1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ProfileSummaryInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Scalar/LoopPassManager.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/UnrollLoop.h" 39 #include <climits> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 static cl::opt<unsigned> 47 UnrollThreshold("unroll-threshold", cl::Hidden, 48 cl::desc("The cost threshold for loop unrolling")); 49 50 static cl::opt<unsigned> UnrollPartialThreshold( 51 "unroll-partial-threshold", cl::Hidden, 52 cl::desc("The cost threshold for partial loop unrolling")); 53 54 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 55 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 56 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 57 "to the threshold when aggressively unrolling a loop due to the " 58 "dynamic cost savings. If completely unrolling a loop will reduce " 59 "the total runtime from X to Y, we boost the loop unroll " 60 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 61 "X/Y). This limit avoids excessive code bloat.")); 62 63 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 64 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 65 cl::desc("Don't allow loop unrolling to simulate more than this number of" 66 "iterations when checking full unroll profitability")); 67 68 static cl::opt<unsigned> UnrollCount( 69 "unroll-count", cl::Hidden, 70 cl::desc("Use this unroll count for all loops including those with " 71 "unroll_count pragma values, for testing purposes")); 72 73 static cl::opt<unsigned> UnrollMaxCount( 74 "unroll-max-count", cl::Hidden, 75 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 76 "testing purposes")); 77 78 static cl::opt<unsigned> UnrollFullMaxCount( 79 "unroll-full-max-count", cl::Hidden, 80 cl::desc( 81 "Set the max unroll count for full unrolling, for testing purposes")); 82 83 static cl::opt<bool> 84 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 85 cl::desc("Allows loops to be partially unrolled until " 86 "-unroll-threshold loop size is reached.")); 87 88 static cl::opt<bool> UnrollAllowRemainder( 89 "unroll-allow-remainder", cl::Hidden, 90 cl::desc("Allow generation of a loop remainder (extra iterations) " 91 "when unrolling a loop.")); 92 93 static cl::opt<bool> 94 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 95 cl::desc("Unroll loops with run-time trip counts")); 96 97 static cl::opt<unsigned> UnrollMaxUpperBound( 98 "unroll-max-upperbound", cl::init(8), cl::Hidden, 99 cl::desc( 100 "The max of trip count upper bound that is considered in unrolling")); 101 102 static cl::opt<unsigned> PragmaUnrollThreshold( 103 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 104 cl::desc("Unrolled size limit for loops with an unroll(full) or " 105 "unroll_count pragma.")); 106 107 static cl::opt<unsigned> FlatLoopTripCountThreshold( 108 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 109 cl::desc("If the runtime tripcount for the loop is lower than the " 110 "threshold, the loop is considered as flat and will be less " 111 "aggressively unrolled.")); 112 113 static cl::opt<bool> 114 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 115 cl::desc("Allows loops to be peeled when the dynamic " 116 "trip count is known to be low.")); 117 118 // This option isn't ever intended to be enabled, it serves to allow 119 // experiments to check the assumptions about when this kind of revisit is 120 // necessary. 121 static cl::opt<bool> UnrollRevisitChildLoops( 122 "unroll-revisit-child-loops", cl::Hidden, 123 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 124 "This shouldn't typically be needed as child loops (or their " 125 "clones) were already visited.")); 126 127 /// A magic value for use with the Threshold parameter to indicate 128 /// that the loop unroll should be performed regardless of how much 129 /// code expansion would result. 130 static const unsigned NoThreshold = UINT_MAX; 131 132 /// Gather the various unrolling parameters based on the defaults, compiler 133 /// flags, TTI overrides and user specified parameters. 134 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 135 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 136 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 137 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 138 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 139 TargetTransformInfo::UnrollingPreferences UP; 140 141 // Set up the defaults 142 UP.Threshold = OptLevel > 2 ? 300 : 150; 143 UP.MaxPercentThresholdBoost = 400; 144 UP.OptSizeThreshold = 0; 145 UP.PartialThreshold = 150; 146 UP.PartialOptSizeThreshold = 0; 147 UP.Count = 0; 148 UP.PeelCount = 0; 149 UP.DefaultUnrollRuntimeCount = 8; 150 UP.MaxCount = UINT_MAX; 151 UP.FullUnrollMaxCount = UINT_MAX; 152 UP.BEInsns = 2; 153 UP.Partial = false; 154 UP.Runtime = false; 155 UP.AllowRemainder = true; 156 UP.AllowExpensiveTripCount = false; 157 UP.Force = false; 158 UP.UpperBound = false; 159 UP.AllowPeeling = true; 160 161 // Override with any target specific settings 162 TTI.getUnrollingPreferences(L, SE, UP); 163 164 // Apply size attributes 165 if (L->getHeader()->getParent()->optForSize()) { 166 UP.Threshold = UP.OptSizeThreshold; 167 UP.PartialThreshold = UP.PartialOptSizeThreshold; 168 } 169 170 // Apply any user values specified by cl::opt 171 if (UnrollThreshold.getNumOccurrences() > 0) 172 UP.Threshold = UnrollThreshold; 173 if (UnrollPartialThreshold.getNumOccurrences() > 0) 174 UP.PartialThreshold = UnrollPartialThreshold; 175 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 176 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 177 if (UnrollMaxCount.getNumOccurrences() > 0) 178 UP.MaxCount = UnrollMaxCount; 179 if (UnrollFullMaxCount.getNumOccurrences() > 0) 180 UP.FullUnrollMaxCount = UnrollFullMaxCount; 181 if (UnrollAllowPartial.getNumOccurrences() > 0) 182 UP.Partial = UnrollAllowPartial; 183 if (UnrollAllowRemainder.getNumOccurrences() > 0) 184 UP.AllowRemainder = UnrollAllowRemainder; 185 if (UnrollRuntime.getNumOccurrences() > 0) 186 UP.Runtime = UnrollRuntime; 187 if (UnrollMaxUpperBound == 0) 188 UP.UpperBound = false; 189 if (UnrollAllowPeeling.getNumOccurrences() > 0) 190 UP.AllowPeeling = UnrollAllowPeeling; 191 192 // Apply user values provided by argument 193 if (UserThreshold.hasValue()) { 194 UP.Threshold = *UserThreshold; 195 UP.PartialThreshold = *UserThreshold; 196 } 197 if (UserCount.hasValue()) 198 UP.Count = *UserCount; 199 if (UserAllowPartial.hasValue()) 200 UP.Partial = *UserAllowPartial; 201 if (UserRuntime.hasValue()) 202 UP.Runtime = *UserRuntime; 203 if (UserUpperBound.hasValue()) 204 UP.UpperBound = *UserUpperBound; 205 if (UserAllowPeeling.hasValue()) 206 UP.AllowPeeling = *UserAllowPeeling; 207 208 return UP; 209 } 210 211 namespace { 212 /// A struct to densely store the state of an instruction after unrolling at 213 /// each iteration. 