1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils/LoopSimplify.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include "llvm/Transforms/Utils/UnrollLoop.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <limits> 63 #include <string> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-unroll" 70 71 static cl::opt<unsigned> 72 UnrollThreshold("unroll-threshold", cl::Hidden, 73 cl::desc("The cost threshold for loop unrolling")); 74 75 static cl::opt<unsigned> UnrollPartialThreshold( 76 "unroll-partial-threshold", cl::Hidden, 77 cl::desc("The cost threshold for partial loop unrolling")); 78 79 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 80 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 81 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 82 "to the threshold when aggressively unrolling a loop due to the " 83 "dynamic cost savings. If completely unrolling a loop will reduce " 84 "the total runtime from X to Y, we boost the loop unroll " 85 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 86 "X/Y). This limit avoids excessive code bloat.")); 87 88 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 89 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 90 cl::desc("Don't allow loop unrolling to simulate more than this number of" 91 "iterations when checking full unroll profitability")); 92 93 static cl::opt<unsigned> UnrollCount( 94 "unroll-count", cl::Hidden, 95 cl::desc("Use this unroll count for all loops including those with " 96 "unroll_count pragma values, for testing purposes")); 97 98 static cl::opt<unsigned> UnrollMaxCount( 99 "unroll-max-count", cl::Hidden, 100 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 101 "testing purposes")); 102 103 static cl::opt<unsigned> UnrollFullMaxCount( 104 "unroll-full-max-count", cl::Hidden, 105 cl::desc( 106 "Set the max unroll count for full unrolling, for testing purposes")); 107 108 static cl::opt<unsigned> UnrollPeelCount( 109 "unroll-peel-count", cl::Hidden, 110 cl::desc("Set the unroll peeling count, for testing purposes")); 111 112 static cl::opt<bool> 113 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 114 cl::desc("Allows loops to be partially unrolled until " 115 "-unroll-threshold loop size is reached.")); 116 117 static cl::opt<bool> UnrollAllowRemainder( 118 "unroll-allow-remainder", cl::Hidden, 119 cl::desc("Allow generation of a loop remainder (extra iterations) " 120 "when unrolling a loop.")); 121 122 static cl::opt<bool> 123 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 124 cl::desc("Unroll loops with run-time trip counts")); 125 126 static cl::opt<unsigned> UnrollMaxUpperBound( 127 "unroll-max-upperbound", cl::init(8), cl::Hidden, 128 cl::desc( 129 "The max of trip count upper bound that is considered in unrolling")); 130 131 static cl::opt<unsigned> PragmaUnrollThreshold( 132 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 133 cl::desc("Unrolled size limit for loops with an unroll(full) or " 134 "unroll_count pragma.")); 135 136 static cl::opt<unsigned> FlatLoopTripCountThreshold( 137 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 138 cl::desc("If the runtime tripcount for the loop is lower than the " 139 "threshold, the loop is considered as flat and will be less " 140 "aggressively unrolled.")); 141 142 static cl::opt<bool> 143 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 144 cl::desc("Allows loops to be peeled when the dynamic " 145 "trip count is known to be low.")); 146 147 static cl::opt<bool> UnrollUnrollRemainder( 148 "unroll-remainder", cl::Hidden, 149 cl::desc("Allow the loop remainder to be unrolled.")); 150 151 // This option isn't ever intended to be enabled, it serves to allow 152 // experiments to check the assumptions about when this kind of revisit is 153 // necessary. 154 static cl::opt<bool> UnrollRevisitChildLoops( 155 "unroll-revisit-child-loops", cl::Hidden, 156 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 157 "This shouldn't typically be needed as child loops (or their " 158 "clones) were already visited.")); 159 160 /// A magic value for use with the Threshold parameter to indicate 161 /// that the loop unroll should be performed regardless of how much 162 /// code expansion would result. 163 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 164 165 /// Gather the various unrolling parameters based on the defaults, compiler 166 /// flags, TTI overrides and user specified parameters. 167 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 168 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 169 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 170 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 171 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 172 TargetTransformInfo::UnrollingPreferences UP; 173 174 // Set up the defaults 175 UP.Threshold = OptLevel > 2 ? 300 : 150; 176 UP.MaxPercentThresholdBoost = 400; 177 UP.OptSizeThreshold = 0; 178 UP.PartialThreshold = 150; 179 UP.PartialOptSizeThreshold = 0; 180 UP.Count = 0; 181 UP.PeelCount = 0; 182 UP.DefaultUnrollRuntimeCount = 8; 183 UP.MaxCount = std::numeric_limits<unsigned>::max(); 184 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 185 UP.BEInsns = 2; 186 UP.Partial = false; 187 UP.Runtime = false; 188 UP.AllowRemainder = true; 189 UP.UnrollRemainder = false; 190 UP.AllowExpensiveTripCount = false; 191 UP.Force = false; 192 UP.UpperBound = false; 193 UP.AllowPeeling = true; 194 195 // Override with any target specific settings 196 TTI.getUnrollingPreferences(L, SE, UP); 197 198 // Apply size attributes 199 if (L->getHeader()->getParent()->optForSize()) { 200 UP.Threshold = UP.OptSizeThreshold; 201 UP.PartialThreshold = UP.PartialOptSizeThreshold; 202 } 203 204 // Apply any user values specified by cl::opt 205 if (UnrollThreshold.getNumOccurrences() > 0) 206 UP.Threshold = UnrollThreshold; 207 if (UnrollPartialThreshold.getNumOccurrences() > 0) 208 UP.PartialThreshold = UnrollPartialThreshold; 209 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 210 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 211 if (UnrollMaxCount.getNumOccurrences() > 0) 212 UP.MaxCount = UnrollMaxCount; 213 if (UnrollFullMaxCount.getNumOccurrences() > 0) 214 UP.FullUnrollMaxCount = UnrollFullMaxCount; 