xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 718c8a6a2a57cfb08c9ef00d50ece1e109b04a49)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
24 #include "llvm/Analysis/ProfileSummaryInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Scalar/LoopPassManager.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPartialThreshold(
51     "unroll-partial-threshold", cl::Hidden,
52     cl::desc("The cost threshold for partial loop unrolling"));
53 
54 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
55     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
56     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
57              "to the threshold when aggressively unrolling a loop due to the "
58              "dynamic cost savings. If completely unrolling a loop will reduce "
59              "the total runtime from X to Y, we boost the loop unroll "
60              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
61              "X/Y). This limit avoids excessive code bloat."));
62 
63 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
64     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
65     cl::desc("Don't allow loop unrolling to simulate more than this number of"
66              "iterations when checking full unroll profitability"));
67 
68 static cl::opt<unsigned> UnrollCount(
69     "unroll-count", cl::Hidden,
70     cl::desc("Use this unroll count for all loops including those with "
71              "unroll_count pragma values, for testing purposes"));
72 
73 static cl::opt<unsigned> UnrollMaxCount(
74     "unroll-max-count", cl::Hidden,
75     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
76              "testing purposes"));
77 
78 static cl::opt<unsigned> UnrollFullMaxCount(
79     "unroll-full-max-count", cl::Hidden,
80     cl::desc(
81         "Set the max unroll count for full unrolling, for testing purposes"));
82 
83 static cl::opt<bool>
84     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
85                        cl::desc("Allows loops to be partially unrolled until "
86                                 "-unroll-threshold loop size is reached."));
87 
88 static cl::opt<bool> UnrollAllowRemainder(
89     "unroll-allow-remainder", cl::Hidden,
90     cl::desc("Allow generation of a loop remainder (extra iterations) "
91              "when unrolling a loop."));
92 
93 static cl::opt<bool>
94     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
95                   cl::desc("Unroll loops with run-time trip counts"));
96 
97 static cl::opt<unsigned> UnrollMaxUpperBound(
98     "unroll-max-upperbound", cl::init(8), cl::Hidden,
99     cl::desc(
100         "The max of trip count upper bound that is considered in unrolling"));
101 
102 static cl::opt<unsigned> PragmaUnrollThreshold(
103     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
104     cl::desc("Unrolled size limit for loops with an unroll(full) or "
105              "unroll_count pragma."));
106 
107 static cl::opt<unsigned> FlatLoopTripCountThreshold(
108     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
109     cl::desc("If the runtime tripcount for the loop is lower than the "
110              "threshold, the loop is considered as flat and will be less "
111              "aggressively unrolled."));
112 
113 static cl::opt<bool>
114     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
115                        cl::desc("Allows loops to be peeled when the dynamic "
116                                 "trip count is known to be low."));
117 
118 static cl::opt<bool> UnrollUnrollRemainder(
119   "unroll-remainder", cl::Hidden,
120   cl::desc("Allow the loop remainder to be unrolled."));
121 
122 // This option isn't ever intended to be enabled, it serves to allow
123 // experiments to check the assumptions about when this kind of revisit is
124 // necessary.
125 static cl::opt<bool> UnrollRevisitChildLoops(
126     "unroll-revisit-child-loops", cl::Hidden,
127     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
128              "This shouldn't typically be needed as child loops (or their "
129              "clones) were already visited."));
130 
131 /// A magic value for use with the Threshold parameter to indicate
132 /// that the loop unroll should be performed regardless of how much
133 /// code expansion would result.
134 static const unsigned NoThreshold = UINT_MAX;
135 
136 /// Gather the various unrolling parameters based on the defaults, compiler
137 /// flags, TTI overrides and user specified parameters.
138 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
139     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
140     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
141     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
142     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
143   TargetTransformInfo::UnrollingPreferences UP;
144 
145   // Set up the defaults
146   UP.Threshold = OptLevel > 2 ? 300 : 150;
147   UP.MaxPercentThresholdBoost = 400;
148   UP.OptSizeThreshold = 0;
149   UP.PartialThreshold = 150;
150   UP.PartialOptSizeThreshold = 0;
151   UP.Count = 0;
152   UP.PeelCount = 0;
153   UP.DefaultUnrollRuntimeCount = 8;
154   UP.MaxCount = UINT_MAX;
155   UP.FullUnrollMaxCount = UINT_MAX;
156   UP.BEInsns = 2;
157   UP.Partial = false;
158   UP.Runtime = false;
159   UP.AllowRemainder = true;
160   UP.UnrollRemainder = false;
161   UP.AllowExpensiveTripCount = false;
162   UP.Force = false;
163   UP.UpperBound = false;
164   UP.AllowPeeling = true;
165 
166   // Override with any target specific settings
167   TTI.getUnrollingPreferences(L, SE, UP);
168 
169   // Apply size attributes
170   if (L->getHeader()->getParent()->optForSize()) {
171     UP.Threshold = UP.OptSizeThreshold;
172     UP.PartialThreshold = UP.PartialOptSizeThreshold;
173   }
174 
175   // Apply any user values specified by cl::opt
176   if (UnrollThreshold.getNumOccurrences() > 0)
177     UP.Threshold = UnrollThreshold;
178   if (UnrollPartialThreshold.getNumOccurrences() > 0)
179     UP.PartialThreshold = UnrollPartialThreshold;
180   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
181     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
182   if (UnrollMaxCount.getNumOccurrences() > 0)
183     UP.MaxCount = UnrollMaxCount;
184   if (UnrollFullMaxCount.getNumOccurrences() > 0)
185     UP.FullUnrollMaxCount = UnrollFullMaxCount;
186   if (UnrollAllowPartial.getNumOccurrences() > 0)
187     UP.Partial = UnrollAllowPartial;
188   if (UnrollAllowRemainder.getNumOccurrences() > 0)
189     UP.AllowRemainder = UnrollAllowRemainder;
190   if (UnrollRuntime.getNumOccurrences() > 0)
191     UP.Runtime = UnrollRuntime;
192   if (UnrollMaxUpperBound == 0)
193     UP.UpperBound = false;
194   if (UnrollAllowPeeling.getNumOccurrences() > 0)
195     UP.AllowPeeling = UnrollAllowPeeling;
196   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
197     UP.UnrollRemainder = UnrollUnrollRemainder;
198 
199   // Apply user values provided by argument
200   if (UserThreshold.hasValue()) {
201     UP.Threshold = *UserThreshold;
202     UP.PartialThreshold = *UserThreshold;
203   }
204   if (UserCount.hasValue())
205     UP.Count = *UserCount;
206   if (UserAllowPartial.hasValue())
207     UP.Partial = *UserAllowPartial;
208   if (UserRuntime.hasValue())
209     UP.Runtime = *UserRuntime;
210   if (UserUpperBound.hasValue())
211     UP.UpperBound = *UserUpperBound;
212   if (UserAllowPeeling.hasValue())
213     UP.AllowPeeling = *UserAllowPeeling;
214 
215   return UP;
216 }
217 
218 namespace {
219 /// A struct to densely store the state of an instruction after unrolling at
220 /// each iteration.
