1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Utils/UnrollLoop.h" 37 #include <climits> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-unroll" 43 44 static cl::opt<unsigned> 45 UnrollThreshold("unroll-threshold", cl::Hidden, 46 cl::desc("The baseline cost threshold for loop unrolling")); 47 48 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 49 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 50 cl::desc("The percentage of estimated dynamic cost which must be saved by " 51 "unrolling to allow unrolling up to the max threshold.")); 52 53 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 54 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 55 cl::desc("This is the amount discounted from the total unroll cost when " 56 "the unrolled form has a high dynamic cost savings (triggered by " 57 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 58 59 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 60 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 61 cl::desc("Don't allow loop unrolling to simulate more than this number of" 62 "iterations when checking full unroll profitability")); 63 64 static cl::opt<unsigned> UnrollCount( 65 "unroll-count", cl::Hidden, 66 cl::desc("Use this unroll count for all loops including those with " 67 "unroll_count pragma values, for testing purposes")); 68 69 static cl::opt<unsigned> UnrollMaxCount( 70 "unroll-max-count", cl::Hidden, 71 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 72 "testing purposes")); 73 74 static cl::opt<unsigned> UnrollFullMaxCount( 75 "unroll-full-max-count", cl::Hidden, 76 cl::desc( 77 "Set the max unroll count for full unrolling, for testing purposes")); 78 79 static cl::opt<bool> 80 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 81 cl::desc("Allows loops to be partially unrolled until " 82 "-unroll-threshold loop size is reached.")); 83 84 static cl::opt<bool> 85 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 86 cl::desc("Unroll loops with run-time trip counts")); 87 88 static cl::opt<unsigned> PragmaUnrollThreshold( 89 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 90 cl::desc("Unrolled size limit for loops with an unroll(full) or " 91 "unroll_count pragma.")); 92 93 /// A magic value for use with the Threshold parameter to indicate 94 /// that the loop unroll should be performed regardless of how much 95 /// code expansion would result. 96 static const unsigned NoThreshold = UINT_MAX; 97 98 /// Default unroll count for loops with run-time trip count if 99 /// -unroll-count is not set 100 static const unsigned DefaultUnrollRuntimeCount = 8; 101 102 /// Gather the various unrolling parameters based on the defaults, compiler 103 /// flags, TTI overrides, pragmas, and user specified parameters. 104 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 105 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 106 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 107 Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, 108 bool PragmaEnableUnroll, unsigned TripCount) { 109 TargetTransformInfo::UnrollingPreferences UP; 110 111 // Set up the defaults 112 UP.Threshold = 150; 113 UP.PercentDynamicCostSavedThreshold = 20; 114 UP.DynamicCostSavingsDiscount = 2000; 115 UP.OptSizeThreshold = 0; 116 UP.PartialThreshold = UP.Threshold; 117 UP.PartialOptSizeThreshold = 0; 118 UP.Count = 0; 119 UP.MaxCount = UINT_MAX; 120 UP.FullUnrollMaxCount = UINT_MAX; 121 UP.Partial = false; 122 UP.Runtime = false; 123 UP.AllowExpensiveTripCount = false; 124 125 // Override with any target specific settings 126 TTI.getUnrollingPreferences(L, UP); 127 128 // Apply size attributes 129 if (L->getHeader()->getParent()->optForSize()) { 130 UP.Threshold = UP.OptSizeThreshold; 131 UP.PartialThreshold = UP.PartialOptSizeThreshold; 132 } 133 134 // Apply unroll count pragmas 135 if (PragmaCount) 136 UP.Count = PragmaCount; 137 else if (PragmaFullUnroll) 138 UP.Count = TripCount; 139 140 // Apply any user values specified by cl::opt 141 if (UnrollThreshold.getNumOccurrences() > 0) { 142 UP.Threshold = UnrollThreshold; 143 UP.PartialThreshold = UnrollThreshold; 144 } 145 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 146 UP.PercentDynamicCostSavedThreshold = 147 UnrollPercentDynamicCostSavedThreshold; 148 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 149 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 150 if (UnrollCount.getNumOccurrences() > 0) 151 UP.Count = UnrollCount; 152 if (UnrollMaxCount.getNumOccurrences() > 0) 153 UP.MaxCount = UnrollMaxCount; 154 if (UnrollFullMaxCount.getNumOccurrences() > 0) 155 UP.FullUnrollMaxCount = UnrollFullMaxCount; 156 if (UnrollAllowPartial.getNumOccurrences() > 