1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is sometimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of" 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 static cl::opt<bool> UnrollRuntimeMultiExit( 179 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 180 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 181 "epilog is generated")); 182 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 183 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 184 cl::desc("Assume the non latch exit block to be predictable")); 185 186 /// A magic value for use with the Threshold parameter to indicate 187 /// that the loop unroll should be performed regardless of how much 188 /// code expansion would result. 189 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 190 191 /// Gather the various unrolling parameters based on the defaults, compiler 192 /// flags, TTI overrides and user specified parameters. 193 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 194 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 195 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 196 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 197 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 198 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 199 TargetTransformInfo::UnrollingPreferences UP; 200 201 // Set up the defaults 202 UP.Threshold = 203 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 204 UP.MaxPercentThresholdBoost = 400; 205 UP.OptSizeThreshold = UnrollOptSizeThreshold; 206 UP.PartialThreshold = 150; 207 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 208 UP.Count = 0; 209 UP.DefaultUnrollRuntimeCount = 8; 210 UP.MaxCount = std::numeric_limits<unsigned>::max(); 211 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 212 UP.BEInsns = 2; 213 UP.Partial = false; 214 UP.Runtime = false; 215 UP.AllowRemainder = true; 216 UP.UnrollRemainder = false; 217 UP.AllowExpensiveTripCount = false; 218 UP.Force = false; 219 UP.UpperBound = false; 220 UP.UnrollAndJam = false; 221 UP.UnrollAndJamInnerLoopThreshold = 60; 222 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 223 224 // Override with any target specific settings 225 TTI.getUnrollingPreferences(L, SE, UP); 226 227 // Apply size attributes 228 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 229 // Let unroll hints / pragmas take precedence over PGSO. 230 (hasUnrollTransformation(L) != TM_ForcedByUser && 231 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 232 PGSOQueryType::IRPass)); 233 if (OptForSize) { 234 UP.Threshold = UP.OptSizeThreshold; 235 UP.PartialThreshold = UP.PartialOptSizeThreshold; 236 UP.MaxPercentThresholdBoost = 100; 237 } 238 239 // Apply any user values specified by cl::opt 240 if (UnrollThreshold.getNumOccurrences() > 0) 241 UP.Threshold = UnrollThreshold; 242 if (UnrollPartialThreshold.getNumOccurrences() > 0) 243 UP.PartialThreshold = UnrollPartialThreshold; 244 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 245 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 246 if (UnrollMaxCount.getNumOccurrences() > 0) 247 UP.MaxCount = UnrollMaxCount; 248 if (UnrollFullMaxCount.getNumOccurrences() > 0) 249 UP.FullUnrollMaxCount = UnrollFullMaxCount; 250 if (UnrollAllowPartial.getNumOccurrences() > 0) 251 UP.Partial = UnrollAllowPartial; 252 if (UnrollAllowRemainder.getNumOccurrences() > 0) 253 UP.AllowRemainder = UnrollAllowRemainder; 254 if (UnrollRuntime.getNumOccurrences() > 0) 255 UP.Runtime = UnrollRuntime; 256 if (UnrollMaxUpperBound == 0) 257 UP.UpperBound = false; 258 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 259 UP.UnrollRemainder = UnrollUnrollRemainder; 260 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 261 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 262 263 // Apply user values provided by argument 264 if (UserThreshold.hasValue()) { 265 UP.Threshold = *UserThreshold; 266 UP.PartialThreshold = *UserThreshold; 267 } 268 if (UserCount.hasValue()) 269 UP.Count = *UserCount; 270 if (UserAllowPartial.hasValue()) 271 UP.Partial = *UserAllowPartial; 272 if (UserRuntime.hasValue()) 273 UP.Runtime = *UserRuntime; 274 if (UserUpperBound.hasValue()) 275 UP.UpperBound = *UserUpperBound; 276 if (UserFullUnrollMaxCount.hasValue()) 277 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 278 279 return UP; 280 } 281 282 namespace { 283 284 /// A struct to densely store the state of an instruction after unrolling at 285 /// each iteration. 286 /// 287 /// This is designed to work like a tuple of <Instruction *, int> for the 288 /// purposes of hashing and lookup, but to be able to associate two boolean 289 /// states with each key. 290 struct UnrolledInstState { 291 Instruction *I; 292 int Iteration : 30; 293 unsigned IsFree : 1; 294 unsigned IsCounted : 1; 295 }; 296 297 /// Hashing and equality testing for a set of the instruction states. 298 struct UnrolledInstStateKeyInfo { 299 using PtrInfo = DenseMapInfo<Instruction *>; 300 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 301 302 static inline UnrolledInstState getEmptyKey() { 303 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 304 } 305 306 static inline UnrolledInstState getTombstoneKey() { 307 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 308 } 309 310 static inline unsigned getHashValue(const UnrolledInstState &S) { 311 return PairInfo::getHashValue({S.I, S.Iteration}); 312 } 313 314 static inline bool isEqual(const UnrolledInstState &LHS, 315 const UnrolledInstState &RHS) { 316 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 317 } 318 }; 319 320 struct EstimatedUnrollCost { 321 /// The estimated cost after unrolling. 322 unsigned UnrolledCost; 323 324 /// The estimated dynamic cost of executing the instructions in the 325 /// rolled form. 326 unsigned RolledDynamicCost; 327 }; 328 329 } // end anonymous namespace 330 331 /// Figure out if the loop is worth full unrolling. 332 /// 333 /// Complete loop unrolling can make some loads constant, and we need to know 334 /// if that would expose any further optimization opportunities. This routine 335 /// estimates this optimization. It computes cost of unrolled loop 336 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 337 /// dynamic cost we mean that we won't count costs of blocks that are known not 338 /// to be executed (i.e. if we have a branch in the loop and we know that at the 339 /// given iteration its condition would be resolved to true, we won't add up the 340 /// cost of the 'false'-block). 341 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 342 /// the analysis failed (no benefits expected from the unrolling, or the loop is 343 /// too big to analyze), the returned value is None. 344 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 345 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 346 const SmallPtrSetImpl<const Value *> &EphValues, 347 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 348 unsigned MaxIterationsCountToAnalyze) { 349 // We want to be able to scale offsets by the trip count and add more offsets 350 // to them without checking for overflows, and we already don't want to 351 // analyze *massive* trip counts, so we force the max to be reasonably small. 