xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 8482e56920780be8146b4088ec21502d00b9e440)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
24 #include "llvm/Analysis/ProfileSummaryInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Scalar/LoopPassManager.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPartialThreshold(
51     "unroll-partial-threshold", cl::Hidden,
52     cl::desc("The cost threshold for partial loop unrolling"));
53 
54 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
55     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
56     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
57              "to the threshold when aggressively unrolling a loop due to the "
58              "dynamic cost savings. If completely unrolling a loop will reduce "
59              "the total runtime from X to Y, we boost the loop unroll "
60              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
61              "X/Y). This limit avoids excessive code bloat."));
62 
63 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
64     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
65     cl::desc("Don't allow loop unrolling to simulate more than this number of"
66              "iterations when checking full unroll profitability"));
67 
68 static cl::opt<unsigned> UnrollCount(
69     "unroll-count", cl::Hidden,
70     cl::desc("Use this unroll count for all loops including those with "
71              "unroll_count pragma values, for testing purposes"));
72 
73 static cl::opt<unsigned> UnrollMaxCount(
74     "unroll-max-count", cl::Hidden,
75     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
76              "testing purposes"));
77 
78 static cl::opt<unsigned> UnrollFullMaxCount(
79     "unroll-full-max-count", cl::Hidden,
80     cl::desc(
81         "Set the max unroll count for full unrolling, for testing purposes"));
82 
83 static cl::opt<bool>
84     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
85                        cl::desc("Allows loops to be partially unrolled until "
86                                 "-unroll-threshold loop size is reached."));
87 
88 static cl::opt<bool> UnrollAllowRemainder(
89     "unroll-allow-remainder", cl::Hidden,
90     cl::desc("Allow generation of a loop remainder (extra iterations) "
91              "when unrolling a loop."));
92 
93 static cl::opt<bool>
94     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
95                   cl::desc("Unroll loops with run-time trip counts"));
96 
97 static cl::opt<unsigned> UnrollMaxUpperBound(
98     "unroll-max-upperbound", cl::init(8), cl::Hidden,
99     cl::desc(
100         "The max of trip count upper bound that is considered in unrolling"));
101 
102 static cl::opt<unsigned> PragmaUnrollThreshold(
103     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
104     cl::desc("Unrolled size limit for loops with an unroll(full) or "
105              "unroll_count pragma."));
106 
107 static cl::opt<unsigned> FlatLoopTripCountThreshold(
108     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
109     cl::desc("If the runtime tripcount for the loop is lower than the "
110              "threshold, the loop is considered as flat and will be less "
111              "aggressively unrolled."));
112 
113 static cl::opt<bool>
114     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
115                        cl::desc("Allows loops to be peeled when the dynamic "
116                                 "trip count is known to be low."));
117 
118 // This option isn't ever intended to be enabled, it serves to allow
119 // experiments to check the assumptions about when this kind of revisit is
120 // necessary.
121 static cl::opt<bool> UnrollRevisitChildLoops(
122     "unroll-revisit-child-loops", cl::Hidden,
123     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
124              "This shouldn't typically be needed as child loops (or their "
125              "clones) were already visited."));
126 
127 /// A magic value for use with the Threshold parameter to indicate
128 /// that the loop unroll should be performed regardless of how much
129 /// code expansion would result.
130 static const unsigned NoThreshold = UINT_MAX;
131 
132 /// Gather the various unrolling parameters based on the defaults, compiler
133 /// flags, TTI overrides and user specified parameters.
134 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
135     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
136     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
137     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
138     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
139   TargetTransformInfo::UnrollingPreferences UP;
140 
141   // Set up the defaults
142   UP.Threshold = OptLevel > 2 ? 300 : 150;
143   UP.MaxPercentThresholdBoost = 400;
144   UP.OptSizeThreshold = 0;
145   UP.PartialThreshold = 150;
146   UP.PartialOptSizeThreshold = 0;
147   UP.Count = 0;
148   UP.PeelCount = 0;
149   UP.DefaultUnrollRuntimeCount = 8;
150   UP.MaxCount = UINT_MAX;
151   UP.FullUnrollMaxCount = UINT_MAX;
152   UP.BEInsns = 2;
153   UP.Partial = false;
154   UP.Runtime = false;
155   UP.AllowRemainder = true;
156   UP.AllowExpensiveTripCount = false;
157   UP.Force = false;
158   UP.UpperBound = false;
159   UP.AllowPeeling = true;
160 
161   // Override with any target specific settings
162   TTI.getUnrollingPreferences(L, SE, UP);
163 
164   // Apply size attributes
165   if (L->getHeader()->getParent()->optForSize()) {
166     UP.Threshold = UP.OptSizeThreshold;
167     UP.PartialThreshold = UP.PartialOptSizeThreshold;
168   }
169 
170   // Apply any user values specified by cl::opt
171   if (UnrollThreshold.getNumOccurrences() > 0)
172     UP.Threshold = UnrollThreshold;
173   if (UnrollPartialThreshold.getNumOccurrences() > 0)
174     UP.PartialThreshold = UnrollPartialThreshold;
175   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
176     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
177   if (UnrollMaxCount.getNumOccurrences() > 0)
178     UP.MaxCount = UnrollMaxCount;
179   if (UnrollFullMaxCount.getNumOccurrences() > 0)
180     UP.FullUnrollMaxCount = UnrollFullMaxCount;
181   if (UnrollAllowPartial.getNumOccurrences() > 0)
182     UP.Partial = UnrollAllowPartial;
183   if (UnrollAllowRemainder.getNumOccurrences() > 0)
184     UP.AllowRemainder = UnrollAllowRemainder;
185   if (UnrollRuntime.getNumOccurrences() > 0)
186     UP.Runtime = UnrollRuntime;
187   if (UnrollMaxUpperBound == 0)
188     UP.UpperBound = false;
189   if (UnrollAllowPeeling.getNumOccurrences() > 0)
190     UP.AllowPeeling = UnrollAllowPeeling;
191 
192   // Apply user values provided by argument
193   if (UserThreshold.hasValue()) {
194     UP.Threshold = *UserThreshold;
195     UP.PartialThreshold = *UserThreshold;
196   }
197   if (UserCount.hasValue())
198     UP.Count = *UserCount;
199   if (UserAllowPartial.hasValue())
200     UP.Partial = *UserAllowPartial;
201   if (UserRuntime.hasValue())
202     UP.Runtime = *UserRuntime;
203   if (UserUpperBound.hasValue())
204     UP.UpperBound = *UserUpperBound;
205   if (UserAllowPeeling.hasValue())
206     UP.AllowPeeling = *UserAllowPeeling;
207 
208   return UP;
209 }
210 
211 namespace {
212 /// A struct to densely store the state of an instruction after unrolling at
213 /// each iteration.
