xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 6965af43e6b83fda2c32663f55b1568ffe6d67f9)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopSimplify.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-unroll"
74 
75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
76     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
77     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
78              " the current top-most loop. This is somtimes preferred to reduce"
79              " compile time."));
80 
81 static cl::opt<unsigned>
82     UnrollThreshold("unroll-threshold", cl::Hidden,
83                     cl::desc("The cost threshold for loop unrolling"));
84 
85 static cl::opt<unsigned> UnrollPartialThreshold(
86     "unroll-partial-threshold", cl::Hidden,
87     cl::desc("The cost threshold for partial loop unrolling"));
88 
89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
90     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
91     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
92              "to the threshold when aggressively unrolling a loop due to the "
93              "dynamic cost savings. If completely unrolling a loop will reduce "
94              "the total runtime from X to Y, we boost the loop unroll "
95              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
96              "X/Y). This limit avoids excessive code bloat."));
97 
98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
99     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
100     cl::desc("Don't allow loop unrolling to simulate more than this number of"
101              "iterations when checking full unroll profitability"));
102 
103 static cl::opt<unsigned> UnrollCount(
104     "unroll-count", cl::Hidden,
105     cl::desc("Use this unroll count for all loops including those with "
106              "unroll_count pragma values, for testing purposes"));
107 
108 static cl::opt<unsigned> UnrollMaxCount(
109     "unroll-max-count", cl::Hidden,
110     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
111              "testing purposes"));
112 
113 static cl::opt<unsigned> UnrollFullMaxCount(
114     "unroll-full-max-count", cl::Hidden,
115     cl::desc(
116         "Set the max unroll count for full unrolling, for testing purposes"));
117 
118 static cl::opt<unsigned> UnrollPeelCount(
119     "unroll-peel-count", cl::Hidden,
120     cl::desc("Set the unroll peeling count, for testing purposes"));
121 
122 static cl::opt<bool>
123     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
124                        cl::desc("Allows loops to be partially unrolled until "
125                                 "-unroll-threshold loop size is reached."));
126 
127 static cl::opt<bool> UnrollAllowRemainder(
128     "unroll-allow-remainder", cl::Hidden,
129     cl::desc("Allow generation of a loop remainder (extra iterations) "
130              "when unrolling a loop."));
131 
132 static cl::opt<bool>
133     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
134                   cl::desc("Unroll loops with run-time trip counts"));
135 
136 static cl::opt<unsigned> UnrollMaxUpperBound(
137     "unroll-max-upperbound", cl::init(8), cl::Hidden,
138     cl::desc(
139         "The max of trip count upper bound that is considered in unrolling"));
140 
141 static cl::opt<unsigned> PragmaUnrollThreshold(
142     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
143     cl::desc("Unrolled size limit for loops with an unroll(full) or "
144              "unroll_count pragma."));
145 
146 static cl::opt<unsigned> FlatLoopTripCountThreshold(
147     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
148     cl::desc("If the runtime tripcount for the loop is lower than the "
149              "threshold, the loop is considered as flat and will be less "
150              "aggressively unrolled."));
151 
152 static cl::opt<bool>
153     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
154                        cl::desc("Allows loops to be peeled when the dynamic "
155                                 "trip count is known to be low."));
156 
157 static cl::opt<bool> UnrollAllowLoopNestsPeeling(
158     "unroll-allow-loop-nests-peeling", cl::init(false), cl::Hidden,
159     cl::desc("Allows loop nests to be peeled."));
160 
161 static cl::opt<bool> UnrollUnrollRemainder(
162   "unroll-remainder", cl::Hidden,
163   cl::desc("Allow the loop remainder to be unrolled."));
164 
165 // This option isn't ever intended to be enabled, it serves to allow
166 // experiments to check the assumptions about when this kind of revisit is
167 // necessary.
168 static cl::opt<bool> UnrollRevisitChildLoops(
169     "unroll-revisit-child-loops", cl::Hidden,
170     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
171              "This shouldn't typically be needed as child loops (or their "
172              "clones) were already visited."));
173 
174 static cl::opt<unsigned> UnrollThresholdAggressive(
175     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
176     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
177              "optimizations"));
178 static cl::opt<unsigned>
179     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
180                            cl::Hidden,
181                            cl::desc("Default threshold (max size of unrolled "
182                                     "loop), used in all but O3 optimizations"));
183 
184 /// A magic value for use with the Threshold parameter to indicate
185 /// that the loop unroll should be performed regardless of how much
186 /// code expansion would result.
187 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
188 
189 /// Gather the various unrolling parameters based on the defaults, compiler
190 /// flags, TTI overrides and user specified parameters.
