xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 73f650435b207b851d1d1ee62a9ccf63ecd9f7ba)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ProfileSummaryInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Scalar/LoopPassManager.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPartialThreshold(
51     "unroll-partial-threshold", cl::Hidden,
52     cl::desc("The cost threshold for partial loop unrolling"));
53 
54 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
55     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
56     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
57              "to the threshold when aggressively unrolling a loop due to the "
58              "dynamic cost savings. If completely unrolling a loop will reduce "
59              "the total runtime from X to Y, we boost the loop unroll "
60              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
61              "X/Y). This limit avoids excessive code bloat."));
62 
63 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
64     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
65     cl::desc("Don't allow loop unrolling to simulate more than this number of"
66              "iterations when checking full unroll profitability"));
67 
68 static cl::opt<unsigned> UnrollCount(
69     "unroll-count", cl::Hidden,
70     cl::desc("Use this unroll count for all loops including those with "
71              "unroll_count pragma values, for testing purposes"));
72 
73 static cl::opt<unsigned> UnrollMaxCount(
74     "unroll-max-count", cl::Hidden,
75     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
76              "testing purposes"));
77 
78 static cl::opt<unsigned> UnrollFullMaxCount(
79     "unroll-full-max-count", cl::Hidden,
80     cl::desc(
81         "Set the max unroll count for full unrolling, for testing purposes"));
82 
83 static cl::opt<unsigned> UnrollPeelCount(
84     "unroll-peel-count", cl::Hidden,
85     cl::desc("Set the unroll peeling count, for testing purposes"));
86 
87 static cl::opt<bool>
88     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
89                        cl::desc("Allows loops to be partially unrolled until "
90                                 "-unroll-threshold loop size is reached."));
91 
92 static cl::opt<bool> UnrollAllowRemainder(
93     "unroll-allow-remainder", cl::Hidden,
94     cl::desc("Allow generation of a loop remainder (extra iterations) "
95              "when unrolling a loop."));
96 
97 static cl::opt<bool>
98     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
99                   cl::desc("Unroll loops with run-time trip counts"));
100 
101 static cl::opt<unsigned> UnrollMaxUpperBound(
102     "unroll-max-upperbound", cl::init(8), cl::Hidden,
103     cl::desc(
104         "The max of trip count upper bound that is considered in unrolling"));
105 
106 static cl::opt<unsigned> PragmaUnrollThreshold(
107     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
108     cl::desc("Unrolled size limit for loops with an unroll(full) or "
109              "unroll_count pragma."));
110 
111 static cl::opt<unsigned> FlatLoopTripCountThreshold(
112     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
113     cl::desc("If the runtime tripcount for the loop is lower than the "
114              "threshold, the loop is considered as flat and will be less "
115              "aggressively unrolled."));
116 
117 static cl::opt<bool>
118     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
119                        cl::desc("Allows loops to be peeled when the dynamic "
120                                 "trip count is known to be low."));
121 
122 static cl::opt<bool> UnrollUnrollRemainder(
123   "unroll-remainder", cl::Hidden,
124   cl::desc("Allow the loop remainder to be unrolled."));
125 
126 // This option isn't ever intended to be enabled, it serves to allow
127 // experiments to check the assumptions about when this kind of revisit is
128 // necessary.
129 static cl::opt<bool> UnrollRevisitChildLoops(
130     "unroll-revisit-child-loops", cl::Hidden,
131     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
132              "This shouldn't typically be needed as child loops (or their "
133              "clones) were already visited."));
134 
135 /// A magic value for use with the Threshold parameter to indicate
136 /// that the loop unroll should be performed regardless of how much
137 /// code expansion would result.
138 static const unsigned NoThreshold = UINT_MAX;
139 
140 /// Gather the various unrolling parameters based on the defaults, compiler
141 /// flags, TTI overrides and user specified parameters.
142 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
143     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
144     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
145     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
146     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
147   TargetTransformInfo::UnrollingPreferences UP;
148 
149   // Set up the defaults
150   UP.Threshold = OptLevel > 2 ? 300 : 150;
151   UP.MaxPercentThresholdBoost = 400;
152   UP.OptSizeThreshold = 0;
153   UP.PartialThreshold = 150;
154   UP.PartialOptSizeThreshold = 0;
155   UP.Count = 0;
156   UP.PeelCount = 0;
157   UP.DefaultUnrollRuntimeCount = 8;
158   UP.MaxCount = UINT_MAX;
159   UP.FullUnrollMaxCount = UINT_MAX;
160   UP.BEInsns = 2;
161   UP.Partial = false;
162   UP.Runtime = false;
163   UP.AllowRemainder = true;
164   UP.UnrollRemainder = false;
165   UP.AllowExpensiveTripCount = false;
166   UP.Force = false;
167   UP.UpperBound = false;
168   UP.AllowPeeling = true;
169 
170   // Override with any target specific settings
171   TTI.getUnrollingPreferences(L, SE, UP);
172 
173   // Apply size attributes
174   if (L->getHeader()->getParent()->optForSize()) {
175     UP.Threshold = UP.OptSizeThreshold;
176     UP.PartialThreshold = UP.PartialOptSizeThreshold;
177   }
178 
179   // Apply any user values specified by cl::opt
180   if (UnrollThreshold.getNumOccurrences() > 0)
181     UP.Threshold = UnrollThreshold;
182   if (UnrollPartialThreshold.getNumOccurrences() > 0)
183     UP.PartialThreshold = UnrollPartialThreshold;
184   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