215 if (UnrollPeelCount.getNumOccurrences() > 0) 216 UP.PeelCount = UnrollPeelCount; 217 if (UnrollAllowPartial.getNumOccurrences() > 0) 218 UP.Partial = UnrollAllowPartial; 219 if (UnrollAllowRemainder.getNumOccurrences() > 0) 220 UP.AllowRemainder = UnrollAllowRemainder; 221 if (UnrollRuntime.getNumOccurrences() > 0) 222 UP.Runtime = UnrollRuntime; 223 if (UnrollMaxUpperBound == 0) 224 UP.UpperBound = false; 225 if (UnrollAllowPeeling.getNumOccurrences() > 0) 226 UP.AllowPeeling = UnrollAllowPeeling; 227 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 228 UP.UnrollRemainder = UnrollUnrollRemainder; 229 230 // Apply user values provided by argument 231 if (UserThreshold.hasValue()) { 232 UP.Threshold = *UserThreshold; 233 UP.PartialThreshold = *UserThreshold; 234 } 235 if (UserCount.hasValue()) 236 UP.Count = *UserCount; 237 if (UserAllowPartial.hasValue()) 238 UP.Partial = *UserAllowPartial; 239 if (UserRuntime.hasValue()) 240 UP.Runtime = *UserRuntime; 241 if (UserUpperBound.hasValue()) 242 UP.UpperBound = *UserUpperBound; 243 if (UserAllowPeeling.hasValue()) 244 UP.AllowPeeling = *UserAllowPeeling; 245 246 return UP; 247 } 248 249 namespace { 250 251 /// A struct to densely store the state of an instruction after unrolling at 252 /// each iteration. 253 /// 254 /// This is designed to work like a tuple of <Instruction *, int> for the 255 /// purposes of hashing and lookup, but to be able to associate two boolean 256 /// states with each key. 257 struct UnrolledInstState { 258 Instruction *I; 259 int Iteration : 30; 260 unsigned IsFree : 1; 261 unsigned IsCounted : 1; 262 }; 263 264 /// Hashing and equality testing for a set of the instruction states. 265 struct UnrolledInstStateKeyInfo { 266 using PtrInfo = DenseMapInfo<Instruction *>; 267 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 268 269 static inline UnrolledInstState getEmptyKey() { 270 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 271 } 272 273 static inline UnrolledInstState getTombstoneKey() { 274 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 275 } 276 277 static inline unsigned getHashValue(const UnrolledInstState &S) { 278 return PairInfo::getHashValue({S.I, S.Iteration}); 279 } 280 281 static inline bool isEqual(const UnrolledInstState &LHS, 282 const UnrolledInstState &RHS) { 283 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 284 } 285 }; 286 287 struct EstimatedUnrollCost { 288 /// \brief The estimated cost after unrolling. 289 unsigned UnrolledCost; 290 291 /// \brief The estimated dynamic cost of executing the instructions in the 292 /// rolled form. 293 unsigned RolledDynamicCost; 294 }; 295 296 } // end anonymous namespace 297 298 /// \brief Figure out if the loop is worth full unrolling. 299 /// 300 /// Complete loop unrolling can make some loads constant, and we need to know 301 /// if that would expose any further optimization opportunities. This routine 302 /// estimates this optimization. It computes cost of unrolled loop 303 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 304 /// dynamic cost we mean that we won't count costs of blocks that are known not 305 /// to be executed (i.e. if we have a branch in the loop and we know that at the 306 /// given iteration its condition would be resolved to true, we won't add up the 307 /// cost of the 'false'-block). 308 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 309 /// the analysis failed (no benefits expected from the unrolling, or the loop is 310 /// too big to analyze), the returned value is None. 311 static Optional<EstimatedUnrollCost> 312 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 313 ScalarEvolution &SE, const TargetTransformInfo &TTI, 314 unsigned MaxUnrolledLoopSize) { 315 // We want to be able to scale offsets by the trip count and add more offsets 316 // to them without checking for overflows, and we already don't want to 317 // analyze *massive* trip counts, so we force the max to be reasonably small. 318 assert(UnrollMaxIterationsCountToAnalyze < 319 (unsigned)(std::numeric_limits<int>::max() / 2) && 320 "The unroll iterations max is too large!"); 321 322 // Only analyze inner loops. We can't properly estimate cost of nested loops 323 // and we won't visit inner loops again anyway. 324 if (!L->empty()) 325 return None; 326 327 // Don't simulate loops with a big or unknown tripcount 328 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 329 TripCount > UnrollMaxIterationsCountToAnalyze) 330 return None; 331 332 SmallSetVector<BasicBlock *, 16> BBWorklist; 333 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 334 DenseMap<Value *, Constant *> SimplifiedValues; 335 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 336 337 // The estimated cost of the unrolled form of the loop. We try to estimate 338 // this by simplifying as much as we can while computing the estimate. 339 unsigned UnrolledCost = 0; 340 341 // We also track the estimated dynamic (that is, actually executed) cost in 342 // the rolled form. This helps identify cases when the savings from unrolling 343 // aren't just exposing dead control flows, but actual reduced dynamic 344 // instructions due to the simplifications which we expect to occur after 345 // unrolling. 346 unsigned RolledDynamicCost = 0; 347 348 // We track the simplification of each instruction in each iteration. We use 349 // this to recursively merge costs into the unrolled cost on-demand so that 350 // we don't count the cost of any dead code. This is essentially a map from 351 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 352 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 353 354 // A small worklist used to accumulate cost of instructions from each 355 // observable and reached root in the loop. 356 SmallVector<Instruction *, 16> CostWorklist; 357 358 // PHI-used worklist used between iterations while accumulating cost. 359 SmallVector<Instruction *, 4> PHIUsedList; 360 361 // Helper function to accumulate cost for instructions in the loop. 362 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 363 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 364 assert(CostWorklist.empty() && "Must start with an empty cost list"); 365 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 366 CostWorklist.push_back(&RootI); 367 for (;; --Iteration) { 368 do { 369 Instruction *I = CostWorklist.pop_back_val(); 370 371 // InstCostMap only uses I and Iteration as a key, the other two values 372 // don't matter here. 373 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 374 if (CostIter == InstCostMap.end()) 375 // If an input to a PHI node comes from a dead path through the loop 376 // we may have no cost data for it here. What that actually means is 377 // that it is free. 378 continue; 379 auto &Cost = *CostIter; 380 if (Cost.IsCounted) 381 // Already counted this instruction. 