191 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
192     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
193     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
194     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
195     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
196     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
197     Optional<bool> UserAllowProfileBasedPeeling,
198     Optional<unsigned> UserFullUnrollMaxCount) {
199   TargetTransformInfo::UnrollingPreferences UP;
200 
201   // Set up the defaults
202   UP.Threshold =
203       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
204   UP.MaxPercentThresholdBoost = 400;
205   UP.OptSizeThreshold = 0;
206   UP.PartialThreshold = 150;
207   UP.PartialOptSizeThreshold = 0;
208   UP.Count = 0;
209   UP.PeelCount = 0;
210   UP.DefaultUnrollRuntimeCount = 8;
211   UP.MaxCount = std::numeric_limits<unsigned>::max();
212   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
213   UP.BEInsns = 2;
214   UP.Partial = false;
215   UP.Runtime = false;
216   UP.AllowRemainder = true;
217   UP.UnrollRemainder = false;
218   UP.AllowExpensiveTripCount = false;
219   UP.Force = false;
220   UP.UpperBound = false;
221   UP.AllowPeeling = true;
222   UP.AllowLoopNestsPeeling = false;
223   UP.UnrollAndJam = false;
224   UP.PeelProfiledIterations = true;
225   UP.UnrollAndJamInnerLoopThreshold = 60;
226   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
227 
228   // Override with any target specific settings
229   TTI.getUnrollingPreferences(L, SE, UP);
230 
231   // Apply size attributes
232   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
233                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
234                                                 PGSOQueryType::IRPass);
235   if (OptForSize) {
236     UP.Threshold = UP.OptSizeThreshold;
237     UP.PartialThreshold = UP.PartialOptSizeThreshold;
238     UP.MaxPercentThresholdBoost = 100;
239   }
240 
241   // Apply any user values specified by cl::opt
242   if (UnrollThreshold.getNumOccurrences() > 0)
243     UP.Threshold = UnrollThreshold;
244   if (UnrollPartialThreshold.getNumOccurrences() > 0)
245     UP.PartialThreshold = UnrollPartialThreshold;
246   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
247     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
248   if (UnrollMaxCount.getNumOccurrences() > 0)
249     UP.MaxCount = UnrollMaxCount;
250   if (UnrollFullMaxCount.getNumOccurrences() > 0)
251     UP.FullUnrollMaxCount = UnrollFullMaxCount;
252   if (UnrollPeelCount.getNumOccurrences() > 0)
253     UP.PeelCount = UnrollPeelCount;
254   if (UnrollAllowPartial.getNumOccurrences() > 0)
255     UP.Partial = UnrollAllowPartial;
256   if (UnrollAllowRemainder.getNumOccurrences() > 0)
257     UP.AllowRemainder = UnrollAllowRemainder;
258   if (UnrollRuntime.getNumOccurrences() > 0)
259     UP.Runtime = UnrollRuntime;
260   if (UnrollMaxUpperBound == 0)
261     UP.UpperBound = false;
262   if (UnrollAllowPeeling.getNumOccurrences() > 0)
263     UP.AllowPeeling = UnrollAllowPeeling;
264   if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
265     UP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
266   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
267     UP.UnrollRemainder = UnrollUnrollRemainder;
268   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
269     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
270 
271   // Apply user values provided by argument
272   if (UserThreshold.hasValue()) {
273     UP.Threshold = *UserThreshold;
274     UP.PartialThreshold = *UserThreshold;
275   }
276   if (UserCount.hasValue())
277     UP.Count = *UserCount;
278   if (UserAllowPartial.hasValue())
279     UP.Partial = *UserAllowPartial;
280   if (UserRuntime.hasValue())
281     UP.Runtime = *UserRuntime;
282   if (UserUpperBound.hasValue())
283     UP.UpperBound = *UserUpperBound;
284   if (UserAllowPeeling.hasValue())
285     UP.AllowPeeling = *UserAllowPeeling;
286   if (UserAllowProfileBasedPeeling.hasValue())
287     UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
288   if (UserFullUnrollMaxCount.hasValue())
289     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
290 
291   return UP;
292 }
293 
294 namespace {
295 
296 /// A struct to densely store the state of an instruction after unrolling at
297 /// each iteration.
298 ///
299 /// This is designed to work like a tuple of <Instruction *, int> for the
300 /// purposes of hashing and lookup, but to be able to associate two boolean
301 /// states with each key.
302 struct UnrolledInstState {
303   Instruction *I;
304   int Iteration : 30;
305   unsigned IsFree : 1;
306   unsigned IsCounted : 1;
307 };
308 
309 /// Hashing and equality testing for a set of the instruction states.
310 struct UnrolledInstStateKeyInfo {
311   using PtrInfo = DenseMapInfo<Instruction *>;
312   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
313 
314   static inline UnrolledInstState getEmptyKey() {
315     return {PtrInfo::getEmptyKey(), 0, 0, 0};
316   }
317 
318   static inline UnrolledInstState getTombstoneKey() {
319     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
320   }
321 
322   static inline unsigned getHashValue(const UnrolledInstState &S) {
323     return PairInfo::getHashValue({S.I, S.Iteration});
324   }
325 
326   static inline bool isEqual(const UnrolledInstState &LHS,
327                              const UnrolledInstState &RHS) {
328     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
329   }
330 };
331 
332 struct EstimatedUnrollCost {
333   /// The estimated cost after unrolling.
334   unsigned UnrolledCost;
335 
336   /// The estimated dynamic cost of executing the instructions in the
337   /// rolled form.
338   unsigned RolledDynamicCost;
339 };
340 
341 } // end anonymous namespace
342 
343 /// Figure out if the loop is worth full unrolling.
344 ///
345 /// Complete loop unrolling can make some loads constant, and we need to know
346 /// if that would expose any further optimization opportunities.  This routine
347 /// estimates this optimization.  It computes cost of unrolled loop
348 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
349 /// dynamic cost we mean that we won't count costs of blocks that are known not
350 /// to be executed (i.e. if we have a branch in the loop and we know that at the
351 /// given iteration its condition would be resolved to true, we won't add up the
352 /// cost of the 'false'-block).
353 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
354 /// the analysis failed (no benefits expected from the unrolling, or the loop is
355 /// too big to analyze), the returned value is None.
356 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
357     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
358     const SmallPtrSetImpl<const Value *> &EphValues,
359     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
360     unsigned MaxIterationsCountToAnalyze) {
361   // We want to be able to scale offsets by the trip count and add more offsets
362   // to them without checking for overflows, and we already don't want to
363   // analyze *massive* trip counts, so we force the max to be reasonably small.