352 assert(MaxIterationsCountToAnalyze < 353 (unsigned)(std::numeric_limits<int>::max() / 2) && 354 "The unroll iterations max is too large!"); 355 356 // Only analyze inner loops. We can't properly estimate cost of nested loops 357 // and we won't visit inner loops again anyway. 358 if (!L->isInnermost()) 359 return None; 360 361 // Don't simulate loops with a big or unknown tripcount 362 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 363 return None; 364 365 SmallSetVector<BasicBlock *, 16> BBWorklist; 366 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 367 DenseMap<Value *, Value *> SimplifiedValues; 368 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 369 370 // The estimated cost of the unrolled form of the loop. We try to estimate 371 // this by simplifying as much as we can while computing the estimate. 372 InstructionCost UnrolledCost = 0; 373 374 // We also track the estimated dynamic (that is, actually executed) cost in 375 // the rolled form. This helps identify cases when the savings from unrolling 376 // aren't just exposing dead control flows, but actual reduced dynamic 377 // instructions due to the simplifications which we expect to occur after 378 // unrolling. 379 InstructionCost RolledDynamicCost = 0; 380 381 // We track the simplification of each instruction in each iteration. We use 382 // this to recursively merge costs into the unrolled cost on-demand so that 383 // we don't count the cost of any dead code. This is essentially a map from 384 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 385 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 386 387 // A small worklist used to accumulate cost of instructions from each 388 // observable and reached root in the loop. 389 SmallVector<Instruction *, 16> CostWorklist; 390 391 // PHI-used worklist used between iterations while accumulating cost. 392 SmallVector<Instruction *, 4> PHIUsedList; 393 394 // Helper function to accumulate cost for instructions in the loop. 395 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 396 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 397 assert(CostWorklist.empty() && "Must start with an empty cost list"); 398 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 399 CostWorklist.push_back(&RootI); 400 TargetTransformInfo::TargetCostKind CostKind = 401 RootI.getFunction()->hasMinSize() ? 402 TargetTransformInfo::TCK_CodeSize : 403 TargetTransformInfo::TCK_SizeAndLatency; 404 for (;; --Iteration) { 405 do { 406 Instruction *I = CostWorklist.pop_back_val(); 407 408 // InstCostMap only uses I and Iteration as a key, the other two values 409 // don't matter here. 410 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 411 if (CostIter == InstCostMap.end()) 412 // If an input to a PHI node comes from a dead path through the loop 413 // we may have no cost data for it here. What that actually means is 414 // that it is free. 415 continue; 416 auto &Cost = *CostIter; 417 if (Cost.IsCounted) 418 // Already counted this instruction. 419 continue; 420 421 // Mark that we are counting the cost of this instruction now. 422 Cost.IsCounted = true; 423 424 // If this is a PHI node in the loop header, just add it to the PHI set. 425 if (auto *PhiI = dyn_cast<PHINode>(I)) 426 if (PhiI->getParent() == L->getHeader()) { 427 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 428 "inherently simplify during unrolling."); 429 if (Iteration == 0) 430 continue; 431 432 // Push the incoming value from the backedge into the PHI used list 433 // if it is an in-loop instruction. We'll use this to populate the 434 // cost worklist for the next iteration (as we count backwards). 435 if (auto *OpI = dyn_cast<Instruction>( 436 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 437 if (L->contains(OpI)) 438 PHIUsedList.push_back(OpI); 439 continue; 440 } 441 442 // First accumulate the cost of this instruction. 443 if (!Cost.IsFree) { 444 UnrolledCost += TTI.getUserCost(I, CostKind); 445 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 446 << Iteration << "): "); 447 LLVM_DEBUG(I->dump()); 448 } 449 450 // We must count the cost of every operand which is not free, 451 // recursively. If we reach a loop PHI node, simply add it to the set 452 // to be considered on the next iteration (backwards!). 453 for (Value *Op : I->operands()) { 454 // Check whether this operand is free due to being a constant or 455 // outside the loop. 456 auto *OpI = dyn_cast<Instruction>(Op); 457 if (!OpI || !L->contains(OpI)) 458 continue; 459 460 // Otherwise accumulate its cost. 461 CostWorklist.push_back(OpI); 462 } 463 } while (!CostWorklist.empty()); 464 465 if (PHIUsedList.empty()) 466 // We've exhausted the search. 467 break; 468 469 assert(Iteration > 0 && 470 "Cannot track PHI-used values past the first iteration!"); 471 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 472 PHIUsedList.clear(); 473 } 474 }; 475 476 // Ensure that we don't violate the loop structure invariants relied on by 477 // this analysis. 478 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 479 assert(L->isLCSSAForm(DT) && 480 "Must have loops in LCSSA form to track live-out values."); 481 482 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 483 484 TargetTransformInfo::TargetCostKind CostKind = 485 L->getHeader()->getParent()->hasMinSize() ? 486 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 487 // Simulate execution of each iteration of the loop counting instructions, 488 // which would be simplified. 489 // Since the same load will take different values on different iterations, 490 // we literally have to go through all loop's iterations. 491 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 492 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 493 494 // Prepare for the iteration by collecting any simplified entry or backedge 495 // inputs. 496 for (Instruction &I : *L->getHeader()) { 497 auto *PHI = dyn_cast<PHINode>(&I); 498 if (!PHI) 499 break; 500 501 // The loop header PHI nodes must have exactly two input: one from the 502 // loop preheader and one from the loop latch. 503 assert( 504 PHI->getNumIncomingValues() == 2 && 505 "Must have an incoming value only for the preheader and the latch."); 506 507 Value *V = PHI->getIncomingValueForBlock( 508 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 509 if (Iteration != 0 && SimplifiedValues.count(V)) 510 V = SimplifiedValues.lookup(V); 511 SimplifiedInputValues.push_back({PHI, V}); 512 } 513 514 // Now clear and re-populate the map for the next iteration. 515 SimplifiedValues.clear(); 516 while (!SimplifiedInputValues.empty()) 517 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 518 519 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 520 521 BBWorklist.clear(); 522 BBWorklist.insert(L->getHeader()); 523 // Note that we *must not* cache the size, this loop grows the worklist. 