1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopPassManager.h" 23 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InstVisitor.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/UnrollLoop.h" 39 #include <climits> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 static cl::opt<unsigned> 47 UnrollThreshold("unroll-threshold", cl::Hidden, 48 cl::desc("The baseline cost threshold for loop unrolling")); 49 50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 51 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 52 cl::desc("The percentage of estimated dynamic cost which must be saved by " 53 "unrolling to allow unrolling up to the max threshold.")); 54 55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 56 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 57 cl::desc("This is the amount discounted from the total unroll cost when " 58 "the unrolled form has a high dynamic cost savings (triggered by " 59 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 60 61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 62 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 63 cl::desc("Don't allow loop unrolling to simulate more than this number of" 64 "iterations when checking full unroll profitability")); 65 66 static cl::opt<unsigned> UnrollCount( 67 "unroll-count", cl::Hidden, 68 cl::desc("Use this unroll count for all loops including those with " 69 "unroll_count pragma values, for testing purposes")); 70 71 static cl::opt<unsigned> UnrollMaxCount( 72 "unroll-max-count", cl::Hidden, 73 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 74 "testing purposes")); 75 76 static cl::opt<unsigned> UnrollFullMaxCount( 77 "unroll-full-max-count", cl::Hidden, 78 cl::desc( 79 "Set the max unroll count for full unrolling, for testing purposes")); 80 81 static cl::opt<bool> 82 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 83 cl::desc("Allows loops to be partially unrolled until " 84 "-unroll-threshold loop size is reached.")); 85 86 static cl::opt<bool> UnrollAllowRemainder( 87 "unroll-allow-remainder", cl::Hidden, 88 cl::desc("Allow generation of a loop remainder (extra iterations) " 89 "when unrolling a loop.")); 90 91 static cl::opt<bool> 92 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 93 cl::desc("Unroll loops with run-time trip counts")); 94 95 static cl::opt<unsigned> UnrollMaxUpperBound( 96 "unroll-max-upperbound", cl::init(8), cl::Hidden, 97 cl::desc( 98 "The max of trip count upper bound that is considered in unrolling")); 99 100 static cl::opt<unsigned> PragmaUnrollThreshold( 101 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 102 cl::desc("Unrolled size limit for loops with an unroll(full) or " 103 "unroll_count pragma.")); 104 105 static cl::opt<unsigned> FlatLoopTripCountThreshold( 106 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 107 cl::desc("If the runtime tripcount for the loop is lower than the " 108 "threshold, the loop is considered as flat and will be less " 109 "aggressively unrolled.")); 110 111 /// A magic value for use with the Threshold parameter to indicate 112 /// that the loop unroll should be performed regardless of how much 113 /// code expansion would result. 114 static const unsigned NoThreshold = UINT_MAX; 115 116 /// Gather the various unrolling parameters based on the defaults, compiler 117 /// flags, TTI overrides and user specified parameters. 118 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 119 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 120 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 121 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 122 TargetTransformInfo::UnrollingPreferences UP; 123 124 // Set up the defaults 125 UP.Threshold = 150; 126 UP.PercentDynamicCostSavedThreshold = 50; 127 UP.DynamicCostSavingsDiscount = 100; 128 UP.OptSizeThreshold = 0; 129 UP.PartialThreshold = UP.Threshold; 130 UP.PartialOptSizeThreshold = 0; 131 UP.Count = 0; 132 UP.DefaultUnrollRuntimeCount = 8; 133 UP.MaxCount = UINT_MAX; 134 UP.FullUnrollMaxCount = UINT_MAX; 135 UP.BEInsns = 2; 136 UP.Partial = false; 137 UP.Runtime = false; 138 UP.AllowRemainder = true; 139 UP.AllowExpensiveTripCount = false; 140 UP.Force = false; 141 UP.UpperBound = false; 142 143 // Override with any target specific settings 144 TTI.getUnrollingPreferences(L, UP); 145 146 // Apply size attributes 147 if (L->getHeader()->getParent()->optForSize()) { 148 UP.Threshold = UP.OptSizeThreshold; 149 UP.PartialThreshold = UP.PartialOptSizeThreshold; 150 } 151 152 // Apply any user values specified by cl::opt 153 if (UnrollThreshold.getNumOccurrences() > 0) { 154 UP.Threshold = UnrollThreshold; 155 UP.PartialThreshold = UnrollThreshold; 156 } 157 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 158 UP.PercentDynamicCostSavedThreshold = 159 UnrollPercentDynamicCostSavedThreshold; 160 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 161 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 162 if (UnrollMaxCount.getNumOccurrences() > 0) 163 UP.MaxCount = UnrollMaxCount; 164 if (UnrollFullMaxCount.getNumOccurrences() > 0) 165 UP.FullUnrollMaxCount = UnrollFullMaxCount; 166 if (UnrollAllowPartial.getNumOccurrences() > 0) 167 UP.Partial = UnrollAllowPartial; 168 if (UnrollAllowRemainder.getNumOccurrences() > 0) 169 UP.AllowRemainder = UnrollAllowRemainder; 170 if (UnrollRuntime.getNumOccurrences() > 0) 171 UP.Runtime = UnrollRuntime; 172 if (UnrollMaxUpperBound == 0) 173 UP.UpperBound = false; 174 175 // Apply user values provided by argument 176 if (UserThreshold.hasValue()) { 177 UP.Threshold = *UserThreshold; 178 UP.PartialThreshold = *UserThreshold; 179 } 180 if (UserCount.hasValue()) 181 UP.Count = *UserCount; 182 if (UserAllowPartial.hasValue()) 183 UP.Partial = *UserAllowPartial; 184 if (UserRuntime.hasValue()) 185 UP.Runtime = *UserRuntime; 186 if (UserUpperBound.hasValue()) 187 UP.UpperBound = *UserUpperBound; 188 189 return UP; 190 } 191 192 namespace { 193 /// A struct to densely store the state of an instruction after unrolling at 194 /// each iteration. 