185     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
186   if (UnrollMaxCount.getNumOccurrences() > 0)
187     UP.MaxCount = UnrollMaxCount;
188   if (UnrollFullMaxCount.getNumOccurrences() > 0)
189     UP.FullUnrollMaxCount = UnrollFullMaxCount;
190   if (UnrollPeelCount.getNumOccurrences() > 0)
191     UP.PeelCount = UnrollPeelCount;
192   if (UnrollAllowPartial.getNumOccurrences() > 0)
193     UP.Partial = UnrollAllowPartial;
194   if (UnrollAllowRemainder.getNumOccurrences() > 0)
195     UP.AllowRemainder = UnrollAllowRemainder;
196   if (UnrollRuntime.getNumOccurrences() > 0)
197     UP.Runtime = UnrollRuntime;
198   if (UnrollMaxUpperBound == 0)
199     UP.UpperBound = false;
200   if (UnrollAllowPeeling.getNumOccurrences() > 0)
201     UP.AllowPeeling = UnrollAllowPeeling;
202   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
203     UP.UnrollRemainder = UnrollUnrollRemainder;
204 
205   // Apply user values provided by argument
206   if (UserThreshold.hasValue()) {
207     UP.Threshold = *UserThreshold;
208     UP.PartialThreshold = *UserThreshold;
209   }
210   if (UserCount.hasValue())
211     UP.Count = *UserCount;
212   if (UserAllowPartial.hasValue())
213     UP.Partial = *UserAllowPartial;
214   if (UserRuntime.hasValue())
215     UP.Runtime = *UserRuntime;
216   if (UserUpperBound.hasValue())
217     UP.UpperBound = *UserUpperBound;
218   if (UserAllowPeeling.hasValue())
219     UP.AllowPeeling = *UserAllowPeeling;
220 
221   return UP;
222 }
223 
224 namespace {
225 /// A struct to densely store the state of an instruction after unrolling at
226 /// each iteration.
227 ///
228 /// This is designed to work like a tuple of <Instruction *, int> for the
229 /// purposes of hashing and lookup, but to be able to associate two boolean
230 /// states with each key.
231 struct UnrolledInstState {
232   Instruction *I;
233   int Iteration : 30;
234   unsigned IsFree : 1;
235   unsigned IsCounted : 1;
236 };
237 
238 /// Hashing and equality testing for a set of the instruction states.
239 struct UnrolledInstStateKeyInfo {
240   typedef DenseMapInfo<Instruction *> PtrInfo;
241   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
242   static inline UnrolledInstState getEmptyKey() {
243     return {PtrInfo::getEmptyKey(), 0, 0, 0};
244   }
245   static inline UnrolledInstState getTombstoneKey() {
246     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
247   }
248   static inline unsigned getHashValue(const UnrolledInstState &S) {
249     return PairInfo::getHashValue({S.I, S.Iteration});
250   }
251   static inline bool isEqual(const UnrolledInstState &LHS,
252                              const UnrolledInstState &RHS) {
253     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
254   }
255 };
256 }
257 
258 namespace {
259 struct EstimatedUnrollCost {
260   /// \brief The estimated cost after unrolling.
261   unsigned UnrolledCost;
262 
263   /// \brief The estimated dynamic cost of executing the instructions in the
264   /// rolled form.
265   unsigned RolledDynamicCost;
266 };
267 }
268 
269 /// \brief Figure out if the loop is worth full unrolling.
270 ///
271 /// Complete loop unrolling can make some loads constant, and we need to know
272 /// if that would expose any further optimization opportunities.  This routine
273 /// estimates this optimization.  It computes cost of unrolled loop
274 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
275 /// dynamic cost we mean that we won't count costs of blocks that are known not
276 /// to be executed (i.e. if we have a branch in the loop and we know that at the
277 /// given iteration its condition would be resolved to true, we won't add up the
278 /// cost of the 'false'-block).
279 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
280 /// the analysis failed (no benefits expected from the unrolling, or the loop is
281 /// too big to analyze), the returned value is None.
282 static Optional<EstimatedUnrollCost>
283 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
284                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
285                       unsigned MaxUnrolledLoopSize) {
286   // We want to be able to scale offsets by the trip count and add more offsets
287   // to them without checking for overflows, and we already don't want to
288   // analyze *massive* trip counts, so we force the max to be reasonably small.
289   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
290          "The unroll iterations max is too large!");
291 
292   // Only analyze inner loops. We can't properly estimate cost of nested loops
293   // and we won't visit inner loops again anyway.
294   if (!L->empty())
295     return None;
296 
297   // Don't simulate loops with a big or unknown tripcount
298   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
299       TripCount > UnrollMaxIterationsCountToAnalyze)
300     return None;
301 
302   SmallSetVector<BasicBlock *, 16> BBWorklist;
303   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
304   DenseMap<Value *, Constant *> SimplifiedValues;
305   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
306 
307   // The estimated cost of the unrolled form of the loop. We try to estimate
308   // this by simplifying as much as we can while computing the estimate.
309   unsigned UnrolledCost = 0;
310 
311   // We also track the estimated dynamic (that is, actually executed) cost in
312   // the rolled form. This helps identify cases when the savings from unrolling
313   // aren't just exposing dead control flows, but actual reduced dynamic
314   // instructions due to the simplifications which we expect to occur after
315   // unrolling.
316   unsigned RolledDynamicCost = 0;
317 
318   // We track the simplification of each instruction in each iteration. We use
319   // this to recursively merge costs into the unrolled cost on-demand so that
320   // we don't count the cost of any dead code. This is essentially a map from
321   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
322   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
323 
324   // A small worklist used to accumulate cost of instructions from each
325   // observable and reached root in the loop.
326   SmallVector<Instruction *, 16> CostWorklist;
327 
328   // PHI-used worklist used between iterations while accumulating cost.