382 continue; 383 384 // Mark that we are counting the cost of this instruction now. 385 Cost.IsCounted = true; 386 387 // If this is a PHI node in the loop header, just add it to the PHI set. 388 if (auto *PhiI = dyn_cast<PHINode>(I)) 389 if (PhiI->getParent() == L->getHeader()) { 390 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 391 "inherently simplify during unrolling."); 392 if (Iteration == 0) 393 continue; 394 395 // Push the incoming value from the backedge into the PHI used list 396 // if it is an in-loop instruction. We'll use this to populate the 397 // cost worklist for the next iteration (as we count backwards). 398 if (auto *OpI = dyn_cast<Instruction>( 399 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 400 if (L->contains(OpI)) 401 PHIUsedList.push_back(OpI); 402 continue; 403 } 404 405 // First accumulate the cost of this instruction. 406 if (!Cost.IsFree) { 407 UnrolledCost += TTI.getUserCost(I); 408 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 409 << "): "); 410 DEBUG(I->dump()); 411 } 412 413 // We must count the cost of every operand which is not free, 414 // recursively. If we reach a loop PHI node, simply add it to the set 415 // to be considered on the next iteration (backwards!). 416 for (Value *Op : I->operands()) { 417 // Check whether this operand is free due to being a constant or 418 // outside the loop. 419 auto *OpI = dyn_cast<Instruction>(Op); 420 if (!OpI || !L->contains(OpI)) 421 continue; 422 423 // Otherwise accumulate its cost. 424 CostWorklist.push_back(OpI); 425 } 426 } while (!CostWorklist.empty()); 427 428 if (PHIUsedList.empty()) 429 // We've exhausted the search. 430 break; 431 432 assert(Iteration > 0 && 433 "Cannot track PHI-used values past the first iteration!"); 434 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 435 PHIUsedList.clear(); 436 } 437 }; 438 439 // Ensure that we don't violate the loop structure invariants relied on by 440 // this analysis. 441 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 442 assert(L->isLCSSAForm(DT) && 443 "Must have loops in LCSSA form to track live-out values."); 444 445 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 446 447 // Simulate execution of each iteration of the loop counting instructions, 448 // which would be simplified. 449 // Since the same load will take different values on different iterations, 450 // we literally have to go through all loop's iterations. 451 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 452 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 453 454 // Prepare for the iteration by collecting any simplified entry or backedge 455 // inputs. 456 for (Instruction &I : *L->getHeader()) { 457 auto *PHI = dyn_cast<PHINode>(&I); 458 if (!PHI) 459 break; 460 461 // The loop header PHI nodes must have exactly two input: one from the 462 // loop preheader and one from the loop latch. 463 assert( 464 PHI->getNumIncomingValues() == 2 && 465 "Must have an incoming value only for the preheader and the latch."); 466 467 Value *V = PHI->getIncomingValueForBlock( 468 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 469 Constant *C = dyn_cast<Constant>(V); 470 if (Iteration != 0 && !C) 471 C = SimplifiedValues.lookup(V); 472 if (C) 473 SimplifiedInputValues.push_back({PHI, C}); 474 } 475 476 // Now clear and re-populate the map for the next iteration. 477 SimplifiedValues.clear(); 478 while (!SimplifiedInputValues.empty()) 479 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 480 481 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 482 483 BBWorklist.clear(); 484 BBWorklist.insert(L->getHeader()); 485 // Note that we *must not* cache the size, this loop grows the worklist. 486 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 487 BasicBlock *BB = BBWorklist[Idx]; 488 489 // Visit all instructions in the given basic block and try to simplify 490 // it. We don't change the actual IR, just count optimization 491 // opportunities. 492 for (Instruction &I : *BB) { 493 if (isa<DbgInfoIntrinsic>(I)) 494 continue; 495 496 // Track this instruction's expected baseline cost when executing the 497 // rolled loop form. 498 RolledDynamicCost += TTI.getUserCost(&I); 499 500 // Visit the instruction to analyze its loop cost after unrolling, 501 // and if the visitor returns true, mark the instruction as free after 502 // unrolling and continue. 503 bool IsFree = Analyzer.visit(I); 504 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 505 (unsigned)IsFree, 506 /*IsCounted*/ false}).second; 507 (void)Inserted; 508 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 509 510 if (IsFree) 511 continue; 512 513 // Can't properly model a cost of a call. 514 // FIXME: With a proper cost model we should be able to do it. 515 if(isa<CallInst>(&I)) 516 return None; 517 518 // If the instruction might have a side-effect recursively account for 519 // the cost of it and all the instructions leading up to it. 520 if (I.mayHaveSideEffects()) 521 AddCostRecursively(I, Iteration); 522 523 // If unrolled body turns out to be too big, bail out. 524 if (UnrolledCost > MaxUnrolledLoopSize) { 525 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 526 << " UnrolledCost: " << UnrolledCost 527 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 528 << "\n"); 529 return None; 530 } 531 } 532 533 TerminatorInst *TI = BB->getTerminator(); 534 535 // Add in the live successors by first checking whether we have terminator 536 // that may be simplified based on the values simplified by this call. 537 BasicBlock *KnownSucc = nullptr; 538 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 539 if (BI->isConditional()) { 540 if (Constant *SimpleCond = 541 SimplifiedValues.lookup(BI->getCondition())) { 542 // Just take the first successor if condition is undef 543 if (isa<UndefValue>(SimpleCond)) 544 KnownSucc = BI->getSuccessor(0); 545 else if (ConstantInt *SimpleCondVal = 546 dyn_cast<ConstantInt>(SimpleCond)) 547 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 548 } 549 } 550 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 551 if (Constant *SimpleCond = 552 SimplifiedValues.lookup(SI->getCondition())) { 553 // Just take the first successor if condition is undef 554 if (isa<UndefValue>(SimpleCond)) 555 KnownSucc = SI->getSuccessor(0); 556 else if (ConstantInt *SimpleCondVal = 557 dyn_cast<ConstantInt>(SimpleCond)) 558 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 559 } 560 } 561 if (KnownSucc) { 562 if (L->contains(KnownSucc)) 563 BBWorklist.insert(KnownSucc); 564 else 565 ExitWorklist.insert({BB, KnownSucc}); 566 continue; 567 } 568 569 // Add BB's successors to the worklist. 570 for (BasicBlock *Succ : successors(BB)) 571 if (L->contains(Succ)) 572 BBWorklist.insert(Succ); 573 else 574 ExitWorklist.insert({BB, Succ}); 575 AddCostRecursively(*TI, Iteration); 576 } 577 578 // If we found no optimization opportunities on the first iteration, we 579 // won't find them on later ones too. 580 if (UnrolledCost == RolledDynamicCost) { 581 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 582 << " UnrolledCost: " << UnrolledCost << "\n"); 583 return None; 584 } 585 } 586 587 while (!ExitWorklist.empty()) { 588 BasicBlock *ExitingBB, *ExitBB; 589 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 590 591 for (Instruction &I : *ExitBB) { 592 auto *PN = dyn_cast<PHINode>(&I); 593 if (!PN) 594 break; 595 596 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 597 if (auto *OpI = dyn_cast<Instruction>(Op)) 598 if (L->contains(OpI)) 599 AddCostRecursively(*OpI, TripCount - 1); 600 } 601 } 602 603 DEBUG(dbgs() << "Analysis finished:\n" 604 << "UnrolledCost: " << UnrolledCost << ", " 605 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 606 return {{UnrolledCost, RolledDynamicCost}}; 607 } 608 609 /// ApproximateLoopSize - Approximate the size of the loop. 610 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 611 bool &NotDuplicatable, bool &Convergent, 612 const TargetTransformInfo &TTI, 613 AssumptionCache *AC, unsigned BEInsns) { 614 SmallPtrSet<const Value *, 32> EphValues; 615 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 616 617 CodeMetrics Metrics; 618 for (BasicBlock *BB : L->blocks()) 619 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 620 NumCalls = Metrics.NumInlineCandidates; 621 NotDuplicatable = Metrics.notDuplicatable; 622 Convergent = Metrics.convergent; 623 624 unsigned LoopSize = Metrics.NumInsts; 625 626 // Don't allow an estimate of size zero. This would allows unrolling of loops 627 // with huge iteration counts, which is a compile time problem even if it's 628 // not a problem for code quality. Also, the code using this size may assume 629 // that each loop has at least three instructions (likely a conditional 630 // branch, a comparison feeding that branch, and some kind of loop increment 631 // feeding that comparison instruction). 632 LoopSize = std::max(LoopSize, BEInsns + 1); 633 634 return LoopSize; 635 } 636 637 // Returns the loop hint metadata node with the given name (for example, 638 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 639 // returned. 640 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 641 if (MDNode *LoopID = L->getLoopID()) 642 return GetUnrollMetadata(LoopID, Name); 643 return nullptr; 644 } 645 646 // Returns true if the loop has an unroll(full) pragma. 647 static bool HasUnrollFullPragma(const Loop *L) { 648 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 649 } 650 651 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 652 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 653 static bool HasUnrollEnablePragma(const Loop *L) { 654 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 655 } 656 657 // Returns true if the loop has an unroll(disable) pragma. 658 static bool HasUnrollDisablePragma(const Loop *L) { 659 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 660 } 661 662 // Returns true if the loop has an runtime unroll(disable) pragma. 663 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 664 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 665 } 666 667 // If loop has an unroll_count pragma return the (necessarily 668 // positive) value from the pragma. Otherwise return 0. 669 static unsigned UnrollCountPragmaValue(const Loop *L) { 670 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 671 if (MD) { 672 assert(MD->getNumOperands() == 2 && 673 "Unroll count hint metadata should have two operands."); 674 unsigned Count = 675 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 676 assert(Count >= 1 && "Unroll count must be positive."); 677 return Count; 678 } 679 return 0; 680 } 681 682 // Computes the boosting factor for complete unrolling. 683 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 684 // be beneficial to fully unroll the loop even if unrolledcost is large. We 685 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 686 // the unroll threshold. 687 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 688 unsigned MaxPercentThresholdBoost) { 689 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 690 return 100; 691 else if (Cost.UnrolledCost != 0) 692 // The boosting factor is RolledDynamicCost / UnrolledCost 693 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 694 MaxPercentThresholdBoost); 695 else 696 return MaxPercentThresholdBoost; 697 } 698 699 // Returns loop size estimation for unrolled loop. 700 static uint64_t getUnrolledLoopSize( 701 unsigned LoopSize, 702 TargetTransformInfo::UnrollingPreferences &UP) { 703 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 704 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 705 } 706 707 // Returns true if unroll count was set explicitly. 708 // Calculates unroll count and writes it to UP.Count. 