221 ///
222 /// This is designed to work like a tuple of <Instruction *, int> for the
223 /// purposes of hashing and lookup, but to be able to associate two boolean
224 /// states with each key.
225 struct UnrolledInstState {
226   Instruction *I;
227   int Iteration : 30;
228   unsigned IsFree : 1;
229   unsigned IsCounted : 1;
230 };
231 
232 /// Hashing and equality testing for a set of the instruction states.
233 struct UnrolledInstStateKeyInfo {
234   typedef DenseMapInfo<Instruction *> PtrInfo;
235   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
236   static inline UnrolledInstState getEmptyKey() {
237     return {PtrInfo::getEmptyKey(), 0, 0, 0};
238   }
239   static inline UnrolledInstState getTombstoneKey() {
240     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
241   }
242   static inline unsigned getHashValue(const UnrolledInstState &S) {
243     return PairInfo::getHashValue({S.I, S.Iteration});
244   }
245   static inline bool isEqual(const UnrolledInstState &LHS,
246                              const UnrolledInstState &RHS) {
247     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
248   }
249 };
250 }
251 
252 namespace {
253 struct EstimatedUnrollCost {
254   /// \brief The estimated cost after unrolling.
255   unsigned UnrolledCost;
256 
257   /// \brief The estimated dynamic cost of executing the instructions in the
258   /// rolled form.
259   unsigned RolledDynamicCost;
260 };
261 }
262 
263 /// \brief Figure out if the loop is worth full unrolling.
264 ///
265 /// Complete loop unrolling can make some loads constant, and we need to know
266 /// if that would expose any further optimization opportunities.  This routine
267 /// estimates this optimization.  It computes cost of unrolled loop
268 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
269 /// dynamic cost we mean that we won't count costs of blocks that are known not
270 /// to be executed (i.e. if we have a branch in the loop and we know that at the
271 /// given iteration its condition would be resolved to true, we won't add up the
272 /// cost of the 'false'-block).
273 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
274 /// the analysis failed (no benefits expected from the unrolling, or the loop is
275 /// too big to analyze), the returned value is None.
276 static Optional<EstimatedUnrollCost>
277 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
278                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
279                       unsigned MaxUnrolledLoopSize) {
280   // We want to be able to scale offsets by the trip count and add more offsets
281   // to them without checking for overflows, and we already don't want to
282   // analyze *massive* trip counts, so we force the max to be reasonably small.
283   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
284          "The unroll iterations max is too large!");
285 
286   // Only analyze inner loops. We can't properly estimate cost of nested loops
287   // and we won't visit inner loops again anyway.
288   if (!L->empty())
289     return None;
290 
291   // Don't simulate loops with a big or unknown tripcount
292   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
293       TripCount > UnrollMaxIterationsCountToAnalyze)
294     return None;
295 
296   SmallSetVector<BasicBlock *, 16> BBWorklist;
297   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
298   DenseMap<Value *, Constant *> SimplifiedValues;
299   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
300 
301   // The estimated cost of the unrolled form of the loop. We try to estimate
302   // this by simplifying as much as we can while computing the estimate.
303   unsigned UnrolledCost = 0;
304 
305   // We also track the estimated dynamic (that is, actually executed) cost in
306   // the rolled form. This helps identify cases when the savings from unrolling
307   // aren't just exposing dead control flows, but actual reduced dynamic
308   // instructions due to the simplifications which we expect to occur after
309   // unrolling.
310   unsigned RolledDynamicCost = 0;
311 
312   // We track the simplification of each instruction in each iteration. We use
313   // this to recursively merge costs into the unrolled cost on-demand so that
314   // we don't count the cost of any dead code. This is essentially a map from
315   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
316   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
317 
318   // A small worklist used to accumulate cost of instructions from each
319   // observable and reached root in the loop.
320   SmallVector<Instruction *, 16> CostWorklist;
321 
322   // PHI-used worklist used between iterations while accumulating cost.
323   SmallVector<Instruction *, 4> PHIUsedList;
324 
325   // Helper function to accumulate cost for instructions in the loop.
326   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
327     assert(Iteration >= 0 && "Cannot have a negative iteration!");
328     assert(CostWorklist.empty() && "Must start with an empty cost list");
329     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
330     CostWorklist.push_back(&RootI);
331     for (;; --Iteration) {
332       do {
333         Instruction *I = CostWorklist.pop_back_val();
334 
335         // InstCostMap only uses I and Iteration as a key, the other two values
336         // don't matter here.