195 /// 196 /// This is designed to work like a tuple of <Instruction *, int> for the 197 /// purposes of hashing and lookup, but to be able to associate two boolean 198 /// states with each key. 199 struct UnrolledInstState { 200 Instruction *I; 201 int Iteration : 30; 202 unsigned IsFree : 1; 203 unsigned IsCounted : 1; 204 }; 205 206 /// Hashing and equality testing for a set of the instruction states. 207 struct UnrolledInstStateKeyInfo { 208 typedef DenseMapInfo<Instruction *> PtrInfo; 209 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 210 static inline UnrolledInstState getEmptyKey() { 211 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 212 } 213 static inline UnrolledInstState getTombstoneKey() { 214 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 215 } 216 static inline unsigned getHashValue(const UnrolledInstState &S) { 217 return PairInfo::getHashValue({S.I, S.Iteration}); 218 } 219 static inline bool isEqual(const UnrolledInstState &LHS, 220 const UnrolledInstState &RHS) { 221 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 222 } 223 }; 224 } 225 226 namespace { 227 struct EstimatedUnrollCost { 228 /// \brief The estimated cost after unrolling. 229 int UnrolledCost; 230 231 /// \brief The estimated dynamic cost of executing the instructions in the 232 /// rolled form. 233 int RolledDynamicCost; 234 }; 235 } 236 237 /// \brief Figure out if the loop is worth full unrolling. 238 /// 239 /// Complete loop unrolling can make some loads constant, and we need to know 240 /// if that would expose any further optimization opportunities. This routine 241 /// estimates this optimization. It computes cost of unrolled loop 242 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 243 /// dynamic cost we mean that we won't count costs of blocks that are known not 244 /// to be executed (i.e. if we have a branch in the loop and we know that at the 245 /// given iteration its condition would be resolved to true, we won't add up the 246 /// cost of the 'false'-block). 247 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 248 /// the analysis failed (no benefits expected from the unrolling, or the loop is 249 /// too big to analyze), the returned value is None. 250 static Optional<EstimatedUnrollCost> 251 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 252 ScalarEvolution &SE, const TargetTransformInfo &TTI, 253 int MaxUnrolledLoopSize) { 254 // We want to be able to scale offsets by the trip count and add more offsets 255 // to them without checking for overflows, and we already don't want to 256 // analyze *massive* trip counts, so we force the max to be reasonably small. 257 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 258 "The unroll iterations max is too large!"); 259 260 // Only analyze inner loops. We can't properly estimate cost of nested loops 261 // and we won't visit inner loops again anyway. 262 if (!L->empty()) 263 return None; 264 265 // Don't simulate loops with a big or unknown tripcount 266 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 267 TripCount > UnrollMaxIterationsCountToAnalyze) 268 return None; 269 270 SmallSetVector<BasicBlock *, 16> BBWorklist; 271 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 272 DenseMap<Value *, Constant *> SimplifiedValues; 273 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 274 275 // The estimated cost of the unrolled form of the loop. We try to estimate 276 // this by simplifying as much as we can while computing the estimate. 277 int UnrolledCost = 0; 278 279 // We also track the estimated dynamic (that is, actually executed) cost in 280 // the rolled form. This helps identify cases when the savings from unrolling 281 // aren't just exposing dead control flows, but actual reduced dynamic 282 // instructions due to the simplifications which we expect to occur after 283 // unrolling. 284 int RolledDynamicCost = 0; 285 286 // We track the simplification of each instruction in each iteration. We use 287 // this to recursively merge costs into the unrolled cost on-demand so that 288 // we don't count the cost of any dead code. This is essentially a map from 289 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 290 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 291 292 // A small worklist used to accumulate cost of instructions from each 293 // observable and reached root in the loop. 294 SmallVector<Instruction *, 16> CostWorklist; 295 296 // PHI-used worklist used between iterations while accumulating cost. 297 SmallVector<Instruction *, 4> PHIUsedList; 298 299 // Helper function to accumulate cost for instructions in the loop. 300 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 301 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 302 assert(CostWorklist.empty() && "Must start with an empty cost list"); 303 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 304 CostWorklist.push_back(&RootI); 305 for (;; --Iteration) { 306 do { 307 Instruction *I = CostWorklist.pop_back_val(); 308 309 // InstCostMap only uses I and Iteration as a key, the other two values 310 // don't matter here. 311 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 312 if (CostIter == InstCostMap.end()) 313 // If an input to a PHI node comes from a dead path through the loop 314 // we may have no cost data for it here. What that actually means is 315 // that it is free. 316 continue; 317 auto &Cost = *CostIter; 318 if (Cost.IsCounted) 319 // Already counted this instruction. 