0) 157 UP.Partial = UnrollAllowPartial; 158 if (UnrollRuntime.getNumOccurrences() > 0) 159 UP.Runtime = UnrollRuntime; 160 161 // Apply user values provided by argument 162 if (UserThreshold.hasValue()) { 163 UP.Threshold = *UserThreshold; 164 UP.PartialThreshold = *UserThreshold; 165 } 166 if (UserCount.hasValue()) 167 UP.Count = *UserCount; 168 if (UserAllowPartial.hasValue()) 169 UP.Partial = *UserAllowPartial; 170 if (UserRuntime.hasValue()) 171 UP.Runtime = *UserRuntime; 172 173 if (PragmaCount > 0 || 174 ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { 175 // If the loop has an unrolling pragma, we want to be more aggressive with 176 // unrolling limits. Set thresholds to at least the PragmaTheshold value 177 // which is larger than the default limits. 178 if (UP.Threshold != NoThreshold) 179 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 180 if (UP.PartialThreshold != NoThreshold) 181 UP.PartialThreshold = 182 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 183 } 184 185 return UP; 186 } 187 188 namespace { 189 /// A struct to densely store the state of an instruction after unrolling at 190 /// each iteration. 191 /// 192 /// This is designed to work like a tuple of <Instruction *, int> for the 193 /// purposes of hashing and lookup, but to be able to associate two boolean 194 /// states with each key. 195 struct UnrolledInstState { 196 Instruction *I; 197 int Iteration : 30; 198 unsigned IsFree : 1; 199 unsigned IsCounted : 1; 200 }; 201 202 /// Hashing and equality testing for a set of the instruction states. 203 struct UnrolledInstStateKeyInfo { 204 typedef DenseMapInfo<Instruction *> PtrInfo; 205 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 206 static inline UnrolledInstState getEmptyKey() { 207 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 208 } 209 static inline UnrolledInstState getTombstoneKey() { 210 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 211 } 212 static inline unsigned getHashValue(const UnrolledInstState &S) { 213 return PairInfo::getHashValue({S.I, S.Iteration}); 214 } 215 static inline bool isEqual(const UnrolledInstState &LHS, 216 const UnrolledInstState &RHS) { 217 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 218 } 219 }; 220 } 221 222 namespace { 223 struct EstimatedUnrollCost { 224 /// \brief The estimated cost after unrolling. 225 int UnrolledCost; 226 227 /// \brief The estimated dynamic cost of executing the instructions in the 228 /// rolled form. 229 int RolledDynamicCost; 230 }; 231 } 232 233 /// \brief Figure out if the loop is worth full unrolling. 234 /// 235 /// Complete loop unrolling can make some loads constant, and we need to know 236 /// if that would expose any further optimization opportunities. This routine 237 /// estimates this optimization. It computes cost of unrolled loop 238 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 239 /// dynamic cost we mean that we won't count costs of blocks that are known not 240 /// to be executed (i.e. if we have a branch in the loop and we know that at the 241 /// given iteration its condition would be resolved to true, we won't add up the 242 /// cost of the 'false'-block). 243 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 244 /// the analysis failed (no benefits expected from the unrolling, or the loop is 245 /// too big to analyze), the returned value is None. 246 static Optional<EstimatedUnrollCost> 247 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 248 ScalarEvolution &SE, const TargetTransformInfo &TTI, 249 int MaxUnrolledLoopSize) { 250 // We want to be able to scale offsets by the trip count and add more offsets 251 // to them without checking for overflows, and we already don't want to 252 // analyze *massive* trip counts, so we force the max to be reasonably small. 253 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 254 "The unroll iterations max is too large!"); 255 256 // Only analyze inner loops. We can't properly estimate cost of nested loops 257 // and we won't visit inner loops again anyway. 258 if (!L->empty()) 259 return None; 260 261 // Don't simulate loops with a big or unknown tripcount 262 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 263 TripCount > UnrollMaxIterationsCountToAnalyze) 264 return None; 265 266 SmallSetVector<BasicBlock *, 16> BBWorklist; 267 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 268 DenseMap<Value *, Constant *> SimplifiedValues; 269 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 270 271 // The estimated cost of the unrolled form of the loop. We try to estimate 272 // this by simplifying as much as we can while computing the estimate. 