1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Utils/UnrollLoop.h" 37 #include <climits> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 static cl::opt<unsigned> 44 UnrollThreshold("unroll-threshold", cl::Hidden, 45 cl::desc("The baseline cost threshold for loop unrolling")); 46 47 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 48 "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden, 49 cl::desc("The percentage of estimated dynamic cost which must be saved by " 50 "unrolling to allow unrolling up to the max threshold.")); 51 52 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 53 "unroll-dynamic-cost-savings-discount", cl::Hidden, 54 cl::desc("This is the amount discounted from the total unroll cost when " 55 "the unrolled form has a high dynamic cost savings (triggered by " 56 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 57 58 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 59 "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, 60 cl::desc("Don't allow loop unrolling to simulate more than this number of" 61 "iterations when checking full unroll profitability")); 62 63 static cl::opt<unsigned> UnrollCount( 64 "unroll-count", cl::Hidden, 65 cl::desc("Use this unroll count for all loops including those with " 66 "unroll_count pragma values, for testing purposes")); 67 68 static cl::opt<unsigned> UnrollMaxCount( 69 "unroll-max-count", cl::Hidden, 70 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 71 "testing purposes")); 72 73 static cl::opt<unsigned> UnrollFullMaxCount( 74 "unroll-full-max-count", cl::Hidden, 75 cl::desc( 76 "Set the max unroll count for full unrolling, for testing purposes")); 77 78 static cl::opt<bool> 79 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 80 cl::desc("Allows loops to be partially unrolled until " 81 "-unroll-threshold loop size is reached.")); 82 83 static cl::opt<bool> 84 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 85 cl::desc("Unroll loops with run-time trip counts")); 86 87 static cl::opt<unsigned> PragmaUnrollThreshold( 88 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 89 cl::desc("Unrolled size limit for loops with an unroll(full) or " 90 "unroll_count pragma.")); 91 92 /// A magic value for use with the Threshold parameter to indicate 93 /// that the loop unroll should be performed regardless of how much 94 /// code expansion would result. 95 static const unsigned NoThreshold = UINT_MAX; 96 97 /// Default unroll count for loops with run-time trip count if 98 /// -unroll-count is not set 99 static const unsigned DefaultUnrollRuntimeCount = 8; 100 101 /// Gather the various unrolling parameters based on the defaults, compiler 102 /// flags, TTI overrides, pragmas, and user specified parameters. 103 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 104 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 105 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 106 Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, 107 bool PragmaEnableUnroll, unsigned TripCount) { 108 TargetTransformInfo::UnrollingPreferences UP; 109 110 // Set up the defaults 111 UP.Threshold = 150; 112 UP.PercentDynamicCostSavedThreshold = 20; 113 UP.DynamicCostSavingsDiscount = 2000; 114 UP.OptSizeThreshold = 0; 115 UP.PartialThreshold = UP.Threshold; 116 UP.PartialOptSizeThreshold = 0; 117 UP.Count = 0; 118 UP.MaxCount = UINT_MAX; 119 UP.FullUnrollMaxCount = UINT_MAX; 120 UP.Partial = false; 121 UP.Runtime = false; 122 UP.AllowExpensiveTripCount = false; 123 124 // Override with any target specific settings 125 TTI.getUnrollingPreferences(L, UP); 126 127 // Apply size attributes 128 if (L->getHeader()->getParent()->optForSize()) { 129 UP.Threshold = UP.OptSizeThreshold; 130 UP.PartialThreshold = UP.PartialOptSizeThreshold; 131 } 132 133 // Apply unroll count pragmas 134 if (PragmaCount) 135 UP.Count = PragmaCount; 136 else if (PragmaFullUnroll) 137 UP.Count = TripCount; 138 139 // Apply any user values specified by cl::opt 140 if (UnrollThreshold.getNumOccurrences() > 0) { 141 UP.Threshold = UnrollThreshold; 142 UP.PartialThreshold = UnrollThreshold; 143 } 144 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 145 UP.PercentDynamicCostSavedThreshold = 146 UnrollPercentDynamicCostSavedThreshold; 147 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 148 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 149 if (UnrollCount.getNumOccurrences() > 0) 150 UP.Count = UnrollCount; 151 if (UnrollMaxCount.getNumOccurrences() > 0) 152 