524 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 525 BasicBlock *BB = BBWorklist[Idx]; 526 527 // Visit all instructions in the given basic block and try to simplify 528 // it. We don't change the actual IR, just count optimization 529 // opportunities. 530 for (Instruction &I : *BB) { 531 // These won't get into the final code - don't even try calculating the 532 // cost for them. 533 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 534 continue; 535 536 // Track this instruction's expected baseline cost when executing the 537 // rolled loop form. 538 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 539 540 // Visit the instruction to analyze its loop cost after unrolling, 541 // and if the visitor returns true, mark the instruction as free after 542 // unrolling and continue. 543 bool IsFree = Analyzer.visit(I); 544 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 545 (unsigned)IsFree, 546 /*IsCounted*/ false}).second; 547 (void)Inserted; 548 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 549 550 if (IsFree) 551 continue; 552 553 // Can't properly model a cost of a call. 554 // FIXME: With a proper cost model we should be able to do it. 555 if (auto *CI = dyn_cast<CallInst>(&I)) { 556 const Function *Callee = CI->getCalledFunction(); 557 if (!Callee || TTI.isLoweredToCall(Callee)) { 558 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 559 return None; 560 } 561 } 562 563 // If the instruction might have a side-effect recursively account for 564 // the cost of it and all the instructions leading up to it. 565 if (I.mayHaveSideEffects()) 566 AddCostRecursively(I, Iteration); 567 568 // If unrolled body turns out to be too big, bail out. 569 if (UnrolledCost > MaxUnrolledLoopSize) { 570 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 571 << " UnrolledCost: " << UnrolledCost 572 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 573 << "\n"); 574 return None; 575 } 576 } 577 578 Instruction *TI = BB->getTerminator(); 579 580 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 581 if (SimplifiedValues.count(V)) 582 V = SimplifiedValues.lookup(V); 583 return dyn_cast<Constant>(V); 584 }; 585 586 // Add in the live successors by first checking whether we have terminator 587 // that may be simplified based on the values simplified by this call. 588 BasicBlock *KnownSucc = nullptr; 589 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 590 if (BI->isConditional()) { 591 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 592 // Just take the first successor if condition is undef 593 if (isa<UndefValue>(SimpleCond)) 594 KnownSucc = BI->getSuccessor(0); 595 else if (ConstantInt *SimpleCondVal = 596 dyn_cast<ConstantInt>(SimpleCond)) 597 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 598 } 599 } 600 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 601 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 602 // Just take the first successor if condition is undef 603 if (isa<UndefValue>(SimpleCond)) 604 KnownSucc = SI->getSuccessor(0); 605 else if (ConstantInt *SimpleCondVal = 606 dyn_cast<ConstantInt>(SimpleCond)) 607 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 608 } 609 } 610 if (KnownSucc) { 611 if (L->contains(KnownSucc)) 612 BBWorklist.insert(KnownSucc); 613 else 614 ExitWorklist.insert({BB, KnownSucc}); 615 continue; 616 } 617 618 // Add BB's successors to the worklist. 619 for (BasicBlock *Succ : successors(BB)) 620 if (L->contains(Succ)) 621 BBWorklist.insert(Succ); 622 else 623 ExitWorklist.insert({BB, Succ}); 624 AddCostRecursively(*TI, Iteration); 625 } 626 627 // If we found no optimization opportunities on the first iteration, we 628 // won't find them on later ones too. 629 if (UnrolledCost == RolledDynamicCost) { 630 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 631 << " UnrolledCost: " << UnrolledCost << "\n"); 632 return None; 633 } 634 } 635 636 while (!ExitWorklist.empty()) { 637 BasicBlock *ExitingBB, *ExitBB; 638 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 639 640 for (Instruction &I : *ExitBB) { 641 auto *PN = dyn_cast<PHINode>(&I); 642 if (!PN) 643 break; 644 645 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 646 if (auto *OpI = dyn_cast<Instruction>(Op)) 647 if (L->contains(OpI)) 648 AddCostRecursively(*OpI, TripCount - 1); 649 } 650 } 651 652 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 653 "All instructions must have a valid cost, whether the " 654 "loop is rolled or unrolled."); 655 656 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 657 << "UnrolledCost: " << UnrolledCost << ", " 658 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 659 return {{unsigned(*UnrolledCost.getValue()), 660 unsigned(*RolledDynamicCost.getValue())}}; 661 } 662 663 /// ApproximateLoopSize - Approximate the size of the loop. 664 unsigned llvm::ApproximateLoopSize( 665 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 666 const TargetTransformInfo &TTI, 667 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 668 CodeMetrics Metrics; 669 for (BasicBlock *BB : L->blocks()) 670 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 671 NumCalls = Metrics.NumInlineCandidates; 672 NotDuplicatable = Metrics.notDuplicatable; 673 Convergent = Metrics.convergent; 674 675 unsigned LoopSize = Metrics.NumInsts; 676 677 // Don't allow an estimate of size zero. This would allows unrolling of loops 678 // with huge iteration counts, which is a compile time problem even if it's 679 // not a problem for code quality. Also, the code using this size may assume 680 // that each loop has at least three instructions (likely a conditional 681 // branch, a comparison feeding that branch, and some kind of loop increment 682 // feeding that comparison instruction). 683 LoopSize = std::max(LoopSize, BEInsns + 1); 684 685 return LoopSize; 686 } 687 688 // Returns the loop hint metadata node with the given name (for example, 689 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 690 // returned. 691 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 692 if (MDNode *LoopID = L->getLoopID()) 693 return GetUnrollMetadata(LoopID, Name); 694 return nullptr; 695 } 696 697 // Returns true if the loop has an unroll(full) pragma. 698 static bool hasUnrollFullPragma(const Loop *L) { 699 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 700 } 701 702 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 703 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 704 static bool hasUnrollEnablePragma(const Loop *L) { 705 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 706 } 707 708 // Returns true if the loop has an runtime unroll(disable) pragma. 709 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 710 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 711 } 712 713 // If loop has an unroll_count pragma return the (necessarily 714 // positive) value from the pragma. Otherwise return 0. 