320 continue; 321 322 // Mark that we are counting the cost of this instruction now. 323 Cost.IsCounted = true; 324 325 // If this is a PHI node in the loop header, just add it to the PHI set. 326 if (auto *PhiI = dyn_cast<PHINode>(I)) 327 if (PhiI->getParent() == L->getHeader()) { 328 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 329 "inherently simplify during unrolling."); 330 if (Iteration == 0) 331 continue; 332 333 // Push the incoming value from the backedge into the PHI used list 334 // if it is an in-loop instruction. We'll use this to populate the 335 // cost worklist for the next iteration (as we count backwards). 336 if (auto *OpI = dyn_cast<Instruction>( 337 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 338 if (L->contains(OpI)) 339 PHIUsedList.push_back(OpI); 340 continue; 341 } 342 343 // First accumulate the cost of this instruction. 344 if (!Cost.IsFree) { 345 UnrolledCost += TTI.getUserCost(I); 346 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 347 << "): "); 348 DEBUG(I->dump()); 349 } 350 351 // We must count the cost of every operand which is not free, 352 // recursively. If we reach a loop PHI node, simply add it to the set 353 // to be considered on the next iteration (backwards!). 354 for (Value *Op : I->operands()) { 355 // Check whether this operand is free due to being a constant or 356 // outside the loop. 357 auto *OpI = dyn_cast<Instruction>(Op); 358 if (!OpI || !L->contains(OpI)) 359 continue; 360 361 // Otherwise accumulate its cost. 362 CostWorklist.push_back(OpI); 363 } 364 } while (!CostWorklist.empty()); 365 366 if (PHIUsedList.empty()) 367 // We've exhausted the search. 368 break; 369 370 assert(Iteration > 0 && 371 "Cannot track PHI-used values past the first iteration!"); 372 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 373 PHIUsedList.clear(); 374 } 375 }; 376 377 // Ensure that we don't violate the loop structure invariants relied on by 378 // this analysis. 379 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 380 assert(L->isLCSSAForm(DT) && 381 "Must have loops in LCSSA form to track live-out values."); 382 383 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 384 385 // Simulate execution of each iteration of the loop counting instructions, 386 // which would be simplified. 387 // Since the same load will take different values on different iterations, 388 // we literally have to go through all loop's iterations. 389 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 390 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 391 392 // Prepare for the iteration by collecting any simplified entry or backedge 393 // inputs. 394 for (Instruction &I : *L->getHeader()) { 395 auto *PHI = dyn_cast<PHINode>(&I); 396 if (!PHI) 397 break; 398 399 // The loop header PHI nodes must have exactly two input: one from the 400 // loop preheader and one from the loop latch. 401 assert( 402 PHI->getNumIncomingValues() == 2 && 403 "Must have an incoming value only for the preheader and the latch."); 404 405 Value *V = PHI->getIncomingValueForBlock( 406 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 407 Constant *C = dyn_cast<Constant>(V); 408 if (Iteration != 0 && !C) 409 C = SimplifiedValues.lookup(V); 410 if (C) 411 SimplifiedInputValues.push_back({PHI, C}); 412 } 413 414 // Now clear and re-populate the map for the next iteration. 415 SimplifiedValues.clear(); 416 while (!SimplifiedInputValues.empty()) 417 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 418 419 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 420 421 BBWorklist.clear(); 422 BBWorklist.insert(L->getHeader()); 423 // Note that we *must not* cache the size, this loop grows the worklist. 424 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 425 BasicBlock *BB = BBWorklist[Idx]; 426 427 // Visit all instructions in the given basic block and try to simplify 428 // it. We don't change the actual IR, just count optimization 429 // opportunities. 430 for (Instruction &I : *BB) { 431 if (isa<DbgInfoIntrinsic>(I)) 432 continue; 433 434 // Track this instruction's expected baseline cost when executing the 435 // rolled loop form. 436 RolledDynamicCost += TTI.getUserCost(&I); 437 438 // Visit the instruction to analyze its loop cost after unrolling, 439 // and if the visitor returns true, mark the instruction as free after 440 // unrolling and continue. 