273 int UnrolledCost = 0; 274 275 // We also track the estimated dynamic (that is, actually executed) cost in 276 // the rolled form. This helps identify cases when the savings from unrolling 277 // aren't just exposing dead control flows, but actual reduced dynamic 278 // instructions due to the simplifications which we expect to occur after 279 // unrolling. 280 int RolledDynamicCost = 0; 281 282 // We track the simplification of each instruction in each iteration. We use 283 // this to recursively merge costs into the unrolled cost on-demand so that 284 // we don't count the cost of any dead code. This is essentially a map from 285 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 286 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 287 288 // A small worklist used to accumulate cost of instructions from each 289 // observable and reached root in the loop. 290 SmallVector<Instruction *, 16> CostWorklist; 291 292 // PHI-used worklist used between iterations while accumulating cost. 293 SmallVector<Instruction *, 4> PHIUsedList; 294 295 // Helper function to accumulate cost for instructions in the loop. 296 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 297 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 298 assert(CostWorklist.empty() && "Must start with an empty cost list"); 299 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 300 CostWorklist.push_back(&RootI); 301 for (;; --Iteration) { 302 do { 303 Instruction *I = CostWorklist.pop_back_val(); 304 305 // InstCostMap only uses I and Iteration as a key, the other two values 306 // don't matter here. 307 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 308 if (CostIter == InstCostMap.end()) 309 // If an input to a PHI node comes from a dead path through the loop 310 // we may have no cost data for it here. What that actually means is 311 // that it is free. 312 continue; 313 auto &Cost = *CostIter; 314 if (Cost.IsCounted) 315 // Already counted this instruction. 316 continue; 317 318 // Mark that we are counting the cost of this instruction now. 319 Cost.IsCounted = true; 320 321 // If this is a PHI node in the loop header, just add it to the PHI set. 322 if (auto *PhiI = dyn_cast<PHINode>(I)) 323 if (PhiI->getParent() == L->getHeader()) { 324 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 325 "inherently simplify during unrolling."); 326 if (Iteration == 0) 327 continue; 328 329 // Push the incoming value from the backedge into the PHI used list 330 // if it is an in-loop instruction. We'll use this to populate the 331 // cost worklist for the next iteration (as we count backwards). 332 if (auto *OpI = dyn_cast<Instruction>( 333 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 334 if (L->contains(OpI)) 335 PHIUsedList.push_back(OpI); 336 continue; 337 } 338 339 // First accumulate the cost of this instruction. 340 if (!Cost.IsFree) { 341 UnrolledCost += TTI.getUserCost(I); 342 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 343 << "): "); 344 DEBUG(I->dump()); 345 } 346 347 // We must count the cost of every operand which is not free, 348 // recursively. If we reach a loop PHI node, simply add it to the set 349 // to be considered on the next iteration (backwards!). 350 for (Value *Op : I->operands()) { 351 // Check whether this operand is free due to being a constant or 352 // outside the loop. 353 auto *OpI = dyn_cast<Instruction>(Op); 354 if (!OpI || !L->contains(OpI)) 355 continue; 356 357 // Otherwise accumulate its cost. 358 CostWorklist.push_back(OpI); 359 } 360 } while (!CostWorklist.empty()); 361 362 if (PHIUsedList.empty()) 363 // We've exhausted the search. 364 break; 365 366 assert(Iteration > 0 && 367 "Cannot track PHI-used values past the first iteration!"); 368 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 369 PHIUsedList.clear(); 370 } 371 }; 372 373 // Ensure that we don't violate the loop structure invariants relied on by 374 // this analysis. 375 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 376 assert(L->isLCSSAForm(DT) && 377 "Must have loops in LCSSA form to track live-out values."); 378 379 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 380 381 // Simulate execution of each iteration of the loop counting instructions, 382 // which would be simplified. 383 // Since the same load will take different values on different iterations, 384 // we literally have to go through all loop's iterations. 385 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 386 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 387 388 // Prepare for the iteration by collecting any simplified entry or backedge 389 // inputs. 