329   SmallVector<Instruction *, 4> PHIUsedList;
330 
331   // Helper function to accumulate cost for instructions in the loop.
332   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
333     assert(Iteration >= 0 && "Cannot have a negative iteration!");
334     assert(CostWorklist.empty() && "Must start with an empty cost list");
335     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
336     CostWorklist.push_back(&RootI);
337     for (;; --Iteration) {
338       do {
339         Instruction *I = CostWorklist.pop_back_val();
340 
341         // InstCostMap only uses I and Iteration as a key, the other two values
342         // don't matter here.
343         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
344         if (CostIter == InstCostMap.end())
345           // If an input to a PHI node comes from a dead path through the loop
346           // we may have no cost data for it here. What that actually means is
347           // that it is free.
348           continue;
349         auto &Cost = *CostIter;
350         if (Cost.IsCounted)
351           // Already counted this instruction.
352           continue;
353 
354         // Mark that we are counting the cost of this instruction now.
355         Cost.IsCounted = true;
356 
357         // If this is a PHI node in the loop header, just add it to the PHI set.
358         if (auto *PhiI = dyn_cast<PHINode>(I))
359           if (PhiI->getParent() == L->getHeader()) {
360             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
361                                   "inherently simplify during unrolling.");
362             if (Iteration == 0)
363               continue;
364 
365             // Push the incoming value from the backedge into the PHI used list
366             // if it is an in-loop instruction. We'll use this to populate the
367             // cost worklist for the next iteration (as we count backwards).
368             if (auto *OpI = dyn_cast<Instruction>(
369                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
370               if (L->contains(OpI))
371                 PHIUsedList.push_back(OpI);
372             continue;
373           }
374 
375         // First accumulate the cost of this instruction.
376         if (!Cost.IsFree) {
377           UnrolledCost += TTI.getUserCost(I);
378           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
379                        << "): ");
380           DEBUG(I->dump());
381         }
382 
383         // We must count the cost of every operand which is not free,
384         // recursively. If we reach a loop PHI node, simply add it to the set
385         // to be considered on the next iteration (backwards!).
386         for (Value *Op : I->operands()) {
387           // Check whether this operand is free due to being a constant or
388           // outside the loop.
389           auto *OpI = dyn_cast<Instruction>(Op);
390           if (!OpI || !L->contains(OpI))
391             continue;
392 
393           // Otherwise accumulate its cost.
394           CostWorklist.push_back(OpI);
395         }
396       } while (!CostWorklist.empty());
397 
398       if (PHIUsedList.empty())
399         // We've exhausted the search.
400         break;
401 
402       assert(Iteration > 0 &&
403              "Cannot track PHI-used values past the first iteration!");
404       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
405       PHIUsedList.clear();
406     }
407   };
408 
409   // Ensure that we don't violate the loop structure invariants relied on by
410   // this analysis.
411   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
412   assert(L->isLCSSAForm(DT) &&
413          "Must have loops in LCSSA form to track live-out values.");
414 
415   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
416 
417   // Simulate execution of each iteration of the loop counting instructions,
418   // which would be simplified.
419   // Since the same load will take different values on different iterations,
420   // we literally have to go through all loop's iterations.
421   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
422     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
423 
424     // Prepare for the iteration by collecting any simplified entry or backedge
425     // inputs.
426     for (Instruction &I : *L->getHeader()) {
427       auto *PHI = dyn_cast<PHINode>(&I);
428       if (!PHI)
429         break;
430 
431       // The loop header PHI nodes must have exactly two input: one from the
432       // loop preheader and one from the loop latch.
433       assert(
434           PHI->getNumIncomingValues() == 2 &&
435           "Must have an incoming value only for the preheader and the latch.");
436 
437       Value *V = PHI->getIncomingValueForBlock(
438           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
439       Constant *C = dyn_cast<Constant>(V);
440       if (Iteration != 0 && !C)
441         C = SimplifiedValues.lookup(V);
442       if (C)
443         SimplifiedInputValues.push_back({PHI, C});
444     }
445 
446     // Now clear and re-populate the map for the next iteration.
447     SimplifiedValues.clear();
448     while (!SimplifiedInputValues.empty())
449       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
450 
451     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
452 
453     BBWorklist.clear();
454     BBWorklist.insert(L->getHeader());
455     // Note that we *must not* cache the size, this loop grows the worklist.
456     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
457       BasicBlock *BB = BBWorklist[Idx];
458 
459       // Visit all instructions in the given basic block and try to simplify
460       // it.  We don't change the actual IR, just count optimization
461       // opportunities.
462       for (Instruction &I : *BB) {
463         if (isa<DbgInfoIntrinsic>(I))
464           continue;
465 
466         // Track this instruction's expected baseline cost when executing the
467         // rolled loop form.
468         RolledDynamicCost += TTI.getUserCost(&I);
469 
470         // Visit the instruction to analyze its loop cost after unrolling,
471         // and if the visitor returns true, mark the instruction as free after
472         // unrolling and continue.
473         bool IsFree = Analyzer.visit(I);
474         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
475                                            (unsigned)IsFree,
476                                            /*IsCounted*/ false}).second;
477         (void)Inserted;
478         assert(Inserted && "Cannot have a state for an unvisited instruction!");
479 
480         if (IsFree)
481           continue;
482 
483         // Can't properly model a cost of a call.
484         // FIXME: With a proper cost model we should be able to do it.
485         if(isa<CallInst>(&I))
486           return None;
487 
488         // If the instruction might have a side-effect recursively account for
489         // the cost of it and all the instructions leading up to it.
490         if (I.mayHaveSideEffects())
491           AddCostRecursively(I, Iteration);
492 
493         // If unrolled body turns out to be too big, bail out.