441 bool IsFree = Analyzer.visit(I); 442 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 443 (unsigned)IsFree, 444 /*IsCounted*/ false}).second; 445 (void)Inserted; 446 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 447 448 if (IsFree) 449 continue; 450 451 // Can't properly model a cost of a call. 452 // FIXME: With a proper cost model we should be able to do it. 453 if(isa<CallInst>(&I)) 454 return None; 455 456 // If the instruction might have a side-effect recursively account for 457 // the cost of it and all the instructions leading up to it. 458 if (I.mayHaveSideEffects()) 459 AddCostRecursively(I, Iteration); 460 461 // If unrolled body turns out to be too big, bail out. 462 if (UnrolledCost > MaxUnrolledLoopSize) { 463 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 464 << " UnrolledCost: " << UnrolledCost 465 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 466 << "\n"); 467 return None; 468 } 469 } 470 471 TerminatorInst *TI = BB->getTerminator(); 472 473 // Add in the live successors by first checking whether we have terminator 474 // that may be simplified based on the values simplified by this call. 475 BasicBlock *KnownSucc = nullptr; 476 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 477 if (BI->isConditional()) { 478 if (Constant *SimpleCond = 479 SimplifiedValues.lookup(BI->getCondition())) { 480 // Just take the first successor if condition is undef 481 if (isa<UndefValue>(SimpleCond)) 482 KnownSucc = BI->getSuccessor(0); 483 else if (ConstantInt *SimpleCondVal = 484 dyn_cast<ConstantInt>(SimpleCond)) 485 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 486 } 487 } 488 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 489 if (Constant *SimpleCond = 490 SimplifiedValues.lookup(SI->getCondition())) { 491 // Just take the first successor if condition is undef 492 if (isa<UndefValue>(SimpleCond)) 493 KnownSucc = SI->getSuccessor(0); 494 else if (ConstantInt *SimpleCondVal = 495 dyn_cast<ConstantInt>(SimpleCond)) 496 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 497 } 498 } 499 if (KnownSucc) { 500 if (L->contains(KnownSucc)) 501 BBWorklist.insert(KnownSucc); 502 else 503 ExitWorklist.insert({BB, KnownSucc}); 504 continue; 505 } 506 507 // Add BB's successors to the worklist. 508 for (BasicBlock *Succ : successors(BB)) 509 if (L->contains(Succ)) 510 BBWorklist.insert(Succ); 511 else 512 ExitWorklist.insert({BB, Succ}); 513 AddCostRecursively(*TI, Iteration); 514 } 515 516 // If we found no optimization opportunities on the first iteration, we 517 // won't find them on later ones too. 518 if (UnrolledCost == RolledDynamicCost) { 519 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 520 << " UnrolledCost: " << UnrolledCost << "\n"); 521 return None; 522 } 523 } 524 525 while (!ExitWorklist.empty()) { 526 BasicBlock *ExitingBB, *ExitBB; 527 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 528 529 for (Instruction &I : *ExitBB) { 530 auto *PN = dyn_cast<PHINode>(&I); 531 if (!PN) 532 break; 533 534 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 535 if (auto *OpI = dyn_cast<Instruction>(Op)) 536 if (L->contains(OpI)) 537 AddCostRecursively(*OpI, TripCount - 1); 538 } 539 } 540 541 DEBUG(dbgs() << "Analysis finished:\n" 542 << "UnrolledCost: " << UnrolledCost << ", " 543 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 544 return {{UnrolledCost, RolledDynamicCost}}; 545 } 546 547 /// ApproximateLoopSize - Approximate the size of the loop. 548 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 549 bool &NotDuplicatable, bool &Convergent, 550 const TargetTransformInfo &TTI, 551 AssumptionCache *AC, unsigned BEInsns) { 552 SmallPtrSet<const Value *, 32> EphValues; 553 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 554 555 CodeMetrics Metrics; 556 for (BasicBlock *BB : L->blocks()) 557 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 558 NumCalls = Metrics.NumInlineCandidates; 559 NotDuplicatable = Metrics.notDuplicatable; 560 Convergent = Metrics.convergent; 561 562 unsigned LoopSize = Metrics.NumInsts; 563 564 // Don't allow an estimate of size zero. This would allows unrolling of loops 565 // with huge iteration counts, which is a compile time problem even if it's 566 // not a problem for code quality. Also, the code using this size may assume 567 // that each loop has at least three instructions (likely a conditional 568 // branch, a comparison feeding that branch, and some kind of loop increment 569 // feeding that comparison instruction). 570 LoopSize = std::max(LoopSize, BEInsns + 1); 571 572 return LoopSize; 573 } 574 575 // Returns the loop hint metadata node with the given name (for example, 576 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 577 // returned. 578 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 579 if (MDNode *LoopID = L->getLoopID()) 580 return GetUnrollMetadata(LoopID, Name); 581 return nullptr; 582 } 583 584 // Returns true if the loop has an unroll(full) pragma. 585 static bool HasUnrollFullPragma(const Loop *L) { 586 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 587 } 588 589 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 590 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 591 static bool HasUnrollEnablePragma(const Loop *L) { 592 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 593 } 594 595 // Returns true if the loop has an unroll(disable) pragma. 596 static bool HasUnrollDisablePragma(const Loop *L) { 597 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 598 } 599 600 // Returns true if the loop has an runtime unroll(disable) pragma. 601 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 602 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 603 } 604 605 // If loop has an unroll_count pragma return the (necessarily 606 // positive) value from the pragma. Otherwise return 0. 