UP.MaxCount = UnrollMaxCount; 153 if (UnrollFullMaxCount.getNumOccurrences() > 0) 154 UP.FullUnrollMaxCount = UnrollFullMaxCount; 155 if (UnrollAllowPartial.getNumOccurrences() > 0) 156 UP.Partial = UnrollAllowPartial; 157 if (UnrollRuntime.getNumOccurrences() > 0) 158 UP.Runtime = UnrollRuntime; 159 160 // Apply user values provided by argument 161 if (UserThreshold.hasValue()) { 162 UP.Threshold = *UserThreshold; 163 UP.PartialThreshold = *UserThreshold; 164 } 165 if (UserCount.hasValue()) 166 UP.Count = *UserCount; 167 if (UserAllowPartial.hasValue()) 168 UP.Partial = *UserAllowPartial; 169 if (UserRuntime.hasValue()) 170 UP.Runtime = *UserRuntime; 171 172 if (PragmaCount > 0 || 173 ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { 174 // If the loop has an unrolling pragma, we want to be more aggressive with 175 // unrolling limits. Set thresholds to at least the PragmaTheshold value 176 // which is larger than the default limits. 177 if (UP.Threshold != NoThreshold) 178 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 179 if (UP.PartialThreshold != NoThreshold) 180 UP.PartialThreshold = 181 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 182 } 183 184 return UP; 185 } 186 187 namespace { 188 struct EstimatedUnrollCost { 189 /// \brief The estimated cost after unrolling. 190 int UnrolledCost; 191 192 /// \brief The estimated dynamic cost of executing the instructions in the 193 /// rolled form. 194 int RolledDynamicCost; 195 }; 196 } 197 198 /// \brief Figure out if the loop is worth full unrolling. 199 /// 200 /// Complete loop unrolling can make some loads constant, and we need to know 201 /// if that would expose any further optimization opportunities. This routine 202 /// estimates this optimization. It computes cost of unrolled loop 203 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 204 /// dynamic cost we mean that we won't count costs of blocks that are known not 205 /// to be executed (i.e. if we have a branch in the loop and we know that at the 206 /// given iteration its condition would be resolved to true, we won't add up the 207 /// cost of the 'false'-block). 208 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 209 /// the analysis failed (no benefits expected from the unrolling, or the loop is 210 /// too big to analyze), the returned value is None. 211 static Optional<EstimatedUnrollCost> 212 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 213 ScalarEvolution &SE, const TargetTransformInfo &TTI, 214 int MaxUnrolledLoopSize) { 215 // We want to be able to scale offsets by the trip count and add more offsets 216 // to them without checking for overflows, and we already don't want to 217 // analyze *massive* trip counts, so we force the max to be reasonably small. 218 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 219 "The unroll iterations max is too large!"); 220 221 // Don't simulate loops with a big or unknown tripcount 222 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 223 TripCount > UnrollMaxIterationsCountToAnalyze) 224 return None; 225 226 SmallSetVector<BasicBlock *, 16> BBWorklist; 227 DenseMap<Value *, Constant *> SimplifiedValues; 228 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 229 230 // The estimated cost of the unrolled form of the loop. We try to estimate 231 // this by simplifying as much as we can while computing the estimate. 232 int UnrolledCost = 0; 233 // We also track the estimated dynamic (that is, actually executed) cost in 234 // the rolled form. This helps identify cases when the savings from unrolling 235 // aren't just exposing dead control flows, but actual reduced dynamic 236 // instructions due to the simplifications which we expect to occur after 237 // unrolling. 238 int RolledDynamicCost = 0; 239 240 // Ensure that we don't violate the loop structure invariants relied on by 241 // this analysis. 242 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 243 assert(L->isLCSSAForm(DT) && 244 "Must have loops in LCSSA form to track live-out values."); 245 246 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 247 248 // Simulate execution of each iteration of the loop counting instructions, 249 // which would be simplified. 250 // Since the same load will take different values on different iterations, 251 // we literally have to go through all loop's iterations. 252 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 253 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 254 255 // Prepare for the iteration by collecting any simplified entry or backedge 256 // inputs. 