390 for (Instruction &I : *L->getHeader()) { 391 auto *PHI = dyn_cast<PHINode>(&I); 392 if (!PHI) 393 break; 394 395 // The loop header PHI nodes must have exactly two input: one from the 396 // loop preheader and one from the loop latch. 397 assert( 398 PHI->getNumIncomingValues() == 2 && 399 "Must have an incoming value only for the preheader and the latch."); 400 401 Value *V = PHI->getIncomingValueForBlock( 402 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 403 Constant *C = dyn_cast<Constant>(V); 404 if (Iteration != 0 && !C) 405 C = SimplifiedValues.lookup(V); 406 if (C) 407 SimplifiedInputValues.push_back({PHI, C}); 408 } 409 410 // Now clear and re-populate the map for the next iteration. 411 SimplifiedValues.clear(); 412 while (!SimplifiedInputValues.empty()) 413 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 414 415 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 416 417 BBWorklist.clear(); 418 BBWorklist.insert(L->getHeader()); 419 // Note that we *must not* cache the size, this loop grows the worklist. 420 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 421 BasicBlock *BB = BBWorklist[Idx]; 422 423 // Visit all instructions in the given basic block and try to simplify 424 // it. We don't change the actual IR, just count optimization 425 // opportunities. 426 for (Instruction &I : *BB) { 427 // Track this instruction's expected baseline cost when executing the 428 // rolled loop form. 429 RolledDynamicCost += TTI.getUserCost(&I); 430 431 // Visit the instruction to analyze its loop cost after unrolling, 432 // and if the visitor returns true, mark the instruction as free after 433 // unrolling and continue. 434 bool IsFree = Analyzer.visit(I); 435 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 436 (unsigned)IsFree, 437 /*IsCounted*/ false}).second; 438 (void)Inserted; 439 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 440 441 if (IsFree) 442 continue; 443 444 // If the instruction might have a side-effect recursively account for 445 // the cost of it and all the instructions leading up to it. 446 if (I.mayHaveSideEffects()) 447 AddCostRecursively(I, Iteration); 448 449 // Can't properly model a cost of a call. 450 // FIXME: With a proper cost model we should be able to do it. 451 if(isa<CallInst>(&I)) 452 return None; 453 454 // If unrolled body turns out to be too big, bail out. 455 if (UnrolledCost > MaxUnrolledLoopSize) { 456 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 457 << " UnrolledCost: " << UnrolledCost 458 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 459 << "\n"); 460 return None; 461 } 462 } 463 464 TerminatorInst *TI = BB->getTerminator(); 465 466 // Add in the live successors by first checking whether we have terminator 467 // that may be simplified based on the values simplified by this call. 468 BasicBlock *KnownSucc = nullptr; 469 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 470 if (BI->isConditional()) { 471 if (Constant *SimpleCond = 472 SimplifiedValues.lookup(BI->getCondition())) { 473 // Just take the first successor if condition is undef 474 if (isa<UndefValue>(SimpleCond)) 475 KnownSucc = BI->getSuccessor(0); 476 else if (ConstantInt *SimpleCondVal = 477 dyn_cast<ConstantInt>(SimpleCond)) 478 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 479 } 480 } 481 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 482 if (Constant *SimpleCond = 483 SimplifiedValues.lookup(SI->getCondition())) { 484 // Just take the first successor if condition is undef 485 if (isa<UndefValue>(SimpleCond)) 486 KnownSucc = SI->getSuccessor(0); 487 else if (ConstantInt *SimpleCondVal = 488 dyn_cast<ConstantInt>(SimpleCond)) 489 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 490 } 491 } 492 if (KnownSucc) { 493 if (L->contains(KnownSucc)) 494 BBWorklist.insert(KnownSucc); 495 else 496 ExitWorklist.insert({BB, KnownSucc}); 497 continue; 498 } 499 500 // Add BB's successors to the worklist. 501 for (BasicBlock *Succ : successors(BB)) 502 if (L->contains(Succ)) 503 BBWorklist.insert(Succ); 504 else 505 ExitWorklist.insert({BB, Succ}); 506 AddCostRecursively(*TI, Iteration); 507 } 508 509 // If we found no optimization opportunities on the first iteration, we 510 // won't find them on later ones too. 511 if (UnrolledCost == RolledDynamicCost) { 512 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 513 << " UnrolledCost: " << UnrolledCost << "\n"); 514 return None; 515 } 516 } 517 518 while (!ExitWorklist.empty()) { 519 BasicBlock *ExitingBB, *ExitBB; 520 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 521 522 for (Instruction &I : *ExitBB) { 523 auto *PN = dyn_cast<PHINode>(&I); 524 if (!PN) 525 break; 526 527 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 528 if (auto *OpI = dyn_cast<Instruction>(Op)) 