494         if (UnrolledCost > MaxUnrolledLoopSize) {
495           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
496                        << "  UnrolledCost: " << UnrolledCost
497                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
498                        << "\n");
499           return None;
500         }
501       }
502 
503       TerminatorInst *TI = BB->getTerminator();
504 
505       // Add in the live successors by first checking whether we have terminator
506       // that may be simplified based on the values simplified by this call.
507       BasicBlock *KnownSucc = nullptr;
508       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
509         if (BI->isConditional()) {
510           if (Constant *SimpleCond =
511                   SimplifiedValues.lookup(BI->getCondition())) {
512             // Just take the first successor if condition is undef
513             if (isa<UndefValue>(SimpleCond))
514               KnownSucc = BI->getSuccessor(0);
515             else if (ConstantInt *SimpleCondVal =
516                          dyn_cast<ConstantInt>(SimpleCond))
517               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
518           }
519         }
520       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
521         if (Constant *SimpleCond =
522                 SimplifiedValues.lookup(SI->getCondition())) {
523           // Just take the first successor if condition is undef
524           if (isa<UndefValue>(SimpleCond))
525             KnownSucc = SI->getSuccessor(0);
526           else if (ConstantInt *SimpleCondVal =
527                        dyn_cast<ConstantInt>(SimpleCond))
528             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
529         }
530       }
531       if (KnownSucc) {
532         if (L->contains(KnownSucc))
533           BBWorklist.insert(KnownSucc);
534         else
535           ExitWorklist.insert({BB, KnownSucc});
536         continue;
537       }
538 
539       // Add BB's successors to the worklist.
540       for (BasicBlock *Succ : successors(BB))
541         if (L->contains(Succ))
542           BBWorklist.insert(Succ);
543         else
544           ExitWorklist.insert({BB, Succ});
545       AddCostRecursively(*TI, Iteration);
546     }
547 
548     // If we found no optimization opportunities on the first iteration, we
549     // won't find them on later ones too.
550     if (UnrolledCost == RolledDynamicCost) {
551       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
552                    << "  UnrolledCost: " << UnrolledCost << "\n");
553       return None;
554     }
555   }
556 
557   while (!ExitWorklist.empty()) {
558     BasicBlock *ExitingBB, *ExitBB;
559     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
560 
561     for (Instruction &I : *ExitBB) {
562       auto *PN = dyn_cast<PHINode>(&I);
563       if (!PN)
564         break;
565 
566       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
567       if (auto *OpI = dyn_cast<Instruction>(Op))
568         if (L->contains(OpI))
569           AddCostRecursively(*OpI, TripCount - 1);
570     }
571   }
572 
573   DEBUG(dbgs() << "Analysis finished:\n"
574                << "UnrolledCost: " << UnrolledCost << ", "
575                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
576   return {{UnrolledCost, RolledDynamicCost}};
577 }
578 
579 /// ApproximateLoopSize - Approximate the size of the loop.
580 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
581                                     bool &NotDuplicatable, bool &Convergent,
582                                     const TargetTransformInfo &TTI,
583                                     AssumptionCache *AC, unsigned BEInsns) {
584   SmallPtrSet<const Value *, 32> EphValues;
585   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
586 
587   CodeMetrics Metrics;
588   for (BasicBlock *BB : L->blocks())
589     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
590   NumCalls = Metrics.NumInlineCandidates;
591   NotDuplicatable = Metrics.notDuplicatable;
592   Convergent = Metrics.convergent;
593 
594   unsigned LoopSize = Metrics.NumInsts;
595 
596   // Don't allow an estimate of size zero.  This would allows unrolling of loops
597   // with huge iteration counts, which is a compile time problem even if it's
598   // not a problem for code quality. Also, the code using this size may assume
599   // that each loop has at least three instructions (likely a conditional
600   // branch, a comparison feeding that branch, and some kind of loop increment
601   // feeding that comparison instruction).
602   LoopSize = std::max(LoopSize, BEInsns + 1);
603 
604   return LoopSize;
605 }
606 
607 // Returns the loop hint metadata node with the given name (for example,
608 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
609 // returned.
610 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
611   if (MDNode *LoopID = L->getLoopID())
612     return GetUnrollMetadata(LoopID, Name);
613   return nullptr;
614 }
615 
616 // Returns true if the loop has an unroll(full) pragma.
617 static bool HasUnrollFullPragma(const Loop *L) {
618   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
619 }
620 
621 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
622 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
623 static bool HasUnrollEnablePragma(const Loop *L) {
624   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
625 }
626 
627 // Returns true if the loop has an unroll(disable) pragma.
628 static bool HasUnrollDisablePragma(const Loop *L) {
629   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
630 }
631 
632 // Returns true if the loop has an runtime unroll(disable) pragma.
633 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
634   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
635 }
636 
637 // If loop has an unroll_count pragma return the (necessarily
638 // positive) value from the pragma.  Otherwise return 0.
639 static unsigned UnrollCountPragmaValue(const Loop *L) {
640   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
641   if (MD) {
642     assert(MD->getNumOperands() == 2 &&
643            "Unroll count hint metadata should have two operands.");
644     unsigned Count =
645         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
646     assert(Count >= 1 && "Unroll count must be positive.");
647     return Count;
648   }
649   return 0;
650 }
651 
652 // Computes the boosting factor for complete unrolling.
653 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
654 // be beneficial to fully unroll the loop even if unrolledcost is large. We
655 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
656 // the unroll threshold.