257 for (Instruction &I : *L->getHeader()) { 258 auto *PHI = dyn_cast<PHINode>(&I); 259 if (!PHI) 260 break; 261 262 // The loop header PHI nodes must have exactly two input: one from the 263 // loop preheader and one from the loop latch. 264 assert( 265 PHI->getNumIncomingValues() == 2 && 266 "Must have an incoming value only for the preheader and the latch."); 267 268 Value *V = PHI->getIncomingValueForBlock( 269 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 270 Constant *C = dyn_cast<Constant>(V); 271 if (Iteration != 0 && !C) 272 C = SimplifiedValues.lookup(V); 273 if (C) 274 SimplifiedInputValues.push_back({PHI, C}); 275 } 276 277 // Now clear and re-populate the map for the next iteration. 278 SimplifiedValues.clear(); 279 while (!SimplifiedInputValues.empty()) 280 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 281 282 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 283 284 BBWorklist.clear(); 285 BBWorklist.insert(L->getHeader()); 286 // Note that we *must not* cache the size, this loop grows the worklist. 287 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 288 BasicBlock *BB = BBWorklist[Idx]; 289 290 // Visit all instructions in the given basic block and try to simplify 291 // it. We don't change the actual IR, just count optimization 292 // opportunities. 293 for (Instruction &I : *BB) { 294 int InstCost = TTI.getUserCost(&I); 295 296 // Visit the instruction to analyze its loop cost after unrolling, 297 // and if the visitor returns false, include this instruction in the 298 // unrolled cost. 299 if (!Analyzer.visit(I)) 300 UnrolledCost += InstCost; 301 else { 302 DEBUG(dbgs() << " " << I 303 << " would be simplified if loop is unrolled.\n"); 304 (void)0; 305 } 306 307 // Also track this instructions expected cost when executing the rolled 308 // loop form. 309 RolledDynamicCost += InstCost; 310 311 // If unrolled body turns out to be too big, bail out. 312 if (UnrolledCost > MaxUnrolledLoopSize) { 313 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 314 << " UnrolledCost: " << UnrolledCost 315 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 316 << "\n"); 317 return None; 318 } 319 } 320 321 TerminatorInst *TI = BB->getTerminator(); 322 323 // Add in the live successors by first checking whether we have terminator 324 // that may be simplified based on the values simplified by this call. 325 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 326 if (BI->isConditional()) { 327 if (Constant *SimpleCond = 328 SimplifiedValues.lookup(BI->getCondition())) { 329 BasicBlock *Succ = nullptr; 330 // Just take the first successor if condition is undef 331 if (isa<UndefValue>(SimpleCond)) 332 Succ = BI->getSuccessor(0); 333 else 334 Succ = BI->getSuccessor( 335 cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0); 336 if (L->contains(Succ)) 337 BBWorklist.insert(Succ); 338 continue; 339 } 340 } 341 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 342 if (Constant *SimpleCond = 343 SimplifiedValues.lookup(SI->getCondition())) { 344 BasicBlock *Succ = nullptr; 345 // Just take the first successor if condition is undef 346 if (isa<UndefValue>(SimpleCond)) 347 Succ = SI->getSuccessor(0); 348 else 349 Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond)) 350 .getCaseSuccessor(); 351 if (L->contains(Succ)) 352 BBWorklist.insert(Succ); 353 continue; 354 } 355 } 356 357 // Add BB's successors to the worklist. 358 for (BasicBlock *Succ : successors(BB)) 359 if (L->contains(Succ)) 360 BBWorklist.insert(Succ); 361 } 362 363 // If we found no optimization opportunities on the first iteration, we 364 // won't find them on later ones too. 365 if (UnrolledCost == RolledDynamicCost) { 366 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 367 << " UnrolledCost: " << UnrolledCost << "\n"); 368 return None; 369 } 370 } 371 DEBUG(dbgs() << "Analysis finished:\n" 372 << "UnrolledCost: " << UnrolledCost << ", " 373 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 374 return {{UnrolledCost, RolledDynamicCost}}; 375 } 376 377 /// ApproximateLoopSize - Approximate the size of the loop. 378 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 379 bool &NotDuplicatable, bool &Convergent, 380 const TargetTransformInfo &TTI, 381 AssumptionCache *AC) { 382 SmallPtrSet<const Value *, 32> EphValues; 383 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 384 385 CodeMetrics Metrics; 386 for (BasicBlock *BB : L->blocks()) 387 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 388 NumCalls = Metrics.NumInlineCandidates; 389 NotDuplicatable = Metrics.notDuplicatable; 390 Convergent = Metrics.convergent; 391 392 unsigned LoopSize = Metrics.NumInsts; 393 394 // Don't allow an estimate of size zero. This would allows unrolling of loops 395 // with huge iteration counts, which is a compile time problem even if it's 396 // not a problem for code quality. Also, the code using this size may assume 397 // that each loop has at least three instructions (likely a conditional 398 // branch, a comparison feeding that branch, and some kind of loop increment 399 // feeding that comparison instruction). 