214 ///
215 /// This is designed to work like a tuple of <Instruction *, int> for the
216 /// purposes of hashing and lookup, but to be able to associate two boolean
217 /// states with each key.
218 struct UnrolledInstState {
219   Instruction *I;
220   int Iteration : 30;
221   unsigned IsFree : 1;
222   unsigned IsCounted : 1;
223 };
224 
225 /// Hashing and equality testing for a set of the instruction states.
226 struct UnrolledInstStateKeyInfo {
227   typedef DenseMapInfo<Instruction *> PtrInfo;
228   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
229   static inline UnrolledInstState getEmptyKey() {
230     return {PtrInfo::getEmptyKey(), 0, 0, 0};
231   }
232   static inline UnrolledInstState getTombstoneKey() {
233     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
234   }
235   static inline unsigned getHashValue(const UnrolledInstState &S) {
236     return PairInfo::getHashValue({S.I, S.Iteration});
237   }
238   static inline bool isEqual(const UnrolledInstState &LHS,
239                              const UnrolledInstState &RHS) {
240     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
241   }
242 };
243 }
244 
245 namespace {
246 struct EstimatedUnrollCost {
247   /// \brief The estimated cost after unrolling.
248   unsigned UnrolledCost;
249 
250   /// \brief The estimated dynamic cost of executing the instructions in the
251   /// rolled form.
252   unsigned RolledDynamicCost;
253 };
254 }
255 
256 /// \brief Figure out if the loop is worth full unrolling.
257 ///
258 /// Complete loop unrolling can make some loads constant, and we need to know
259 /// if that would expose any further optimization opportunities.  This routine
260 /// estimates this optimization.  It computes cost of unrolled loop
261 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
262 /// dynamic cost we mean that we won't count costs of blocks that are known not
263 /// to be executed (i.e. if we have a branch in the loop and we know that at the
264 /// given iteration its condition would be resolved to true, we won't add up the
265 /// cost of the 'false'-block).
266 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
267 /// the analysis failed (no benefits expected from the unrolling, or the loop is
268 /// too big to analyze), the returned value is None.
269 static Optional<EstimatedUnrollCost>
270 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
271                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
272                       unsigned MaxUnrolledLoopSize) {
273   // We want to be able to scale offsets by the trip count and add more offsets
274   // to them without checking for overflows, and we already don't want to
275   // analyze *massive* trip counts, so we force the max to be reasonably small.
276   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
277          "The unroll iterations max is too large!");
278 
279   // Only analyze inner loops. We can't properly estimate cost of nested loops
280   // and we won't visit inner loops again anyway.
281   if (!L->empty())
282     return None;
283 
284   // Don't simulate loops with a big or unknown tripcount
285   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
286       TripCount > UnrollMaxIterationsCountToAnalyze)
287     return None;
288 
289   SmallSetVector<BasicBlock *, 16> BBWorklist;
290   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
291   DenseMap<Value *, Constant *> SimplifiedValues;
292   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
293 
294   // The estimated cost of the unrolled form of the loop. We try to estimate
295   // this by simplifying as much as we can while computing the estimate.
296   unsigned UnrolledCost = 0;
297 
298   // We also track the estimated dynamic (that is, actually executed) cost in
299   // the rolled form. This helps identify cases when the savings from unrolling
300   // aren't just exposing dead control flows, but actual reduced dynamic
301   // instructions due to the simplifications which we expect to occur after
302   // unrolling.
303   unsigned RolledDynamicCost = 0;
304 
305   // We track the simplification of each instruction in each iteration. We use
306   // this to recursively merge costs into the unrolled cost on-demand so that
307   // we don't count the cost of any dead code. This is essentially a map from
308   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
309   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
310 
311   // A small worklist used to accumulate cost of instructions from each
312   // observable and reached root in the loop.
313   SmallVector<Instruction *, 16> CostWorklist;
314 
315   // PHI-used worklist used between iterations while accumulating cost.
316   SmallVector<Instruction *, 4> PHIUsedList;
317 
318   // Helper function to accumulate cost for instructions in the loop.
319   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
320     assert(Iteration >= 0 && "Cannot have a negative iteration!");
321     assert(CostWorklist.empty() && "Must start with an empty cost list");
322     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
323     CostWorklist.push_back(&RootI);
324     for (;; --Iteration) {
325       do {
326         Instruction *I = CostWorklist.pop_back_val();
327 
328         // InstCostMap only uses I and Iteration as a key, the other two values
329         // don't matter here.