657 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
658                                             unsigned MaxPercentThresholdBoost) {
659   if (Cost.RolledDynamicCost >= UINT_MAX / 100)
660     return 100;
661   else if (Cost.UnrolledCost != 0)
662     // The boosting factor is RolledDynamicCost / UnrolledCost
663     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
664                     MaxPercentThresholdBoost);
665   else
666     return MaxPercentThresholdBoost;
667 }
668 
669 // Returns loop size estimation for unrolled loop.
670 static uint64_t getUnrolledLoopSize(
671     unsigned LoopSize,
672     TargetTransformInfo::UnrollingPreferences &UP) {
673   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
674   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
675 }
676 
677 // Returns true if unroll count was set explicitly.
678 // Calculates unroll count and writes it to UP.Count.
679 static bool computeUnrollCount(
680     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
681     ScalarEvolution &SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount,
682     unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize,
683     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
684   // Check for explicit Count.
685   // 1st priority is unroll count set by "unroll-count" option.
686   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
687   if (UserUnrollCount) {
688     UP.Count = UnrollCount;
689     UP.AllowExpensiveTripCount = true;
690     UP.Force = true;
691     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
692       return true;
693   }
694 
695   // 2nd priority is unroll count set by pragma.
696   unsigned PragmaCount = UnrollCountPragmaValue(L);
697   if (PragmaCount > 0) {
698     UP.Count = PragmaCount;
699     UP.Runtime = true;
700     UP.AllowExpensiveTripCount = true;
701     UP.Force = true;
702     if (UP.AllowRemainder &&
703         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
704       return true;
705   }
706   bool PragmaFullUnroll = HasUnrollFullPragma(L);
707   if (PragmaFullUnroll && TripCount != 0) {
708     UP.Count = TripCount;
709     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
710       return false;
711   }
712 
713   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
714   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
715                         PragmaEnableUnroll || UserUnrollCount;
716 
717   if (ExplicitUnroll && TripCount != 0) {
718     // If the loop has an unrolling pragma, we want to be more aggressive with
719     // unrolling limits. Set thresholds to at least the PragmaThreshold value
720     // which is larger than the default limits.
721     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
722     UP.PartialThreshold =
723         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
724   }
725 
726   // 3rd priority is full unroll count.
727   // Full unroll makes sense only when TripCount or its upper bound could be
728   // statically calculated.
729   // Also we need to check if we exceed FullUnrollMaxCount.
730   // If using the upper bound to unroll, TripMultiple should be set to 1 because
731   // we do not know when loop may exit.
732   // MaxTripCount and ExactTripCount cannot both be non zero since we only
733   // compute the former when the latter is zero.
734   unsigned ExactTripCount = TripCount;
735   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
736          "ExtractTripCound and MaxTripCount cannot both be non zero.");
737   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
738   UP.Count = FullUnrollTripCount;
739   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
740     // When computing the unrolled size, note that BEInsns are not replicated
741     // like the rest of the loop body.
742     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
743       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
744       TripCount = FullUnrollTripCount;
745       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
746       return ExplicitUnroll;
747     } else {
748       // The loop isn't that small, but we still can fully unroll it if that
749       // helps to remove a significant number of instructions.
750       // To check that, run additional analysis on the loop.
751       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
752               L, FullUnrollTripCount, DT, SE, TTI,
753               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
754         unsigned Boost =
755             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
756         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
757           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
758           TripCount = FullUnrollTripCount;
759           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
760           return ExplicitUnroll;
761         }
762       }
763     }
764   }
765 
766   // 4th priority is loop peeling
767   computePeelCount(L, LoopSize, UP, TripCount);
768   if (UP.PeelCount) {
769     UP.Runtime = false;
770     UP.Count = 1;
771     return ExplicitUnroll;
772   }
773 
774   // 5th priority is partial unrolling.
775   // Try partial unroll only when TripCount could be staticaly calculated.
776   if (TripCount) {
777     UP.Partial |= ExplicitUnroll;
778     if (!UP.Partial) {
779       DEBUG(dbgs() << "  will not try to unroll partially because "
780                    << "-unroll-allow-partial not given\n");
781       UP.Count = 0;
782       return false;
783     }
784     if (UP.Count == 0)
785       UP.Count = TripCount;
786     if (UP.PartialThreshold != NoThreshold) {
787       // Reduce unroll count to be modulo of TripCount for partial unrolling.
788       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
789         UP.Count =
790             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
791             (LoopSize - UP.BEInsns);
792       if (UP.Count > UP.MaxCount)
793         UP.Count = UP.MaxCount;
794       while (UP.Count != 0 && TripCount % UP.Count != 0)
795         UP.Count--;
796       if (UP.AllowRemainder && UP.Count <= 1) {
797         // If there is no Count that is modulo of TripCount, set Count to
798         // largest power-of-two factor that satisfies the threshold limit.
799         // As we'll create fixup loop, do the type of unrolling only if
800         // remainder loop is allowed.
801         UP.Count = UP.DefaultUnrollRuntimeCount;
802         while (UP.Count != 0 &&
803                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
804           UP.Count >>= 1;
805       }
806       if (UP.Count < 2) {
807         if (PragmaEnableUnroll)
808           ORE->emit([&]() {
809             return OptimizationRemarkMissed(DEBUG_TYPE,
810                                             "UnrollAsDirectedTooLarge",
811                                             L->getStartLoc(), L->getHeader())
812                    << "Unable to unroll loop as directed by unroll(enable) "
813                       "pragma "
814                       "because unrolled size is too large.";
815           });
816         UP.Count = 0;
817       }
818     } else {
819       UP.Count = TripCount;
820     }
821     if (UP.Count > UP.MaxCount)
822       UP.Count = UP.MaxCount;
823     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
824         UP.Count != TripCount)
825       ORE->emit([&]() {
826         return OptimizationRemarkMissed(DEBUG_TYPE,
827                                         "FullUnrollAsDirectedTooLarge",
828                                         L->getStartLoc(), L->getHeader())
829                << "Unable to fully unroll loop as directed by unroll pragma "
830                   "because "
831                   "unrolled size is too large.";
832       });
833     return ExplicitUnroll;
834   }
835   assert(TripCount == 0 &&
836          "All cases when TripCount is constant should be covered here.");
837   if (PragmaFullUnroll)
838     ORE->emit([&]() {
839       return OptimizationRemarkMissed(
840                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
841                  L->getStartLoc(), L->getHeader())
842              << "Unable to fully unroll loop as directed by unroll(full) "
843                 "pragma "
844                 "because loop has a runtime trip count.";
845     });
846 
847   // 6th priority is runtime unrolling.