715 static unsigned unrollCountPragmaValue(const Loop *L) { 716 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 717 if (MD) { 718 assert(MD->getNumOperands() == 2 && 719 "Unroll count hint metadata should have two operands."); 720 unsigned Count = 721 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 722 assert(Count >= 1 && "Unroll count must be positive."); 723 return Count; 724 } 725 return 0; 726 } 727 728 // Computes the boosting factor for complete unrolling. 729 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 730 // be beneficial to fully unroll the loop even if unrolledcost is large. We 731 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 732 // the unroll threshold. 733 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 734 unsigned MaxPercentThresholdBoost) { 735 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 736 return 100; 737 else if (Cost.UnrolledCost != 0) 738 // The boosting factor is RolledDynamicCost / UnrolledCost 739 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 740 MaxPercentThresholdBoost); 741 else 742 return MaxPercentThresholdBoost; 743 } 744 745 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 746 /// unrolling a multiple exit loop is generally considered unprofitable outside 747 /// of some very restricted cases. (TODO: Relax this!) 748 static bool canProfitablyUnrollMultiExitLoop(Loop *L) { 749 750 SmallVector<BasicBlock *> OtherExits; 751 L->getUniqueNonLatchExitBlocks(OtherExits); 752 753 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 754 if (UnrollRuntimeMultiExit.getNumOccurrences()) 755 return UnrollRuntimeMultiExit; 756 757 // The main pain point with multi-exit loop unrolling is that once unrolled, 758 // we will not be able to merge all blocks into a straight line code. 759 // There are branches within the unrolled loop that go to the OtherExits. 760 // The second point is the increase in code size, but this is true 761 // irrespective of multiple exits. 762 763 // Note: Both the heuristics below are coarse grained. We are essentially 764 // enabling unrolling of loops that have a single side exit other than the 765 // normal LatchExit (i.e. exiting into a deoptimize block). 766 // The heuristics considered are: 767 // 1. low number of branches in the unrolled version. 768 // 2. high predictability of these extra branches. 769 // We avoid unrolling loops that have more than two exiting blocks. This 770 // limits the total number of branches in the unrolled loop to be atmost 771 // the unroll factor (since one of the exiting blocks is the latch block). 772 SmallVector<BasicBlock*, 4> ExitingBlocks; 773 L->getExitingBlocks(ExitingBlocks); 774 if (ExitingBlocks.size() > 2) 775 return false; 776 777 // Allow unrolling of loops with no non latch exit blocks. 778 if (OtherExits.size() == 0) 779 return true; 780 781 // The second heuristic is that L has one exit other than the latchexit and 782 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 783 // taken, which also implies the branch leading to the deoptimize block is 784 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 785 // assume the other exit branch is predictable even if it has no deoptimize 786 // call. 787 return (OtherExits.size() == 1 && 788 (UnrollRuntimeOtherExitPredictable || 789 OtherExits[0]->getTerminatingDeoptimizeCall())); 790 // TODO: These can be fine-tuned further to consider code size or deopt states 791 // that are captured by the deoptimize exit block. 792 // Also, we can extend this to support more cases, if we actually 793 // know of kinds of multiexit loops that would benefit from unrolling. 794 } 795 796 // Produce an estimate of the unrolled cost of the specified loop. This 797 // is used to a) produce a cost estimate for partial unrolling and b) to 798 // cheaply estimate cost for full unrolling when we don't want to symbolically 799 // evaluate all iterations. 800 class UnrollCostEstimator { 801 const unsigned LoopSize; 802 803 public: 804 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {} 805 806 // Returns loop size estimation for unrolled loop, given the unrolling 807 // configuration specified by UP. 808 uint64_t getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences &UP) { 809 assert(LoopSize >= UP.BEInsns && 810 "LoopSize should not be less than BEInsns!"); 811 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 812 } 813 }; 814 815 // Returns true if unroll count was set explicitly. 816 // Calculates unroll count and writes it to UP.Count. 817 // Unless IgnoreUser is true, will also use metadata and command-line options 818 // that are specific to to the LoopUnroll pass (which, for instance, are 819 // irrelevant for the LoopUnrollAndJam pass). 820 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 821 // many LoopUnroll-specific options. The shared functionality should be 822 // refactored into it own function. 823 bool llvm::computeUnrollCount( 824 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 825 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 826 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 827 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize, 828 TargetTransformInfo::UnrollingPreferences &UP, 829 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 830 831 UnrollCostEstimator UCE(*L, LoopSize); 832 833 // Use an explicit peel count that has been specified for testing. In this 834 // case it's not permitted to also specify an explicit unroll count. 835 if (PP.PeelCount) { 836 if (UnrollCount.getNumOccurrences() > 0) { 837 report_fatal_error("Cannot specify both explicit peel count and " 838 "explicit unroll count"); 839 } 840 UP.Count = 1; 841 UP.Runtime = false; 842 return true; 843 } 844 845 // Check for explicit Count. 846 // 1st priority is unroll count set by "unroll-count" option. 847 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 848 if (UserUnrollCount) { 849 UP.Count = UnrollCount; 850 UP.AllowExpensiveTripCount = true; 851 UP.Force = true; 852 if (UP.AllowRemainder && UCE.getUnrolledLoopSize(UP) < UP.Threshold) 853 return true; 854 } 855 856 // 2nd priority is unroll count set by pragma. 857 unsigned PragmaCount = unrollCountPragmaValue(L); 858 if (PragmaCount > 0) { 859 UP.Count = PragmaCount; 860 UP.Runtime = true; 861 UP.AllowExpensiveTripCount = true; 862 UP.Force = true; 863 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 864 UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold) 865 return true; 866 } 867 bool PragmaFullUnroll = hasUnrollFullPragma(L); 868 if (PragmaFullUnroll && TripCount != 0) { 869 UP.Count = TripCount; 870 if (UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold) 871 return false; 872 } 873 874 bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 875 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 876 PragmaEnableUnroll || UserUnrollCount; 877 878 if (ExplicitUnroll && TripCount != 0) { 879 // If the loop has an unrolling pragma, we want to be more aggressive with 880 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 881 // value which is larger than the default limits. 