330         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
331         if (CostIter == InstCostMap.end())
332           // If an input to a PHI node comes from a dead path through the loop
333           // we may have no cost data for it here. What that actually means is
334           // that it is free.
335           continue;
336         auto &Cost = *CostIter;
337         if (Cost.IsCounted)
338           // Already counted this instruction.
339           continue;
340 
341         // Mark that we are counting the cost of this instruction now.
342         Cost.IsCounted = true;
343 
344         // If this is a PHI node in the loop header, just add it to the PHI set.
345         if (auto *PhiI = dyn_cast<PHINode>(I))
346           if (PhiI->getParent() == L->getHeader()) {
347             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
348                                   "inherently simplify during unrolling.");
349             if (Iteration == 0)
350               continue;
351 
352             // Push the incoming value from the backedge into the PHI used list
353             // if it is an in-loop instruction. We'll use this to populate the
354             // cost worklist for the next iteration (as we count backwards).
355             if (auto *OpI = dyn_cast<Instruction>(
356                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
357               if (L->contains(OpI))
358                 PHIUsedList.push_back(OpI);
359             continue;
360           }
361 
362         // First accumulate the cost of this instruction.
363         if (!Cost.IsFree) {
364           UnrolledCost += TTI.getUserCost(I);
365           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
366                        << "): ");
367           DEBUG(I->dump());
368         }
369 
370         // We must count the cost of every operand which is not free,
371         // recursively. If we reach a loop PHI node, simply add it to the set
372         // to be considered on the next iteration (backwards!).
373         for (Value *Op : I->operands()) {
374           // Check whether this operand is free due to being a constant or
375           // outside the loop.
376           auto *OpI = dyn_cast<Instruction>(Op);
377           if (!OpI || !L->contains(OpI))
378             continue;
379 
380           // Otherwise accumulate its cost.
381           CostWorklist.push_back(OpI);
382         }
383       } while (!CostWorklist.empty());
384 
385       if (PHIUsedList.empty())
386         // We've exhausted the search.
387         break;
388 
389       assert(Iteration > 0 &&
390              "Cannot track PHI-used values past the first iteration!");
391       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
392       PHIUsedList.clear();
393     }
394   };
395 
396   // Ensure that we don't violate the loop structure invariants relied on by
397   // this analysis.
398   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
399   assert(L->isLCSSAForm(DT) &&
400          "Must have loops in LCSSA form to track live-out values.");
401 
402   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
403 
404   // Simulate execution of each iteration of the loop counting instructions,
405   // which would be simplified.
406   // Since the same load will take different values on different iterations,
407   // we literally have to go through all loop's iterations.
408   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
409     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
410 
411     // Prepare for the iteration by collecting any simplified entry or backedge
412     // inputs.
413     for (Instruction &I : *L->getHeader()) {
414       auto *PHI = dyn_cast<PHINode>(&I);
415       if (!PHI)
416         break;
417 
418       // The loop header PHI nodes must have exactly two input: one from the
419       // loop preheader and one from the loop latch.
420       assert(
421           PHI->getNumIncomingValues() == 2 &&
422           "Must have an incoming value only for the preheader and the latch.");
423 
424       Value *V = PHI->getIncomingValueForBlock(
425           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
426       Constant *C = dyn_cast<Constant>(V);
427       if (Iteration != 0 && !C)
428         C = SimplifiedValues.lookup(V);
429       if (C)
430         SimplifiedInputValues.push_back({PHI, C});
431     }
432 
433     // Now clear and re-populate the map for the next iteration.
434     SimplifiedValues.clear();
435     while (!SimplifiedInputValues.empty())
436       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
437 
438     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
439 
440     BBWorklist.clear();
441     BBWorklist.insert(L->getHeader());
442     // Note that we *must not* cache the size, this loop grows the worklist.
443     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
444       BasicBlock *BB = BBWorklist[Idx];
445 
446       // Visit all instructions in the given basic block and try to simplify
447       // it.  We don't change the actual IR, just count optimization
448       // opportunities.
449       for (Instruction &I : *BB) {
450         if (isa<DbgInfoIntrinsic>(I))
451           continue;
452 
453         // Track this instruction's expected baseline cost when executing the
454         // rolled loop form.
455         RolledDynamicCost += TTI.getUserCost(&I);
456 
457         // Visit the instruction to analyze its loop cost after unrolling,
458         // and if the visitor returns true, mark the instruction as free after
459         // unrolling and continue.
460         bool IsFree = Analyzer.visit(I);
461         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
462                                            (unsigned)IsFree,
463                                            /*IsCounted*/ false}).second;
464         (void)Inserted;
465         assert(Inserted && "Cannot have a state for an unvisited instruction!");
466 
467         if (IsFree)
468           continue;
469 
470         // Can't properly model a cost of a call.
471         // FIXME: With a proper cost model we should be able to do it.
472         if(isa<CallInst>(&I))
473           return None;
474 
475         // If the instruction might have a side-effect recursively account for
476         // the cost of it and all the instructions leading up to it.
477         if (I.mayHaveSideEffects())
478           AddCostRecursively(I, Iteration);
479 
480         // If unrolled body turns out to be too big, bail out.
481         if (UnrolledCost > MaxUnrolledLoopSize) {
482           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
483                        << "  UnrolledCost: " << UnrolledCost
484                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
485                        << "\n");
486           return None;
487         }
488       }
489 
490       TerminatorInst *TI = BB->getTerminator();
491 
492       // Add in the live successors by first checking whether we have terminator
493       // that may be simplified based on the values simplified by this call.