214 /// 215 /// This is designed to work like a tuple of <Instruction *, int> for the 216 /// purposes of hashing and lookup, but to be able to associate two boolean 217 /// states with each key. 218 struct UnrolledInstState { 219 Instruction *I; 220 int Iteration : 30; 221 unsigned IsFree : 1; 222 unsigned IsCounted : 1; 223 }; 224 225 /// Hashing and equality testing for a set of the instruction states. 226 struct UnrolledInstStateKeyInfo { 227 typedef DenseMapInfo<Instruction *> PtrInfo; 228 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 229 static inline UnrolledInstState getEmptyKey() { 230 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 231 } 232 static inline UnrolledInstState getTombstoneKey() { 233 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 234 } 235 static inline unsigned getHashValue(const UnrolledInstState &S) { 236 return PairInfo::getHashValue({S.I, S.Iteration}); 237 } 238 static inline bool isEqual(const UnrolledInstState &LHS, 239 const UnrolledInstState &RHS) { 240 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 241 } 242 }; 243 } 244 245 namespace { 246 struct EstimatedUnrollCost { 247 /// \brief The estimated cost after unrolling. 248 unsigned UnrolledCost; 249 250 /// \brief The estimated dynamic cost of executing the instructions in the 251 /// rolled form. 252 unsigned RolledDynamicCost; 253 }; 254 } 255 256 /// \brief Figure out if the loop is worth full unrolling. 257 /// 258 /// Complete loop unrolling can make some loads constant, and we need to know 259 /// if that would expose any further optimization opportunities. This routine 260 /// estimates this optimization. It computes cost of unrolled loop 261 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 262 /// dynamic cost we mean that we won't count costs of blocks that are known not 263 /// to be executed (i.e. if we have a branch in the loop and we know that at the 264 /// given iteration its condition would be resolved to true, we won't add up the 265 /// cost of the 'false'-block). 266 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 267 /// the analysis failed (no benefits expected from the unrolling, or the loop is 268 /// too big to analyze), the returned value is None. 269 static Optional<EstimatedUnrollCost> 270 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 271 ScalarEvolution &SE, const TargetTransformInfo &TTI, 272 unsigned MaxUnrolledLoopSize) { 273 // We want to be able to scale offsets by the trip count and add more offsets 274 // to them without checking for overflows, and we already don't want to 275 // analyze *massive* trip counts, so we force the max to be reasonably small. 276 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 277 "The unroll iterations max is too large!"); 278 279 // Only analyze inner loops. We can't properly estimate cost of nested loops 280 // and we won't visit inner loops again anyway. 281 if (!L->empty()) 282 return None; 283 284 // Don't simulate loops with a big or unknown tripcount 285 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 286 TripCount > UnrollMaxIterationsCountToAnalyze) 287 return None; 288 289 SmallSetVector<BasicBlock *, 16> BBWorklist; 290 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 291 DenseMap<Value *, Constant *> SimplifiedValues; 292 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 293 294 // The estimated cost of the unrolled form of the loop. We try to estimate 295 // this by simplifying as much as we can while computing the estimate. 296 unsigned UnrolledCost = 0; 297 298 // We also track the estimated dynamic (that is, actually executed) cost in 299 // the rolled form. This helps identify cases when the savings from unrolling 300 // aren't just exposing dead control flows, but actual reduced dynamic 301 // instructions due to the simplifications which we expect to occur after 302 // unrolling. 303 unsigned RolledDynamicCost = 0; 304 305 // We track the simplification of each instruction in each iteration. We use 306 // this to recursively merge costs into the unrolled cost on-demand so that 307 // we don't count the cost of any dead code. This is essentially a map from 308 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 309 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 310 311 // A small worklist used to accumulate cost of instructions from each 312 // observable and reached root in the loop. 313 SmallVector<Instruction *, 16> CostWorklist; 314 315 // PHI-used worklist used between iterations while accumulating cost. 316 SmallVector<Instruction *, 4> PHIUsedList; 317 318 // Helper function to accumulate cost for instructions in the loop. 319 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 320 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 321 assert(CostWorklist.empty() && "Must start with an empty cost list"); 322 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 323 CostWorklist.push_back(&RootI); 324 for (;; --Iteration) { 325 do { 326 Instruction *I = CostWorklist.pop_back_val(); 327 328 // InstCostMap only uses I and Iteration as a key, the other two values 329 // don't matter here. 330 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 331 if (CostIter == InstCostMap.end()) 332 // If an input to a PHI node comes from a dead path through the loop 333 // we may have no cost data for it here. What that actually means is 334 // that it is free. 335 continue; 336 auto &Cost = *CostIter; 337 if (Cost.IsCounted) 338 // Already counted this instruction. 