400 LoopSize = std::max(LoopSize, 3u); 401 402 return LoopSize; 403 } 404 405 // Returns the loop hint metadata node with the given name (for example, 406 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 407 // returned. 408 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 409 if (MDNode *LoopID = L->getLoopID()) 410 return GetUnrollMetadata(LoopID, Name); 411 return nullptr; 412 } 413 414 // Returns true if the loop has an unroll(full) pragma. 415 static bool HasUnrollFullPragma(const Loop *L) { 416 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 417 } 418 419 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 420 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 421 static bool HasUnrollEnablePragma(const Loop *L) { 422 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 423 } 424 425 // Returns true if the loop has an unroll(disable) pragma. 426 static bool HasUnrollDisablePragma(const Loop *L) { 427 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 428 } 429 430 // Returns true if the loop has an runtime unroll(disable) pragma. 431 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 432 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 433 } 434 435 // If loop has an unroll_count pragma return the (necessarily 436 // positive) value from the pragma. Otherwise return 0. 437 static unsigned UnrollCountPragmaValue(const Loop *L) { 438 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 439 if (MD) { 440 assert(MD->getNumOperands() == 2 && 441 "Unroll count hint metadata should have two operands."); 442 unsigned Count = 443 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 444 assert(Count >= 1 && "Unroll count must be positive."); 445 return Count; 446 } 447 return 0; 448 } 449 450 // Remove existing unroll metadata and add unroll disable metadata to 451 // indicate the loop has already been unrolled. This prevents a loop 452 // from being unrolled more than is directed by a pragma if the loop 453 // unrolling pass is run more than once (which it generally is). 454 static void SetLoopAlreadyUnrolled(Loop *L) { 455 MDNode *LoopID = L->getLoopID(); 456 if (!LoopID) 457 return; 458 459 // First remove any existing loop unrolling metadata. 460 SmallVector<Metadata *, 4> MDs; 461 // Reserve first location for self reference to the LoopID metadata node. 462 MDs.push_back(nullptr); 463 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 464 bool IsUnrollMetadata = false; 465 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 466 if (MD) { 467 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 468 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 469 } 470 if (!IsUnrollMetadata) 471 MDs.push_back(LoopID->getOperand(i)); 472 } 473 474 // Add unroll(disable) metadata to disable future unrolling. 475 LLVMContext &Context = L->getHeader()->getContext(); 476 SmallVector<Metadata *, 1> DisableOperands; 477 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 478 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 479 MDs.push_back(DisableNode); 480 481 MDNode *NewLoopID = MDNode::get(Context, MDs); 482 // Set operand 0 to refer to the loop id itself. 483 NewLoopID->replaceOperandWith(0, NewLoopID); 484 L->setLoopID(NewLoopID); 485 } 486 487 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 488 unsigned PercentDynamicCostSavedThreshold, 489 unsigned DynamicCostSavingsDiscount, 490 uint64_t UnrolledCost, 491 uint64_t RolledDynamicCost) { 492 if (Threshold == NoThreshold) { 493 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 494 return true; 495 } 496 497 if (UnrolledCost <= Threshold) { 498 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 499 << UnrolledCost << "<" << Threshold << "\n"); 500 return true; 501 } 502 503 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 504 assert(RolledDynamicCost >= UnrolledCost && 505 "Cannot have a higher unrolled cost than a rolled cost!"); 506 507 // Compute the percentage of the dynamic cost in the rolled form that is 508 // saved when unrolled. If unrolling dramatically reduces the estimated 509 // dynamic cost of the loop, we use a higher threshold to allow more 510 // unrolling. 