364   assert(MaxIterationsCountToAnalyze <
365              (unsigned)(std::numeric_limits<int>::max() / 2) &&
366          "The unroll iterations max is too large!");
367 
368   // Only analyze inner loops. We can't properly estimate cost of nested loops
369   // and we won't visit inner loops again anyway.
370   if (!L->empty())
371     return None;
372 
373   // Don't simulate loops with a big or unknown tripcount
374   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
375     return None;
376 
377   SmallSetVector<BasicBlock *, 16> BBWorklist;
378   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
379   DenseMap<Value *, Constant *> SimplifiedValues;
380   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
381 
382   // The estimated cost of the unrolled form of the loop. We try to estimate
383   // this by simplifying as much as we can while computing the estimate.
384   unsigned UnrolledCost = 0;
385 
386   // We also track the estimated dynamic (that is, actually executed) cost in
387   // the rolled form. This helps identify cases when the savings from unrolling
388   // aren't just exposing dead control flows, but actual reduced dynamic
389   // instructions due to the simplifications which we expect to occur after
390   // unrolling.
391   unsigned RolledDynamicCost = 0;
392 
393   // We track the simplification of each instruction in each iteration. We use
394   // this to recursively merge costs into the unrolled cost on-demand so that
395   // we don't count the cost of any dead code. This is essentially a map from
396   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
397   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
398 
399   // A small worklist used to accumulate cost of instructions from each
400   // observable and reached root in the loop.
401   SmallVector<Instruction *, 16> CostWorklist;
402 
403   // PHI-used worklist used between iterations while accumulating cost.
404   SmallVector<Instruction *, 4> PHIUsedList;
405 
406   // Helper function to accumulate cost for instructions in the loop.
407   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
408     assert(Iteration >= 0 && "Cannot have a negative iteration!");
409     assert(CostWorklist.empty() && "Must start with an empty cost list");
410     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
411     CostWorklist.push_back(&RootI);
412     for (;; --Iteration) {
413       do {
414         Instruction *I = CostWorklist.pop_back_val();
415 
416         // InstCostMap only uses I and Iteration as a key, the other two values
417         // don't matter here.
418         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
419         if (CostIter == InstCostMap.end())
420           // If an input to a PHI node comes from a dead path through the loop
421           // we may have no cost data for it here. What that actually means is
422           // that it is free.
423           continue;
424         auto &Cost = *CostIter;
425         if (Cost.IsCounted)
426           // Already counted this instruction.
427           continue;
428 
429         // Mark that we are counting the cost of this instruction now.
430         Cost.IsCounted = true;
431 
432         // If this is a PHI node in the loop header, just add it to the PHI set.
433         if (auto *PhiI = dyn_cast<PHINode>(I))
434           if (PhiI->getParent() == L->getHeader()) {
435             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
436                                   "inherently simplify during unrolling.");
437             if (Iteration == 0)
438               continue;
439 
440             // Push the incoming value from the backedge into the PHI used list
441             // if it is an in-loop instruction. We'll use this to populate the
442             // cost worklist for the next iteration (as we count backwards).
443             if (auto *OpI = dyn_cast<Instruction>(
444                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
445               if (L->contains(OpI))
446                 PHIUsedList.push_back(OpI);
447             continue;
448           }
449 
450         // First accumulate the cost of this instruction.
451         if (!Cost.IsFree) {
452           UnrolledCost += TTI.getUserCost(I, TargetTransformInfo::TCK_CodeSize);
453           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
454                             << Iteration << "): ");
455           LLVM_DEBUG(I->dump());
456         }
457 
458         // We must count the cost of every operand which is not free,
459         // recursively. If we reach a loop PHI node, simply add it to the set
460         // to be considered on the next iteration (backwards!).
461         for (Value *Op : I->operands()) {
462           // Check whether this operand is free due to being a constant or
463           // outside the loop.
464           auto *OpI = dyn_cast<Instruction>(Op);
465           if (!OpI || !L->contains(OpI))
466             continue;
467 
468           // Otherwise accumulate its cost.
469           CostWorklist.push_back(OpI);
470         }
471       } while (!CostWorklist.empty());
472 
473       if (PHIUsedList.empty())
474         // We've exhausted the search.
475         break;
476 
477       assert(Iteration > 0 &&
478              "Cannot track PHI-used values past the first iteration!");
479       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
480       PHIUsedList.clear();
481     }
482   };
483 
484   // Ensure that we don't violate the loop structure invariants relied on by
485   // this analysis.
486   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
487   assert(L->isLCSSAForm(DT) &&
488          "Must have loops in LCSSA form to track live-out values.");
489 
490   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
491 
492   // Simulate execution of each iteration of the loop counting instructions,
493   // which would be simplified.
494   // Since the same load will take different values on different iterations,
495   // we literally have to go through all loop's iterations.
496   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
497     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
498 
499     // Prepare for the iteration by collecting any simplified entry or backedge
500     // inputs.
501     for (Instruction &I : *L->getHeader()) {
502       auto *PHI = dyn_cast<PHINode>(&I);
503       if (!PHI)
504         break;
505 
506       // The loop header PHI nodes must have exactly two input: one from the
507       // loop preheader and one from the loop latch.
508       assert(
509           PHI->getNumIncomingValues() == 2 &&
510           "Must have an incoming value only for the preheader and the latch.");
511 
512       Value *V = PHI->getIncomingValueForBlock(
513           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
514       Constant *C = dyn_cast<Constant>(V);
515       if (Iteration != 0 && !C)
516         C = SimplifiedValues.lookup(V);
517       if (C)
518         SimplifiedInputValues.push_back({PHI, C});
519     }
520 
521     // Now clear and re-populate the map for the next iteration.