339 continue; 340 341 // Mark that we are counting the cost of this instruction now. 342 Cost.IsCounted = true; 343 344 // If this is a PHI node in the loop header, just add it to the PHI set. 345 if (auto *PhiI = dyn_cast<PHINode>(I)) 346 if (PhiI->getParent() == L->getHeader()) { 347 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 348 "inherently simplify during unrolling."); 349 if (Iteration == 0) 350 continue; 351 352 // Push the incoming value from the backedge into the PHI used list 353 // if it is an in-loop instruction. We'll use this to populate the 354 // cost worklist for the next iteration (as we count backwards). 355 if (auto *OpI = dyn_cast<Instruction>( 356 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 357 if (L->contains(OpI)) 358 PHIUsedList.push_back(OpI); 359 continue; 360 } 361 362 // First accumulate the cost of this instruction. 363 if (!Cost.IsFree) { 364 UnrolledCost += TTI.getUserCost(I); 365 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 366 << "): "); 367 DEBUG(I->dump()); 368 } 369 370 // We must count the cost of every operand which is not free, 371 // recursively. If we reach a loop PHI node, simply add it to the set 372 // to be considered on the next iteration (backwards!). 373 for (Value *Op : I->operands()) { 374 // Check whether this operand is free due to being a constant or 375 // outside the loop. 376 auto *OpI = dyn_cast<Instruction>(Op); 377 if (!OpI || !L->contains(OpI)) 378 continue; 379 380 // Otherwise accumulate its cost. 381 CostWorklist.push_back(OpI); 382 } 383 } while (!CostWorklist.empty()); 384 385 if (PHIUsedList.empty()) 386 // We've exhausted the search. 387 break; 388 389 assert(Iteration > 0 && 390 "Cannot track PHI-used values past the first iteration!"); 391 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 392 PHIUsedList.clear(); 393 } 394 }; 395 396 // Ensure that we don't violate the loop structure invariants relied on by 397 // this analysis. 398 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 399 assert(L->isLCSSAForm(DT) && 400 "Must have loops in LCSSA form to track live-out values."); 401 402 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 403 404 // Simulate execution of each iteration of the loop counting instructions, 405 // which would be simplified. 406 // Since the same load will take different values on different iterations, 407 // we literally have to go through all loop's iterations. 408 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 409 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 410 411 // Prepare for the iteration by collecting any simplified entry or backedge 412 // inputs. 413 for (Instruction &I : *L->getHeader()) { 414 auto *PHI = dyn_cast<PHINode>(&I); 415 if (!PHI) 416 break; 417 418 // The loop header PHI nodes must have exactly two input: one from the 419 // loop preheader and one from the loop latch. 420 assert( 421 PHI->getNumIncomingValues() == 2 && 422 "Must have an incoming value only for the preheader and the latch."); 423 424 Value *V = PHI->getIncomingValueForBlock( 425 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 426 Constant *C = dyn_cast<Constant>(V); 427 if (Iteration != 0 && !C) 428 C = SimplifiedValues.lookup(V); 429 if (C) 430 SimplifiedInputValues.push_back({PHI, C}); 431 } 432 433 // Now clear and re-populate the map for the next iteration. 434 SimplifiedValues.clear(); 435 while (!SimplifiedInputValues.empty()) 436 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 437 438 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 439 440 BBWorklist.clear(); 441 BBWorklist.insert(L->getHeader()); 442 // Note that we *must not* cache the size, this loop grows the worklist. 443 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 444 BasicBlock *BB = BBWorklist[Idx]; 445 446 // Visit all instructions in the given basic block and try to simplify 447 // it. We don't change the actual IR, just count optimization 448 // opportunities. 449 for (Instruction &I : *BB) { 450 if (isa<DbgInfoIntrinsic>(I)) 451 continue; 452 453 // Track this instruction's expected baseline cost when executing the 454 // rolled loop form. 455 RolledDynamicCost += TTI.getUserCost(&I); 456 457 // Visit the instruction to analyze its loop cost after unrolling, 458 // and if the visitor returns true, mark the instruction as free after 459 // unrolling and continue. 460 bool IsFree = Analyzer.visit(I); 461 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 462 (unsigned)IsFree, 463 /*IsCounted*/ false}).second; 464 (void)Inserted; 465 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 466 467 if (IsFree) 468 continue; 469 470 // Can't properly model a cost of a call. 471 // FIXME: With a proper cost model we should be able to do it. 472 if(isa<CallInst>(&I)) 473 return None; 474 475 // If the instruction might have a side-effect recursively account for 476 // the cost of it and all the instructions leading up to it. 477 if (I.mayHaveSideEffects()) 478 AddCostRecursively(I, Iteration); 479 480 // If unrolled body turns out to be too big, bail out. 481 if (UnrolledCost > MaxUnrolledLoopSize) { 482 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 483 << " UnrolledCost: " << UnrolledCost 484 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 485 << "\n"); 486 return None; 487 } 488 } 489 490 TerminatorInst *TI = BB->getTerminator(); 491 492 // Add in the live successors by first checking whether we have terminator 493 // that may be simplified based on the values simplified by this call. 494 BasicBlock *KnownSucc = nullptr; 495 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 496 if (BI->isConditional()) { 497 if (Constant *SimpleCond = 498 SimplifiedValues.lookup(BI->getCondition())) { 499 // Just take the first successor if condition is undef 500 if (isa<UndefValue>(SimpleCond)) 501 KnownSucc = BI->getSuccessor(0); 502 else if (ConstantInt *SimpleCondVal = 503 dyn_cast<ConstantInt>(SimpleCond)) 504 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 505 } 506 } 507 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 508 if (Constant *SimpleCond = 509 SimplifiedValues.lookup(SI->getCondition())) { 510 // Just take the first successor if condition is undef 511 if (isa<UndefValue>(SimpleCond)) 512 KnownSucc = SI->getSuccessor(0); 513 else if (ConstantInt *SimpleCondVal = 514 dyn_cast<ConstantInt>(SimpleCond)) 515 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 516 } 517 } 518 if (KnownSucc) { 519 if (L->contains(KnownSucc)) 520 BBWorklist.insert(KnownSucc); 521 else 522 ExitWorklist.insert({BB, KnownSucc}); 523 continue; 524 } 525 526 // Add BB's successors to the worklist. 