337         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
338         if (CostIter == InstCostMap.end())
339           // If an input to a PHI node comes from a dead path through the loop
340           // we may have no cost data for it here. What that actually means is
341           // that it is free.
342           continue;
343         auto &Cost = *CostIter;
344         if (Cost.IsCounted)
345           // Already counted this instruction.
346           continue;
347 
348         // Mark that we are counting the cost of this instruction now.
349         Cost.IsCounted = true;
350 
351         // If this is a PHI node in the loop header, just add it to the PHI set.
352         if (auto *PhiI = dyn_cast<PHINode>(I))
353           if (PhiI->getParent() == L->getHeader()) {
354             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
355                                   "inherently simplify during unrolling.");
356             if (Iteration == 0)
357               continue;
358 
359             // Push the incoming value from the backedge into the PHI used list
360             // if it is an in-loop instruction. We'll use this to populate the
361             // cost worklist for the next iteration (as we count backwards).
362             if (auto *OpI = dyn_cast<Instruction>(
363                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
364               if (L->contains(OpI))
365                 PHIUsedList.push_back(OpI);
366             continue;
367           }
368 
369         // First accumulate the cost of this instruction.
370         if (!Cost.IsFree) {
371           UnrolledCost += TTI.getUserCost(I);
372           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
373                        << "): ");
374           DEBUG(I->dump());
375         }
376 
377         // We must count the cost of every operand which is not free,
378         // recursively. If we reach a loop PHI node, simply add it to the set
379         // to be considered on the next iteration (backwards!).
380         for (Value *Op : I->operands()) {
381           // Check whether this operand is free due to being a constant or
382           // outside the loop.
383           auto *OpI = dyn_cast<Instruction>(Op);
384           if (!OpI || !L->contains(OpI))
385             continue;
386 
387           // Otherwise accumulate its cost.
388           CostWorklist.push_back(OpI);
389         }
390       } while (!CostWorklist.empty());
391 
392       if (PHIUsedList.empty())
393         // We've exhausted the search.
394         break;
395 
396       assert(Iteration > 0 &&
397              "Cannot track PHI-used values past the first iteration!");
398       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
399       PHIUsedList.clear();
400     }
401   };
402 
403   // Ensure that we don't violate the loop structure invariants relied on by
404   // this analysis.
405   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
406   assert(L->isLCSSAForm(DT) &&
407          "Must have loops in LCSSA form to track live-out values.");
408 
409   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
410 
411   // Simulate execution of each iteration of the loop counting instructions,
412   // which would be simplified.
413   // Since the same load will take different values on different iterations,
414   // we literally have to go through all loop's iterations.
415   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
416     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
417 
418     // Prepare for the iteration by collecting any simplified entry or backedge
419     // inputs.
420     for (Instruction &I : *L->getHeader()) {
421       auto *PHI = dyn_cast<PHINode>(&I);
422       if (!PHI)
423         break;
424 
425       // The loop header PHI nodes must have exactly two input: one from the
426       // loop preheader and one from the loop latch.
427       assert(
428           PHI->getNumIncomingValues() == 2 &&
429           "Must have an incoming value only for the preheader and the latch.");
430 
431       Value *V = PHI->getIncomingValueForBlock(
432           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
433       Constant *C = dyn_cast<Constant>(V);
434       if (Iteration != 0 && !C)
435         C = SimplifiedValues.lookup(V);
436       if (C)
437         SimplifiedInputValues.push_back({PHI, C});
438     }
439 
440     // Now clear and re-populate the map for the next iteration.
441     SimplifiedValues.clear();
442     while (!SimplifiedInputValues.empty())
443       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
444 
445     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
446 
447     BBWorklist.clear();
448     BBWorklist.insert(L->getHeader());
449     // Note that we *must not* cache the size, this loop grows the worklist.
450     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
451       BasicBlock *BB = BBWorklist[Idx];
452 
453       // Visit all instructions in the given basic block and try to simplify
454       // it.  We don't change the actual IR, just count optimization
455       // opportunities.
456       for (Instruction &I : *BB) {
457         if (isa<DbgInfoIntrinsic>(I))
458           continue;
459 
460         // Track this instruction's expected baseline cost when executing the
461         // rolled loop form.
462         RolledDynamicCost += TTI.getUserCost(&I);
463 
464         // Visit the instruction to analyze its loop cost after unrolling,
465         // and if the visitor returns true, mark the instruction as free after
466         // unrolling and continue.
467         bool IsFree = Analyzer.visit(I);
468         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
469                                            (unsigned)IsFree,
470                                            /*IsCounted*/ false}).second;
471         (void)Inserted;
472         assert(Inserted && "Cannot have a state for an unvisited instruction!");
473 
474         if (IsFree)
475           continue;
476 
477         // Can't properly model a cost of a call.
478         // FIXME: With a proper cost model we should be able to do it.
479         if(isa<CallInst>(&I))
480           return None;
481 
482         // If the instruction might have a side-effect recursively account for
483         // the cost of it and all the instructions leading up to it.
484         if (I.mayHaveSideEffects())
485           AddCostRecursively(I, Iteration);
486 
487         // If unrolled body turns out to be too big, bail out.
488         if (UnrolledCost > MaxUnrolledLoopSize) {
489           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
490                        << "  UnrolledCost: " << UnrolledCost
491                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
492                        << "\n");
493           return None;
494         }
495       }
496 
497       TerminatorInst *TI = BB->getTerminator();
498 
499       // Add in the live successors by first checking whether we have terminator
500       // that may be simplified based on the values simplified by this call.