511 unsigned PercentDynamicCostSaved = 512 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 513 514 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 515 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 516 (int64_t)Threshold) { 517 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 518 "expected dynamic cost by " 519 << PercentDynamicCostSaved << "% (threshold: " 520 << PercentDynamicCostSavedThreshold << "%)\n" 521 << " and the unrolled cost (" << UnrolledCost 522 << ") is less than the max threshold (" 523 << DynamicCostSavingsDiscount << ").\n"); 524 return true; 525 } 526 527 DEBUG(dbgs() << " Too large to fully unroll:\n"); 528 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 529 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 530 DEBUG(dbgs() << " Percent cost saved threshold: " 531 << PercentDynamicCostSavedThreshold << "%\n"); 532 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 533 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 534 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 535 << "\n"); 536 return false; 537 } 538 539 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 540 ScalarEvolution *SE, const TargetTransformInfo &TTI, 541 AssumptionCache &AC, bool PreserveLCSSA, 542 Optional<unsigned> ProvidedCount, 543 Optional<unsigned> ProvidedThreshold, 544 Optional<bool> ProvidedAllowPartial, 545 Optional<bool> ProvidedRuntime) { 546 BasicBlock *Header = L->getHeader(); 547 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 548 << "] Loop %" << Header->getName() << "\n"); 549 550 if (HasUnrollDisablePragma(L)) { 551 return false; 552 } 553 bool PragmaFullUnroll = HasUnrollFullPragma(L); 554 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 555 unsigned PragmaCount = UnrollCountPragmaValue(L); 556 bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; 557 558 // Find trip count and trip multiple if count is not available 559 unsigned TripCount = 0; 560 unsigned TripMultiple = 1; 561 // If there are multiple exiting blocks but one of them is the latch, use the 562 // latch for the trip count estimation. Otherwise insist on a single exiting 563 // block for the trip count estimation. 564 BasicBlock *ExitingBlock = L->getLoopLatch(); 565 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 566 ExitingBlock = L->getExitingBlock(); 567 if (ExitingBlock) { 568 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 569 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 570 } 571 572 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 573 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 574 ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, 575 TripCount); 576 577 unsigned Count = UP.Count; 578 bool CountSetExplicitly = Count != 0; 579 // Use a heuristic count if we didn't set anything explicitly. 580 if (!CountSetExplicitly) 581 Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; 582 if (TripCount && Count > TripCount) 583 Count = TripCount; 584 Count = std::min(Count, UP.FullUnrollMaxCount); 585 586 unsigned NumInlineCandidates; 587 bool NotDuplicatable; 588 bool Convergent; 589 unsigned LoopSize = ApproximateLoopSize( 590 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 591 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 592 593 // When computing the unrolled size, note that the conditional branch on the 594 // backedge and the comparison feeding it are not replicated like the rest of 595 // the loop body (which is why 2 is subtracted). 596 uint64_t UnrolledSize = (uint64_t)(LoopSize - 2) * Count + 2; 597 if (NotDuplicatable) { 598 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 599 << " instructions.\n"); 600 return false; 601 } 602 if (NumInlineCandidates != 0) { 603 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 604 return false; 605 } 606 607 // Given Count, TripCount and thresholds determine the type of 608 // unrolling which is to be performed. 609 enum { Full = 0, Partial = 1, Runtime = 2 }; 610 int Unrolling; 611 if (TripCount && Count == TripCount) { 612 Unrolling = Partial; 613 // If the loop is really small, we don't need to run an expensive analysis. 