527 for (BasicBlock *Succ : successors(BB)) 528 if (L->contains(Succ)) 529 BBWorklist.insert(Succ); 530 else 531 ExitWorklist.insert({BB, Succ}); 532 AddCostRecursively(*TI, Iteration); 533 } 534 535 // If we found no optimization opportunities on the first iteration, we 536 // won't find them on later ones too. 537 if (UnrolledCost == RolledDynamicCost) { 538 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 539 << " UnrolledCost: " << UnrolledCost << "\n"); 540 return None; 541 } 542 } 543 544 while (!ExitWorklist.empty()) { 545 BasicBlock *ExitingBB, *ExitBB; 546 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 547 548 for (Instruction &I : *ExitBB) { 549 auto *PN = dyn_cast<PHINode>(&I); 550 if (!PN) 551 break; 552 553 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 554 if (auto *OpI = dyn_cast<Instruction>(Op)) 555 if (L->contains(OpI)) 556 AddCostRecursively(*OpI, TripCount - 1); 557 } 558 } 559 560 DEBUG(dbgs() << "Analysis finished:\n" 561 << "UnrolledCost: " << UnrolledCost << ", " 562 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 563 return {{UnrolledCost, RolledDynamicCost}}; 564 } 565 566 /// ApproximateLoopSize - Approximate the size of the loop. 567 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 568 bool &NotDuplicatable, bool &Convergent, 569 const TargetTransformInfo &TTI, 570 AssumptionCache *AC, unsigned BEInsns) { 571 SmallPtrSet<const Value *, 32> EphValues; 572 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 573 574 CodeMetrics Metrics; 575 for (BasicBlock *BB : L->blocks()) 576 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 577 NumCalls = Metrics.NumInlineCandidates; 578 NotDuplicatable = Metrics.notDuplicatable; 579 Convergent = Metrics.convergent; 580 581 unsigned LoopSize = Metrics.NumInsts; 582 583 // Don't allow an estimate of size zero. This would allows unrolling of loops 584 // with huge iteration counts, which is a compile time problem even if it's 585 // not a problem for code quality. Also, the code using this size may assume 586 // that each loop has at least three instructions (likely a conditional 587 // branch, a comparison feeding that branch, and some kind of loop increment 588 // feeding that comparison instruction). 589 LoopSize = std::max(LoopSize, BEInsns + 1); 590 591 return LoopSize; 592 } 593 594 // Returns the loop hint metadata node with the given name (for example, 595 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 596 // returned. 597 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 598 if (MDNode *LoopID = L->getLoopID()) 599 return GetUnrollMetadata(LoopID, Name); 600 return nullptr; 601 } 602 603 // Returns true if the loop has an unroll(full) pragma. 604 static bool HasUnrollFullPragma(const Loop *L) { 605 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 606 } 607 608 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 609 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 610 static bool HasUnrollEnablePragma(const Loop *L) { 611 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 612 } 613 614 // Returns true if the loop has an unroll(disable) pragma. 615 static bool HasUnrollDisablePragma(const Loop *L) { 616 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 617 } 618 619 // Returns true if the loop has an runtime unroll(disable) pragma. 620 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 621 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 622 } 623 624 // If loop has an unroll_count pragma return the (necessarily 625 // positive) value from the pragma. Otherwise return 0. 626 static unsigned UnrollCountPragmaValue(const Loop *L) { 627 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 628 if (MD) { 629 assert(MD->getNumOperands() == 2 && 630 "Unroll count hint metadata should have two operands."); 631 unsigned Count = 632 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 633 assert(Count >= 1 && "Unroll count must be positive."); 634 return Count; 635 } 636 return 0; 637 } 638 639 // Remove existing unroll metadata and add unroll disable metadata to 640 // indicate the loop has already been unrolled. This prevents a loop 641 // from being unrolled more than is directed by a pragma if the loop 642 // unrolling pass is run more than once (which it generally is). 643 static void SetLoopAlreadyUnrolled(Loop *L) { 644 MDNode *LoopID = L->getLoopID(); 645 // First remove any existing loop unrolling metadata. 646 SmallVector<Metadata *, 4> MDs; 647 // Reserve first location for self reference to the LoopID metadata node. 648 MDs.push_back(nullptr); 649 650 if (LoopID) { 651 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 652 bool IsUnrollMetadata = false; 653 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 654 if (MD) { 655 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 656 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 657 } 658 if (!IsUnrollMetadata) 659 MDs.push_back(LoopID->getOperand(i)); 660 } 661 } 662 663 // Add unroll(disable) metadata to disable future unrolling. 664 LLVMContext &Context = L->getHeader()->getContext(); 665 SmallVector<Metadata *, 1> DisableOperands; 666 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 667 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 668 MDs.push_back(DisableNode); 669 670 MDNode *NewLoopID = MDNode::get(Context, MDs); 671 // Set operand 0 to refer to the loop id itself. 672 NewLoopID->replaceOperandWith(0, NewLoopID); 673 L->setLoopID(NewLoopID); 674 } 675 676 // Computes the boosting factor for complete unrolling. 677 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 678 // be beneficial to fully unroll the loop even if unrolledcost is large. We 679 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 680 // the unroll threshold. 