501       BasicBlock *KnownSucc = nullptr;
502       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
503         if (BI->isConditional()) {
504           if (Constant *SimpleCond =
505                   SimplifiedValues.lookup(BI->getCondition())) {
506             // Just take the first successor if condition is undef
507             if (isa<UndefValue>(SimpleCond))
508               KnownSucc = BI->getSuccessor(0);
509             else if (ConstantInt *SimpleCondVal =
510                          dyn_cast<ConstantInt>(SimpleCond))
511               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
512           }
513         }
514       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
515         if (Constant *SimpleCond =
516                 SimplifiedValues.lookup(SI->getCondition())) {
517           // Just take the first successor if condition is undef
518           if (isa<UndefValue>(SimpleCond))
519             KnownSucc = SI->getSuccessor(0);
520           else if (ConstantInt *SimpleCondVal =
521                        dyn_cast<ConstantInt>(SimpleCond))
522             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
523         }
524       }
525       if (KnownSucc) {
526         if (L->contains(KnownSucc))
527           BBWorklist.insert(KnownSucc);
528         else
529           ExitWorklist.insert({BB, KnownSucc});
530         continue;
531       }
532 
533       // Add BB's successors to the worklist.
534       for (BasicBlock *Succ : successors(BB))
535         if (L->contains(Succ))
536           BBWorklist.insert(Succ);
537         else
538           ExitWorklist.insert({BB, Succ});
539       AddCostRecursively(*TI, Iteration);
540     }
541 
542     // If we found no optimization opportunities on the first iteration, we
543     // won't find them on later ones too.
544     if (UnrolledCost == RolledDynamicCost) {
545       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
546                    << "  UnrolledCost: " << UnrolledCost << "\n");
547       return None;
548     }
549   }
550 
551   while (!ExitWorklist.empty()) {
552     BasicBlock *ExitingBB, *ExitBB;
553     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
554 
555     for (Instruction &I : *ExitBB) {
556       auto *PN = dyn_cast<PHINode>(&I);
557       if (!PN)
558         break;
559 
560       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
561       if (auto *OpI = dyn_cast<Instruction>(Op))
562         if (L->contains(OpI))
563           AddCostRecursively(*OpI, TripCount - 1);
564     }
565   }
566 
567   DEBUG(dbgs() << "Analysis finished:\n"
568                << "UnrolledCost: " << UnrolledCost << ", "
569                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
570   return {{UnrolledCost, RolledDynamicCost}};
571 }
572 
573 /// ApproximateLoopSize - Approximate the size of the loop.
574 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
575                                     bool &NotDuplicatable, bool &Convergent,
576                                     const TargetTransformInfo &TTI,
577                                     AssumptionCache *AC, unsigned BEInsns) {
578   SmallPtrSet<const Value *, 32> EphValues;
579   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
580 
581   CodeMetrics Metrics;
582   for (BasicBlock *BB : L->blocks())
583     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
584   NumCalls = Metrics.NumInlineCandidates;
585   NotDuplicatable = Metrics.notDuplicatable;
586   Convergent = Metrics.convergent;
587 
588   unsigned LoopSize = Metrics.NumInsts;
589 
590   // Don't allow an estimate of size zero.  This would allows unrolling of loops
591   // with huge iteration counts, which is a compile time problem even if it's
592   // not a problem for code quality. Also, the code using this size may assume
593   // that each loop has at least three instructions (likely a conditional
594   // branch, a comparison feeding that branch, and some kind of loop increment
595   // feeding that comparison instruction).
596   LoopSize = std::max(LoopSize, BEInsns + 1);
597 
598   return LoopSize;
599 }
600 
601 // Returns the loop hint metadata node with the given name (for example,
602 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
603 // returned.
604 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
605   if (MDNode *LoopID = L->getLoopID())
606     return GetUnrollMetadata(LoopID, Name);
607   return nullptr;
608 }
609 
610 // Returns true if the loop has an unroll(full) pragma.
611 static bool HasUnrollFullPragma(const Loop *L) {
612   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
613 }
614 
615 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
616 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
617 static bool HasUnrollEnablePragma(const Loop *L) {
618   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
619 }
620 
621 // Returns true if the loop has an unroll(disable) pragma.
622 static bool HasUnrollDisablePragma(const Loop *L) {
623   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
624 }
625 
626 // Returns true if the loop has an runtime unroll(disable) pragma.
627 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
628   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
629 }
630 
631 // If loop has an unroll_count pragma return the (necessarily
632 // positive) value from the pragma.  Otherwise return 0.
633 static unsigned UnrollCountPragmaValue(const Loop *L) {
634   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
635   if (MD) {
636     assert(MD->getNumOperands() == 2 &&
637            "Unroll count hint metadata should have two operands.");
638     unsigned Count =
639         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
640     assert(Count >= 1 && "Unroll count must be positive.");
641     return Count;
642   }
643   return 0;
644 }
645 
646 // Remove existing unroll metadata and add unroll disable metadata to
647 // indicate the loop has already been unrolled.  This prevents a loop
648 // from being unrolled more than is directed by a pragma if the loop
649 // unrolling pass is run more than once (which it generally is).
650 static void SetLoopAlreadyUnrolled(Loop *L) {
651   MDNode *LoopID = L->getLoopID();
652   // First remove any existing loop unrolling metadata.
653   SmallVector<Metadata *, 4> MDs;
654   // Reserve first location for self reference to the LoopID metadata node.
655   MDs.push_back(nullptr);
656 
657   if (LoopID) {
658     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
659       bool IsUnrollMetadata = false;
660       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
661       if (MD) {
662         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
663         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
664       }
665       if (!IsUnrollMetadata)
666         MDs.push_back(LoopID->getOperand(i));
667     }
668   }
669 
670   // Add unroll(disable) metadata to disable future unrolling.