614 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 615 UnrolledSize, UnrolledSize)) { 616 Unrolling = Full; 617 } else { 618 // The loop isn't that small, but we still can fully unroll it if that 619 // helps to remove a significant number of instructions. 620 // To check that, run additional analysis on the loop. 621 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 622 L, TripCount, DT, *SE, TTI, 623 UP.Threshold + UP.DynamicCostSavingsDiscount)) 624 if (canUnrollCompletely(L, UP.Threshold, 625 UP.PercentDynamicCostSavedThreshold, 626 UP.DynamicCostSavingsDiscount, 627 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 628 Unrolling = Full; 629 } 630 } 631 } else if (TripCount && Count < TripCount) { 632 Unrolling = Partial; 633 } else { 634 Unrolling = Runtime; 635 } 636 637 // Reduce count based on the type of unrolling and the threshold values. 638 unsigned OriginalCount = Count; 639 bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; 640 // Don't unroll a runtime trip count loop with unroll full pragma. 641 if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { 642 AllowRuntime = false; 643 } 644 bool DecreasedCountDueToConvergence = false; 645 if (Unrolling == Partial) { 646 bool AllowPartial = PragmaEnableUnroll || UP.Partial; 647 if (!AllowPartial && !CountSetExplicitly) { 648 DEBUG(dbgs() << " will not try to unroll partially because " 649 << "-unroll-allow-partial not given\n"); 650 return false; 651 } 652 if (UP.PartialThreshold != NoThreshold && Count > 1) { 653 // Reduce unroll count to be modulo of TripCount for partial unrolling. 654 if (UnrolledSize > UP.PartialThreshold) 655 Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); 656 if (Count > UP.MaxCount) 657 Count = UP.MaxCount; 658 while (Count != 0 && TripCount % Count != 0) 659 Count--; 660 if (AllowRuntime && Count <= 1) { 661 // If there is no Count that is modulo of TripCount, set Count to 662 // largest power-of-two factor that satisfies the threshold limit. 663 // As we'll create fixup loop, do the type of unrolling only if 664 // runtime unrolling is allowed. 665 Count = DefaultUnrollRuntimeCount; 666 UnrolledSize = (LoopSize - 2) * Count + 2; 667 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 668 Count >>= 1; 669 UnrolledSize = (LoopSize - 2) * Count + 2; 670 } 671 } 672 } 673 } else if (Unrolling == Runtime) { 674 if (!AllowRuntime && !CountSetExplicitly) { 675 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 676 << "-unroll-runtime not given\n"); 677 return false; 678 } 679 680 // Reduce unroll count to be the largest power-of-two factor of 681 // the original count which satisfies the threshold limit. 682 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 683 Count >>= 1; 684 UnrolledSize = (LoopSize - 2) * Count + 2; 685 } 686 687 if (Count > UP.MaxCount) 688 Count = UP.MaxCount; 689 690 // If the loop contains a convergent operation, the prelude we'd add 691 // to do the first few instructions before we hit the unrolled loop 692 // is unsafe -- it adds a control-flow dependency to the convergent 693 // operation. Therefore Count must divide TripMultiple. 694 // 695 // TODO: This is quite conservative. In practice, convergent_op() 696 // is likely to be called unconditionally in the loop. In this 697 // case, the program would be ill-formed (on most architectures) 698 // unless n were the same on all threads in a thread group. 699 // Assuming n is the same on all threads, any kind of unrolling is 700 // safe. But currently llvm's notion of convergence isn't powerful 701 // enough to express this. 702 unsigned OrigCount = Count; 703 while (Convergent && Count != 0 && TripMultiple % Count != 0) { 704 DecreasedCountDueToConvergence = true; 705 Count >>= 1; 706 } 707 if (OrigCount > Count) { 708 DEBUG(dbgs() << " loop contains a convergent instruction, so unroll " 709 "count must divide the trip multiple, " 710 << TripMultiple << ". Reducing unroll count from " 711 << OrigCount << " to " << Count << ".\n"); 712 } 713 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 714 } 715 716 if (HasPragma) { 717 // Emit optimization remarks if we are unable to unroll the loop 718 // as directed by a pragma. 