709 static bool computeUnrollCount( 710 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 711 ScalarEvolution &SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 712 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 713 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 714 // Check for explicit Count. 715 // 1st priority is unroll count set by "unroll-count" option. 716 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 717 if (UserUnrollCount) { 718 UP.Count = UnrollCount; 719 UP.AllowExpensiveTripCount = true; 720 UP.Force = true; 721 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 722 return true; 723 } 724 725 // 2nd priority is unroll count set by pragma. 726 unsigned PragmaCount = UnrollCountPragmaValue(L); 727 if (PragmaCount > 0) { 728 UP.Count = PragmaCount; 729 UP.Runtime = true; 730 UP.AllowExpensiveTripCount = true; 731 UP.Force = true; 732 if (UP.AllowRemainder && 733 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 734 return true; 735 } 736 bool PragmaFullUnroll = HasUnrollFullPragma(L); 737 if (PragmaFullUnroll && TripCount != 0) { 738 UP.Count = TripCount; 739 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 740 return false; 741 } 742 743 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 744 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 745 PragmaEnableUnroll || UserUnrollCount; 746 747 if (ExplicitUnroll && TripCount != 0) { 748 // If the loop has an unrolling pragma, we want to be more aggressive with 749 // unrolling limits. Set thresholds to at least the PragmaThreshold value 750 // which is larger than the default limits. 751 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 752 UP.PartialThreshold = 753 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 754 } 755 756 // 3rd priority is full unroll count. 757 // Full unroll makes sense only when TripCount or its upper bound could be 758 // statically calculated. 759 // Also we need to check if we exceed FullUnrollMaxCount. 760 // If using the upper bound to unroll, TripMultiple should be set to 1 because 761 // we do not know when loop may exit. 762 // MaxTripCount and ExactTripCount cannot both be non zero since we only 763 // compute the former when the latter is zero. 764 unsigned ExactTripCount = TripCount; 765 assert((ExactTripCount == 0 || MaxTripCount == 0) && 766 "ExtractTripCound and MaxTripCount cannot both be non zero."); 767 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 768 UP.Count = FullUnrollTripCount; 769 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 770 // When computing the unrolled size, note that BEInsns are not replicated 771 // like the rest of the loop body. 772 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 773 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 774 TripCount = FullUnrollTripCount; 775 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 776 return ExplicitUnroll; 777 } else { 778 // The loop isn't that small, but we still can fully unroll it if that 779 // helps to remove a significant number of instructions. 780 // To check that, run additional analysis on the loop. 781 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 782 L, FullUnrollTripCount, DT, SE, TTI, 783 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 784 unsigned Boost = 785 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 786 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 787 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 788 TripCount = FullUnrollTripCount; 789 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 790 return ExplicitUnroll; 791 } 792 } 793 } 794 } 795 796 // 4th priority is loop peeling 797 computePeelCount(L, LoopSize, UP, TripCount); 798 if (UP.PeelCount) { 799 UP.Runtime = false; 800 UP.Count = 1; 801 return ExplicitUnroll; 802 } 803 804 // 5th priority is partial unrolling. 805 // Try partial unroll only when TripCount could be staticaly calculated. 806 if (TripCount) { 807 UP.Partial |= ExplicitUnroll; 808 if (!UP.Partial) { 809 DEBUG(dbgs() << " will not try to unroll partially because " 810 << "-unroll-allow-partial not given\n"); 811 UP.Count = 0; 812 return false; 813 } 814 if (UP.Count == 0) 815 UP.Count = TripCount; 816 if (UP.PartialThreshold != NoThreshold) { 817 // Reduce unroll count to be modulo of TripCount for partial unrolling. 818 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 819 UP.Count = 820 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 821 (LoopSize - UP.BEInsns); 822 if (UP.Count > UP.MaxCount) 823 UP.Count = UP.MaxCount; 824 while (UP.Count != 0 && TripCount % UP.Count != 0) 825 UP.Count--; 826 if (UP.AllowRemainder && UP.Count <= 1) { 827 // If there is no Count that is modulo of TripCount, set Count to 828 // largest power-of-two factor that satisfies the threshold limit. 829 // As we'll create fixup loop, do the type of unrolling only if 830 // remainder loop is allowed. 831 UP.Count = UP.DefaultUnrollRuntimeCount; 832 while (UP.Count != 0 && 833 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 834 UP.Count >>= 1; 835 } 836 if (UP.Count < 2) { 837 if (PragmaEnableUnroll) 838 ORE->emit([&]() { 839 return OptimizationRemarkMissed(DEBUG_TYPE, 840 "UnrollAsDirectedTooLarge", 841 L->getStartLoc(), L->getHeader()) 842 << "Unable to unroll loop as directed by unroll(enable) " 843 "pragma " 844 "because unrolled size is too large."; 845 }); 846 UP.Count = 0; 847 } 848 } else { 849 UP.Count = TripCount; 850 } 851 if (UP.Count > UP.MaxCount) 852 UP.Count = UP.MaxCount; 853 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 854 UP.Count != TripCount) 855 ORE->emit([&]() { 856 return OptimizationRemarkMissed(DEBUG_TYPE, 857 "FullUnrollAsDirectedTooLarge", 858 L->getStartLoc(), L->getHeader()) 859 << "Unable to fully unroll loop as directed by unroll pragma " 860 "because " 861 "unrolled size is too large."; 862 }); 863 return ExplicitUnroll; 864 } 865 assert(TripCount == 0 && 866 "All cases when TripCount is constant should be covered here."); 867 if (PragmaFullUnroll) 868 ORE->emit([&]() { 869 return OptimizationRemarkMissed( 870 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 871 L->getStartLoc(), L->getHeader()) 872 << "Unable to fully unroll loop as directed by unroll(full) " 873 "pragma " 874 "because loop has a runtime trip count."; 875 }); 876 877 // 6th priority is runtime unrolling. 