681 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 682 unsigned MaxPercentThresholdBoost) { 683 if (Cost.RolledDynamicCost >= UINT_MAX / 100) 684 return 100; 685 else if (Cost.UnrolledCost != 0) 686 // The boosting factor is RolledDynamicCost / UnrolledCost 687 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 688 MaxPercentThresholdBoost); 689 else 690 return MaxPercentThresholdBoost; 691 } 692 693 // Returns loop size estimation for unrolled loop. 694 static uint64_t getUnrolledLoopSize( 695 unsigned LoopSize, 696 TargetTransformInfo::UnrollingPreferences &UP) { 697 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 698 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 699 } 700 701 // Returns true if unroll count was set explicitly. 702 // Calculates unroll count and writes it to UP.Count. 703 static bool computeUnrollCount( 704 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 705 ScalarEvolution &SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 706 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 707 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 708 // Check for explicit Count. 709 // 1st priority is unroll count set by "unroll-count" option. 710 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 711 if (UserUnrollCount) { 712 UP.Count = UnrollCount; 713 UP.AllowExpensiveTripCount = true; 714 UP.Force = true; 715 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 716 return true; 717 } 718 719 // 2nd priority is unroll count set by pragma. 720 unsigned PragmaCount = UnrollCountPragmaValue(L); 721 if (PragmaCount > 0) { 722 UP.Count = PragmaCount; 723 UP.Runtime = true; 724 UP.AllowExpensiveTripCount = true; 725 UP.Force = true; 726 if (UP.AllowRemainder && 727 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 728 return true; 729 } 730 bool PragmaFullUnroll = HasUnrollFullPragma(L); 731 if (PragmaFullUnroll && TripCount != 0) { 732 UP.Count = TripCount; 733 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 734 return false; 735 } 736 737 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 738 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 739 PragmaEnableUnroll || UserUnrollCount; 740 741 if (ExplicitUnroll && TripCount != 0) { 742 // If the loop has an unrolling pragma, we want to be more aggressive with 743 // unrolling limits. Set thresholds to at least the PragmaThreshold value 744 // which is larger than the default limits. 745 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 746 UP.PartialThreshold = 747 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 748 } 749 750 // 3rd priority is full unroll count. 751 // Full unroll makes sense only when TripCount or its upper bound could be 752 // statically calculated. 753 // Also we need to check if we exceed FullUnrollMaxCount. 754 // If using the upper bound to unroll, TripMultiple should be set to 1 because 755 // we do not know when loop may exit. 756 // MaxTripCount and ExactTripCount cannot both be non zero since we only 757 // compute the former when the latter is zero. 758 unsigned ExactTripCount = TripCount; 759 assert((ExactTripCount == 0 || MaxTripCount == 0) && 760 "ExtractTripCound and MaxTripCount cannot both be non zero."); 761 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 762 UP.Count = FullUnrollTripCount; 763 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 764 // When computing the unrolled size, note that BEInsns are not replicated 765 // like the rest of the loop body. 766 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 767 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 768 TripCount = FullUnrollTripCount; 769 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 770 return ExplicitUnroll; 771 } else { 772 // The loop isn't that small, but we still can fully unroll it if that 773 // helps to remove a significant number of instructions. 774 // To check that, run additional analysis on the loop. 775 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 776 L, FullUnrollTripCount, DT, SE, TTI, 777 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 778 unsigned Boost = 779 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 780 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 781 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 782 TripCount = FullUnrollTripCount; 783 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 784 return ExplicitUnroll; 785 } 786 } 787 } 788 } 789 790 // 4th priority is loop peeling 791 computePeelCount(L, LoopSize, UP, TripCount); 792 if (UP.PeelCount) { 793 UP.Runtime = false; 794 UP.Count = 1; 795 return ExplicitUnroll; 796 } 797 798 // 5th priority is partial unrolling. 799 // Try partial unroll only when TripCount could be staticaly calculated. 800 if (TripCount) { 801 UP.Partial |= ExplicitUnroll; 802 if (!UP.Partial) { 803 DEBUG(dbgs() << " will not try to unroll partially because " 804 << "-unroll-allow-partial not given\n"); 805 UP.Count = 0; 806 return false; 807 } 808 if (UP.Count == 0) 809 UP.Count = TripCount; 810 if (UP.PartialThreshold != NoThreshold) { 811 // Reduce unroll count to be modulo of TripCount for partial unrolling. 812 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 813 UP.Count = 814 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 815 (LoopSize - UP.BEInsns); 816 if (UP.Count > UP.MaxCount) 817 UP.Count = UP.MaxCount; 818 while (UP.Count != 0 && TripCount % UP.Count != 0) 819 UP.Count--; 820 if (UP.AllowRemainder && UP.Count <= 1) { 821 // If there is no Count that is modulo of TripCount, set Count to 822 // largest power-of-two factor that satisfies the threshold limit. 823 // As we'll create fixup loop, do the type of unrolling only if 824 // remainder loop is allowed. 