607 static unsigned UnrollCountPragmaValue(const Loop *L) { 608 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 609 if (MD) { 610 assert(MD->getNumOperands() == 2 && 611 "Unroll count hint metadata should have two operands."); 612 unsigned Count = 613 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 614 assert(Count >= 1 && "Unroll count must be positive."); 615 return Count; 616 } 617 return 0; 618 } 619 620 // Remove existing unroll metadata and add unroll disable metadata to 621 // indicate the loop has already been unrolled. This prevents a loop 622 // from being unrolled more than is directed by a pragma if the loop 623 // unrolling pass is run more than once (which it generally is). 624 static void SetLoopAlreadyUnrolled(Loop *L) { 625 MDNode *LoopID = L->getLoopID(); 626 // First remove any existing loop unrolling metadata. 627 SmallVector<Metadata *, 4> MDs; 628 // Reserve first location for self reference to the LoopID metadata node. 629 MDs.push_back(nullptr); 630 631 if (LoopID) { 632 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 633 bool IsUnrollMetadata = false; 634 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 635 if (MD) { 636 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 637 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 638 } 639 if (!IsUnrollMetadata) 640 MDs.push_back(LoopID->getOperand(i)); 641 } 642 } 643 644 // Add unroll(disable) metadata to disable future unrolling. 645 LLVMContext &Context = L->getHeader()->getContext(); 646 SmallVector<Metadata *, 1> DisableOperands; 647 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 648 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 649 MDs.push_back(DisableNode); 650 651 MDNode *NewLoopID = MDNode::get(Context, MDs); 652 // Set operand 0 to refer to the loop id itself. 653 NewLoopID->replaceOperandWith(0, NewLoopID); 654 L->setLoopID(NewLoopID); 655 } 656 657 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 658 unsigned PercentDynamicCostSavedThreshold, 659 unsigned DynamicCostSavingsDiscount, 660 uint64_t UnrolledCost, 661 uint64_t RolledDynamicCost) { 662 if (Threshold == NoThreshold) { 663 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 664 return true; 665 } 666 667 if (UnrolledCost <= Threshold) { 668 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 669 << UnrolledCost << "<=" << Threshold << "\n"); 670 return true; 671 } 672 673 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 674 assert(RolledDynamicCost >= UnrolledCost && 675 "Cannot have a higher unrolled cost than a rolled cost!"); 676 677 // Compute the percentage of the dynamic cost in the rolled form that is 678 // saved when unrolled. If unrolling dramatically reduces the estimated 679 // dynamic cost of the loop, we use a higher threshold to allow more 680 // unrolling. 681 unsigned PercentDynamicCostSaved = 682 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 683 684 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 685 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 686 (int64_t)Threshold) { 687 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 688 "expected dynamic cost by " 689 << PercentDynamicCostSaved << "% (threshold: " 690 << PercentDynamicCostSavedThreshold << "%)\n" 691 << " and the unrolled cost (" << UnrolledCost 692 << ") is less than the max threshold (" 693 << DynamicCostSavingsDiscount << ").\n"); 694 return true; 695 } 696 697 DEBUG(dbgs() << " Too large to fully unroll:\n"); 698 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 699 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 700 DEBUG(dbgs() << " Percent cost saved threshold: " 701 << PercentDynamicCostSavedThreshold << "%\n"); 702 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 703 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 704 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 705 << "\n"); 706 return false; 707 } 708 709 // Returns loop size estimation for unrolled loop. 710 static uint64_t getUnrolledLoopSize( 711 unsigned LoopSize, 712 TargetTransformInfo::UnrollingPreferences &UP) { 713 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 714 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 715 } 716 717 // Returns true if unroll count was set explicitly. 718 // Calculates unroll count and writes it to UP.Count. 719 static bool computeUnrollCount( 720 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 721 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 722 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 723 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 724 // Check for explicit Count. 725 // 1st priority is unroll count set by "unroll-count" option. 726 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 727 if (UserUnrollCount) { 728 UP.Count = UnrollCount; 729 UP.AllowExpensiveTripCount = true; 730 UP.Force = true; 731 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 732 return true; 733 } 734 735 // 2nd priority is unroll count set by pragma. 736 unsigned PragmaCount = UnrollCountPragmaValue(L); 737 if (PragmaCount > 0) { 738 UP.Count = PragmaCount; 739 UP.Runtime = true; 740 UP.AllowExpensiveTripCount = true; 741 UP.Force = true; 742 if (UP.AllowRemainder && 743 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 744 return true; 745 } 746 bool PragmaFullUnroll = HasUnrollFullPragma(L); 747 if (PragmaFullUnroll && TripCount != 0) { 748 UP.Count = TripCount; 749 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 750 return false; 751 } 752 753 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 754 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 755 PragmaEnableUnroll || UserUnrollCount; 756 757 // Check if the runtime trip count is too small when profile is available. 