671   LLVMContext &Context = L->getHeader()->getContext();
672   SmallVector<Metadata *, 1> DisableOperands;
673   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
674   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
675   MDs.push_back(DisableNode);
676 
677   MDNode *NewLoopID = MDNode::get(Context, MDs);
678   // Set operand 0 to refer to the loop id itself.
679   NewLoopID->replaceOperandWith(0, NewLoopID);
680   L->setLoopID(NewLoopID);
681 }
682 
683 // Computes the boosting factor for complete unrolling.
684 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
685 // be beneficial to fully unroll the loop even if unrolledcost is large. We
686 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
687 // the unroll threshold.
688 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
689                                             unsigned MaxPercentThresholdBoost) {
690   if (Cost.RolledDynamicCost >= UINT_MAX / 100)
691     return 100;
692   else if (Cost.UnrolledCost != 0)
693     // The boosting factor is RolledDynamicCost / UnrolledCost
694     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
695                     MaxPercentThresholdBoost);
696   else
697     return MaxPercentThresholdBoost;
698 }
699 
700 // Returns loop size estimation for unrolled loop.
701 static uint64_t getUnrolledLoopSize(
702     unsigned LoopSize,
703     TargetTransformInfo::UnrollingPreferences &UP) {
704   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
705   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
706 }
707 
708 // Returns true if unroll count was set explicitly.
709 // Calculates unroll count and writes it to UP.Count.
710 static bool computeUnrollCount(
711     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
712     ScalarEvolution &SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount,
713     unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize,
714     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
715   // Check for explicit Count.
716   // 1st priority is unroll count set by "unroll-count" option.
717   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
718   if (UserUnrollCount) {
719     UP.Count = UnrollCount;
720     UP.AllowExpensiveTripCount = true;
721     UP.Force = true;
722     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
723       return true;
724   }
725 
726   // 2nd priority is unroll count set by pragma.
727   unsigned PragmaCount = UnrollCountPragmaValue(L);
728   if (PragmaCount > 0) {
729     UP.Count = PragmaCount;
730     UP.Runtime = true;
731     UP.AllowExpensiveTripCount = true;
732     UP.Force = true;
733     if (UP.AllowRemainder &&
734         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
735       return true;
736   }
737   bool PragmaFullUnroll = HasUnrollFullPragma(L);
738   if (PragmaFullUnroll && TripCount != 0) {
739     UP.Count = TripCount;
740     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
741       return false;
742   }
743 
744   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
745   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
746                         PragmaEnableUnroll || UserUnrollCount;
747 
748   if (ExplicitUnroll && TripCount != 0) {
749     // If the loop has an unrolling pragma, we want to be more aggressive with
750     // unrolling limits. Set thresholds to at least the PragmaThreshold value
751     // which is larger than the default limits.
752     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
753     UP.PartialThreshold =
754         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
755   }
756 
757   // 3rd priority is full unroll count.
758   // Full unroll makes sense only when TripCount or its upper bound could be
759   // statically calculated.
760   // Also we need to check if we exceed FullUnrollMaxCount.
761   // If using the upper bound to unroll, TripMultiple should be set to 1 because
762   // we do not know when loop may exit.
763   // MaxTripCount and ExactTripCount cannot both be non zero since we only
764   // compute the former when the latter is zero.
765   unsigned ExactTripCount = TripCount;
766   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
767          "ExtractTripCound and MaxTripCount cannot both be non zero.");
768   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
769   UP.Count = FullUnrollTripCount;
770   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
771     // When computing the unrolled size, note that BEInsns are not replicated
772     // like the rest of the loop body.
773     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
774       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
775       TripCount = FullUnrollTripCount;
776       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
777       return ExplicitUnroll;
778     } else {
779       // The loop isn't that small, but we still can fully unroll it if that
780       // helps to remove a significant number of instructions.
781       // To check that, run additional analysis on the loop.
782       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
783               L, FullUnrollTripCount, DT, SE, TTI,
784               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
785         unsigned Boost =
786             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
787         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
788           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
789           TripCount = FullUnrollTripCount;
790           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
791           return ExplicitUnroll;
792         }
793       }
794     }
795   }
796 
797   // 4th priority is loop peeling
798   computePeelCount(L, LoopSize, UP, TripCount);
799   if (UP.PeelCount) {
800     UP.Runtime = false;
801     UP.Count = 1;
802     return ExplicitUnroll;
803   }
804 
805   // 5th priority is partial unrolling.
806   // Try partial unroll only when TripCount could be staticaly calculated.
807   if (TripCount) {
808     UP.Partial |= ExplicitUnroll;
809     if (!UP.Partial) {
810       DEBUG(dbgs() << "  will not try to unroll partially because "
811                    << "-unroll-allow-partial not given\n");
812       UP.Count = 0;
813       return false;
814     }
815     if (UP.Count == 0)
816       UP.Count = TripCount;
817     if (UP.PartialThreshold != NoThreshold) {
818       // Reduce unroll count to be modulo of TripCount for partial unrolling.
819       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
820         UP.Count =
821             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
822             (LoopSize - UP.BEInsns);
823       if (UP.Count > UP.MaxCount)
824         UP.Count = UP.MaxCount;
825       while (UP.Count != 0 && TripCount % UP.Count != 0)
826         UP.Count--;
827       if (UP.AllowRemainder && UP.Count <= 1) {
828         // If there is no Count that is modulo of TripCount, set Count to
829         // largest power-of-two factor that satisfies the threshold limit.
830         // As we'll create fixup loop, do the type of unrolling only if
831         // remainder loop is allowed.