494       BasicBlock *KnownSucc = nullptr;
495       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
496         if (BI->isConditional()) {
497           if (Constant *SimpleCond =
498                   SimplifiedValues.lookup(BI->getCondition())) {
499             // Just take the first successor if condition is undef
500             if (isa<UndefValue>(SimpleCond))
501               KnownSucc = BI->getSuccessor(0);
502             else if (ConstantInt *SimpleCondVal =
503                          dyn_cast<ConstantInt>(SimpleCond))
504               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
505           }
506         }
507       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
508         if (Constant *SimpleCond =
509                 SimplifiedValues.lookup(SI->getCondition())) {
510           // Just take the first successor if condition is undef
511           if (isa<UndefValue>(SimpleCond))
512             KnownSucc = SI->getSuccessor(0);
513           else if (ConstantInt *SimpleCondVal =
514                        dyn_cast<ConstantInt>(SimpleCond))
515             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
516         }
517       }
518       if (KnownSucc) {
519         if (L->contains(KnownSucc))
520           BBWorklist.insert(KnownSucc);
521         else
522           ExitWorklist.insert({BB, KnownSucc});
523         continue;
524       }
525 
526       // Add BB's successors to the worklist.
527       for (BasicBlock *Succ : successors(BB))
528         if (L->contains(Succ))
529           BBWorklist.insert(Succ);
530         else
531           ExitWorklist.insert({BB, Succ});
532       AddCostRecursively(*TI, Iteration);
533     }
534 
535     // If we found no optimization opportunities on the first iteration, we
536     // won't find them on later ones too.
537     if (UnrolledCost == RolledDynamicCost) {
538       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
539                    << "  UnrolledCost: " << UnrolledCost << "\n");
540       return None;
541     }
542   }
543 
544   while (!ExitWorklist.empty()) {
545     BasicBlock *ExitingBB, *ExitBB;
546     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
547 
548     for (Instruction &I : *ExitBB) {
549       auto *PN = dyn_cast<PHINode>(&I);
550       if (!PN)
551         break;
552 
553       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
554       if (auto *OpI = dyn_cast<Instruction>(Op))
555         if (L->contains(OpI))
556           AddCostRecursively(*OpI, TripCount - 1);
557     }
558   }
559 
560   DEBUG(dbgs() << "Analysis finished:\n"
561                << "UnrolledCost: " << UnrolledCost << ", "
562                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
563   return {{UnrolledCost, RolledDynamicCost}};
564 }
565 
566 /// ApproximateLoopSize - Approximate the size of the loop.
567 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
568                                     bool &NotDuplicatable, bool &Convergent,
569                                     const TargetTransformInfo &TTI,
570                                     AssumptionCache *AC, unsigned BEInsns) {
571   SmallPtrSet<const Value *, 32> EphValues;
572   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
573 
574   CodeMetrics Metrics;
575   for (BasicBlock *BB : L->blocks())
576     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
577   NumCalls = Metrics.NumInlineCandidates;
578   NotDuplicatable = Metrics.notDuplicatable;
579   Convergent = Metrics.convergent;
580 
581   unsigned LoopSize = Metrics.NumInsts;
582 
583   // Don't allow an estimate of size zero.  This would allows unrolling of loops
584   // with huge iteration counts, which is a compile time problem even if it's
585   // not a problem for code quality. Also, the code using this size may assume
586   // that each loop has at least three instructions (likely a conditional
587   // branch, a comparison feeding that branch, and some kind of loop increment
588   // feeding that comparison instruction).
589   LoopSize = std::max(LoopSize, BEInsns + 1);
590 
591   return LoopSize;
592 }
593 
594 // Returns the loop hint metadata node with the given name (for example,
595 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
596 // returned.
597 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
598   if (MDNode *LoopID = L->getLoopID())
599     return GetUnrollMetadata(LoopID, Name);
600   return nullptr;
601 }
602 
603 // Returns true if the loop has an unroll(full) pragma.
604 static bool HasUnrollFullPragma(const Loop *L) {
605   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
606 }
607 
608 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
609 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
610 static bool HasUnrollEnablePragma(const Loop *L) {
611   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
612 }
613 
614 // Returns true if the loop has an unroll(disable) pragma.
615 static bool HasUnrollDisablePragma(const Loop *L) {
616   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
617 }
618 
619 // Returns true if the loop has an runtime unroll(disable) pragma.
620 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
621   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
622 }
623 
624 // If loop has an unroll_count pragma return the (necessarily
625 // positive) value from the pragma.  Otherwise return 0.
626 static unsigned UnrollCountPragmaValue(const Loop *L) {
627   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
628   if (MD) {
629     assert(MD->getNumOperands() == 2 &&
630            "Unroll count hint metadata should have two operands.");
631     unsigned Count =
632         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
633     assert(Count >= 1 && "Unroll count must be positive.");
634     return Count;
635   }
636   return 0;
637 }
638 
639 // Remove existing unroll metadata and add unroll disable metadata to
640 // indicate the loop has already been unrolled.  This prevents a loop
641 // from being unrolled more than is directed by a pragma if the loop
642 // unrolling pass is run more than once (which it generally is).
643 static void SetLoopAlreadyUnrolled(Loop *L) {
644   MDNode *LoopID = L->getLoopID();
645   // First remove any existing loop unrolling metadata.
646   SmallVector<Metadata *, 4> MDs;
647   // Reserve first location for self reference to the LoopID metadata node.
648   MDs.push_back(nullptr);
649 
650   if (LoopID) {
651     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
652       bool IsUnrollMetadata = false;
653       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
654       if (MD) {
655         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
656         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
657       }
658       if (!IsUnrollMetadata)
659         MDs.push_back(LoopID->getOperand(i));
660     }
661   }
662 
663   // Add unroll(disable) metadata to disable future unrolling.