825 UP.Count = UP.DefaultUnrollRuntimeCount; 826 while (UP.Count != 0 && 827 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 828 UP.Count >>= 1; 829 } 830 if (UP.Count < 2) { 831 if (PragmaEnableUnroll) 832 ORE->emit( 833 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 834 L->getStartLoc(), L->getHeader()) 835 << "Unable to unroll loop as directed by unroll(enable) pragma " 836 "because unrolled size is too large."); 837 UP.Count = 0; 838 } 839 } else { 840 UP.Count = TripCount; 841 } 842 if (UP.Count > UP.MaxCount) 843 UP.Count = UP.MaxCount; 844 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 845 UP.Count != TripCount) 846 ORE->emit( 847 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 848 L->getStartLoc(), L->getHeader()) 849 << "Unable to fully unroll loop as directed by unroll pragma because " 850 "unrolled size is too large."); 851 return ExplicitUnroll; 852 } 853 assert(TripCount == 0 && 854 "All cases when TripCount is constant should be covered here."); 855 if (PragmaFullUnroll) 856 ORE->emit( 857 OptimizationRemarkMissed(DEBUG_TYPE, 858 "CantFullUnrollAsDirectedRuntimeTripCount", 859 L->getStartLoc(), L->getHeader()) 860 << "Unable to fully unroll loop as directed by unroll(full) pragma " 861 "because loop has a runtime trip count."); 862 863 // 6th priority is runtime unrolling. 864 // Don't unroll a runtime trip count loop when it is disabled. 865 if (HasRuntimeUnrollDisablePragma(L)) { 866 UP.Count = 0; 867 return false; 868 } 869 870 // Check if the runtime trip count is too small when profile is available. 871 if (L->getHeader()->getParent()->getEntryCount()) { 872 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 873 if (*ProfileTripCount < FlatLoopTripCountThreshold) 874 return false; 875 else 876 UP.AllowExpensiveTripCount = true; 877 } 878 } 879 880 // Reduce count based on the type of unrolling and the threshold values. 881 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 882 if (!UP.Runtime) { 883 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 884 << "-unroll-runtime not given\n"); 885 UP.Count = 0; 886 return false; 887 } 888 if (UP.Count == 0) 889 UP.Count = UP.DefaultUnrollRuntimeCount; 890 891 // Reduce unroll count to be the largest power-of-two factor of 892 // the original count which satisfies the threshold limit. 893 while (UP.Count != 0 && 894 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 895 UP.Count >>= 1; 896 897 #ifndef NDEBUG 898 unsigned OrigCount = UP.Count; 899 #endif 900 901 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 902 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 903 UP.Count >>= 1; 904 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 905 "specific or because the loop contains a convergent " 906 "instruction), so unroll count must divide the trip " 907 "multiple, " 908 << TripMultiple << ". Reducing unroll count from " 909 << OrigCount << " to " << UP.Count << ".\n"); 910 using namespace ore; 911 if (PragmaCount > 0 && !UP.AllowRemainder) 912 ORE->emit( 913 OptimizationRemarkMissed(DEBUG_TYPE, 914 "DifferentUnrollCountFromDirected", 915 L->getStartLoc(), L->getHeader()) 916 << "Unable to unroll loop the number of times directed by " 917 "unroll_count pragma because remainder loop is restricted " 918 "(that could architecture specific or because the loop " 919 "contains a convergent instruction) and so must have an unroll " 920 "count that divides the loop trip multiple of " 921 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 922 << NV("UnrollCount", UP.Count) << " time(s)."); 923 } 924 925 if (UP.Count > UP.MaxCount) 926 UP.Count = UP.MaxCount; 927 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 928 if (UP.Count < 2) 929 UP.Count = 0; 930 return ExplicitUnroll; 931 } 932 933 static bool tryToUnrollLoop( 934 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 935 const TargetTransformInfo &TTI, AssumptionCache &AC, 936 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 937 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 938 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 939 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 940 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 941 << "] Loop %" << L->getHeader()->getName() << "\n"); 942 if (HasUnrollDisablePragma(L)) 943 return false; 944 if (!L->isLoopSimplifyForm()) { 945 DEBUG( 946 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 947 return false; 948 } 949 950 unsigned NumInlineCandidates; 951 bool NotDuplicatable; 952 bool Convergent; 953 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 954 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 955 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 956 ProvidedAllowPeeling); 957 // Exit early if unrolling is disabled. 958 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 959 return false; 960 unsigned LoopSize = ApproximateLoopSize( 961 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 962 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 963 if (NotDuplicatable) { 964 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 965 << " instructions.\n"); 966 return false; 967 } 968 if (NumInlineCandidates != 0) { 969 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 970 return false; 971 } 972 973 // Find trip count and trip multiple if count is not available 974 unsigned TripCount = 0; 975 unsigned MaxTripCount = 0; 976 unsigned TripMultiple = 1; 977 // If there are multiple exiting blocks but one of them is the latch, use the 978 // latch for the trip count estimation. Otherwise insist on a single exiting 979 // block for the trip count estimation. 980 BasicBlock *ExitingBlock = L->getLoopLatch(); 981 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 982 ExitingBlock = L->getExitingBlock(); 983 if (ExitingBlock) { 984 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 985 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 986 } 987 988 // If the loop contains a convergent operation, the prelude we'd add 989 // to do the first few instructions before we hit the unrolled loop 990 // is unsafe -- it adds a control-flow dependency to the convergent 991 // operation. Therefore restrict remainder loop (try unrollig without). 992 // 993 // TODO: This is quite conservative. In practice, convergent_op() 994 // is likely to be called unconditionally in the loop. In this 995 // case, the program would be ill-formed (on most architectures) 996 // unless n were the same on all threads in a thread group. 