832         UP.Count = UP.DefaultUnrollRuntimeCount;
833         while (UP.Count != 0 &&
834                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
835           UP.Count >>= 1;
836       }
837       if (UP.Count < 2) {
838         if (PragmaEnableUnroll)
839           ORE->emit(
840               OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
841                                        L->getStartLoc(), L->getHeader())
842               << "Unable to unroll loop as directed by unroll(enable) pragma "
843                  "because unrolled size is too large.");
844         UP.Count = 0;
845       }
846     } else {
847       UP.Count = TripCount;
848     }
849     if (UP.Count > UP.MaxCount)
850       UP.Count = UP.MaxCount;
851     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
852         UP.Count != TripCount)
853       ORE->emit(
854           OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
855                                    L->getStartLoc(), L->getHeader())
856           << "Unable to fully unroll loop as directed by unroll pragma because "
857              "unrolled size is too large.");
858     return ExplicitUnroll;
859   }
860   assert(TripCount == 0 &&
861          "All cases when TripCount is constant should be covered here.");
862   if (PragmaFullUnroll)
863     ORE->emit(
864         OptimizationRemarkMissed(DEBUG_TYPE,
865                                  "CantFullUnrollAsDirectedRuntimeTripCount",
866                                  L->getStartLoc(), L->getHeader())
867         << "Unable to fully unroll loop as directed by unroll(full) pragma "
868            "because loop has a runtime trip count.");
869 
870   // 6th priority is runtime unrolling.
871   // Don't unroll a runtime trip count loop when it is disabled.
872   if (HasRuntimeUnrollDisablePragma(L)) {
873     UP.Count = 0;
874     return false;
875   }
876 
877   // Check if the runtime trip count is too small when profile is available.
878   if (L->getHeader()->getParent()->getEntryCount()) {
879     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
880       if (*ProfileTripCount < FlatLoopTripCountThreshold)
881         return false;
882       else
883         UP.AllowExpensiveTripCount = true;
884     }
885   }
886 
887   // Reduce count based on the type of unrolling and the threshold values.
888   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
889   if (!UP.Runtime) {
890     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
891                  << "-unroll-runtime not given\n");
892     UP.Count = 0;
893     return false;
894   }
895   if (UP.Count == 0)
896     UP.Count = UP.DefaultUnrollRuntimeCount;
897 
898   // Reduce unroll count to be the largest power-of-two factor of
899   // the original count which satisfies the threshold limit.
900   while (UP.Count != 0 &&
901          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
902     UP.Count >>= 1;
903 
904 #ifndef NDEBUG
905   unsigned OrigCount = UP.Count;
906 #endif
907 
908   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
909     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
910       UP.Count >>= 1;
911     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
912                     "specific or because the loop contains a convergent "
913                     "instruction), so unroll count must divide the trip "
914                     "multiple, "
915                  << TripMultiple << ".  Reducing unroll count from "
916                  << OrigCount << " to " << UP.Count << ".\n");
917     using namespace ore;
918     if (PragmaCount > 0 && !UP.AllowRemainder)
919       ORE->emit(
920           OptimizationRemarkMissed(DEBUG_TYPE,
921                                    "DifferentUnrollCountFromDirected",
922                                    L->getStartLoc(), L->getHeader())
923           << "Unable to unroll loop the number of times directed by "
924              "unroll_count pragma because remainder loop is restricted "
925              "(that could architecture specific or because the loop "
926              "contains a convergent instruction) and so must have an unroll "
927              "count that divides the loop trip multiple of "
928           << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
929           << NV("UnrollCount", UP.Count) << " time(s).");
930   }
931 
932   if (UP.Count > UP.MaxCount)
933     UP.Count = UP.MaxCount;
934   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
935   if (UP.Count < 2)
936     UP.Count = 0;
937   return ExplicitUnroll;
938 }
939 
940 static bool tryToUnrollLoop(
941     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
942     const TargetTransformInfo &TTI, AssumptionCache &AC,
943     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
944     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
945     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
946     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
947   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
948                << "] Loop %" << L->getHeader()->getName() << "\n");
949   if (HasUnrollDisablePragma(L))
950     return false;
951   if (!L->isLoopSimplifyForm()) {
952     DEBUG(
953         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
954     return false;
955   }
956 
957   unsigned NumInlineCandidates;
958   bool NotDuplicatable;
959   bool Convergent;
960   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
961       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
962       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
963       ProvidedAllowPeeling);
964   // Exit early if unrolling is disabled.
965   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
966     return false;
967   unsigned LoopSize = ApproximateLoopSize(
968       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns);
969   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
970   if (NotDuplicatable) {
971     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
972                  << " instructions.\n");
973     return false;
974   }
975   if (NumInlineCandidates != 0) {
976     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
977     return false;
978   }
979 
980   // Find trip count and trip multiple if count is not available
981   unsigned TripCount = 0;
982   unsigned MaxTripCount = 0;
983   unsigned TripMultiple = 1;
984   // If there are multiple exiting blocks but one of them is the latch, use the
985   // latch for the trip count estimation. Otherwise insist on a single exiting
986   // block for the trip count estimation.
987   BasicBlock *ExitingBlock = L->getLoopLatch();
988   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
989     ExitingBlock = L->getExitingBlock();
990   if (ExitingBlock) {
991     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
992     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
993   }
994 
995   // If the loop contains a convergent operation, the prelude we'd add
996   // to do the first few instructions before we hit the unrolled loop
997   // is unsafe -- it adds a control-flow dependency to the convergent
998   // operation.  Therefore restrict remainder loop (try unrollig without).
999   //
1000   // TODO: This is quite conservative.  In practice, convergent_op()
1001   // is likely to be called unconditionally in the loop.  In this
1002   // case, the program would be ill-formed (on most architectures)
1003   // unless n were the same on all threads in a thread group.
1004   // Assuming n is the same on all threads, any kind of unrolling is
1005   // safe.  But currently llvm's notion of convergence isn't powerful
1006   // enough to express this.