848   // Don't unroll a runtime trip count loop when it is disabled.
849   if (HasRuntimeUnrollDisablePragma(L)) {
850     UP.Count = 0;
851     return false;
852   }
853 
854   // Check if the runtime trip count is too small when profile is available.
855   if (L->getHeader()->getParent()->getEntryCount()) {
856     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
857       if (*ProfileTripCount < FlatLoopTripCountThreshold)
858         return false;
859       else
860         UP.AllowExpensiveTripCount = true;
861     }
862   }
863 
864   // Reduce count based on the type of unrolling and the threshold values.
865   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
866   if (!UP.Runtime) {
867     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
868                  << "-unroll-runtime not given\n");
869     UP.Count = 0;
870     return false;
871   }
872   if (UP.Count == 0)
873     UP.Count = UP.DefaultUnrollRuntimeCount;
874 
875   // Reduce unroll count to be the largest power-of-two factor of
876   // the original count which satisfies the threshold limit.
877   while (UP.Count != 0 &&
878          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
879     UP.Count >>= 1;
880 
881 #ifndef NDEBUG
882   unsigned OrigCount = UP.Count;
883 #endif
884 
885   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
886     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
887       UP.Count >>= 1;
888     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
889                     "specific or because the loop contains a convergent "
890                     "instruction), so unroll count must divide the trip "
891                     "multiple, "
892                  << TripMultiple << ".  Reducing unroll count from "
893                  << OrigCount << " to " << UP.Count << ".\n");
894     using namespace ore;
895     if (PragmaCount > 0 && !UP.AllowRemainder)
896       ORE->emit([&]() {
897         return OptimizationRemarkMissed(DEBUG_TYPE,
898                                         "DifferentUnrollCountFromDirected",
899                                         L->getStartLoc(), L->getHeader())
900                << "Unable to unroll loop the number of times directed by "
901                   "unroll_count pragma because remainder loop is restricted "
902                   "(that could architecture specific or because the loop "
903                   "contains a convergent instruction) and so must have an "
904                   "unroll "
905                   "count that divides the loop trip multiple of "
906                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
907                << NV("UnrollCount", UP.Count) << " time(s).";
908       });
909   }
910 
911   if (UP.Count > UP.MaxCount)
912     UP.Count = UP.MaxCount;
913   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
914   if (UP.Count < 2)
915     UP.Count = 0;
916   return ExplicitUnroll;
917 }
918 
919 static LoopUnrollResult tryToUnrollLoop(
920     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
921     const TargetTransformInfo &TTI, AssumptionCache &AC,
922     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
923     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
924     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
925     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
926   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
927                << "] Loop %" << L->getHeader()->getName() << "\n");
928   if (HasUnrollDisablePragma(L))
929     return LoopUnrollResult::Unmodified;
930   if (!L->isLoopSimplifyForm()) {
931     DEBUG(
932         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
933     return LoopUnrollResult::Unmodified;
934   }
935 
936   unsigned NumInlineCandidates;
937   bool NotDuplicatable;
938   bool Convergent;
939   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
940       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
941       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
942       ProvidedAllowPeeling);
943   // Exit early if unrolling is disabled.
944   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
945     return LoopUnrollResult::Unmodified;
946   unsigned LoopSize = ApproximateLoopSize(
947       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns);
948   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
949   if (NotDuplicatable) {
950     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
951                  << " instructions.\n");
952     return LoopUnrollResult::Unmodified;
953   }
954   if (NumInlineCandidates != 0) {
955     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
956     return LoopUnrollResult::Unmodified;
957   }
958 
959   // Find trip count and trip multiple if count is not available
960   unsigned TripCount = 0;
961   unsigned MaxTripCount = 0;
962   unsigned TripMultiple = 1;
963   // If there are multiple exiting blocks but one of them is the latch, use the
964   // latch for the trip count estimation. Otherwise insist on a single exiting
965   // block for the trip count estimation.
966   BasicBlock *ExitingBlock = L->getLoopLatch();
967   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
968     ExitingBlock = L->getExitingBlock();
969   if (ExitingBlock) {
970     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
971     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
972   }
973 
974   // If the loop contains a convergent operation, the prelude we'd add
975   // to do the first few instructions before we hit the unrolled loop
976   // is unsafe -- it adds a control-flow dependency to the convergent
977   // operation.  Therefore restrict remainder loop (try unrollig without).
978   //
979   // TODO: This is quite conservative.  In practice, convergent_op()
980   // is likely to be called unconditionally in the loop.  In this
981   // case, the program would be ill-formed (on most architectures)
982   // unless n were the same on all threads in a thread group.
983   // Assuming n is the same on all threads, any kind of unrolling is
984   // safe.  But currently llvm's notion of convergence isn't powerful
985   // enough to express this.
986   if (Convergent)
987     UP.AllowRemainder = false;
988 
989   // Try to find the trip count upper bound if we cannot find the exact trip
990   // count.