878 // Don't unroll a runtime trip count loop when it is disabled. 879 if (HasRuntimeUnrollDisablePragma(L)) { 880 UP.Count = 0; 881 return false; 882 } 883 884 // Check if the runtime trip count is too small when profile is available. 885 if (L->getHeader()->getParent()->hasProfileData()) { 886 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 887 if (*ProfileTripCount < FlatLoopTripCountThreshold) 888 return false; 889 else 890 UP.AllowExpensiveTripCount = true; 891 } 892 } 893 894 // Reduce count based on the type of unrolling and the threshold values. 895 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 896 if (!UP.Runtime) { 897 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 898 << "-unroll-runtime not given\n"); 899 UP.Count = 0; 900 return false; 901 } 902 if (UP.Count == 0) 903 UP.Count = UP.DefaultUnrollRuntimeCount; 904 905 // Reduce unroll count to be the largest power-of-two factor of 906 // the original count which satisfies the threshold limit. 907 while (UP.Count != 0 && 908 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 909 UP.Count >>= 1; 910 911 #ifndef NDEBUG 912 unsigned OrigCount = UP.Count; 913 #endif 914 915 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 916 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 917 UP.Count >>= 1; 918 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 919 "specific or because the loop contains a convergent " 920 "instruction), so unroll count must divide the trip " 921 "multiple, " 922 << TripMultiple << ". Reducing unroll count from " 923 << OrigCount << " to " << UP.Count << ".\n"); 924 925 using namespace ore; 926 927 if (PragmaCount > 0 && !UP.AllowRemainder) 928 ORE->emit([&]() { 929 return OptimizationRemarkMissed(DEBUG_TYPE, 930 "DifferentUnrollCountFromDirected", 931 L->getStartLoc(), L->getHeader()) 932 << "Unable to unroll loop the number of times directed by " 933 "unroll_count pragma because remainder loop is restricted " 934 "(that could architecture specific or because the loop " 935 "contains a convergent instruction) and so must have an " 936 "unroll " 937 "count that divides the loop trip multiple of " 938 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 939 << NV("UnrollCount", UP.Count) << " time(s)."; 940 }); 941 } 942 943 if (UP.Count > UP.MaxCount) 944 UP.Count = UP.MaxCount; 945 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 946 if (UP.Count < 2) 947 UP.Count = 0; 948 return ExplicitUnroll; 949 } 950 951 static LoopUnrollResult tryToUnrollLoop( 952 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 953 const TargetTransformInfo &TTI, AssumptionCache &AC, 954 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 955 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 956 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 957 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 958 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 959 << "] Loop %" << L->getHeader()->getName() << "\n"); 960 if (HasUnrollDisablePragma(L)) 961 return LoopUnrollResult::Unmodified; 962 if (!L->isLoopSimplifyForm()) { 963 DEBUG( 964 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 965 return LoopUnrollResult::Unmodified; 966 } 967 968 unsigned NumInlineCandidates; 969 bool NotDuplicatable; 970 bool Convergent; 971 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 972 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 973 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 974 ProvidedAllowPeeling); 975 // Exit early if unrolling is disabled. 976 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 977 return LoopUnrollResult::Unmodified; 978 unsigned LoopSize = ApproximateLoopSize( 979 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 980 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 981 if (NotDuplicatable) { 982 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 983 << " instructions.\n"); 984 return LoopUnrollResult::Unmodified; 985 } 986 if (NumInlineCandidates != 0) { 987 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 988 return LoopUnrollResult::Unmodified; 989 } 990 991 // Find trip count and trip multiple if count is not available 992 unsigned TripCount = 0; 993 unsigned MaxTripCount = 0; 994 unsigned TripMultiple = 1; 995 // If there are multiple exiting blocks but one of them is the latch, use the 996 // latch for the trip count estimation. Otherwise insist on a single exiting 997 // block for the trip count estimation. 998 BasicBlock *ExitingBlock = L->getLoopLatch(); 999 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1000 ExitingBlock = L->getExitingBlock(); 1001 if (ExitingBlock) { 1002 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1003 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1004 } 1005 1006 // If the loop contains a convergent operation, the prelude we'd add 1007 // to do the first few instructions before we hit the unrolled loop 1008 // is unsafe -- it adds a control-flow dependency to the convergent 1009 // operation. Therefore restrict remainder loop (try unrollig without). 1010 // 1011 // TODO: This is quite conservative. In practice, convergent_op() 1012 // is likely to be called unconditionally in the loop. In this 1013 // case, the program would be ill-formed (on most architectures) 1014 // unless n were the same on all threads in a thread group. 1015 // Assuming n is the same on all threads, any kind of unrolling is 1016 // safe. But currently llvm's notion of convergence isn't powerful 1017 // enough to express this. 1018 if (Convergent) 1019 UP.AllowRemainder = false; 1020 1021 // Try to find the trip count upper bound if we cannot find the exact trip 1022 // count. 1023 bool MaxOrZero = false; 1024 if (!TripCount) { 1025 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1026 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1027 // We can unroll by the upper bound amount if it's generally allowed or if 1028 // we know that the loop is executed either the upper bound or zero times. 1029 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1030 // loop tests remains the same compared to the non-unrolled version, whereas 1031 // the generic upper bound unrolling keeps all but the last loop test so the 1032 // number of loop tests goes up which may end up being worse on targets with 1033 // constriained branch predictor resources so is controlled by an option.) 