882 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 883 UP.PartialThreshold = 884 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 885 } 886 887 // 3rd priority is full unroll count. 888 // Full unroll makes sense only when TripCount or its upper bound could be 889 // statically calculated. 890 // Also we need to check if we exceed FullUnrollMaxCount. 891 892 // We can unroll by the upper bound amount if it's generally allowed or if 893 // we know that the loop is executed either the upper bound or zero times. 894 // (MaxOrZero unrolling keeps only the first loop test, so the number of 895 // loop tests remains the same compared to the non-unrolled version, whereas 896 // the generic upper bound unrolling keeps all but the last loop test so the 897 // number of loop tests goes up which may end up being worse on targets with 898 // constrained branch predictor resources so is controlled by an option.) 899 // In addition we only unroll small upper bounds. 900 unsigned FullUnrollMaxTripCount = MaxTripCount; 901 if (!(UP.UpperBound || MaxOrZero) || 902 FullUnrollMaxTripCount > UnrollMaxUpperBound) 903 FullUnrollMaxTripCount = 0; 904 905 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 906 // compute the former when the latter is zero. 907 unsigned ExactTripCount = TripCount; 908 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 909 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 910 911 unsigned FullUnrollTripCount = 912 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 913 UP.Count = FullUnrollTripCount; 914 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 915 // When computing the unrolled size, note that BEInsns are not replicated 916 // like the rest of the loop body. 917 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) { 918 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 919 return ExplicitUnroll; 920 } else { 921 // The loop isn't that small, but we still can fully unroll it if that 922 // helps to remove a significant number of instructions. 923 // To check that, run additional analysis on the loop. 924 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 925 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 926 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 927 UP.MaxIterationsCountToAnalyze)) { 928 unsigned Boost = 929 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 930 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 931 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 932 return ExplicitUnroll; 933 } 934 } 935 } 936 } 937 938 // 4th priority is loop peeling. 939 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold); 940 if (PP.PeelCount) { 941 UP.Runtime = false; 942 UP.Count = 1; 943 return ExplicitUnroll; 944 } 945 946 // 5th priority is partial unrolling. 947 // Try partial unroll only when TripCount could be statically calculated. 948 if (TripCount) { 949 UP.Partial |= ExplicitUnroll; 950 if (!UP.Partial) { 951 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 952 << "-unroll-allow-partial not given\n"); 953 UP.Count = 0; 954 return false; 955 } 956 if (UP.Count == 0) 957 UP.Count = TripCount; 958 if (UP.PartialThreshold != NoThreshold) { 959 // Reduce unroll count to be modulo of TripCount for partial unrolling. 960 if (UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 961 UP.Count = 962 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 963 (LoopSize - UP.BEInsns); 964 if (UP.Count > UP.MaxCount) 965 UP.Count = UP.MaxCount; 966 while (UP.Count != 0 && TripCount % UP.Count != 0) 967 UP.Count--; 968 if (UP.AllowRemainder && UP.Count <= 1) { 969 // If there is no Count that is modulo of TripCount, set Count to 970 // largest power-of-two factor that satisfies the threshold limit. 971 // As we'll create fixup loop, do the type of unrolling only if 972 // remainder loop is allowed. 973 UP.Count = UP.DefaultUnrollRuntimeCount; 974 while (UP.Count != 0 && 975 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 976 UP.Count >>= 1; 977 } 978 if (UP.Count < 2) { 979 if (PragmaEnableUnroll) 980 ORE->emit([&]() { 981 return OptimizationRemarkMissed(DEBUG_TYPE, 982 "UnrollAsDirectedTooLarge", 983 L->getStartLoc(), L->getHeader()) 984 << "Unable to unroll loop as directed by unroll(enable) " 985 "pragma " 986 "because unrolled size is too large."; 987 }); 988 UP.Count = 0; 989 } 990 } else { 991 UP.Count = TripCount; 992 } 993 if (UP.Count > UP.MaxCount) 994 UP.Count = UP.MaxCount; 995 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 996 UP.Count != TripCount) 997 ORE->emit([&]() { 998 return OptimizationRemarkMissed(DEBUG_TYPE, 999 "FullUnrollAsDirectedTooLarge", 1000 L->getStartLoc(), L->getHeader()) 1001 << "Unable to fully unroll loop as directed by unroll pragma " 1002 "because " 1003 "unrolled size is too large."; 1004 }); 1005 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 1006 << "\n"); 1007 return ExplicitUnroll; 1008 } 1009 assert(TripCount == 0 && 1010 "All cases when TripCount is constant should be covered here."); 1011 if (PragmaFullUnroll) 1012 ORE->emit([&]() { 1013 return OptimizationRemarkMissed( 1014 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1015 L->getStartLoc(), L->getHeader()) 1016 << "Unable to fully unroll loop as directed by unroll(full) " 1017 "pragma " 1018 "because loop has a runtime trip count."; 1019 }); 1020 1021 // 6th priority is runtime unrolling. 1022 // Don't unroll a runtime trip count loop when it is disabled. 1023 if (hasRuntimeUnrollDisablePragma(L)) { 1024 UP.Count = 0; 1025 return false; 1026 } 1027 1028 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1029 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 1030 UP.Count = 0; 1031 return false; 1032 } 1033 1034 // Check if the runtime trip count is too small when profile is available. 1035 if (L->getHeader()->getParent()->hasProfileData()) { 1036 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1037 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1038 return false; 1039 else 1040 UP.AllowExpensiveTripCount = true; 1041 } 1042 } 1043 1044 // Is this is a multiple exit loop which we consider unprofitable to 1045 // unroll? 1046 if (!L->getExitingBlock() && !canProfitablyUnrollMultiExitLoop(L)) { 1047 UP.Count = 0; 1048 return false; 1049 } 1050 1051 // Reduce count based on the type of unrolling and the threshold values. 1052 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1053 if (!UP.Runtime) { 1054 LLVM_DEBUG( 1055 dbgs() << " will not try to unroll loop with runtime trip count " 1056 << "-unroll-runtime not given\n"); 1057 UP.Count = 0; 1058 return false; 1059 } 1060 if (UP.Count == 0) 1061 UP.Count = UP.DefaultUnrollRuntimeCount; 1062 1063 // Reduce unroll count to be the largest power-of-two factor of 1064 // the original count which satisfies the threshold limit. 