522     SimplifiedValues.clear();
523     while (!SimplifiedInputValues.empty())
524       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
525 
526     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
527 
528     BBWorklist.clear();
529     BBWorklist.insert(L->getHeader());
530     // Note that we *must not* cache the size, this loop grows the worklist.
531     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
532       BasicBlock *BB = BBWorklist[Idx];
533 
534       // Visit all instructions in the given basic block and try to simplify
535       // it.  We don't change the actual IR, just count optimization
536       // opportunities.
537       for (Instruction &I : *BB) {
538         // These won't get into the final code - don't even try calculating the
539         // cost for them.
540         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
541           continue;
542 
543         // Track this instruction's expected baseline cost when executing the
544         // rolled loop form.
545         RolledDynamicCost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
546 
547         // Visit the instruction to analyze its loop cost after unrolling,
548         // and if the visitor returns true, mark the instruction as free after
549         // unrolling and continue.
550         bool IsFree = Analyzer.visit(I);
551         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
552                                            (unsigned)IsFree,
553                                            /*IsCounted*/ false}).second;
554         (void)Inserted;
555         assert(Inserted && "Cannot have a state for an unvisited instruction!");
556 
557         if (IsFree)
558           continue;
559 
560         // Can't properly model a cost of a call.
561         // FIXME: With a proper cost model we should be able to do it.
562         if (auto *CI = dyn_cast<CallInst>(&I)) {
563           const Function *Callee = CI->getCalledFunction();
564           if (!Callee || TTI.isLoweredToCall(Callee)) {
565             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
566             return None;
567           }
568         }
569 
570         // If the instruction might have a side-effect recursively account for
571         // the cost of it and all the instructions leading up to it.
572         if (I.mayHaveSideEffects())
573           AddCostRecursively(I, Iteration);
574 
575         // If unrolled body turns out to be too big, bail out.
576         if (UnrolledCost > MaxUnrolledLoopSize) {
577           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
578                             << "  UnrolledCost: " << UnrolledCost
579                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
580                             << "\n");
581           return None;
582         }
583       }
584 
585       Instruction *TI = BB->getTerminator();
586 
587       // Add in the live successors by first checking whether we have terminator
588       // that may be simplified based on the values simplified by this call.
589       BasicBlock *KnownSucc = nullptr;
590       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
591         if (BI->isConditional()) {
592           if (Constant *SimpleCond =
593                   SimplifiedValues.lookup(BI->getCondition())) {
594             // Just take the first successor if condition is undef
595             if (isa<UndefValue>(SimpleCond))
596               KnownSucc = BI->getSuccessor(0);
597             else if (ConstantInt *SimpleCondVal =
598                          dyn_cast<ConstantInt>(SimpleCond))
599               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
600           }
601         }
602       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
603         if (Constant *SimpleCond =
604                 SimplifiedValues.lookup(SI->getCondition())) {
605           // Just take the first successor if condition is undef
606           if (isa<UndefValue>(SimpleCond))
607             KnownSucc = SI->getSuccessor(0);
608           else if (ConstantInt *SimpleCondVal =
609                        dyn_cast<ConstantInt>(SimpleCond))
610             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
611         }
612       }
613       if (KnownSucc) {
614         if (L->contains(KnownSucc))
615           BBWorklist.insert(KnownSucc);
616         else
617           ExitWorklist.insert({BB, KnownSucc});
618         continue;
619       }
620 
621       // Add BB's successors to the worklist.
622       for (BasicBlock *Succ : successors(BB))
623         if (L->contains(Succ))
624           BBWorklist.insert(Succ);
625         else
626           ExitWorklist.insert({BB, Succ});
627       AddCostRecursively(*TI, Iteration);
628     }
629 
630     // If we found no optimization opportunities on the first iteration, we
631     // won't find them on later ones too.
632     if (UnrolledCost == RolledDynamicCost) {
633       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
634                         << "  UnrolledCost: " << UnrolledCost << "\n");
635       return None;
636     }
637   }
638 
639   while (!ExitWorklist.empty()) {
640     BasicBlock *ExitingBB, *ExitBB;
641     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
642 
643     for (Instruction &I : *ExitBB) {
644       auto *PN = dyn_cast<PHINode>(&I);
645       if (!PN)
646         break;
647 
648       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
649       if (auto *OpI = dyn_cast<Instruction>(Op))
650         if (L->contains(OpI))
651           AddCostRecursively(*OpI, TripCount - 1);
652     }
653   }
654 
655   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
656                     << "UnrolledCost: " << UnrolledCost << ", "
657                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
658   return {{UnrolledCost, RolledDynamicCost}};
659 }
660 
661 /// ApproximateLoopSize - Approximate the size of the loop.
662 unsigned llvm::ApproximateLoopSize(
663     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
664     const TargetTransformInfo &TTI,
665     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
666   CodeMetrics Metrics;
667   for (BasicBlock *BB : L->blocks())
668     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
669   NumCalls = Metrics.NumInlineCandidates;
670   NotDuplicatable = Metrics.notDuplicatable;
671   Convergent = Metrics.convergent;
672 
673   unsigned LoopSize = Metrics.NumInsts;
674 
675   // Don't allow an estimate of size zero.  This would allows unrolling of loops
676   // with huge iteration counts, which is a compile time problem even if it's
677   // not a problem for code quality. Also, the code using this size may assume
678   // that each loop has at least three instructions (likely a conditional
679   // branch, a comparison feeding that branch, and some kind of loop increment
680   // feeding that comparison instruction).
681   LoopSize = std::max(LoopSize, BEInsns + 1);
682 
683   return LoopSize;
684 }
685 
686 // Returns the loop hint metadata node with the given name (for example,
687 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
688 // returned.