664   LLVMContext &Context = L->getHeader()->getContext();
665   SmallVector<Metadata *, 1> DisableOperands;
666   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
667   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
668   MDs.push_back(DisableNode);
669 
670   MDNode *NewLoopID = MDNode::get(Context, MDs);
671   // Set operand 0 to refer to the loop id itself.
672   NewLoopID->replaceOperandWith(0, NewLoopID);
673   L->setLoopID(NewLoopID);
674 }
675 
676 // Computes the boosting factor for complete unrolling.
677 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
678 // be beneficial to fully unroll the loop even if unrolledcost is large. We
679 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
680 // the unroll threshold.
681 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
682                                             unsigned MaxPercentThresholdBoost) {
683   if (Cost.RolledDynamicCost >= UINT_MAX / 100)
684     return 100;
685   else if (Cost.UnrolledCost != 0)
686     // The boosting factor is RolledDynamicCost / UnrolledCost
687     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
688                     MaxPercentThresholdBoost);
689   else
690     return MaxPercentThresholdBoost;
691 }
692 
693 // Returns loop size estimation for unrolled loop.
694 static uint64_t getUnrolledLoopSize(
695     unsigned LoopSize,
696     TargetTransformInfo::UnrollingPreferences &UP) {
697   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
698   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
699 }
700 
701 // Returns true if unroll count was set explicitly.
702 // Calculates unroll count and writes it to UP.Count.
703 static bool computeUnrollCount(
704     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
705     ScalarEvolution &SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount,
706     unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize,
707     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
708   // Check for explicit Count.
709   // 1st priority is unroll count set by "unroll-count" option.
710   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
711   if (UserUnrollCount) {
712     UP.Count = UnrollCount;
713     UP.AllowExpensiveTripCount = true;
714     UP.Force = true;
715     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
716       return true;
717   }
718 
719   // 2nd priority is unroll count set by pragma.
720   unsigned PragmaCount = UnrollCountPragmaValue(L);
721   if (PragmaCount > 0) {
722     UP.Count = PragmaCount;
723     UP.Runtime = true;
724     UP.AllowExpensiveTripCount = true;
725     UP.Force = true;
726     if (UP.AllowRemainder &&
727         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
728       return true;
729   }
730   bool PragmaFullUnroll = HasUnrollFullPragma(L);
731   if (PragmaFullUnroll && TripCount != 0) {
732     UP.Count = TripCount;
733     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
734       return false;
735   }
736 
737   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
738   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
739                         PragmaEnableUnroll || UserUnrollCount;
740 
741   if (ExplicitUnroll && TripCount != 0) {
742     // If the loop has an unrolling pragma, we want to be more aggressive with
743     // unrolling limits. Set thresholds to at least the PragmaThreshold value
744     // which is larger than the default limits.
745     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
746     UP.PartialThreshold =
747         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
748   }
749 
750   // 3rd priority is full unroll count.
751   // Full unroll makes sense only when TripCount or its upper bound could be
752   // statically calculated.
753   // Also we need to check if we exceed FullUnrollMaxCount.
754   // If using the upper bound to unroll, TripMultiple should be set to 1 because
755   // we do not know when loop may exit.
756   // MaxTripCount and ExactTripCount cannot both be non zero since we only
757   // compute the former when the latter is zero.
758   unsigned ExactTripCount = TripCount;
759   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
760          "ExtractTripCound and MaxTripCount cannot both be non zero.");
761   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
762   UP.Count = FullUnrollTripCount;
763   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
764     // When computing the unrolled size, note that BEInsns are not replicated
765     // like the rest of the loop body.
766     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
767       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
768       TripCount = FullUnrollTripCount;
769       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
770       return ExplicitUnroll;
771     } else {
772       // The loop isn't that small, but we still can fully unroll it if that
773       // helps to remove a significant number of instructions.
774       // To check that, run additional analysis on the loop.
775       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
776               L, FullUnrollTripCount, DT, SE, TTI,
777               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
778         unsigned Boost =
779             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
780         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
781           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
782           TripCount = FullUnrollTripCount;
783           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
784           return ExplicitUnroll;
785         }
786       }
787     }
788   }
789 
790   // 4th priority is loop peeling
791   computePeelCount(L, LoopSize, UP, TripCount);
792   if (UP.PeelCount) {
793     UP.Runtime = false;
794     UP.Count = 1;
795     return ExplicitUnroll;
796   }
797 
798   // 5th priority is partial unrolling.
799   // Try partial unroll only when TripCount could be staticaly calculated.
800   if (TripCount) {
801     UP.Partial |= ExplicitUnroll;
802     if (!UP.Partial) {
803       DEBUG(dbgs() << "  will not try to unroll partially because "
804                    << "-unroll-allow-partial not given\n");
805       UP.Count = 0;
806       return false;
807     }
808     if (UP.Count == 0)
809       UP.Count = TripCount;
810     if (UP.PartialThreshold != NoThreshold) {
811       // Reduce unroll count to be modulo of TripCount for partial unrolling.
812       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
813         UP.Count =
814             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
815             (LoopSize - UP.BEInsns);
816       if (UP.Count > UP.MaxCount)
817         UP.Count = UP.MaxCount;
818       while (UP.Count != 0 && TripCount % UP.Count != 0)
819         UP.Count--;
820       if (UP.AllowRemainder && UP.Count <= 1) {
821         // If there is no Count that is modulo of TripCount, set Count to
822         // largest power-of-two factor that satisfies the threshold limit.