1065 while (UP.Count != 0 && 1066 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1067 UP.Count >>= 1; 1068 1069 #ifndef NDEBUG 1070 unsigned OrigCount = UP.Count; 1071 #endif 1072 1073 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1074 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1075 UP.Count >>= 1; 1076 LLVM_DEBUG( 1077 dbgs() << "Remainder loop is restricted (that could architecture " 1078 "specific or because the loop contains a convergent " 1079 "instruction), so unroll count must divide the trip " 1080 "multiple, " 1081 << TripMultiple << ". Reducing unroll count from " << OrigCount 1082 << " to " << UP.Count << ".\n"); 1083 1084 using namespace ore; 1085 1086 if (PragmaCount > 0 && !UP.AllowRemainder) 1087 ORE->emit([&]() { 1088 return OptimizationRemarkMissed(DEBUG_TYPE, 1089 "DifferentUnrollCountFromDirected", 1090 L->getStartLoc(), L->getHeader()) 1091 << "Unable to unroll loop the number of times directed by " 1092 "unroll_count pragma because remainder loop is restricted " 1093 "(that could architecture specific or because the loop " 1094 "contains a convergent instruction) and so must have an " 1095 "unroll " 1096 "count that divides the loop trip multiple of " 1097 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1098 << NV("UnrollCount", UP.Count) << " time(s)."; 1099 }); 1100 } 1101 1102 if (UP.Count > UP.MaxCount) 1103 UP.Count = UP.MaxCount; 1104 1105 if (MaxTripCount && UP.Count > MaxTripCount) 1106 UP.Count = MaxTripCount; 1107 1108 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1109 << "\n"); 1110 if (UP.Count < 2) 1111 UP.Count = 0; 1112 return ExplicitUnroll; 1113 } 1114 1115 static LoopUnrollResult tryToUnrollLoop( 1116 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1117 const TargetTransformInfo &TTI, AssumptionCache &AC, 1118 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1119 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1120 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1121 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1122 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1123 Optional<bool> ProvidedAllowPeeling, 1124 Optional<bool> ProvidedAllowProfileBasedPeeling, 1125 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1126 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1127 << L->getHeader()->getParent()->getName() << "] Loop %" 1128 << L->getHeader()->getName() << "\n"); 1129 TransformationMode TM = hasUnrollTransformation(L); 1130 if (TM & TM_Disable) 1131 return LoopUnrollResult::Unmodified; 1132 if (!L->isLoopSimplifyForm()) { 1133 LLVM_DEBUG( 1134 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1135 return LoopUnrollResult::Unmodified; 1136 } 1137 1138 // When automatic unrolling is disabled, do not unroll unless overridden for 1139 // this loop. 1140 if (OnlyWhenForced && !(TM & TM_Enable)) 1141 return LoopUnrollResult::Unmodified; 1142 1143 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1144 unsigned NumInlineCandidates; 1145 bool NotDuplicatable; 1146 bool Convergent; 1147 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1148 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1149 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1150 ProvidedFullUnrollMaxCount); 1151 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1152 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1153 1154 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1155 // as threshold later on. 1156 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1157 !OptForSize) 1158 return LoopUnrollResult::Unmodified; 1159 1160 SmallPtrSet<const Value *, 32> EphValues; 1161 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1162 1163 unsigned LoopSize = 1164 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1165 TTI, EphValues, UP.BEInsns); 1166 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1167 if (NotDuplicatable) { 1168 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1169 << " instructions.\n"); 1170 return LoopUnrollResult::Unmodified; 1171 } 1172 1173 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1174 // later), to (fully) unroll loops, if it does not increase code size. 1175 if (OptForSize) 1176 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1177 1178 if (NumInlineCandidates != 0) { 1179 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1180 return LoopUnrollResult::Unmodified; 1181 } 1182 1183 // Find the smallest exact trip count for any exit. This is an upper bound 1184 // on the loop trip count, but an exit at an earlier iteration is still 1185 // possible. An unroll by the smallest exact trip count guarantees that all 1186 // brnaches relating to at least one exit can be eliminated. This is unlike 1187 // the max trip count, which only guarantees that the backedge can be broken. 1188 unsigned TripCount = 0; 1189 unsigned TripMultiple = 1; 1190 SmallVector<BasicBlock *, 8> ExitingBlocks; 1191 L->getExitingBlocks(ExitingBlocks); 1192 for (BasicBlock *ExitingBlock : ExitingBlocks) 1193 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1194 if (!TripCount || TC < TripCount) 1195 TripCount = TripMultiple = TC; 1196 1197 if (!TripCount) { 1198 // If no exact trip count is known, determine the trip multiple of either 1199 // the loop latch or the single exiting block. 1200 // TODO: Relax for multiple exits. 1201 BasicBlock *ExitingBlock = L->getLoopLatch(); 1202 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1203 ExitingBlock = L->getExitingBlock(); 1204 if (ExitingBlock) 1205 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1206 } 1207 1208 // If the loop contains a convergent operation, the prelude we'd add 1209 // to do the first few instructions before we hit the unrolled loop 1210 // is unsafe -- it adds a control-flow dependency to the convergent 1211 // operation. Therefore restrict remainder loop (try unrolling without). 1212 // 1213 // TODO: This is quite conservative. In practice, convergent_op() 1214 // is likely to be called unconditionally in the loop. In this 1215 // case, the program would be ill-formed (on most architectures) 1216 // unless n were the same on all threads in a thread group. 1217 // Assuming n is the same on all threads, any kind of unrolling is 1218 // safe. But currently llvm's notion of convergence isn't powerful 1219 // enough to express this. 1220 if (Convergent) 1221 UP.AllowRemainder = false; 1222 1223 // Try to find the trip count upper bound if we cannot find the exact trip 1224 // count. 1225 unsigned MaxTripCount = 0; 1226 bool MaxOrZero = false; 1227 if (!TripCount) { 1228 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1229 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1230 } 1231 1232 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1233 // fully unroll the loop. 1234 bool UseUpperBound = false; 1235 bool IsCountSetExplicitly = computeUnrollCount( 1236 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1237 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1238 if (!UP.Count) 1239 return LoopUnrollResult::Unmodified; 1240 1241 if (PP.PeelCount) { 1242 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1243 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1244 << " with iteration count " << PP.PeelCount << "!