689 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
690   if (MDNode *LoopID = L->getLoopID())
691     return GetUnrollMetadata(LoopID, Name);
692   return nullptr;
693 }
694 
695 // Returns true if the loop has an unroll(full) pragma.
696 static bool hasUnrollFullPragma(const Loop *L) {
697   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
698 }
699 
700 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
701 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
702 static bool hasUnrollEnablePragma(const Loop *L) {
703   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
704 }
705 
706 // Returns true if the loop has an runtime unroll(disable) pragma.
707 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
708   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
709 }
710 
711 // If loop has an unroll_count pragma return the (necessarily
712 // positive) value from the pragma.  Otherwise return 0.
713 static unsigned unrollCountPragmaValue(const Loop *L) {
714   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
715   if (MD) {
716     assert(MD->getNumOperands() == 2 &&
717            "Unroll count hint metadata should have two operands.");
718     unsigned Count =
719         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
720     assert(Count >= 1 && "Unroll count must be positive.");
721     return Count;
722   }
723   return 0;
724 }
725 
726 // Computes the boosting factor for complete unrolling.
727 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
728 // be beneficial to fully unroll the loop even if unrolledcost is large. We
729 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
730 // the unroll threshold.
731 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
732                                             unsigned MaxPercentThresholdBoost) {
733   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
734     return 100;
735   else if (Cost.UnrolledCost != 0)
736     // The boosting factor is RolledDynamicCost / UnrolledCost
737     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
738                     MaxPercentThresholdBoost);
739   else
740     return MaxPercentThresholdBoost;
741 }
742 
743 // Returns loop size estimation for unrolled loop.
744 static uint64_t getUnrolledLoopSize(
745     unsigned LoopSize,
746     TargetTransformInfo::UnrollingPreferences &UP) {
747   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
748   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
749 }
750 
751 // Returns true if unroll count was set explicitly.
752 // Calculates unroll count and writes it to UP.Count.
753 // Unless IgnoreUser is true, will also use metadata and command-line options
754 // that are specific to to the LoopUnroll pass (which, for instance, are
755 // irrelevant for the LoopUnrollAndJam pass).
756 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
757 // many LoopUnroll-specific options. The shared functionality should be
758 // refactored into it own function.
759 bool llvm::computeUnrollCount(
760     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
761     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
762     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
763     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
764     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
765 
766   // Check for explicit Count.
767   // 1st priority is unroll count set by "unroll-count" option.
768   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
769   if (UserUnrollCount) {
770     UP.Count = UnrollCount;
771     UP.AllowExpensiveTripCount = true;
772     UP.Force = true;
773     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
774       return true;
775   }
776 
777   // 2nd priority is unroll count set by pragma.
778   unsigned PragmaCount = unrollCountPragmaValue(L);
779   if (PragmaCount > 0) {
780     UP.Count = PragmaCount;
781     UP.Runtime = true;
782     UP.AllowExpensiveTripCount = true;
783     UP.Force = true;
784     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
785         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
786       return true;
787   }
788   bool PragmaFullUnroll = hasUnrollFullPragma(L);
789   if (PragmaFullUnroll && TripCount != 0) {
790     UP.Count = TripCount;
791     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
792       return false;
793   }
794 
795   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
796   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
797                         PragmaEnableUnroll || UserUnrollCount;
798 
799   if (ExplicitUnroll && TripCount != 0) {
800     // If the loop has an unrolling pragma, we want to be more aggressive with
801     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
802     // value which is larger than the default limits.
803     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
804     UP.PartialThreshold =
805         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
806   }
807 
808   // 3rd priority is full unroll count.
809   // Full unroll makes sense only when TripCount or its upper bound could be
810   // statically calculated.
811   // Also we need to check if we exceed FullUnrollMaxCount.
812   // If using the upper bound to unroll, TripMultiple should be set to 1 because
813   // we do not know when loop may exit.
814 
815   // We can unroll by the upper bound amount if it's generally allowed or if
816   // we know that the loop is executed either the upper bound or zero times.
817   // (MaxOrZero unrolling keeps only the first loop test, so the number of
818   // loop tests remains the same compared to the non-unrolled version, whereas
819   // the generic upper bound unrolling keeps all but the last loop test so the
820   // number of loop tests goes up which may end up being worse on targets with
821   // constrained branch predictor resources so is controlled by an option.)
822   // In addition we only unroll small upper bounds.
823   unsigned FullUnrollMaxTripCount = MaxTripCount;
824   if (!(UP.UpperBound || MaxOrZero) ||
825       FullUnrollMaxTripCount > UnrollMaxUpperBound)
826     FullUnrollMaxTripCount = 0;
827 
828   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
829   // compute the former when the latter is zero.
830   unsigned ExactTripCount = TripCount;
831   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
832          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
833 
834   unsigned FullUnrollTripCount =
835       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
836   UP.Count = FullUnrollTripCount;
837   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
838     // When computing the unrolled size, note that BEInsns are not replicated
839     // like the rest of the loop body.
840     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
841       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
842       TripCount = FullUnrollTripCount;
843       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
844       return ExplicitUnroll;
845     } else {
846       // The loop isn't that small, but we still can fully unroll it if that
847       // helps to remove a significant number of instructions.
848       // To check that, run additional analysis on the loop.
849       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
850               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
851               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
852               UP.MaxIterationsCountToAnalyze)) {
853         unsigned Boost =
854             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
855         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
856           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
857           TripCount = FullUnrollTripCount;
858           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
859           return ExplicitUnroll;
860         }
861       }
862     }
863   }
864 
865   // 4th priority is loop peeling.