1007   if (Convergent)
1008     UP.AllowRemainder = false;
1009 
1010   // Try to find the trip count upper bound if we cannot find the exact trip
1011   // count.
1012   bool MaxOrZero = false;
1013   if (!TripCount) {
1014     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1015     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1016     // We can unroll by the upper bound amount if it's generally allowed or if
1017     // we know that the loop is executed either the upper bound or zero times.
1018     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1019     // loop tests remains the same compared to the non-unrolled version, whereas
1020     // the generic upper bound unrolling keeps all but the last loop test so the
1021     // number of loop tests goes up which may end up being worse on targets with
1022     // constriained branch predictor resources so is controlled by an option.)
1023     // In addition we only unroll small upper bounds.
1024     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1025       MaxTripCount = 0;
1026     }
1027   }
1028 
1029   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1030   // fully unroll the loop.
1031   bool UseUpperBound = false;
1032   bool IsCountSetExplicitly =
1033       computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount,
1034                          TripMultiple, LoopSize, UP, UseUpperBound);
1035   if (!UP.Count)
1036     return false;
1037   // Unroll factor (Count) must be less or equal to TripCount.
1038   if (TripCount && UP.Count > TripCount)
1039     UP.Count = TripCount;
1040 
1041   // Unroll the loop.
1042   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
1043                   UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero,
1044                   TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1045                   LI, &SE, &DT, &AC, &ORE,
1046                   PreserveLCSSA))
1047     return false;
1048 
1049   // If loop has an unroll count pragma or unrolled by explicitly set count
1050   // mark loop as unrolled to prevent unrolling beyond that requested.
1051   // If the loop was peeled, we already "used up" the profile information
1052   // we had, so we don't want to unroll or peel again.
1053   if (IsCountSetExplicitly || UP.PeelCount)
1054     SetLoopAlreadyUnrolled(L);
1055 
1056   return true;
1057 }
1058 
1059 namespace {
1060 class LoopUnroll : public LoopPass {
1061 public:
1062   static char ID; // Pass ID, replacement for typeid
1063   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1064              Optional<unsigned> Count = None,
1065              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1066              Optional<bool> UpperBound = None,
1067              Optional<bool> AllowPeeling = None)
1068       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1069         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1070         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1071         ProvidedAllowPeeling(AllowPeeling) {
1072     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1073   }
1074 
1075   int OptLevel;
1076   Optional<unsigned> ProvidedCount;
1077   Optional<unsigned> ProvidedThreshold;
1078   Optional<bool> ProvidedAllowPartial;
1079   Optional<bool> ProvidedRuntime;
1080   Optional<bool> ProvidedUpperBound;
1081   Optional<bool> ProvidedAllowPeeling;
1082 
1083   bool runOnLoop(Loop *L, LPPassManager &) override {
1084     if (skipLoop(L))
1085       return false;
1086 
1087     Function &F = *L->getHeader()->getParent();
1088 
1089     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1090     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1091     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1092     const TargetTransformInfo &TTI =
1093         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1094     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1095     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1096     // pass.  Function analyses need to be preserved across loop transformations
1097     // but ORE cannot be preserved (see comment before the pass definition).
1098     OptimizationRemarkEmitter ORE(&F);
1099     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1100 
1101     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel,
1102                            ProvidedCount, ProvidedThreshold,
1103                            ProvidedAllowPartial, ProvidedRuntime,
1104                            ProvidedUpperBound, ProvidedAllowPeeling);
1105   }
1106 
1107   /// This transformation requires natural loop information & requires that
1108   /// loop preheaders be inserted into the CFG...
1109   ///
1110   void getAnalysisUsage(AnalysisUsage &AU) const override {
1111     AU.addRequired<AssumptionCacheTracker>();
1112     AU.addRequired<TargetTransformInfoWrapperPass>();
1113     // FIXME: Loop passes are required to preserve domtree, and for now we just
1114     // recreate dom info if anything gets unrolled.
1115     getLoopAnalysisUsage(AU);
1116   }
1117 };
1118 }
1119 
1120 char LoopUnroll::ID = 0;
1121 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1122 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1123 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1124 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1125 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1126 
1127 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1128                                  int AllowPartial, int Runtime, int UpperBound,
1129                                  int AllowPeeling) {
1130   // TODO: It would make more sense for this function to take the optionals
1131   // directly, but that's dangerous since it would silently break out of tree
1132   // callers.
1133   return new LoopUnroll(
1134       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1135       Count == -1 ? None : Optional<unsigned>(Count),
1136       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1137       Runtime == -1 ? None : Optional<bool>(Runtime),
1138       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1139       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1140 }
1141 
1142 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1143   return llvm::createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1144 }
1145 
1146 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1147                                           LoopStandardAnalysisResults &AR,
1148                                           LPMUpdater &Updater) {
1149   const auto &FAM =
1150       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1151   Function *F = L.getHeader()->getParent();
1152 
1153   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1154   // FIXME: This should probably be optional rather than required.
1155   if (!ORE)
1156     report_fatal_error(
1157         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1158         "cached at a higher level");
1159 
1160   // Keep track of the previous loop structure so we can identify new loops
1161   // created by unrolling.
1162   Loop *ParentL = L.getParentLoop();
1163   SmallPtrSet<Loop *, 4> OldLoops;
1164   if (ParentL)
1165     OldLoops.insert(ParentL->begin(), ParentL->end());
1166   else
1167     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1168 
1169   bool Changed =
1170       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1171                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1172                       /*Threshold*/ None, /*AllowPartial*/ false,
1173                       /*Runtime*/ false, /*UpperBound*/ false,
1174                       /*AllowPeeling*/ false);
1175   if (!Changed)
1176     return PreservedAnalyses::all();
1177 
1178   // The parent must not be damaged by unrolling!