1034 // In addition we only unroll small upper bounds. 1035 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1036 MaxTripCount = 0; 1037 } 1038 } 1039 1040 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1041 // fully unroll the loop. 1042 bool UseUpperBound = false; 1043 bool IsCountSetExplicitly = 1044 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1045 TripMultiple, LoopSize, UP, UseUpperBound); 1046 if (!UP.Count) 1047 return LoopUnrollResult::Unmodified; 1048 // Unroll factor (Count) must be less or equal to TripCount. 1049 if (TripCount && UP.Count > TripCount) 1050 UP.Count = TripCount; 1051 1052 // Unroll the loop. 1053 LoopUnrollResult UnrollResult = UnrollLoop( 1054 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1055 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1056 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA); 1057 if (UnrollResult == LoopUnrollResult::Unmodified) 1058 return LoopUnrollResult::Unmodified; 1059 1060 // If loop has an unroll count pragma or unrolled by explicitly set count 1061 // mark loop as unrolled to prevent unrolling beyond that requested. 1062 // If the loop was peeled, we already "used up" the profile information 1063 // we had, so we don't want to unroll or peel again. 1064 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1065 (IsCountSetExplicitly || UP.PeelCount)) 1066 L->setLoopAlreadyUnrolled(); 1067 1068 return UnrollResult; 1069 } 1070 1071 namespace { 1072 1073 class LoopUnroll : public LoopPass { 1074 public: 1075 static char ID; // Pass ID, replacement for typeid 1076 1077 int OptLevel; 1078 Optional<unsigned> ProvidedCount; 1079 Optional<unsigned> ProvidedThreshold; 1080 Optional<bool> ProvidedAllowPartial; 1081 Optional<bool> ProvidedRuntime; 1082 Optional<bool> ProvidedUpperBound; 1083 Optional<bool> ProvidedAllowPeeling; 1084 1085 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1086 Optional<unsigned> Count = None, 1087 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1088 Optional<bool> UpperBound = None, 1089 Optional<bool> AllowPeeling = None) 1090 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1091 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1092 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1093 ProvidedAllowPeeling(AllowPeeling) { 1094 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1095 } 1096 1097 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1098 if (skipLoop(L)) 1099 return false; 1100 1101 Function &F = *L->getHeader()->getParent(); 1102 1103 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1104 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1105 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1106 const TargetTransformInfo &TTI = 1107 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1108 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1109 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1110 // pass. Function analyses need to be preserved across loop transformations 1111 // but ORE cannot be preserved (see comment before the pass definition). 1112 OptimizationRemarkEmitter ORE(&F); 1113 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1114 1115 LoopUnrollResult Result = tryToUnrollLoop( 1116 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount, 1117 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1118 ProvidedUpperBound, ProvidedAllowPeeling); 1119 1120 if (Result == LoopUnrollResult::FullyUnrolled) 1121 LPM.markLoopAsDeleted(*L); 1122 1123 return Result != LoopUnrollResult::Unmodified; 1124 } 1125 1126 /// This transformation requires natural loop information & requires that 1127 /// loop preheaders be inserted into the CFG... 1128 void getAnalysisUsage(AnalysisUsage &AU) const override { 1129 AU.addRequired<AssumptionCacheTracker>(); 1130 AU.addRequired<TargetTransformInfoWrapperPass>(); 1131 // FIXME: Loop passes are required to preserve domtree, and for now we just 1132 // recreate dom info if anything gets unrolled. 1133 getLoopAnalysisUsage(AU); 1134 } 1135 }; 1136 1137 } // end anonymous namespace 1138 1139 char LoopUnroll::ID = 0; 1140 1141 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1142 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1143 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1144 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1145 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1146 1147 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1148 int AllowPartial, int Runtime, int UpperBound, 1149 int AllowPeeling) { 1150 // TODO: It would make more sense for this function to take the optionals 1151 // directly, but that's dangerous since it would silently break out of tree 1152 // callers. 1153 return new LoopUnroll( 1154 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1155 Count == -1 ? None : Optional<unsigned>(Count), 1156 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1157 Runtime == -1 ? None : Optional<bool>(Runtime), 1158 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1159 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1160 } 1161 1162 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1163 return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1164 } 1165 1166 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1167 LoopStandardAnalysisResults &AR, 1168 LPMUpdater &Updater) { 1169 const auto &FAM = 1170 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1171 Function *F = L.getHeader()->getParent(); 1172 1173 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1174 // FIXME: This should probably be optional rather than required. 1175 if (!ORE) 1176 report_fatal_error( 1177 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1178 "cached at a higher level"); 1179 1180 // Keep track of the previous loop structure so we can identify new loops 1181 // created by unrolling. 