866   computePeelCount(L, LoopSize, UP, TripCount, SE);
867   if (UP.PeelCount) {
868     UP.Runtime = false;
869     UP.Count = 1;
870     return ExplicitUnroll;
871   }
872 
873   // 5th priority is partial unrolling.
874   // Try partial unroll only when TripCount could be statically calculated.
875   if (TripCount) {
876     UP.Partial |= ExplicitUnroll;
877     if (!UP.Partial) {
878       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
879                         << "-unroll-allow-partial not given\n");
880       UP.Count = 0;
881       return false;
882     }
883     if (UP.Count == 0)
884       UP.Count = TripCount;
885     if (UP.PartialThreshold != NoThreshold) {
886       // Reduce unroll count to be modulo of TripCount for partial unrolling.
887       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
888         UP.Count =
889             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
890             (LoopSize - UP.BEInsns);
891       if (UP.Count > UP.MaxCount)
892         UP.Count = UP.MaxCount;
893       while (UP.Count != 0 && TripCount % UP.Count != 0)
894         UP.Count--;
895       if (UP.AllowRemainder && UP.Count <= 1) {
896         // If there is no Count that is modulo of TripCount, set Count to
897         // largest power-of-two factor that satisfies the threshold limit.
898         // As we'll create fixup loop, do the type of unrolling only if
899         // remainder loop is allowed.
900         UP.Count = UP.DefaultUnrollRuntimeCount;
901         while (UP.Count != 0 &&
902                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
903           UP.Count >>= 1;
904       }
905       if (UP.Count < 2) {
906         if (PragmaEnableUnroll)
907           ORE->emit([&]() {
908             return OptimizationRemarkMissed(DEBUG_TYPE,
909                                             "UnrollAsDirectedTooLarge",
910                                             L->getStartLoc(), L->getHeader())
911                    << "Unable to unroll loop as directed by unroll(enable) "
912                       "pragma "
913                       "because unrolled size is too large.";
914           });
915         UP.Count = 0;
916       }
917     } else {
918       UP.Count = TripCount;
919     }
920     if (UP.Count > UP.MaxCount)
921       UP.Count = UP.MaxCount;
922     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
923         UP.Count != TripCount)
924       ORE->emit([&]() {
925         return OptimizationRemarkMissed(DEBUG_TYPE,
926                                         "FullUnrollAsDirectedTooLarge",
927                                         L->getStartLoc(), L->getHeader())
928                << "Unable to fully unroll loop as directed by unroll pragma "
929                   "because "
930                   "unrolled size is too large.";
931       });
932     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
933                       << "\n");
934     return ExplicitUnroll;
935   }
936   assert(TripCount == 0 &&
937          "All cases when TripCount is constant should be covered here.");
938   if (PragmaFullUnroll)
939     ORE->emit([&]() {
940       return OptimizationRemarkMissed(
941                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
942                  L->getStartLoc(), L->getHeader())
943              << "Unable to fully unroll loop as directed by unroll(full) "
944                 "pragma "
945                 "because loop has a runtime trip count.";
946     });
947 
948   // 6th priority is runtime unrolling.
949   // Don't unroll a runtime trip count loop when it is disabled.
950   if (hasRuntimeUnrollDisablePragma(L)) {
951     UP.Count = 0;
952     return false;
953   }
954 
955   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
956   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
957     UP.Count = 0;
958     return false;
959   }
960 
961   // Check if the runtime trip count is too small when profile is available.
962   if (L->getHeader()->getParent()->hasProfileData()) {
963     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
964       if (*ProfileTripCount < FlatLoopTripCountThreshold)
965         return false;
966       else
967         UP.AllowExpensiveTripCount = true;
968     }
969   }
970 
971   // Reduce count based on the type of unrolling and the threshold values.
972   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
973   if (!UP.Runtime) {
974     LLVM_DEBUG(
975         dbgs() << "  will not try to unroll loop with runtime trip count "
976                << "-unroll-runtime not given\n");
977     UP.Count = 0;
978     return false;
979   }
980   if (UP.Count == 0)
981     UP.Count = UP.DefaultUnrollRuntimeCount;
982 
983   // Reduce unroll count to be the largest power-of-two factor of
984   // the original count which satisfies the threshold limit.
985   while (UP.Count != 0 &&
986          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
987     UP.Count >>= 1;
988 
989 #ifndef NDEBUG
990   unsigned OrigCount = UP.Count;
991 #endif
992 
993   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
994     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
995       UP.Count >>= 1;
996     LLVM_DEBUG(
997         dbgs() << "Remainder loop is restricted (that could architecture "
998                   "specific or because the loop contains a convergent "
999                   "instruction), so unroll count must divide the trip "
1000                   "multiple, "
1001                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1002                << " to " << UP.Count << ".\n");
1003 
1004     using namespace ore;
1005 
1006     if (PragmaCount > 0 && !UP.AllowRemainder)
1007       ORE->emit([&]() {
1008         return OptimizationRemarkMissed(DEBUG_TYPE,
1009                                         "DifferentUnrollCountFromDirected",
1010                                         L->getStartLoc(), L->getHeader())
1011                << "Unable to unroll loop the number of times directed by "
1012                   "unroll_count pragma because remainder loop is restricted "
1013                   "(that could architecture specific or because the loop "
1014                   "contains a convergent instruction) and so must have an "
1015                   "unroll "
1016                   "count that divides the loop trip multiple of "
1017                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1018                << NV("UnrollCount", UP.Count) << " time(s).";
1019       });
1020   }
1021 
1022   if (UP.Count > UP.MaxCount)
1023     UP.Count = UP.MaxCount;
1024 
1025   if (MaxTripCount && UP.Count > MaxTripCount)
1026     UP.Count = MaxTripCount;
1027 
1028   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1029                     << "\n");
1030   if (UP.Count < 2)
1031     UP.Count = 0;
1032   return ExplicitUnroll;
1033 }
1034 
1035 static LoopUnrollResult tryToUnrollLoop(
1036     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1037     const TargetTransformInfo &TTI, AssumptionCache &AC,
1038     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1039     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1040     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1041     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1042     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1043     Optional<bool> ProvidedAllowPeeling,
1044     Optional<bool> ProvidedAllowProfileBasedPeeling,
1045     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1046   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1047                     << L->getHeader()->getParent()->getName() << "] Loop %"
1048                     << L->getHeader()->getName() << "\n");
1049   TransformationMode TM = hasUnrollTransformation(L);
1050   if (TM & TM_Disable)
1051     return LoopUnrollResult::Unmodified;
1052   if (!L->isLoopSimplifyForm()) {
1053     LLVM_DEBUG(
1054         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1055     return LoopUnrollResult::Unmodified;
1056   }
1057 
1058   // When automtatic unrolling is disabled, do not unroll unless overridden for
1059   // this loop.