991   bool MaxOrZero = false;
992   if (!TripCount) {
993     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
994     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
995     // We can unroll by the upper bound amount if it's generally allowed or if
996     // we know that the loop is executed either the upper bound or zero times.
997     // (MaxOrZero unrolling keeps only the first loop test, so the number of
998     // loop tests remains the same compared to the non-unrolled version, whereas
999     // the generic upper bound unrolling keeps all but the last loop test so the
1000     // number of loop tests goes up which may end up being worse on targets with
1001     // constriained branch predictor resources so is controlled by an option.)
1002     // In addition we only unroll small upper bounds.
1003     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1004       MaxTripCount = 0;
1005     }
1006   }
1007 
1008   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1009   // fully unroll the loop.
1010   bool UseUpperBound = false;
1011   bool IsCountSetExplicitly =
1012       computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount,
1013                          TripMultiple, LoopSize, UP, UseUpperBound);
1014   if (!UP.Count)
1015     return LoopUnrollResult::Unmodified;
1016   // Unroll factor (Count) must be less or equal to TripCount.
1017   if (TripCount && UP.Count > TripCount)
1018     UP.Count = TripCount;
1019 
1020   // Unroll the loop.
1021   LoopUnrollResult UnrollResult = UnrollLoop(
1022       L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1023       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1024       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA);
1025   if (UnrollResult == LoopUnrollResult::Unmodified)
1026     return LoopUnrollResult::Unmodified;
1027 
1028   // If loop has an unroll count pragma or unrolled by explicitly set count
1029   // mark loop as unrolled to prevent unrolling beyond that requested.
1030   // If the loop was peeled, we already "used up" the profile information
1031   // we had, so we don't want to unroll or peel again.
1032   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1033       (IsCountSetExplicitly || UP.PeelCount))
1034     L->setLoopAlreadyUnrolled();
1035 
1036   return UnrollResult;
1037 }
1038 
1039 namespace {
1040 class LoopUnroll : public LoopPass {
1041 public:
1042   static char ID; // Pass ID, replacement for typeid
1043   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1044              Optional<unsigned> Count = None,
1045              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1046              Optional<bool> UpperBound = None,
1047              Optional<bool> AllowPeeling = None)
1048       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1049         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1050         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1051         ProvidedAllowPeeling(AllowPeeling) {
1052     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1053   }
1054 
1055   int OptLevel;
1056   Optional<unsigned> ProvidedCount;
1057   Optional<unsigned> ProvidedThreshold;
1058   Optional<bool> ProvidedAllowPartial;
1059   Optional<bool> ProvidedRuntime;
1060   Optional<bool> ProvidedUpperBound;
1061   Optional<bool> ProvidedAllowPeeling;
1062 
1063   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1064     if (skipLoop(L))
1065       return false;
1066 
1067     Function &F = *L->getHeader()->getParent();
1068 
1069     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1070     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1071     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1072     const TargetTransformInfo &TTI =
1073         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1074     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1075     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1076     // pass.  Function analyses need to be preserved across loop transformations
1077     // but ORE cannot be preserved (see comment before the pass definition).
1078     OptimizationRemarkEmitter ORE(&F);
1079     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1080 
1081     LoopUnrollResult Result = tryToUnrollLoop(
1082         L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount,
1083         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1084         ProvidedUpperBound, ProvidedAllowPeeling);
1085 
1086     if (Result == LoopUnrollResult::FullyUnrolled)
1087       LPM.markLoopAsDeleted(*L);
1088 
1089     return Result != LoopUnrollResult::Unmodified;
1090   }
1091 
1092   /// This transformation requires natural loop information & requires that
1093   /// loop preheaders be inserted into the CFG...
1094   ///
1095   void getAnalysisUsage(AnalysisUsage &AU) const override {
1096     AU.addRequired<AssumptionCacheTracker>();
1097     AU.addRequired<TargetTransformInfoWrapperPass>();
1098     // FIXME: Loop passes are required to preserve domtree, and for now we just
1099     // recreate dom info if anything gets unrolled.
1100     getLoopAnalysisUsage(AU);
1101   }
1102 };
1103 }
1104 
1105 char LoopUnroll::ID = 0;
1106 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1108 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1110 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1111 
1112 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1113                                  int AllowPartial, int Runtime, int UpperBound,
1114                                  int AllowPeeling) {
1115   // TODO: It would make more sense for this function to take the optionals
1116   // directly, but that's dangerous since it would silently break out of tree
1117   // callers.
1118   return new LoopUnroll(
1119       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1120       Count == -1 ? None : Optional<unsigned>(Count),
1121       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1122       Runtime == -1 ? None : Optional<bool>(Runtime),
1123       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1124       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1125 }
1126 
1127 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1128   return llvm::createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1129 }
1130 
1131 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1132                                           LoopStandardAnalysisResults &AR,
1133                                           LPMUpdater &Updater) {
1134   const auto &FAM =
1135       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1136   Function *F = L.getHeader()->getParent();
1137 
1138   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1139   // FIXME: This should probably be optional rather than required.
1140   if (!ORE)
1141     report_fatal_error(
1142         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1143         "cached at a higher level");
1144 
1145   // Keep track of the previous loop structure so we can identify new loops
1146   // created by unrolling.
1147   Loop *ParentL = L.getParentLoop();
1148   SmallPtrSet<Loop *, 4> OldLoops;
1149   if (ParentL)
1150     OldLoops.insert(ParentL->begin(), ParentL->end());
1151   else
1152     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1153 
1154   std::string LoopName = L.getName();
1155 
1156   bool Changed =
1157       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1158                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1159                       /*Threshold*/ None, /*AllowPartial*/ false,
1160                       /*Runtime*/ false, /*UpperBound*/ false,
1161                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1162   if (!Changed)
1163     return PreservedAnalyses::all();
1164 
1165   // The parent must not be damaged by unrolling!