823         // As we'll create fixup loop, do the type of unrolling only if
824         // remainder loop is allowed.
825         UP.Count = UP.DefaultUnrollRuntimeCount;
826         while (UP.Count != 0 &&
827                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
828           UP.Count >>= 1;
829       }
830       if (UP.Count < 2) {
831         if (PragmaEnableUnroll)
832           ORE->emit(
833               OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
834                                        L->getStartLoc(), L->getHeader())
835               << "Unable to unroll loop as directed by unroll(enable) pragma "
836                  "because unrolled size is too large.");
837         UP.Count = 0;
838       }
839     } else {
840       UP.Count = TripCount;
841     }
842     if (UP.Count > UP.MaxCount)
843       UP.Count = UP.MaxCount;
844     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
845         UP.Count != TripCount)
846       ORE->emit(
847           OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
848                                    L->getStartLoc(), L->getHeader())
849           << "Unable to fully unroll loop as directed by unroll pragma because "
850              "unrolled size is too large.");
851     return ExplicitUnroll;
852   }
853   assert(TripCount == 0 &&
854          "All cases when TripCount is constant should be covered here.");
855   if (PragmaFullUnroll)
856     ORE->emit(
857         OptimizationRemarkMissed(DEBUG_TYPE,
858                                  "CantFullUnrollAsDirectedRuntimeTripCount",
859                                  L->getStartLoc(), L->getHeader())
860         << "Unable to fully unroll loop as directed by unroll(full) pragma "
861            "because loop has a runtime trip count.");
862 
863   // 6th priority is runtime unrolling.
864   // Don't unroll a runtime trip count loop when it is disabled.
865   if (HasRuntimeUnrollDisablePragma(L)) {
866     UP.Count = 0;
867     return false;
868   }
869 
870   // Check if the runtime trip count is too small when profile is available.
871   if (L->getHeader()->getParent()->getEntryCount()) {
872     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
873       if (*ProfileTripCount < FlatLoopTripCountThreshold)
874         return false;
875       else
876         UP.AllowExpensiveTripCount = true;
877     }
878   }
879 
880   // Reduce count based on the type of unrolling and the threshold values.
881   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
882   if (!UP.Runtime) {
883     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
884                  << "-unroll-runtime not given\n");
885     UP.Count = 0;
886     return false;
887   }
888   if (UP.Count == 0)
889     UP.Count = UP.DefaultUnrollRuntimeCount;
890 
891   // Reduce unroll count to be the largest power-of-two factor of
892   // the original count which satisfies the threshold limit.
893   while (UP.Count != 0 &&
894          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
895     UP.Count >>= 1;
896 
897 #ifndef NDEBUG
898   unsigned OrigCount = UP.Count;
899 #endif
900 
901   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
902     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
903       UP.Count >>= 1;
904     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
905                     "specific or because the loop contains a convergent "
906                     "instruction), so unroll count must divide the trip "
907                     "multiple, "
908                  << TripMultiple << ".  Reducing unroll count from "
909                  << OrigCount << " to " << UP.Count << ".\n");
910     using namespace ore;
911     if (PragmaCount > 0 && !UP.AllowRemainder)
912       ORE->emit(
913           OptimizationRemarkMissed(DEBUG_TYPE,
914                                    "DifferentUnrollCountFromDirected",
915                                    L->getStartLoc(), L->getHeader())
916           << "Unable to unroll loop the number of times directed by "
917              "unroll_count pragma because remainder loop is restricted "
918              "(that could architecture specific or because the loop "
919              "contains a convergent instruction) and so must have an unroll "
920              "count that divides the loop trip multiple of "
921           << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
922           << NV("UnrollCount", UP.Count) << " time(s).");
923   }
924 
925   if (UP.Count > UP.MaxCount)
926     UP.Count = UP.MaxCount;
927   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
928   if (UP.Count < 2)
929     UP.Count = 0;
930   return ExplicitUnroll;
931 }
932 
933 static bool tryToUnrollLoop(
934     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
935     const TargetTransformInfo &TTI, AssumptionCache &AC,
936     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
937     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
938     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
939     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
940   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
941                << "] Loop %" << L->getHeader()->getName() << "\n");
942   if (HasUnrollDisablePragma(L))
943     return false;
944   if (!L->isLoopSimplifyForm()) {
945     DEBUG(
946         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
947     return false;
948   }
949 
950   unsigned NumInlineCandidates;
951   bool NotDuplicatable;
952   bool Convergent;
953   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
954       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
955       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
956       ProvidedAllowPeeling);
957   // Exit early if unrolling is disabled.
958   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
959     return false;
960   unsigned LoopSize = ApproximateLoopSize(
961       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns);
962   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
963   if (NotDuplicatable) {
964     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
965                  << " instructions.\n");
966     return false;
967   }
968   if (NumInlineCandidates != 0) {
969     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
970     return false;
971   }
972 
973   // Find trip count and trip multiple if count is not available
974   unsigned TripCount = 0;
975   unsigned MaxTripCount = 0;
976   unsigned TripMultiple = 1;
977   // If there are multiple exiting blocks but one of them is the latch, use the
978   // latch for the trip count estimation. Otherwise insist on a single exiting
979   // block for the trip count estimation.
980   BasicBlock *ExitingBlock = L->getLoopLatch();
981   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
982     ExitingBlock = L->getExitingBlock();
983   if (ExitingBlock) {
984     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
985     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
986   }
987 
988   // If the loop contains a convergent operation, the prelude we'd add
989   // to do the first few instructions before we hit the unrolled loop
990   // is unsafe -- it adds a control-flow dependency to the convergent
991   // operation.  Therefore restrict remainder loop (try unrollig without).