1060   if (OnlyWhenForced && !(TM & TM_Enable))
1061     return LoopUnrollResult::Unmodified;
1062 
1063   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1064   unsigned NumInlineCandidates;
1065   bool NotDuplicatable;
1066   bool Convergent;
1067   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1068       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1069       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1070       ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1071       ProvidedFullUnrollMaxCount);
1072 
1073   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1074   // as threshold later on.
1075   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1076       !OptForSize)
1077     return LoopUnrollResult::Unmodified;
1078 
1079   SmallPtrSet<const Value *, 32> EphValues;
1080   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1081 
1082   unsigned LoopSize =
1083       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1084                           TTI, EphValues, UP.BEInsns);
1085   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1086   if (NotDuplicatable) {
1087     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1088                       << " instructions.\n");
1089     return LoopUnrollResult::Unmodified;
1090   }
1091 
1092   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1093   // later), to (fully) unroll loops, if it does not increase code size.
1094   if (OptForSize)
1095     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1096 
1097   if (NumInlineCandidates != 0) {
1098     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1099     return LoopUnrollResult::Unmodified;
1100   }
1101 
1102   // Find trip count and trip multiple if count is not available
1103   unsigned TripCount = 0;
1104   unsigned TripMultiple = 1;
1105   // If there are multiple exiting blocks but one of them is the latch, use the
1106   // latch for the trip count estimation. Otherwise insist on a single exiting
1107   // block for the trip count estimation.
1108   BasicBlock *ExitingBlock = L->getLoopLatch();
1109   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1110     ExitingBlock = L->getExitingBlock();
1111   if (ExitingBlock) {
1112     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1113     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1114   }
1115 
1116   // If the loop contains a convergent operation, the prelude we'd add
1117   // to do the first few instructions before we hit the unrolled loop
1118   // is unsafe -- it adds a control-flow dependency to the convergent
1119   // operation.  Therefore restrict remainder loop (try unrollig without).
1120   //
1121   // TODO: This is quite conservative.  In practice, convergent_op()
1122   // is likely to be called unconditionally in the loop.  In this
1123   // case, the program would be ill-formed (on most architectures)
1124   // unless n were the same on all threads in a thread group.
1125   // Assuming n is the same on all threads, any kind of unrolling is
1126   // safe.  But currently llvm's notion of convergence isn't powerful
1127   // enough to express this.
1128   if (Convergent)
1129     UP.AllowRemainder = false;
1130 
1131   // Try to find the trip count upper bound if we cannot find the exact trip
1132   // count.
1133   unsigned MaxTripCount = 0;
1134   bool MaxOrZero = false;
1135   if (!TripCount) {
1136     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1137     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1138   }
1139 
1140   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1141   // fully unroll the loop.
1142   bool UseUpperBound = false;
1143   bool IsCountSetExplicitly = computeUnrollCount(
1144       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1145       TripMultiple, LoopSize, UP, UseUpperBound);
1146   if (!UP.Count)
1147     return LoopUnrollResult::Unmodified;
1148   // Unroll factor (Count) must be less or equal to TripCount.
1149   if (TripCount && UP.Count > TripCount)
1150     UP.Count = TripCount;
1151 
1152   // Save loop properties before it is transformed.
1153   MDNode *OrigLoopID = L->getLoopID();
1154 
1155   // Unroll the loop.
1156   Loop *RemainderLoop = nullptr;
1157   LoopUnrollResult UnrollResult = UnrollLoop(
1158       L,
1159       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1160        UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1161        ForgetAllSCEV},
1162       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1163   if (UnrollResult == LoopUnrollResult::Unmodified)
1164     return LoopUnrollResult::Unmodified;
1165 
1166   if (RemainderLoop) {
1167     Optional<MDNode *> RemainderLoopID =
1168         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1169                                         LLVMLoopUnrollFollowupRemainder});
1170     if (RemainderLoopID.hasValue())
1171       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1172   }
1173 
1174   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1175     Optional<MDNode *> NewLoopID =
1176         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1177                                         LLVMLoopUnrollFollowupUnrolled});
1178     if (NewLoopID.hasValue()) {
1179       L->setLoopID(NewLoopID.getValue());
1180 
1181       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1182       // explicitly.
1183       return UnrollResult;
1184     }
1185   }
1186 
1187   // If loop has an unroll count pragma or unrolled by explicitly set count
1188   // mark loop as unrolled to prevent unrolling beyond that requested.