529 if (L->contains(OpI)) 530 AddCostRecursively(*OpI, TripCount - 1); 531 } 532 } 533 534 DEBUG(dbgs() << "Analysis finished:\n" 535 << "UnrolledCost: " << UnrolledCost << ", " 536 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 537 return {{UnrolledCost, RolledDynamicCost}}; 538 } 539 540 /// ApproximateLoopSize - Approximate the size of the loop. 541 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 542 bool &NotDuplicatable, bool &Convergent, 543 const TargetTransformInfo &TTI, 544 AssumptionCache *AC) { 545 SmallPtrSet<const Value *, 32> EphValues; 546 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 547 548 CodeMetrics Metrics; 549 for (BasicBlock *BB : L->blocks()) 550 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 551 NumCalls = Metrics.NumInlineCandidates; 552 NotDuplicatable = Metrics.notDuplicatable; 553 Convergent = Metrics.convergent; 554 555 unsigned LoopSize = Metrics.NumInsts; 556 557 // Don't allow an estimate of size zero. This would allows unrolling of loops 558 // with huge iteration counts, which is a compile time problem even if it's 559 // not a problem for code quality. Also, the code using this size may assume 560 // that each loop has at least three instructions (likely a conditional 561 // branch, a comparison feeding that branch, and some kind of loop increment 562 // feeding that comparison instruction). 563 LoopSize = std::max(LoopSize, 3u); 564 565 return LoopSize; 566 } 567 568 // Returns the loop hint metadata node with the given name (for example, 569 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 570 // returned. 571 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 572 if (MDNode *LoopID = L->getLoopID()) 573 return GetUnrollMetadata(LoopID, Name); 574 return nullptr; 575 } 576 577 // Returns true if the loop has an unroll(full) pragma. 578 static bool HasUnrollFullPragma(const Loop *L) { 579 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 580 } 581 582 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 583 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 584 static bool HasUnrollEnablePragma(const Loop *L) { 585 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 586 } 587 588 // Returns true if the loop has an unroll(disable) pragma. 589 static bool HasUnrollDisablePragma(const Loop *L) { 590 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 591 } 592 593 // Returns true if the loop has an runtime unroll(disable) pragma. 594 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 595 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 596 } 597 598 // If loop has an unroll_count pragma return the (necessarily 599 // positive) value from the pragma. Otherwise return 0. 600 static unsigned UnrollCountPragmaValue(const Loop *L) { 601 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 602 if (MD) { 603 assert(MD->getNumOperands() == 2 && 604 "Unroll count hint metadata should have two operands."); 605 unsigned Count = 606 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 607 assert(Count >= 1 && "Unroll count must be positive."); 608 return Count; 609 } 610 return 0; 611 } 612 613 // Remove existing unroll metadata and add unroll disable metadata to 614 // indicate the loop has already been unrolled. This prevents a loop 615 // from being unrolled more than is directed by a pragma if the loop 616 // unrolling pass is run more than once (which it generally is). 617 static void SetLoopAlreadyUnrolled(Loop *L) { 618 MDNode *LoopID = L->getLoopID(); 619 if (!LoopID) 620 return; 621 622 // First remove any existing loop unrolling metadata. 623 SmallVector<Metadata *, 4> MDs; 624 // Reserve first location for self reference to the LoopID metadata node. 625 MDs.push_back(nullptr); 626 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 627 bool IsUnrollMetadata = false; 628 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 629 if (MD) { 630 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 631 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 632 } 633 if (!IsUnrollMetadata) 634 MDs.push_back(LoopID->getOperand(i)); 635 } 636 637 // Add unroll(disable) metadata to disable future unrolling. 638 LLVMContext &Context = L->getHeader()->getContext(); 639 SmallVector<Metadata *, 1> DisableOperands; 640 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 641 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 642 MDs.push_back(DisableNode); 643 644 MDNode *NewLoopID = MDNode::get(Context, MDs); 645 // Set operand 0 to refer to the loop id itself. 