992   //
993   // TODO: This is quite conservative.  In practice, convergent_op()
994   // is likely to be called unconditionally in the loop.  In this
995   // case, the program would be ill-formed (on most architectures)
996   // unless n were the same on all threads in a thread group.
997   // Assuming n is the same on all threads, any kind of unrolling is
998   // safe.  But currently llvm's notion of convergence isn't powerful
999   // enough to express this.
1000   if (Convergent)
1001     UP.AllowRemainder = false;
1002 
1003   // Try to find the trip count upper bound if we cannot find the exact trip
1004   // count.
1005   bool MaxOrZero = false;
1006   if (!TripCount) {
1007     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1008     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1009     // We can unroll by the upper bound amount if it's generally allowed or if
1010     // we know that the loop is executed either the upper bound or zero times.
1011     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1012     // loop tests remains the same compared to the non-unrolled version, whereas
1013     // the generic upper bound unrolling keeps all but the last loop test so the
1014     // number of loop tests goes up which may end up being worse on targets with
1015     // constriained branch predictor resources so is controlled by an option.)
1016     // In addition we only unroll small upper bounds.
1017     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1018       MaxTripCount = 0;
1019     }
1020   }
1021 
1022   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1023   // fully unroll the loop.
1024   bool UseUpperBound = false;
1025   bool IsCountSetExplicitly =
1026       computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount,
1027                          TripMultiple, LoopSize, UP, UseUpperBound);
1028   if (!UP.Count)
1029     return false;
1030   // Unroll factor (Count) must be less or equal to TripCount.
1031   if (TripCount && UP.Count > TripCount)
1032     UP.Count = TripCount;
1033 
1034   // Unroll the loop.
1035   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
1036                   UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero,
1037                   TripMultiple, UP.PeelCount, LI, &SE, &DT, &AC, &ORE,
1038                   PreserveLCSSA))
1039     return false;
1040 
1041   // If loop has an unroll count pragma or unrolled by explicitly set count
1042   // mark loop as unrolled to prevent unrolling beyond that requested.
1043   // If the loop was peeled, we already "used up" the profile information
1044   // we had, so we don't want to unroll or peel again.
1045   if (IsCountSetExplicitly || UP.PeelCount)
1046     SetLoopAlreadyUnrolled(L);
1047 
1048   return true;
1049 }
1050 
1051 namespace {
1052 class LoopUnroll : public LoopPass {
1053 public:
1054   static char ID; // Pass ID, replacement for typeid
1055   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1056              Optional<unsigned> Count = None,
1057              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1058              Optional<bool> UpperBound = None,
1059              Optional<bool> AllowPeeling = None)
1060       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1061         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1062         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1063         ProvidedAllowPeeling(AllowPeeling) {
1064     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1065   }
1066 
1067   int OptLevel;
1068   Optional<unsigned> ProvidedCount;
1069   Optional<unsigned> ProvidedThreshold;
1070   Optional<bool> ProvidedAllowPartial;
1071   Optional<bool> ProvidedRuntime;
1072   Optional<bool> ProvidedUpperBound;
1073   Optional<bool> ProvidedAllowPeeling;
1074 
1075   bool runOnLoop(Loop *L, LPPassManager &) override {
1076     if (skipLoop(L))
1077       return false;
1078 
1079     Function &F = *L->getHeader()->getParent();
1080 
1081     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1082     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1083     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1084     const TargetTransformInfo &TTI =
1085         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1086     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1087     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1088     // pass.  Function analyses need to be preserved across loop transformations
1089     // but ORE cannot be preserved (see comment before the pass definition).
1090     OptimizationRemarkEmitter ORE(&F);
1091     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1092 
1093     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel,
1094                            ProvidedCount, ProvidedThreshold,
1095                            ProvidedAllowPartial, ProvidedRuntime,
1096                            ProvidedUpperBound, ProvidedAllowPeeling);
1097   }
1098 
1099   /// This transformation requires natural loop information & requires that
1100   /// loop preheaders be inserted into the CFG...
1101   ///
1102   void getAnalysisUsage(AnalysisUsage &AU) const override {
1103     AU.addRequired<AssumptionCacheTracker>();
1104     AU.addRequired<TargetTransformInfoWrapperPass>();
1105     // FIXME: Loop passes are required to preserve domtree, and for now we just
1106     // recreate dom info if anything gets unrolled.
1107     getLoopAnalysisUsage(AU);
1108   }
1109 };
1110 }
1111 
1112 char LoopUnroll::ID = 0;
1113 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1115 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1116 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1117 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1118 
1119 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1120                                  int AllowPartial, int Runtime, int UpperBound,
1121                                  int AllowPeeling) {
1122   // TODO: It would make more sense for this function to take the optionals
1123   // directly, but that's dangerous since it would silently break out of tree
1124   // callers.
1125   return new LoopUnroll(
1126       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1127       Count == -1 ? None : Optional<unsigned>(Count),
1128       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1129       Runtime == -1 ? None : Optional<bool>(Runtime),
1130       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1131       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1132 }
1133 
1134 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1135   return llvm::createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1136 }
1137 
1138 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1139                                           LoopStandardAnalysisResults &AR,
1140                                           LPMUpdater &Updater) {
1141   const auto &FAM =
1142       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1143   Function *F = L.getHeader()->getParent();
1144 
1145   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1146   // FIXME: This should probably be optional rather than required.
1147   if (!ORE)
1148     report_fatal_error(
1149         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1150         "cached at a higher level");
1151 
1152   // Keep track of the previous loop structure so we can identify new loops
1153   // created by unrolling.