997 // Assuming n is the same on all threads, any kind of unrolling is 998 // safe. But currently llvm's notion of convergence isn't powerful 999 // enough to express this. 1000 if (Convergent) 1001 UP.AllowRemainder = false; 1002 1003 // Try to find the trip count upper bound if we cannot find the exact trip 1004 // count. 1005 bool MaxOrZero = false; 1006 if (!TripCount) { 1007 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1008 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1009 // We can unroll by the upper bound amount if it's generally allowed or if 1010 // we know that the loop is executed either the upper bound or zero times. 1011 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1012 // loop tests remains the same compared to the non-unrolled version, whereas 1013 // the generic upper bound unrolling keeps all but the last loop test so the 1014 // number of loop tests goes up which may end up being worse on targets with 1015 // constriained branch predictor resources so is controlled by an option.) 1016 // In addition we only unroll small upper bounds. 1017 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1018 MaxTripCount = 0; 1019 } 1020 } 1021 1022 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1023 // fully unroll the loop. 1024 bool UseUpperBound = false; 1025 bool IsCountSetExplicitly = 1026 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1027 TripMultiple, LoopSize, UP, UseUpperBound); 1028 if (!UP.Count) 1029 return false; 1030 // Unroll factor (Count) must be less or equal to TripCount. 1031 if (TripCount && UP.Count > TripCount) 1032 UP.Count = TripCount; 1033 1034 // Unroll the loop. 1035 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1036 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1037 TripMultiple, UP.PeelCount, LI, &SE, &DT, &AC, &ORE, 1038 PreserveLCSSA)) 1039 return false; 1040 1041 // If loop has an unroll count pragma or unrolled by explicitly set count 1042 // mark loop as unrolled to prevent unrolling beyond that requested. 1043 // If the loop was peeled, we already "used up" the profile information 1044 // we had, so we don't want to unroll or peel again. 1045 if (IsCountSetExplicitly || UP.PeelCount) 1046 SetLoopAlreadyUnrolled(L); 1047 1048 return true; 1049 } 1050 1051 namespace { 1052 class LoopUnroll : public LoopPass { 1053 public: 1054 static char ID; // Pass ID, replacement for typeid 1055 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1056 Optional<unsigned> Count = None, 1057 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1058 Optional<bool> UpperBound = None, 1059 Optional<bool> AllowPeeling = None) 1060 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1061 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1062 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1063 ProvidedAllowPeeling(AllowPeeling) { 1064 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1065 } 1066 1067 int OptLevel; 1068 Optional<unsigned> ProvidedCount; 1069 Optional<unsigned> ProvidedThreshold; 1070 Optional<bool> ProvidedAllowPartial; 1071 Optional<bool> ProvidedRuntime; 1072 Optional<bool> ProvidedUpperBound; 1073 Optional<bool> ProvidedAllowPeeling; 1074 1075 bool runOnLoop(Loop *L, LPPassManager &) override { 1076 if (skipLoop(L)) 1077 return false; 1078 1079 Function &F = *L->getHeader()->getParent(); 1080 1081 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1082 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1083 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1084 const TargetTransformInfo &TTI = 1085 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1086 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1087 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1088 // pass. Function analyses need to be preserved across loop transformations 1089 // but ORE cannot be preserved (see comment before the pass definition). 1090 OptimizationRemarkEmitter ORE(&F); 1091 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1092 1093 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, 1094 ProvidedCount, ProvidedThreshold, 1095 ProvidedAllowPartial, ProvidedRuntime, 1096 ProvidedUpperBound, ProvidedAllowPeeling); 1097 } 1098 1099 /// This transformation requires natural loop information & requires that 1100 /// loop preheaders be inserted into the CFG... 1101 /// 1102 void getAnalysisUsage(AnalysisUsage &AU) const override { 1103 AU.addRequired<AssumptionCacheTracker>(); 1104 AU.addRequired<TargetTransformInfoWrapperPass>(); 1105 // FIXME: Loop passes are required to preserve domtree, and for now we just 1106 // recreate dom info if anything gets unrolled. 1107 getLoopAnalysisUsage(AU); 1108 } 1109 }; 1110 } 1111 1112 char LoopUnroll::ID = 0; 1113 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1115 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1116 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1117 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1118 1119 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1120 int AllowPartial, int Runtime, int UpperBound, 1121 int AllowPeeling) { 1122 // TODO: It would make more sense for this function to take the optionals 1123 // directly, but that's dangerous since it would silently break out of tree 1124 // callers. 1125 return new LoopUnroll( 1126 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1127 Count == -1 ? None : Optional<unsigned>(Count), 1128 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1129 Runtime == -1 ? None : Optional<bool>(Runtime), 1130 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1131 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1132 } 1133 1134 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1135 return llvm::createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1136 } 1137 1138 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1139 LoopStandardAnalysisResults &AR, 1140 LPMUpdater &Updater) { 1141 const auto &FAM = 1142 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1143 Function *F = L.getHeader()->getParent(); 1144 1145 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1146 // FIXME: This should probably be optional rather than required. 