646 NewLoopID->replaceOperandWith(0, NewLoopID); 647 L->setLoopID(NewLoopID); 648 } 649 650 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 651 unsigned PercentDynamicCostSavedThreshold, 652 unsigned DynamicCostSavingsDiscount, 653 uint64_t UnrolledCost, 654 uint64_t RolledDynamicCost) { 655 if (Threshold == NoThreshold) { 656 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 657 return true; 658 } 659 660 if (UnrolledCost <= Threshold) { 661 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 662 << UnrolledCost << "<" << Threshold << "\n"); 663 return true; 664 } 665 666 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 667 assert(RolledDynamicCost >= UnrolledCost && 668 "Cannot have a higher unrolled cost than a rolled cost!"); 669 670 // Compute the percentage of the dynamic cost in the rolled form that is 671 // saved when unrolled. If unrolling dramatically reduces the estimated 672 // dynamic cost of the loop, we use a higher threshold to allow more 673 // unrolling. 674 unsigned PercentDynamicCostSaved = 675 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 676 677 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 678 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 679 (int64_t)Threshold) { 680 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 681 "expected dynamic cost by " 682 << PercentDynamicCostSaved << "% (threshold: " 683 << PercentDynamicCostSavedThreshold << "%)\n" 684 << " and the unrolled cost (" << UnrolledCost 685 << ") is less than the max threshold (" 686 << DynamicCostSavingsDiscount << ").\n"); 687 return true; 688 } 689 690 DEBUG(dbgs() << " Too large to fully unroll:\n"); 691 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 692 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 693 DEBUG(dbgs() << " Percent cost saved threshold: " 694 << PercentDynamicCostSavedThreshold << "%\n"); 695 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 696 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 697 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 698 << "\n"); 699 return false; 700 } 701 702 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 703 ScalarEvolution *SE, const TargetTransformInfo &TTI, 704 AssumptionCache &AC, bool PreserveLCSSA, 705 Optional<unsigned> ProvidedCount, 706 Optional<unsigned> ProvidedThreshold, 707 Optional<bool> ProvidedAllowPartial, 708 Optional<bool> ProvidedRuntime) { 709 BasicBlock *Header = L->getHeader(); 710 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 711 << "] Loop %" << Header->getName() << "\n"); 712 713 if (HasUnrollDisablePragma(L)) { 714 return false; 715 } 716 bool PragmaFullUnroll = HasUnrollFullPragma(L); 717 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 718 unsigned PragmaCount = UnrollCountPragmaValue(L); 719 bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; 720 721 // Find trip count and trip multiple if count is not available 722 unsigned TripCount = 0; 723 unsigned TripMultiple = 1; 724 // If there are multiple exiting blocks but one of them is the latch, use the 725 // latch for the trip count estimation. Otherwise insist on a single exiting 726 // block for the trip count estimation. 727 BasicBlock *ExitingBlock = L->getLoopLatch(); 728 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 729 ExitingBlock = L->getExitingBlock(); 730 if (ExitingBlock) { 731 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 732 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 733 } 734 735 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 736 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 737 ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, 738 TripCount); 739 740 unsigned Count = UP.Count; 741 bool CountSetExplicitly = Count != 0; 742 // Use a heuristic count if we didn't set anything explicitly. 743 if (!CountSetExplicitly) 744 Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; 745 if (TripCount && Count > TripCount) 746 Count = TripCount; 747 Count = std::min(Count, UP.FullUnrollMaxCount); 748 749 unsigned NumInlineCandidates; 750 bool NotDuplicatable; 751 bool Convergent; 752 unsigned LoopSize = ApproximateLoopSize( 753 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 754 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 755 756 // When computing the unrolled size, note that the conditional branch on the 757 // backedge and the comparison feeding it are not replicated like the rest of 758 // the loop body (which is why 2 is subtracted). 759 uint64_t UnrolledSize = (uint64_t)(LoopSize - 2) * Count + 2; 760 if (NotDuplicatable) { 761 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 762 << " instructions.\n"); 763 return false; 764 } 765 if (NumInlineCandidates != 0) { 766 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 767 return false; 768 } 769 770 // Given Count, TripCount and thresholds determine the type of 771 // unrolling which is to be performed. 