758 if (L->getHeader()->getParent()->getEntryCount() && TripCount == 0) { 759 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 760 if (*ProfileTripCount < FlatLoopTripCountThreshold) 761 return false; 762 else 763 UP.AllowExpensiveTripCount = true; 764 } 765 } 766 767 if (ExplicitUnroll && TripCount != 0) { 768 // If the loop has an unrolling pragma, we want to be more aggressive with 769 // unrolling limits. Set thresholds to at least the PragmaThreshold value 770 // which is larger than the default limits. 771 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 772 UP.PartialThreshold = 773 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 774 } 775 776 // 3rd priority is full unroll count. 777 // Full unroll makes sense only when TripCount or its upper bound could be 778 // statically calculated. 779 // Also we need to check if we exceed FullUnrollMaxCount. 780 // If using the upper bound to unroll, TripMultiple should be set to 1 because 781 // we do not know when loop may exit. 782 // MaxTripCount and ExactTripCount cannot both be non zero since we only 783 // compute the former when the latter is zero. 784 unsigned ExactTripCount = TripCount; 785 assert((ExactTripCount == 0 || MaxTripCount == 0) && 786 "ExtractTripCound and MaxTripCount cannot both be non zero."); 787 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 788 UP.Count = FullUnrollTripCount; 789 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 790 // When computing the unrolled size, note that BEInsns are not replicated 791 // like the rest of the loop body. 792 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 793 getUnrolledLoopSize(LoopSize, UP), 794 getUnrolledLoopSize(LoopSize, UP))) { 795 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 796 TripCount = FullUnrollTripCount; 797 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 798 return ExplicitUnroll; 799 } else { 800 // The loop isn't that small, but we still can fully unroll it if that 801 // helps to remove a significant number of instructions. 802 // To check that, run additional analysis on the loop. 803 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 804 L, FullUnrollTripCount, DT, *SE, TTI, 805 UP.Threshold + UP.DynamicCostSavingsDiscount)) 806 if (canUnrollCompletely(L, UP.Threshold, 807 UP.PercentDynamicCostSavedThreshold, 808 UP.DynamicCostSavingsDiscount, 809 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 810 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 811 TripCount = FullUnrollTripCount; 812 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 813 return ExplicitUnroll; 814 } 815 } 816 } 817 818 // 4rd priority is partial unrolling. 819 // Try partial unroll only when TripCount could be staticaly calculated. 820 if (TripCount) { 821 UP.Partial |= ExplicitUnroll; 822 if (!UP.Partial) { 823 DEBUG(dbgs() << " will not try to unroll partially because " 824 << "-unroll-allow-partial not given\n"); 825 UP.Count = 0; 826 return false; 827 } 828 if (UP.Count == 0) 829 UP.Count = TripCount; 830 if (UP.PartialThreshold != NoThreshold) { 831 // Reduce unroll count to be modulo of TripCount for partial unrolling. 832 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 833 UP.Count = 834 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 835 (LoopSize - UP.BEInsns); 836 if (UP.Count > UP.MaxCount) 837 UP.Count = UP.MaxCount; 838 while (UP.Count != 0 && TripCount % UP.Count != 0) 839 UP.Count--; 840 if (UP.AllowRemainder && UP.Count <= 1) { 841 // If there is no Count that is modulo of TripCount, set Count to 842 // largest power-of-two factor that satisfies the threshold limit. 843 // As we'll create fixup loop, do the type of unrolling only if 844 // remainder loop is allowed. 845 UP.Count = UP.DefaultUnrollRuntimeCount; 846 while (UP.Count != 0 && 847 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 848 UP.Count >>= 1; 849 } 850 if (UP.Count < 2) { 851 if (PragmaEnableUnroll) 852 ORE->emit( 853 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 854 L->getStartLoc(), L->getHeader()) 855 << "Unable to unroll loop as directed by unroll(enable) pragma " 856 "because unrolled size is too large."); 857 UP.Count = 0; 858 } 859 } else { 860 UP.Count = TripCount; 861 } 862 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 863 UP.Count != TripCount) 864 ORE->emit( 865 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 866 L->getStartLoc(), L->getHeader()) 867 << "Unable to fully unroll loop as directed by unroll pragma because " 868 "unrolled size is too large."); 869 return ExplicitUnroll; 870 } 871 assert(TripCount == 0 && 872 "All cases when TripCount is constant should be covered here."); 873 if (PragmaFullUnroll) 874 ORE->emit( 875 OptimizationRemarkMissed(DEBUG_TYPE, 876 "CantFullUnrollAsDirectedRuntimeTripCount", 877 L->getStartLoc(), L->getHeader()) 878 << "Unable to fully unroll loop as directed by unroll(full) pragma " 879 "because loop has a runtime trip count."); 880 881 // 5th priority is runtime unrolling. 882 // Don't unroll a runtime trip count loop when it is disabled. 883 if (HasRuntimeUnrollDisablePragma(L)) { 884 UP.Count = 0; 885 return false; 886 } 887 // Reduce count based on the type of unrolling and the threshold values. 888 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 889 if (!UP.Runtime) { 890 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 891 << "-unroll-runtime not given\n"); 892 UP.Count = 0; 893 return false; 894 } 895 if (UP.Count == 0) 896 UP.Count = UP.DefaultUnrollRuntimeCount; 897 898 // Reduce unroll count to be the largest power-of-two factor of 899 // the original count which satisfies the threshold limit. 