1166 #ifndef NDEBUG
1167   if (ParentL)
1168     ParentL->verifyLoop();
1169 #endif
1170 
1171   // Unrolling can do several things to introduce new loops into a loop nest:
1172   // - Full unrolling clones child loops within the current loop but then
1173   //   removes the current loop making all of the children appear to be new
1174   //   sibling loops.
1175   //
1176   // When a new loop appears as a sibling loop after fully unrolling,
1177   // its nesting structure has fundamentally changed and we want to revisit
1178   // it to reflect that.
1179   //
1180   // When unrolling has removed the current loop, we need to tell the
1181   // infrastructure that it is gone.
1182   //
1183   // Finally, we support a debugging/testing mode where we revisit child loops
1184   // as well. These are not expected to require further optimizations as either
1185   // they or the loop they were cloned from have been directly visited already.
1186   // But the debugging mode allows us to check this assumption.
1187   bool IsCurrentLoopValid = false;
1188   SmallVector<Loop *, 4> SibLoops;
1189   if (ParentL)
1190     SibLoops.append(ParentL->begin(), ParentL->end());
1191   else
1192     SibLoops.append(AR.LI.begin(), AR.LI.end());
1193   erase_if(SibLoops, [&](Loop *SibLoop) {
1194     if (SibLoop == &L) {
1195       IsCurrentLoopValid = true;
1196       return true;
1197     }
1198 
1199     // Otherwise erase the loop from the list if it was in the old loops.
1200     return OldLoops.count(SibLoop) != 0;
1201   });
1202   Updater.addSiblingLoops(SibLoops);
1203 
1204   if (!IsCurrentLoopValid) {
1205     Updater.markLoopAsDeleted(L, LoopName);
1206   } else {
1207     // We can only walk child loops if the current loop remained valid.
1208     if (UnrollRevisitChildLoops) {
1209       // Walk *all* of the child loops.
1210       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1211       Updater.addChildLoops(ChildLoops);
1212     }
1213   }
1214 
1215   return getLoopPassPreservedAnalyses();
1216 }
1217 
1218 template <typename RangeT>
1219 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1220   SmallVector<Loop *, 8> Worklist;
1221   // We use an internal worklist to build up the preorder traversal without
1222   // recursion.
1223   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1224 
1225   for (Loop *RootL : Loops) {
1226     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1227     assert(PreOrderWorklist.empty() &&
1228            "Must start with an empty preorder walk worklist.");
1229     PreOrderWorklist.push_back(RootL);
1230     do {
1231       Loop *L = PreOrderWorklist.pop_back_val();
1232       PreOrderWorklist.append(L->begin(), L->end());
1233       PreOrderLoops.push_back(L);
1234     } while (!PreOrderWorklist.empty());
1235 
1236     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1237     PreOrderLoops.clear();
1238   }
1239   return Worklist;
1240 }
1241 
1242 PreservedAnalyses LoopUnrollPass::run(Function &F,
1243                                       FunctionAnalysisManager &AM) {
1244   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1245   auto &LI = AM.getResult<LoopAnalysis>(F);
1246   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1247   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1248   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1249   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1250 
1251   LoopAnalysisManager *LAM = nullptr;
1252   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1253     LAM = &LAMProxy->getManager();
1254 
1255   const ModuleAnalysisManager &MAM =
1256       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1257   ProfileSummaryInfo *PSI =
1258       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1259 
1260   bool Changed = false;
1261 
1262   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1263   // Since simplification may add new inner loops, it has to run before the
1264   // legality and profitability checks. This means running the loop unroller
1265   // will simplify all loops, regardless of whether anything end up being
1266   // unrolled.
1267   for (auto &L : LI) {
1268     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1269     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1270   }
1271 
1272   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1273 
1274   while (!Worklist.empty()) {
1275     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1276     // from back to front so that we work forward across the CFG, which
1277     // for unrolling is only needed to get optimization remarks emitted in
1278     // a forward order.
1279     Loop &L = *Worklist.pop_back_val();
1280 #ifndef NDEBUG
1281     Loop *ParentL = L.getParentLoop();
1282 #endif
1283 
1284     // The API here is quite complex to call, but there are only two interesting
1285     // states we support: partial and full (or "simple") unrolling. However, to
1286     // enable these things we actually pass "None" in for the optional to avoid
1287     // providing an explicit choice.
1288     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1289         AllowPeeling;
1290     // Check if the profile summary indicates that the profiled application
1291     // has a huge working set size, in which case we disable peeling to avoid
1292     // bloating it further.
1293     if (PSI && PSI->hasHugeWorkingSetSize())
1294       AllowPeeling = false;
1295     std::string LoopName = L.getName();
1296     LoopUnrollResult Result =
1297         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1298                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1299                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1300                         UpperBoundParam, AllowPeeling);
1301     Changed |= Result != LoopUnrollResult::Unmodified;
1302 
1303     // The parent must not be damaged by unrolling!
1304 #ifndef NDEBUG
1305     if (Result != LoopUnrollResult::Unmodified && ParentL)
1306       ParentL->verifyLoop();
1307 #endif
1308 
1309     // Clear any cached analysis results for L if we removed it completely.
1310     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1311       LAM->clear(L, LoopName);
1312   }
1313 
1314   if (!Changed)
1315     return PreservedAnalyses::all();
1316 
1317   return getLoopPassPreservedAnalyses();
1318 }
1319