772 enum { Full = 0, Partial = 1, Runtime = 2 }; 773 int Unrolling; 774 if (TripCount && Count == TripCount) { 775 Unrolling = Partial; 776 // If the loop is really small, we don't need to run an expensive analysis. 777 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 778 UnrolledSize, UnrolledSize)) { 779 Unrolling = Full; 780 } else { 781 // The loop isn't that small, but we still can fully unroll it if that 782 // helps to remove a significant number of instructions. 783 // To check that, run additional analysis on the loop. 784 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 785 L, TripCount, DT, *SE, TTI, 786 UP.Threshold + UP.DynamicCostSavingsDiscount)) 787 if (canUnrollCompletely(L, UP.Threshold, 788 UP.PercentDynamicCostSavedThreshold, 789 UP.DynamicCostSavingsDiscount, 790 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 791 Unrolling = Full; 792 } 793 } 794 } else if (TripCount && Count < TripCount) { 795 Unrolling = Partial; 796 } else { 797 Unrolling = Runtime; 798 } 799 800 // Reduce count based on the type of unrolling and the threshold values. 801 unsigned OriginalCount = Count; 802 bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; 803 // Don't unroll a runtime trip count loop with unroll full pragma. 804 if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { 805 AllowRuntime = false; 806 } 807 bool DecreasedCountDueToConvergence = false; 808 if (Unrolling == Partial) { 809 bool AllowPartial = PragmaEnableUnroll || UP.Partial; 810 if (!AllowPartial && !CountSetExplicitly) { 811 DEBUG(dbgs() << " will not try to unroll partially because " 812 << "-unroll-allow-partial not given\n"); 813 return false; 814 } 815 if (UP.PartialThreshold != NoThreshold && Count > 1) { 816 // Reduce unroll count to be modulo of TripCount for partial unrolling. 817 if (UnrolledSize > UP.PartialThreshold) 818 Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); 819 if (Count > UP.MaxCount) 820 Count = UP.MaxCount; 821 while (Count != 0 && TripCount % Count != 0) 822 Count--; 823 if (AllowRuntime && Count <= 1) { 824 // If there is no Count that is modulo of TripCount, set Count to 825 // largest power-of-two factor that satisfies the threshold limit. 826 // As we'll create fixup loop, do the type of unrolling only if 827 // runtime unrolling is allowed. 828 Count = DefaultUnrollRuntimeCount; 829 UnrolledSize = (LoopSize - 2) * Count + 2; 830 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 831 Count >>= 1; 832 UnrolledSize = (LoopSize - 2) * Count + 2; 833 } 834 } 835 } 836 } else if (Unrolling == Runtime) { 837 if (!AllowRuntime && !CountSetExplicitly) { 838 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 839 << "-unroll-runtime not given\n"); 840 return false; 841 } 842 843 // Reduce unroll count to be the largest power-of-two factor of 844 // the original count which satisfies the threshold limit. 845 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 846 Count >>= 1; 847 UnrolledSize = (LoopSize - 2) * Count + 2; 848 } 849 850 if (Count > UP.MaxCount) 851 Count = UP.MaxCount; 852 853 // If the loop contains a convergent operation, the prelude we'd add 854 // to do the first few instructions before we hit the unrolled loop 855 // is unsafe -- it adds a control-flow dependency to the convergent 856 // operation. Therefore Count must divide TripMultiple. 857 // 858 // TODO: This is quite conservative. In practice, convergent_op() 859 // is likely to be called unconditionally in the loop. In this 860 // case, the program would be ill-formed (on most architectures) 861 // unless n were the same on all threads in a thread group. 862 // Assuming n is the same on all threads, any kind of unrolling is 863 // safe. But currently llvm's notion of convergence isn't powerful 864 // enough to express this. 865 unsigned OrigCount = Count; 866 while (Convergent && Count != 0 && TripMultiple % Count != 0) { 867 DecreasedCountDueToConvergence = true; 868 Count >>= 1; 869 } 870 if (OrigCount > Count) { 871 DEBUG(dbgs() << " loop contains a convergent instruction, so unroll " 872 "count must divide the trip multiple, " 873 << TripMultiple << ". Reducing unroll count from " 874 << OrigCount << " to " << Count << ".\n"); 875 } 876 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 877 } 878 879 if (HasPragma) { 880 // Emit optimization remarks if we are unable to unroll the loop 881 // as directed by a pragma. 