719 DebugLoc LoopLoc = L->getStartLoc(); 720 Function *F = Header->getParent(); 721 LLVMContext &Ctx = F->getContext(); 722 if (PragmaCount > 0 && DecreasedCountDueToConvergence) { 723 emitOptimizationRemarkMissed( 724 Ctx, DEBUG_TYPE, *F, LoopLoc, 725 Twine("Unable to unroll loop the number of times directed by " 726 "unroll_count pragma because the loop contains a convergent " 727 "instruction, and so must have an unroll count that divides " 728 "the loop trip multiple of ") + 729 Twine(TripMultiple) + ". Unrolling instead " + Twine(Count) + 730 " time(s)."); 731 } else if ((PragmaCount > 0) && Count != OriginalCount) { 732 emitOptimizationRemarkMissed( 733 Ctx, DEBUG_TYPE, *F, LoopLoc, 734 "Unable to unroll loop the number of times directed by " 735 "unroll_count pragma because unrolled size is too large."); 736 } else if (PragmaFullUnroll && !TripCount) { 737 emitOptimizationRemarkMissed( 738 Ctx, DEBUG_TYPE, *F, LoopLoc, 739 "Unable to fully unroll loop as directed by unroll(full) pragma " 740 "because loop has a runtime trip count."); 741 } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { 742 emitOptimizationRemarkMissed( 743 Ctx, DEBUG_TYPE, *F, LoopLoc, 744 "Unable to unroll loop as directed by unroll(enable) pragma because " 745 "unrolled size is too large."); 746 } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 747 Count != TripCount) { 748 emitOptimizationRemarkMissed( 749 Ctx, DEBUG_TYPE, *F, LoopLoc, 750 "Unable to fully unroll loop as directed by unroll pragma because " 751 "unrolled size is too large."); 752 } 753 } 754 755 if (Unrolling != Full && Count < 2) { 756 // Partial unrolling by 1 is a nop. For full unrolling, a factor 757 // of 1 makes sense because loop control can be eliminated. 758 return false; 759 } 760 761 // Unroll the loop. 762 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 763 TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) 764 return false; 765 766 // If loop has an unroll count pragma mark loop as unrolled to prevent 767 // unrolling beyond that requested by the pragma. 768 if (HasPragma && PragmaCount != 0) 769 SetLoopAlreadyUnrolled(L); 770 return true; 771 } 772 773 namespace { 774 class LoopUnroll : public LoopPass { 775 public: 776 static char ID; // Pass ID, replacement for typeid 777 LoopUnroll(Optional<unsigned> Threshold = None, 778 Optional<unsigned> Count = None, 779 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) 780 : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold), 781 ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) { 782 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 783 } 784 785 Optional<unsigned> ProvidedCount; 786 Optional<unsigned> ProvidedThreshold; 787 Optional<bool> ProvidedAllowPartial; 788 Optional<bool> ProvidedRuntime; 789 790 bool runOnLoop(Loop *L, LPPassManager &) override { 791 if (skipLoop(L)) 792 return false; 793 794 Function &F = *L->getHeader()->getParent(); 795 796 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 797 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 798 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 799 const TargetTransformInfo &TTI = 800 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 801 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 802 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 803 804 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, 805 ProvidedThreshold, ProvidedAllowPartial, 806 ProvidedRuntime); 807 } 808 809 /// This transformation requires natural loop information & requires that 810 /// loop preheaders be inserted into the CFG... 811 /// 812 void getAnalysisUsage(AnalysisUsage &AU) const override { 813 AU.addRequired<AssumptionCacheTracker>(); 814 AU.addRequired<TargetTransformInfoWrapperPass>(); 815 // FIXME: Loop passes are required to preserve domtree, and for now we just 816 // recreate dom info if anything gets unrolled. 817 getLoopAnalysisUsage(AU); 818 } 819 }; 820 } 821 822 char LoopUnroll::ID = 0; 823 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 824 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 825 INITIALIZE_PASS_DEPENDENCY(LoopPass) 826 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 827 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 828 829 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 830 int Runtime) { 831 // TODO: It would make more sense for this function to take the optionals 832 // directly, but that's dangerous since it would silently break out of tree 833 // callers. 834 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 835 Count == -1 ? None : Optional<unsigned>(Count), 836 AllowPartial == -1 ? None 837 : Optional<bool>(AllowPartial), 838 Runtime == -1 ? None : Optional<bool>(Runtime)); 839 } 840 841 Pass *llvm::createSimpleLoopUnrollPass() { 842 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 843 } 844