if (skipOptnoneFunction(L))
841     return false;
842 
843   Function &F = *L->getHeader()->getParent();
844 
845   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
846   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
847   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
848   const TargetTransformInfo &TTI =
849       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
850   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
851   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
852 
853   BasicBlock *Header = L->getHeader();
854   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
855         << "] Loop %" << Header->getName() << "\n");
856 
857   if (HasUnrollDisablePragma(L)) {
858     return false;
859   }
860   bool PragmaFullUnroll = HasUnrollFullPragma(L);
861   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
862   unsigned PragmaCount = UnrollCountPragmaValue(L);
863   bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
864 
865   // Find trip count and trip multiple if count is not available
866   unsigned TripCount = 0;
867   unsigned TripMultiple = 1;
868   // If there are multiple exiting blocks but one of them is the latch, use the
869   // latch for the trip count estimation. Otherwise insist on a single exiting
870   // block for the trip count estimation.
871   BasicBlock *ExitingBlock = L->getLoopLatch();
872   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
873     ExitingBlock = L->getExitingBlock();
874   if (ExitingBlock) {
875     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
876     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
877   }
878 
879   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
880       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
881       ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll,
882       TripCount);
883 
884   unsigned Count = UP.Count;
885   bool CountSetExplicitly = Count != 0;
886   // Use a heuristic count if we didn't set anything explicitly.
887   if (!CountSetExplicitly)
888     Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount;
889   if (TripCount && Count > TripCount)
890     Count = TripCount;
891 
892   unsigned NumInlineCandidates;
893   bool notDuplicatable;
894   unsigned LoopSize =
895       ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
896   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
897 
898   // When computing the unrolled size, note that the conditional branch on the
899   // backedge and the comparison feeding it are not replicated like the rest of
900   // the loop body (which is why 2 is subtracted).
901   uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
902   if (notDuplicatable) {
903     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
904                  << " instructions.\n");
905     return false;
906   }
907   if (NumInlineCandidates != 0) {
908     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
909     return false;
910   }
911 
912   // Given Count, TripCount and thresholds determine the type of
913   // unrolling which is to be performed.
914   enum { Full = 0, Partial = 1, Runtime = 2 };
915   int Unrolling;
916   if (TripCount && Count == TripCount) {
917     Unrolling = Partial;
918     // If the loop is really small, we don't need to run an expensive analysis.
919     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
920                             UnrolledSize, UnrolledSize)) {
921       Unrolling = Full;
922     } else {
923       // The loop isn't that small, but we still can fully unroll it if that
924       // helps to remove a significant number of instructions.
925       // To check that, run additional analysis on the loop.
926       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
927               L, TripCount, DT, *SE, TTI,
928               UP.Threshold + UP.DynamicCostSavingsDiscount))
929         if (canUnrollCompletely(L, UP.Threshold,
930                                 UP.PercentDynamicCostSavedThreshold,
931                                 UP.DynamicCostSavingsDiscount,
932                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
933           Unrolling = Full;
934         }
935     }
936   } else if (TripCount && Count < TripCount) {
937     Unrolling = Partial;
938   } else {
939     Unrolling = Runtime;
940   }
941 
942   // Reduce count based on the type of unrolling and the threshold values.
943   unsigned OriginalCount = Count;
944   bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime;
945   // Don't unroll a runtime trip count loop with unroll full pragma.
946   if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
947     AllowRuntime = false;
948   }
949   if (Unrolling == Partial) {
950     bool AllowPartial = PragmaEnableUnroll || UP.Partial;
951     if (!AllowPartial && !CountSetExplicitly) {
952       DEBUG(dbgs() << "  will not try to unroll partially because "
953                    << "-unroll-allow-partial not given\n");
954       return false;
955     }
956     if (UP.PartialThreshold != NoThreshold &&
957         UnrolledSize > UP.PartialThreshold) {
958       // Reduce unroll count to be modulo of TripCount for partial unrolling.
959       Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2);
960       while (Count != 0 && TripCount % Count != 0)
961         Count--;
962     }
963   } else if (Unrolling == Runtime) {
964     if (!AllowRuntime && !CountSetExplicitly) {
965       DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
966                    << "-unroll-runtime not given\n");
967       return false;
968     }
969     // Reduce unroll count to be the largest power-of-two factor of
970     // the original count which satisfies the threshold limit.
971     while (Count != 0 && UnrolledSize > UP.PartialThreshold) {
972       Count >>= 1;
973       UnrolledSize = (LoopSize-2) * Count + 2;
974     }
975     if (Count > UP.MaxCount)
976       Count = UP.MaxCount;
977     DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
978   }
979 
980   if (HasPragma) {
981     if (PragmaCount != 0)
982       // If loop has an unroll count pragma mark loop as unrolled to prevent
983       // unrolling beyond that requested by the pragma.
984       SetLoopAlreadyUnrolled(L);
985 
986     // Emit optimization remarks if we are unable to unroll the loop
987     // as directed by a pragma.
988     DebugLoc LoopLoc = L->getStartLoc();
989     Function *F = Header->getParent();
990     LLVMContext &Ctx = F->getContext();
991     if ((PragmaCount > 0) && Count != OriginalCount) {
992       emitOptimizationRemarkMissed(
993           Ctx, DEBUG_TYPE, *F, LoopLoc,
994           "Unable to unroll loop the number of times directed by "
995           "unroll_count pragma because unrolled size is too large.");
996     } else if (PragmaFullUnroll && !TripCount) {
997       emitOptimizationRemarkMissed(
998           Ctx, DEBUG_TYPE, *F, LoopLoc,
999           "Unable to fully unroll loop as directed by unroll(full) pragma "
1000           "because loop has a runtime trip count.");
1001     } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
1002       emitOptimizationRemarkMissed(
1003           Ctx, DEBUG_TYPE, *F, LoopLoc,
1004           "Unable to unroll loop as directed by unroll(enable) pragma because "
1005           "unrolled size is too large.");
1006     } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1007                Count != TripCount) {
1008       emitOptimizationRemarkMissed(
1009           Ctx, DEBUG_TYPE, *F, LoopLoc,
1010           "Unable to fully unroll loop as directed by unroll pragma because "
1011           "unrolled size is too large.");
1012     }
1013   }
1014 
1015   if (Unrolling != Full && Count < 2) {
1016     // Partial unrolling by 1 is a nop.  For full unrolling, a factor
1017     // of 1 makes sense because loop control can be eliminated.
1018     return false;
1019   }
1020 
1021   // Unroll the loop.
1022   if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
1023                   TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA))
1024     return false;
1025 
1026   return true;
1027 }
1028