882 DebugLoc LoopLoc = L->getStartLoc(); 883 Function *F = Header->getParent(); 884 LLVMContext &Ctx = F->getContext(); 885 if (PragmaCount > 0 && DecreasedCountDueToConvergence) { 886 emitOptimizationRemarkMissed( 887 Ctx, DEBUG_TYPE, *F, LoopLoc, 888 Twine("Unable to unroll loop the number of times directed by " 889 "unroll_count pragma because the loop contains a convergent " 890 "instruction, and so must have an unroll count that divides " 891 "the loop trip multiple of ") + 892 Twine(TripMultiple) + ". Unrolling instead " + Twine(Count) + 893 " time(s)."); 894 } else if ((PragmaCount > 0) && Count != OriginalCount) { 895 emitOptimizationRemarkMissed( 896 Ctx, DEBUG_TYPE, *F, LoopLoc, 897 "Unable to unroll loop the number of times directed by " 898 "unroll_count pragma because unrolled size is too large."); 899 } else if (PragmaFullUnroll && !TripCount) { 900 emitOptimizationRemarkMissed( 901 Ctx, DEBUG_TYPE, *F, LoopLoc, 902 "Unable to fully unroll loop as directed by unroll(full) pragma " 903 "because loop has a runtime trip count."); 904 } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { 905 emitOptimizationRemarkMissed( 906 Ctx, DEBUG_TYPE, *F, LoopLoc, 907 "Unable to unroll loop as directed by unroll(enable) pragma because " 908 "unrolled size is too large."); 909 } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 910 Count != TripCount) { 911 emitOptimizationRemarkMissed( 912 Ctx, DEBUG_TYPE, *F, LoopLoc, 913 "Unable to fully unroll loop as directed by unroll pragma because " 914 "unrolled size is too large."); 915 } 916 } 917 918 if (Unrolling != Full && Count < 2) { 919 // Partial unrolling by 1 is a nop. For full unrolling, a factor 920 // of 1 makes sense because loop control can be eliminated. 921 return false; 922 } 923 924 // Unroll the loop. 925 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 926 TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) 927 return false; 928 929 // If loop has an unroll count pragma mark loop as unrolled to prevent 930 // unrolling beyond that requested by the pragma. 931 if (HasPragma && PragmaCount != 0) 932 SetLoopAlreadyUnrolled(L); 933 return true; 934 } 935 936 namespace { 937 class LoopUnroll : public LoopPass { 938 public: 939 static char ID; // Pass ID, replacement for typeid 940 LoopUnroll(Optional<unsigned> Threshold = None, 941 Optional<unsigned> Count = None, 942 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) 943 : LoopPass(ID), ProvidedCount(std::move(Count)), 944 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 945 ProvidedRuntime(Runtime) { 946 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 947 } 948 949 Optional<unsigned> ProvidedCount; 950 Optional<unsigned> ProvidedThreshold; 951 Optional<bool> ProvidedAllowPartial; 952 Optional<bool> ProvidedRuntime; 953 954 bool runOnLoop(Loop *L, LPPassManager &) override { 955 if (skipLoop(L)) 956 return false; 957 958 Function &F = *L->getHeader()->getParent(); 959 960 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 961 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 962 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 963 const TargetTransformInfo &TTI = 964 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 965 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 966 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 967 968 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, 969 ProvidedThreshold, ProvidedAllowPartial, 970 ProvidedRuntime); 971 } 972 973 /// This transformation requires natural loop information & requires that 974 /// loop preheaders be inserted into the CFG... 975 /// 976 void getAnalysisUsage(AnalysisUsage &AU) const override { 977 AU.addRequired<AssumptionCacheTracker>(); 978 AU.addRequired<TargetTransformInfoWrapperPass>(); 979 // FIXME: Loop passes are required to preserve domtree, and for now we just 980 // recreate dom info if anything gets unrolled. 981 getLoopAnalysisUsage(AU); 982 } 983 }; 984 } 985 986 char LoopUnroll::ID = 0; 987 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 988 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 989 INITIALIZE_PASS_DEPENDENCY(LoopPass) 990 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 991 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 992 993 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 994 int Runtime) { 995 // TODO: It would make more sense for this function to take the optionals 996 // directly, but that's dangerous since it would silently break out of tree 997 // callers. 998 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 999 Count == -1 ? None : Optional<unsigned>(Count), 1000 AllowPartial == -1 ? None 1001 : Optional<bool>(AllowPartial), 1002 Runtime == -1 ? None : Optional<bool>(Runtime)); 1003 } 1004 1005 Pass *llvm::createSimpleLoopUnrollPass() { 1006 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 1007 } 1008