\n"); 1245 ORE.emit([&]() { 1246 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1247 L->getHeader()) 1248 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1249 << " iterations"; 1250 }); 1251 1252 if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) { 1253 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1254 // If the loop was peeled, we already "used up" the profile information 1255 // we had, so we don't want to unroll or peel again. 1256 if (PP.PeelProfiledIterations) 1257 L->setLoopAlreadyUnrolled(); 1258 return LoopUnrollResult::PartiallyUnrolled; 1259 } 1260 return LoopUnrollResult::Unmodified; 1261 } 1262 1263 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1264 // However, we only want to actually perform it if we don't know the trip 1265 // count and the unroll count doesn't divide the known trip multiple. 1266 // TODO: This decision should probably be pushed up into 1267 // computeUnrollCount(). 1268 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1269 1270 // Save loop properties before it is transformed. 1271 MDNode *OrigLoopID = L->getLoopID(); 1272 1273 // Unroll the loop. 1274 Loop *RemainderLoop = nullptr; 1275 LoopUnrollResult UnrollResult = UnrollLoop( 1276 L, 1277 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1278 UP.UnrollRemainder, ForgetAllSCEV}, 1279 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1280 if (UnrollResult == LoopUnrollResult::Unmodified) 1281 return LoopUnrollResult::Unmodified; 1282 1283 if (RemainderLoop) { 1284 Optional<MDNode *> RemainderLoopID = 1285 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1286 LLVMLoopUnrollFollowupRemainder}); 1287 if (RemainderLoopID.hasValue()) 1288 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1289 } 1290 1291 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1292 Optional<MDNode *> NewLoopID = 1293 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1294 LLVMLoopUnrollFollowupUnrolled}); 1295 if (NewLoopID.hasValue()) { 1296 L->setLoopID(NewLoopID.getValue()); 1297 1298 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1299 // explicitly. 1300 return UnrollResult; 1301 } 1302 } 1303 1304 // If loop has an unroll count pragma or unrolled by explicitly set count 1305 // mark loop as unrolled to prevent unrolling beyond that requested. 1306 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1307 L->setLoopAlreadyUnrolled(); 1308 1309 return UnrollResult; 1310 } 1311 1312 namespace { 1313 1314 class LoopUnroll : public LoopPass { 1315 public: 1316 static char ID; // Pass ID, replacement for typeid 1317 1318 int OptLevel; 1319 1320 /// If false, use a cost model to determine whether unrolling of a loop is 1321 /// profitable. If true, only loops that explicitly request unrolling via 1322 /// metadata are considered. All other loops are skipped. 1323 bool OnlyWhenForced; 1324 1325 /// If false, when SCEV is invalidated, only forget everything in the 1326 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1327 /// Otherwise, forgetAllLoops and rebuild when needed next. 1328 bool ForgetAllSCEV; 1329 1330 Optional<unsigned> ProvidedCount; 1331 Optional<unsigned> ProvidedThreshold; 1332 Optional<bool> ProvidedAllowPartial; 1333 Optional<bool> ProvidedRuntime; 1334 Optional<bool> ProvidedUpperBound; 1335 Optional<bool> ProvidedAllowPeeling; 1336 Optional<bool> ProvidedAllowProfileBasedPeeling; 1337 Optional<unsigned> ProvidedFullUnrollMaxCount; 1338 1339 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1340 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1341 Optional<unsigned> Count = None, 1342 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1343 Optional<bool> UpperBound = None, 1344 Optional<bool> AllowPeeling = None, 1345 Optional<bool> AllowProfileBasedPeeling = None, 1346 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1347 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1348 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1349 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1350 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1351 ProvidedAllowPeeling(AllowPeeling), 1352 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1353 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1354 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1355 } 1356 1357 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1358 if (skipLoop(L)) 1359 return false; 1360 1361 Function &F = *L->getHeader()->getParent(); 1362 1363 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1364 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1365 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1366 const TargetTransformInfo &TTI = 1367 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1368 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1369 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1370 // pass. Function analyses need to be preserved across loop transformations 1371 // but ORE cannot be preserved (see comment before the pass definition). 1372 OptimizationRemarkEmitter ORE(&F); 1373 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1374 1375 LoopUnrollResult Result = tryToUnrollLoop( 1376 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1377 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1378 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1379 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1380 ProvidedFullUnrollMaxCount); 1381 1382 if (Result == LoopUnrollResult::FullyUnrolled) 1383 LPM.markLoopAsDeleted(*L); 1384 1385 return Result != LoopUnrollResult::Unmodified; 1386 } 1387 1388 /// This transformation requires natural loop information & requires that 1389 /// loop preheaders be inserted into the CFG... 1390 void getAnalysisUsage(AnalysisUsage &AU) const override { 1391 AU.addRequired<AssumptionCacheTracker>(); 1392 AU.addRequired<TargetTransformInfoWrapperPass>(); 1393 // FIXME: Loop passes are required to preserve domtree, and for now we just 1394 // recreate dom info if anything gets unrolled. 1395 getLoopAnalysisUsage(AU); 1396 } 1397 }; 1398 1399 } // end anonymous namespace 1400 1401 char LoopUnroll::ID = 0; 1402 1403 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1404 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1405 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1406 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1407 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1408 1409 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1410 bool ForgetAllSCEV, int Threshold, int Count, 1411 int AllowPartial, int Runtime, int UpperBound, 1412 int AllowPeeling) { 1413 // TODO: It would make more sense for this function to take the optionals 1414 // directly, but that's dangerous since it would silently break out of tree 1415 // callers. 