1154   Loop *ParentL = L.getParentLoop();
1155   SmallPtrSet<Loop *, 4> OldLoops;
1156   if (ParentL)
1157     OldLoops.insert(ParentL->begin(), ParentL->end());
1158   else
1159     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1160 
1161   bool Changed =
1162       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1163                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1164                       /*Threshold*/ None, /*AllowPartial*/ false,
1165                       /*Runtime*/ false, /*UpperBound*/ false,
1166                       /*AllowPeeling*/ false);
1167   if (!Changed)
1168     return PreservedAnalyses::all();
1169 
1170   // The parent must not be damaged by unrolling!
1171 #ifndef NDEBUG
1172   if (ParentL)
1173     ParentL->verifyLoop();
1174 #endif
1175 
1176   // Unrolling can do several things to introduce new loops into a loop nest:
1177   // - Full unrolling clones child loops within the current loop but then
1178   //   removes the current loop making all of the children appear to be new
1179   //   sibling loops.
1180   //
1181   // When a new loop appears as a sibling loop after fully unrolling,
1182   // its nesting structure has fundamentally changed and we want to revisit
1183   // it to reflect that.
1184   //
1185   // When unrolling has removed the current loop, we need to tell the
1186   // infrastructure that it is gone.
1187   //
1188   // Finally, we support a debugging/testing mode where we revisit child loops
1189   // as well. These are not expected to require further optimizations as either
1190   // they or the loop they were cloned from have been directly visited already.
1191   // But the debugging mode allows us to check this assumption.
1192   bool IsCurrentLoopValid = false;
1193   SmallVector<Loop *, 4> SibLoops;
1194   if (ParentL)
1195     SibLoops.append(ParentL->begin(), ParentL->end());
1196   else
1197     SibLoops.append(AR.LI.begin(), AR.LI.end());
1198   erase_if(SibLoops, [&](Loop *SibLoop) {
1199     if (SibLoop == &L) {
1200       IsCurrentLoopValid = true;
1201       return true;
1202     }
1203 
1204     // Otherwise erase the loop from the list if it was in the old loops.
1205     return OldLoops.count(SibLoop) != 0;
1206   });
1207   Updater.addSiblingLoops(SibLoops);
1208 
1209   if (!IsCurrentLoopValid) {
1210     Updater.markLoopAsDeleted(L);
1211   } else {
1212     // We can only walk child loops if the current loop remained valid.
1213     if (UnrollRevisitChildLoops) {
1214       // Walk *all* of the child loops.
1215       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1216       Updater.addChildLoops(ChildLoops);
1217     }
1218   }
1219 
1220   return getLoopPassPreservedAnalyses();
1221 }
1222 
1223 template <typename RangeT>
1224 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1225   SmallVector<Loop *, 8> Worklist;
1226   // We use an internal worklist to build up the preorder traversal without
1227   // recursion.
1228   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1229 
1230   for (Loop *RootL : Loops) {
1231     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1232     assert(PreOrderWorklist.empty() &&
1233            "Must start with an empty preorder walk worklist.");
1234     PreOrderWorklist.push_back(RootL);
1235     do {
1236       Loop *L = PreOrderWorklist.pop_back_val();
1237       PreOrderWorklist.append(L->begin(), L->end());
1238       PreOrderLoops.push_back(L);
1239     } while (!PreOrderWorklist.empty());
1240 
1241     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1242     PreOrderLoops.clear();
1243   }
1244   return Worklist;
1245 }
1246 
1247 PreservedAnalyses LoopUnrollPass::run(Function &F,
1248                                       FunctionAnalysisManager &AM) {
1249   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1250   auto &LI = AM.getResult<LoopAnalysis>(F);
1251   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1252   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1253   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1254   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1255 
1256   const ModuleAnalysisManager &MAM =
1257       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1258   ProfileSummaryInfo *PSI =
1259       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1260 
1261   bool Changed = false;
1262 
1263   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1264   // Since simplification may add new inner loops, it has to run before the
1265   // legality and profitability checks. This means running the loop unroller
1266   // will simplify all loops, regardless of whether anything end up being
1267   // unrolled.
1268   for (auto &L : LI) {
1269     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1270     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1271   }
1272 
1273   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1274 
1275   while (!Worklist.empty()) {
1276     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1277     // from back to front so that we work forward across the CFG, which
1278     // for unrolling is only needed to get optimization remarks emitted in
1279     // a forward order.
1280     Loop &L = *Worklist.pop_back_val();
1281 #ifndef NDEBUG
1282     Loop *ParentL = L.getParentLoop();
1283 #endif
1284 
1285     // The API here is quite complex to call, but there are only two interesting
1286     // states we support: partial and full (or "simple") unrolling. However, to
1287     // enable these things we actually pass "None" in for the optional to avoid
1288     // providing an explicit choice.
1289     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1290         AllowPeeling;
1291     // Check if the profile summary indicates that the profiled application
1292     // has a huge working set size, in which case we disable peeling to avoid
1293     // bloating it further.
1294     if (PSI && PSI->hasHugeWorkingSetSize())
1295       AllowPeeling = false;
1296     bool CurChanged =
1297         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1298                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1299                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1300                         UpperBoundParam, AllowPeeling);
1301     Changed |= CurChanged;
1302 
1303     // The parent must not be damaged by unrolling!
1304 #ifndef NDEBUG
1305     if (CurChanged && ParentL)
1306       ParentL->verifyLoop();
1307 #endif
1308   }
1309 
1310   if (!Changed)
1311     return PreservedAnalyses::all();
1312 
1313   return getLoopPassPreservedAnalyses();
1314 }
1315