1182 Loop *ParentL = L.getParentLoop(); 1183 SmallPtrSet<Loop *, 4> OldLoops; 1184 if (ParentL) 1185 OldLoops.insert(ParentL->begin(), ParentL->end()); 1186 else 1187 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1188 1189 std::string LoopName = L.getName(); 1190 1191 bool Changed = 1192 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1193 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1194 /*Threshold*/ None, /*AllowPartial*/ false, 1195 /*Runtime*/ false, /*UpperBound*/ false, 1196 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1197 if (!Changed) 1198 return PreservedAnalyses::all(); 1199 1200 // The parent must not be damaged by unrolling! 1201 #ifndef NDEBUG 1202 if (ParentL) 1203 ParentL->verifyLoop(); 1204 #endif 1205 1206 // Unrolling can do several things to introduce new loops into a loop nest: 1207 // - Full unrolling clones child loops within the current loop but then 1208 // removes the current loop making all of the children appear to be new 1209 // sibling loops. 1210 // 1211 // When a new loop appears as a sibling loop after fully unrolling, 1212 // its nesting structure has fundamentally changed and we want to revisit 1213 // it to reflect that. 1214 // 1215 // When unrolling has removed the current loop, we need to tell the 1216 // infrastructure that it is gone. 1217 // 1218 // Finally, we support a debugging/testing mode where we revisit child loops 1219 // as well. These are not expected to require further optimizations as either 1220 // they or the loop they were cloned from have been directly visited already. 1221 // But the debugging mode allows us to check this assumption. 1222 bool IsCurrentLoopValid = false; 1223 SmallVector<Loop *, 4> SibLoops; 1224 if (ParentL) 1225 SibLoops.append(ParentL->begin(), ParentL->end()); 1226 else 1227 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1228 erase_if(SibLoops, [&](Loop *SibLoop) { 1229 if (SibLoop == &L) { 1230 IsCurrentLoopValid = true; 1231 return true; 1232 } 1233 1234 // Otherwise erase the loop from the list if it was in the old loops. 1235 return OldLoops.count(SibLoop) != 0; 1236 }); 1237 Updater.addSiblingLoops(SibLoops); 1238 1239 if (!IsCurrentLoopValid) { 1240 Updater.markLoopAsDeleted(L, LoopName); 1241 } else { 1242 // We can only walk child loops if the current loop remained valid. 1243 if (UnrollRevisitChildLoops) { 1244 // Walk *all* of the child loops. 1245 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1246 Updater.addChildLoops(ChildLoops); 1247 } 1248 } 1249 1250 return getLoopPassPreservedAnalyses(); 1251 } 1252 1253 template <typename RangeT> 1254 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1255 SmallVector<Loop *, 8> Worklist; 1256 // We use an internal worklist to build up the preorder traversal without 1257 // recursion. 1258 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1259 1260 for (Loop *RootL : Loops) { 1261 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1262 assert(PreOrderWorklist.empty() && 1263 "Must start with an empty preorder walk worklist."); 1264 PreOrderWorklist.push_back(RootL); 1265 do { 1266 Loop *L = PreOrderWorklist.pop_back_val(); 1267 PreOrderWorklist.append(L->begin(), L->end()); 1268 PreOrderLoops.push_back(L); 1269 } while (!PreOrderWorklist.empty()); 1270 1271 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1272 PreOrderLoops.clear(); 1273 } 1274 return Worklist; 1275 } 1276 1277 PreservedAnalyses LoopUnrollPass::run(Function &F, 1278 FunctionAnalysisManager &AM) { 1279 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1280 auto &LI = AM.getResult<LoopAnalysis>(F); 1281 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1282 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1283 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1284 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1285 1286 LoopAnalysisManager *LAM = nullptr; 1287 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1288 LAM = &LAMProxy->getManager(); 1289 1290 const ModuleAnalysisManager &MAM = 1291 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1292 ProfileSummaryInfo *PSI = 1293 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1294 1295 bool Changed = false; 1296 1297 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1298 // Since simplification may add new inner loops, it has to run before the 1299 // legality and profitability checks. This means running the loop unroller 1300 // will simplify all loops, regardless of whether anything end up being 1301 // unrolled. 1302 for (auto &L : LI) { 1303 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1304 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1305 } 1306 1307 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1308 1309 while (!Worklist.empty()) { 1310 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1311 // from back to front so that we work forward across the CFG, which 1312 // for unrolling is only needed to get optimization remarks emitted in 1313 // a forward order. 1314 Loop &L = *Worklist.pop_back_val(); 1315 #ifndef NDEBUG 1316 Loop *ParentL = L.getParentLoop(); 1317 #endif 1318 1319 // The API here is quite complex to call, but there are only two interesting 1320 // states we support: partial and full (or "simple") unrolling. However, to 1321 // enable these things we actually pass "None" in for the optional to avoid 1322 // providing an explicit choice. 1323 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1324 AllowPeeling; 1325 // Check if the profile summary indicates that the profiled application 1326 // has a huge working set size, in which case we disable peeling to avoid 1327 // bloating it further. 1328 if (PSI && PSI->hasHugeWorkingSetSize()) 1329 AllowPeeling = false; 1330 std::string LoopName = L.getName(); 1331 LoopUnrollResult Result = 1332 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1333 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1334 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1335 UpperBoundParam, AllowPeeling); 1336 Changed |= Result != LoopUnrollResult::Unmodified; 1337 1338 // The parent must not be damaged by unrolling! 1339 #ifndef NDEBUG 1340 if (Result != LoopUnrollResult::Unmodified && ParentL) 1341 ParentL->verifyLoop(); 1342 #endif 1343 1344 // Clear any cached analysis results for L if we removed it completely. 1345 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1346 LAM->clear(L, LoopName); 1347 } 1348 1349 if (!Changed) 1350 return PreservedAnalyses::all(); 1351 1352 return getLoopPassPreservedAnalyses(); 1353 } 1354