900 while (UP.Count != 0 && 901 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 902 UP.Count >>= 1; 903 904 #ifndef NDEBUG 905 unsigned OrigCount = UP.Count; 906 #endif 907 908 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 909 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 910 UP.Count >>= 1; 911 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 912 "specific or because the loop contains a convergent " 913 "instruction), so unroll count must divide the trip " 914 "multiple, " 915 << TripMultiple << ". Reducing unroll count from " 916 << OrigCount << " to " << UP.Count << ".\n"); 917 using namespace ore; 918 if (PragmaCount > 0 && !UP.AllowRemainder) 919 ORE->emit( 920 OptimizationRemarkMissed(DEBUG_TYPE, 921 "DifferentUnrollCountFromDirected", 922 L->getStartLoc(), L->getHeader()) 923 << "Unable to unroll loop the number of times directed by " 924 "unroll_count pragma because remainder loop is restricted " 925 "(that could architecture specific or because the loop " 926 "contains a convergent instruction) and so must have an unroll " 927 "count that divides the loop trip multiple of " 928 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 929 << NV("UnrollCount", UP.Count) << " time(s)."); 930 } 931 932 if (UP.Count > UP.MaxCount) 933 UP.Count = UP.MaxCount; 934 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 935 if (UP.Count < 2) 936 UP.Count = 0; 937 return ExplicitUnroll; 938 } 939 940 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 941 ScalarEvolution *SE, const TargetTransformInfo &TTI, 942 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 943 bool PreserveLCSSA, 944 Optional<unsigned> ProvidedCount, 945 Optional<unsigned> ProvidedThreshold, 946 Optional<bool> ProvidedAllowPartial, 947 Optional<bool> ProvidedRuntime, 948 Optional<bool> ProvidedUpperBound) { 949 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 950 << "] Loop %" << L->getHeader()->getName() << "\n"); 951 if (HasUnrollDisablePragma(L)) 952 return false; 953 if (!L->isLoopSimplifyForm()) { 954 DEBUG( 955 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 956 return false; 957 } 958 959 unsigned NumInlineCandidates; 960 bool NotDuplicatable; 961 bool Convergent; 962 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 963 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 964 ProvidedRuntime, ProvidedUpperBound); 965 // Exit early if unrolling is disabled. 966 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 967 return false; 968 unsigned LoopSize = ApproximateLoopSize( 969 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns); 970 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 971 if (NotDuplicatable) { 972 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 973 << " instructions.\n"); 974 return false; 975 } 976 if (NumInlineCandidates != 0) { 977 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 978 return false; 979 } 980 981 // Find trip count and trip multiple if count is not available 982 unsigned TripCount = 0; 983 unsigned MaxTripCount = 0; 984 unsigned TripMultiple = 1; 985 // If there are multiple exiting blocks but one of them is the latch, use the 986 // latch for the trip count estimation. Otherwise insist on a single exiting 987 // block for the trip count estimation. 988 BasicBlock *ExitingBlock = L->getLoopLatch(); 989 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 990 ExitingBlock = L->getExitingBlock(); 991 if (ExitingBlock) { 992 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 993 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 994 } 995 996 // If the loop contains a convergent operation, the prelude we'd add 997 // to do the first few instructions before we hit the unrolled loop 998 // is unsafe -- it adds a control-flow dependency to the convergent 999 // operation. Therefore restrict remainder loop (try unrollig without). 1000 // 1001 // TODO: This is quite conservative. In practice, convergent_op() 1002 // is likely to be called unconditionally in the loop. In this 1003 // case, the program would be ill-formed (on most architectures) 1004 // unless n were the same on all threads in a thread group. 1005 // Assuming n is the same on all threads, any kind of unrolling is 1006 // safe. But currently llvm's notion of convergence isn't powerful 1007 // enough to express this. 1008 if (Convergent) 1009 UP.AllowRemainder = false; 1010 1011 // Try to find the trip count upper bound if we cannot find the exact trip 1012 // count. 1013 bool MaxOrZero = false; 1014 if (!TripCount) { 1015 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1016 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1017 // We can unroll by the upper bound amount if it's generally allowed or if 1018 // we know that the loop is executed either the upper bound or zero times. 1019 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1020 // loop tests remains the same compared to the non-unrolled version, whereas 1021 // the generic upper bound unrolling keeps all but the last loop test so the 1022 // number of loop tests goes up which may end up being worse on targets with 1023 // constriained branch predictor resources so is controlled by an option.) 1024 // In addition we only unroll small upper bounds. 