1179 #ifndef NDEBUG
1180   if (ParentL)
1181     ParentL->verifyLoop();
1182 #endif
1183 
1184   // Unrolling can do several things to introduce new loops into a loop nest:
1185   // - Full unrolling clones child loops within the current loop but then
1186   //   removes the current loop making all of the children appear to be new
1187   //   sibling loops.
1188   //
1189   // When a new loop appears as a sibling loop after fully unrolling,
1190   // its nesting structure has fundamentally changed and we want to revisit
1191   // it to reflect that.
1192   //
1193   // When unrolling has removed the current loop, we need to tell the
1194   // infrastructure that it is gone.
1195   //
1196   // Finally, we support a debugging/testing mode where we revisit child loops
1197   // as well. These are not expected to require further optimizations as either
1198   // they or the loop they were cloned from have been directly visited already.
1199   // But the debugging mode allows us to check this assumption.
1200   bool IsCurrentLoopValid = false;
1201   SmallVector<Loop *, 4> SibLoops;
1202   if (ParentL)
1203     SibLoops.append(ParentL->begin(), ParentL->end());
1204   else
1205     SibLoops.append(AR.LI.begin(), AR.LI.end());
1206   erase_if(SibLoops, [&](Loop *SibLoop) {
1207     if (SibLoop == &L) {
1208       IsCurrentLoopValid = true;
1209       return true;
1210     }
1211 
1212     // Otherwise erase the loop from the list if it was in the old loops.
1213     return OldLoops.count(SibLoop) != 0;
1214   });
1215   Updater.addSiblingLoops(SibLoops);
1216 
1217   if (!IsCurrentLoopValid) {
1218     Updater.markLoopAsDeleted(L);
1219   } else {
1220     // We can only walk child loops if the current loop remained valid.
1221     if (UnrollRevisitChildLoops) {
1222       // Walk *all* of the child loops.
1223       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1224       Updater.addChildLoops(ChildLoops);
1225     }
1226   }
1227 
1228   return getLoopPassPreservedAnalyses();
1229 }
1230 
1231 template <typename RangeT>
1232 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1233   SmallVector<Loop *, 8> Worklist;
1234   // We use an internal worklist to build up the preorder traversal without
1235   // recursion.
1236   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1237 
1238   for (Loop *RootL : Loops) {
1239     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1240     assert(PreOrderWorklist.empty() &&
1241            "Must start with an empty preorder walk worklist.");
1242     PreOrderWorklist.push_back(RootL);
1243     do {
1244       Loop *L = PreOrderWorklist.pop_back_val();
1245       PreOrderWorklist.append(L->begin(), L->end());
1246       PreOrderLoops.push_back(L);
1247     } while (!PreOrderWorklist.empty());
1248 
1249     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1250     PreOrderLoops.clear();
1251   }
1252   return Worklist;
1253 }
1254 
1255 PreservedAnalyses LoopUnrollPass::run(Function &F,
1256                                       FunctionAnalysisManager &AM) {
1257   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1258   auto &LI = AM.getResult<LoopAnalysis>(F);
1259   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1260   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1261   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1262   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1263 
1264   LoopAnalysisManager *LAM = nullptr;
1265   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1266     LAM = &LAMProxy->getManager();
1267 
1268   const ModuleAnalysisManager &MAM =
1269       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1270   ProfileSummaryInfo *PSI =
1271       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1272 
1273   bool Changed = false;
1274 
1275   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1276   // Since simplification may add new inner loops, it has to run before the
1277   // legality and profitability checks. This means running the loop unroller
1278   // will simplify all loops, regardless of whether anything end up being
1279   // unrolled.
1280   for (auto &L : LI) {
1281     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1282     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1283   }
1284 
1285   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1286 
1287   while (!Worklist.empty()) {
1288     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1289     // from back to front so that we work forward across the CFG, which
1290     // for unrolling is only needed to get optimization remarks emitted in
1291     // a forward order.
1292     Loop &L = *Worklist.pop_back_val();
1293     Loop *ParentL = L.getParentLoop();
1294 
1295     // The API here is quite complex to call, but there are only two interesting
1296     // states we support: partial and full (or "simple") unrolling. However, to
1297     // enable these things we actually pass "None" in for the optional to avoid
1298     // providing an explicit choice.
1299     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1300         AllowPeeling;
1301     // Check if the profile summary indicates that the profiled application
1302     // has a huge working set size, in which case we disable peeling to avoid
1303     // bloating it further.
1304     if (PSI && PSI->hasHugeWorkingSetSize())
1305       AllowPeeling = false;
1306     bool CurChanged =
1307         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1308                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1309                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1310                         UpperBoundParam, AllowPeeling);
1311     Changed |= CurChanged;
1312 
1313     // The parent must not be damaged by unrolling!
1314 #ifndef NDEBUG
1315     if (CurChanged && ParentL)
1316       ParentL->verifyLoop();
1317 #endif
1318 
1319     // Walk the parent or top-level loops after unrolling to check whether we
1320     // actually removed a loop, and if so clear any cached analysis results for
1321     // it. We have to do this immediately as the next unrolling could allocate
1322     // a new loop object that ends up with the same address as the deleted loop
1323     // object causing cache collisions.
1324     if (LAM) {
1325       bool IsCurLoopValid =
1326           ParentL
1327               ? llvm::any_of(*ParentL, [&](Loop *SibL) { return SibL == &L; })
1328               : llvm::any_of(LI, [&](Loop *SibL) { return SibL == &L; });
1329       if (!IsCurLoopValid)
1330         LAM->clear(L);
1331     }
1332   }
1333 
1334   if (!Changed)
1335     return PreservedAnalyses::all();
1336 
1337   return getLoopPassPreservedAnalyses();
1338 }
1339