1147 if (!ORE) 1148 report_fatal_error( 1149 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1150 "cached at a higher level"); 1151 1152 // Keep track of the previous loop structure so we can identify new loops 1153 // created by unrolling. 1154 Loop *ParentL = L.getParentLoop(); 1155 SmallPtrSet<Loop *, 4> OldLoops; 1156 if (ParentL) 1157 OldLoops.insert(ParentL->begin(), ParentL->end()); 1158 else 1159 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1160 1161 bool Changed = 1162 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1163 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1164 /*Threshold*/ None, /*AllowPartial*/ false, 1165 /*Runtime*/ false, /*UpperBound*/ false, 1166 /*AllowPeeling*/ false); 1167 if (!Changed) 1168 return PreservedAnalyses::all(); 1169 1170 // The parent must not be damaged by unrolling! 1171 #ifndef NDEBUG 1172 if (ParentL) 1173 ParentL->verifyLoop(); 1174 #endif 1175 1176 // Unrolling can do several things to introduce new loops into a loop nest: 1177 // - Full unrolling clones child loops within the current loop but then 1178 // removes the current loop making all of the children appear to be new 1179 // sibling loops. 1180 // 1181 // When a new loop appears as a sibling loop after fully unrolling, 1182 // its nesting structure has fundamentally changed and we want to revisit 1183 // it to reflect that. 1184 // 1185 // When unrolling has removed the current loop, we need to tell the 1186 // infrastructure that it is gone. 1187 // 1188 // Finally, we support a debugging/testing mode where we revisit child loops 1189 // as well. These are not expected to require further optimizations as either 1190 // they or the loop they were cloned from have been directly visited already. 1191 // But the debugging mode allows us to check this assumption. 1192 bool IsCurrentLoopValid = false; 1193 SmallVector<Loop *, 4> SibLoops; 1194 if (ParentL) 1195 SibLoops.append(ParentL->begin(), ParentL->end()); 1196 else 1197 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1198 erase_if(SibLoops, [&](Loop *SibLoop) { 1199 if (SibLoop == &L) { 1200 IsCurrentLoopValid = true; 1201 return true; 1202 } 1203 1204 // Otherwise erase the loop from the list if it was in the old loops. 1205 return OldLoops.count(SibLoop) != 0; 1206 }); 1207 Updater.addSiblingLoops(SibLoops); 1208 1209 if (!IsCurrentLoopValid) { 1210 Updater.markLoopAsDeleted(L); 1211 } else { 1212 // We can only walk child loops if the current loop remained valid. 1213 if (UnrollRevisitChildLoops) { 1214 // Walk *all* of the child loops. 1215 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1216 Updater.addChildLoops(ChildLoops); 1217 } 1218 } 1219 1220 return getLoopPassPreservedAnalyses(); 1221 } 1222 1223 template <typename RangeT> 1224 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1225 SmallVector<Loop *, 8> Worklist; 1226 // We use an internal worklist to build up the preorder traversal without 1227 // recursion. 1228 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1229 1230 for (Loop *RootL : Loops) { 1231 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1232 assert(PreOrderWorklist.empty() && 1233 "Must start with an empty preorder walk worklist."); 1234 PreOrderWorklist.push_back(RootL); 1235 do { 1236 Loop *L = PreOrderWorklist.pop_back_val(); 1237 PreOrderWorklist.append(L->begin(), L->end()); 1238 PreOrderLoops.push_back(L); 1239 } while (!PreOrderWorklist.empty()); 1240 1241 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1242 PreOrderLoops.clear(); 1243 } 1244 return Worklist; 1245 } 1246 1247 PreservedAnalyses LoopUnrollPass::run(Function &F, 1248 FunctionAnalysisManager &AM) { 1249 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1250 auto &LI = AM.getResult<LoopAnalysis>(F); 1251 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1252 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1253 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1254 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1255 1256 const ModuleAnalysisManager &MAM = 1257 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1258 ProfileSummaryInfo *PSI = 1259 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1260 1261 bool Changed = false; 1262 1263 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1264 // Since simplification may add new inner loops, it has to run before the 1265 // legality and profitability checks. This means running the loop unroller 1266 // will simplify all loops, regardless of whether anything end up being 1267 // unrolled. 1268 for (auto &L : LI) { 1269 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1270 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1271 } 1272 1273 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1274 1275 while (!Worklist.empty()) { 1276 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1277 // from back to front so that we work forward across the CFG, which 1278 // for unrolling is only needed to get optimization remarks emitted in 1279 // a forward order. 1280 Loop &L = *Worklist.pop_back_val(); 1281 #ifndef NDEBUG 1282 Loop *ParentL = L.getParentLoop(); 1283 #endif 1284 1285 // The API here is quite complex to call, but there are only two interesting 1286 // states we support: partial and full (or "simple") unrolling. However, to 1287 // enable these things we actually pass "None" in for the optional to avoid 1288 // providing an explicit choice. 1289 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1290 AllowPeeling; 1291 // Check if the profile summary indicates that the profiled application 1292 // has a huge working set size, in which case we disable peeling to avoid 1293 // bloating it further. 1294 if (PSI && PSI->hasHugeWorkingSetSize()) 1295 AllowPeeling = false; 1296 bool CurChanged = 1297 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1298 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1299 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1300 UpperBoundParam, AllowPeeling); 1301 Changed |= CurChanged; 1302 1303 // The parent must not be damaged by unrolling! 1304 #ifndef NDEBUG 1305 if (CurChanged && ParentL) 1306 ParentL->verifyLoop(); 1307 #endif 1308 } 1309 1310 if (!Changed) 1311 return PreservedAnalyses::all(); 1312 1313 return getLoopPassPreservedAnalyses(); 1314 } 1315