1416 return new LoopUnroll( 1417 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1418 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1419 Count == -1 ? None : Optional<unsigned>(Count), 1420 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1421 Runtime == -1 ? None : Optional<bool>(Runtime), 1422 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1423 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1424 } 1425 1426 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1427 bool ForgetAllSCEV) { 1428 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1429 0, 0, 0, 1); 1430 } 1431 1432 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1433 LoopStandardAnalysisResults &AR, 1434 LPMUpdater &Updater) { 1435 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1436 // pass. Function analyses need to be preserved across loop transformations 1437 // but ORE cannot be preserved (see comment before the pass definition). 1438 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1439 1440 // Keep track of the previous loop structure so we can identify new loops 1441 // created by unrolling. 1442 Loop *ParentL = L.getParentLoop(); 1443 SmallPtrSet<Loop *, 4> OldLoops; 1444 if (ParentL) 1445 OldLoops.insert(ParentL->begin(), ParentL->end()); 1446 else 1447 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1448 1449 std::string LoopName = std::string(L.getName()); 1450 1451 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1452 /*BFI*/ nullptr, /*PSI*/ nullptr, 1453 /*PreserveLCSSA*/ true, OptLevel, 1454 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1455 /*Threshold*/ None, /*AllowPartial*/ false, 1456 /*Runtime*/ false, /*UpperBound*/ false, 1457 /*AllowPeeling*/ true, 1458 /*AllowProfileBasedPeeling*/ false, 1459 /*FullUnrollMaxCount*/ None) != 1460 LoopUnrollResult::Unmodified; 1461 if (!Changed) 1462 return PreservedAnalyses::all(); 1463 1464 // The parent must not be damaged by unrolling! 1465 #ifndef NDEBUG 1466 if (ParentL) 1467 ParentL->verifyLoop(); 1468 #endif 1469 1470 // Unrolling can do several things to introduce new loops into a loop nest: 1471 // - Full unrolling clones child loops within the current loop but then 1472 // removes the current loop making all of the children appear to be new 1473 // sibling loops. 1474 // 1475 // When a new loop appears as a sibling loop after fully unrolling, 1476 // its nesting structure has fundamentally changed and we want to revisit 1477 // it to reflect that. 1478 // 1479 // When unrolling has removed the current loop, we need to tell the 1480 // infrastructure that it is gone. 1481 // 1482 // Finally, we support a debugging/testing mode where we revisit child loops 1483 // as well. These are not expected to require further optimizations as either 1484 // they or the loop they were cloned from have been directly visited already. 1485 // But the debugging mode allows us to check this assumption. 1486 bool IsCurrentLoopValid = false; 1487 SmallVector<Loop *, 4> SibLoops; 1488 if (ParentL) 1489 SibLoops.append(ParentL->begin(), ParentL->end()); 1490 else 1491 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1492 erase_if(SibLoops, [&](Loop *SibLoop) { 1493 if (SibLoop == &L) { 1494 IsCurrentLoopValid = true; 1495 return true; 1496 } 1497 1498 // Otherwise erase the loop from the list if it was in the old loops. 1499 return OldLoops.contains(SibLoop); 1500 }); 1501 Updater.addSiblingLoops(SibLoops); 1502 1503 if (!IsCurrentLoopValid) { 1504 Updater.markLoopAsDeleted(L, LoopName); 1505 } else { 1506 // We can only walk child loops if the current loop remained valid. 1507 if (UnrollRevisitChildLoops) { 1508 // Walk *all* of the child loops. 1509 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1510 Updater.addChildLoops(ChildLoops); 1511 } 1512 } 1513 1514 return getLoopPassPreservedAnalyses(); 1515 } 1516 1517 PreservedAnalyses LoopUnrollPass::run(Function &F, 1518 FunctionAnalysisManager &AM) { 1519 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1520 auto &LI = AM.getResult<LoopAnalysis>(F); 1521 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1522 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1523 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1524 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1525 1526 LoopAnalysisManager *LAM = nullptr; 1527 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1528 LAM = &LAMProxy->getManager(); 1529 1530 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1531 ProfileSummaryInfo *PSI = 1532 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1533 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1534 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1535 1536 bool Changed = false; 1537 1538 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1539 // Since simplification may add new inner loops, it has to run before the 1540 // legality and profitability checks. This means running the loop unroller 1541 // will simplify all loops, regardless of whether anything end up being 1542 // unrolled. 1543 for (auto &L : LI) { 1544 Changed |= 1545 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1546 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1547 } 1548 1549 // Add the loop nests in the reverse order of LoopInfo. See method 1550 // declaration. 1551 SmallPriorityWorklist<Loop *, 4> Worklist; 1552 appendLoopsToWorklist(LI, Worklist); 1553 1554 while (!Worklist.empty()) { 1555 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1556 // from back to front so that we work forward across the CFG, which 1557 // for unrolling is only needed to get optimization remarks emitted in 1558 // a forward order. 1559 Loop &L = *Worklist.pop_back_val(); 1560 #ifndef NDEBUG 1561 Loop *ParentL = L.getParentLoop(); 1562 #endif 1563 1564 // Check if the profile summary indicates that the profiled application 1565 // has a huge working set size, in which case we disable peeling to avoid 1566 // bloating it further. 1567 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1568 if (PSI && PSI->hasHugeWorkingSetSize()) 1569 LocalAllowPeeling = false; 1570 std::string LoopName = std::string(L.getName()); 1571 // The API here is quite complex to call and we allow to select some 1572 // flavors of unrolling during construction time (by setting UnrollOpts). 1573 LoopUnrollResult Result = tryToUnrollLoop( 1574 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1575 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1576 UnrollOpts.ForgetSCEV, /*Count*/ None, 1577 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1578 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1579 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1580 Changed |= Result != LoopUnrollResult::Unmodified; 1581 1582 // The parent must not be damaged by unrolling! 1583 #ifndef NDEBUG 1584 if (Result != LoopUnrollResult::Unmodified && ParentL) 1585 ParentL->verifyLoop(); 1586 #endif 1587 1588 // Clear any cached analysis results for L if we removed it completely. 1589 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1590 LAM->clear(L, LoopName); 1591 } 1592 1593 if (!Changed) 1594 return PreservedAnalyses::all(); 1595 1596 return getLoopPassPreservedAnalyses(); 1597 } 1598