1025 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1026 MaxTripCount = 0; 1027 } 1028 } 1029 1030 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1031 // fully unroll the loop. 1032 bool UseUpperBound = false; 1033 bool IsCountSetExplicitly = 1034 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1035 TripMultiple, LoopSize, UP, UseUpperBound); 1036 if (!UP.Count) 1037 return false; 1038 // Unroll factor (Count) must be less or equal to TripCount. 1039 if (TripCount && UP.Count > TripCount) 1040 UP.Count = TripCount; 1041 1042 // Unroll the loop. 1043 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1044 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1045 TripMultiple, LI, SE, &DT, &AC, &ORE, PreserveLCSSA)) 1046 return false; 1047 1048 // If loop has an unroll count pragma or unrolled by explicitly set count 1049 // mark loop as unrolled to prevent unrolling beyond that requested. 1050 if (IsCountSetExplicitly) 1051 SetLoopAlreadyUnrolled(L); 1052 return true; 1053 } 1054 1055 namespace { 1056 class LoopUnroll : public LoopPass { 1057 public: 1058 static char ID; // Pass ID, replacement for typeid 1059 LoopUnroll(Optional<unsigned> Threshold = None, 1060 Optional<unsigned> Count = None, 1061 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1062 Optional<bool> UpperBound = None) 1063 : LoopPass(ID), ProvidedCount(std::move(Count)), 1064 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1065 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1066 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1067 } 1068 1069 Optional<unsigned> ProvidedCount; 1070 Optional<unsigned> ProvidedThreshold; 1071 Optional<bool> ProvidedAllowPartial; 1072 Optional<bool> ProvidedRuntime; 1073 Optional<bool> ProvidedUpperBound; 1074 1075 bool runOnLoop(Loop *L, LPPassManager &) override { 1076 if (skipLoop(L)) 1077 return false; 1078 1079 Function &F = *L->getHeader()->getParent(); 1080 1081 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1082 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1083 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1084 const TargetTransformInfo &TTI = 1085 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1086 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1087 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1088 // pass. Function analyses need to be preserved across loop transformations 1089 // but ORE cannot be preserved (see comment before the pass definition). 1090 OptimizationRemarkEmitter ORE(&F); 1091 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1092 1093 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1094 ProvidedCount, ProvidedThreshold, 1095 ProvidedAllowPartial, ProvidedRuntime, 1096 ProvidedUpperBound); 1097 } 1098 1099 /// This transformation requires natural loop information & requires that 1100 /// loop preheaders be inserted into the CFG... 1101 /// 1102 void getAnalysisUsage(AnalysisUsage &AU) const override { 1103 AU.addRequired<AssumptionCacheTracker>(); 1104 AU.addRequired<TargetTransformInfoWrapperPass>(); 1105 // FIXME: Loop passes are required to preserve domtree, and for now we just 1106 // recreate dom info if anything gets unrolled. 1107 getLoopAnalysisUsage(AU); 1108 } 1109 }; 1110 } 1111 1112 char LoopUnroll::ID = 0; 1113 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1115 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1116 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1117 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1118 1119 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1120 int Runtime, int UpperBound) { 1121 // TODO: It would make more sense for this function to take the optionals 1122 // directly, but that's dangerous since it would silently break out of tree 1123 // callers. 1124 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1125 Count == -1 ? None : Optional<unsigned>(Count), 1126 AllowPartial == -1 ? None 1127 : Optional<bool>(AllowPartial), 1128 Runtime == -1 ? None : Optional<bool>(Runtime), 1129 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1130 } 1131 1132 Pass *llvm::createSimpleLoopUnrollPass() { 1133 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1134 } 1135 1136 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1137 const auto &FAM = 1138 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1139 Function *F = L.getHeader()->getParent(); 1140 1141 1142 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1143 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1144 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1145 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1146 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 1147 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1148 if (!DT) 1149 report_fatal_error( 1150 "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1151 if (!LI) 1152 report_fatal_error( 1153 "LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1154 if (!SE) 1155 report_fatal_error( 1156 "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1157 if (!TTI) 1158 report_fatal_error( 1159 "LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1160 if (!AC) 1161 report_fatal_error( 1162 "LoopUnrollPass: AssumptionAnalysis not cached at a higher level"); 1163 if (!ORE) 1164 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1165 "cached at a higher level"); 1166 1167 bool Changed = 1168 tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, 1169 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1170 ProvidedRuntime, ProvidedUpperBound); 1171 1172 if (!Changed) 1173 return PreservedAnalyses::all(); 1174 return getLoopPassPreservedAnalyses(); 1175 } 1176