1189   // If the loop was peeled, we already "used up" the profile information
1190   // we had, so we don't want to unroll or peel again.
1191   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1192       (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1193     L->setLoopAlreadyUnrolled();
1194 
1195   return UnrollResult;
1196 }
1197 
1198 namespace {
1199 
1200 class LoopUnroll : public LoopPass {
1201 public:
1202   static char ID; // Pass ID, replacement for typeid
1203 
1204   int OptLevel;
1205 
1206   /// If false, use a cost model to determine whether unrolling of a loop is
1207   /// profitable. If true, only loops that explicitly request unrolling via
1208   /// metadata are considered. All other loops are skipped.
1209   bool OnlyWhenForced;
1210 
1211   /// If false, when SCEV is invalidated, only forget everything in the
1212   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1213   /// Otherwise, forgetAllLoops and rebuild when needed next.
1214   bool ForgetAllSCEV;
1215 
1216   Optional<unsigned> ProvidedCount;
1217   Optional<unsigned> ProvidedThreshold;
1218   Optional<bool> ProvidedAllowPartial;
1219   Optional<bool> ProvidedRuntime;
1220   Optional<bool> ProvidedUpperBound;
1221   Optional<bool> ProvidedAllowPeeling;
1222   Optional<bool> ProvidedAllowProfileBasedPeeling;
1223   Optional<unsigned> ProvidedFullUnrollMaxCount;
1224 
1225   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1226              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1227              Optional<unsigned> Count = None,
1228              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1229              Optional<bool> UpperBound = None,
1230              Optional<bool> AllowPeeling = None,
1231              Optional<bool> AllowProfileBasedPeeling = None,
1232              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1233       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1234         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1235         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1236         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1237         ProvidedAllowPeeling(AllowPeeling),
1238         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1239         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1240     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1241   }
1242 
1243   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1244     if (skipLoop(L))
1245       return false;
1246 
1247     Function &F = *L->getHeader()->getParent();
1248 
1249     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1250     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1251     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1252     const TargetTransformInfo &TTI =
1253         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1254     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1255     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1256     // pass.  Function analyses need to be preserved across loop transformations
1257     // but ORE cannot be preserved (see comment before the pass definition).
1258     OptimizationRemarkEmitter ORE(&F);
1259     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1260 
1261     LoopUnrollResult Result = tryToUnrollLoop(
1262         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1263         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1264         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1265         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1266         ProvidedFullUnrollMaxCount);
1267 
1268     if (Result == LoopUnrollResult::FullyUnrolled)
1269       LPM.markLoopAsDeleted(*L);
1270 
1271     return Result != LoopUnrollResult::Unmodified;
1272   }
1273 
1274   /// This transformation requires natural loop information & requires that
1275   /// loop preheaders be inserted into the CFG...
1276   void getAnalysisUsage(AnalysisUsage &AU) const override {
1277     AU.addRequired<AssumptionCacheTracker>();
1278     AU.addRequired<TargetTransformInfoWrapperPass>();
1279     // FIXME: Loop passes are required to preserve domtree, and for now we just
1280     // recreate dom info if anything gets unrolled.
1281     getLoopAnalysisUsage(AU);
1282   }
1283 };
1284 
1285 } // end anonymous namespace
1286 
1287 char LoopUnroll::ID = 0;
1288 
1289 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1290 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1291 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1292 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1293 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1294 
1295 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1296                                  bool ForgetAllSCEV, int Threshold, int Count,
1297                                  int AllowPartial, int Runtime, int UpperBound,
1298                                  int AllowPeeling) {
1299   // TODO: It would make more sense for this function to take the optionals
1300   // directly, but that's dangerous since it would silently break out of tree
1301   // callers.
1302   return new LoopUnroll(
1303       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1304       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1305       Count == -1 ? None : Optional<unsigned>(Count),
1306       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1307       Runtime == -1 ? None : Optional<bool>(Runtime),
1308       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1309       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1310 }
1311 
1312 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1313                                        bool ForgetAllSCEV) {
1314   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1315                               0, 0, 0, 0);
1316 }
1317 
1318 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1319                                           LoopStandardAnalysisResults &AR,
1320                                           LPMUpdater &Updater) {
1321   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1322   // pass. Function analyses need to be preserved across loop transformations
1323   // but ORE cannot be preserved (see comment before the pass definition).
1324   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1325 
1326   // Keep track of the previous loop structure so we can identify new loops
1327   // created by unrolling.
1328   Loop *ParentL = L.getParentLoop();
1329   SmallPtrSet<Loop *, 4> OldLoops;
1330   if (ParentL)
1331     OldLoops.insert(ParentL->begin(), ParentL->end());
1332   else
1333     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1334 
1335   std::string LoopName = std::string(L.getName());
1336 
1337   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1338                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1339                                  /*PreserveLCSSA*/ true, OptLevel,
1340                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1341                                  /*Threshold*/ None, /*AllowPartial*/ false,
1342                                  /*Runtime*/ false, /*UpperBound*/ false,
1343                                  /*AllowPeeling*/ false,
1344                                  /*AllowProfileBasedPeeling*/ false,
1345                                  /*FullUnrollMaxCount*/ None) !=
1346                  LoopUnrollResult::Unmodified;
1347   if (!Changed)
1348     return PreservedAnalyses::all();
1349 
1350   // The parent must not be damaged by unrolling!
1351 #ifndef NDEBUG
1352   if (ParentL)
1353     ParentL->verifyLoop();
1354 #endif
1355 
1356   // Unrolling can do several things to introduce new loops into a loop nest:
1357   // - Full unrolling clones child loops within the current loop but then
1358   //   removes the current loop making all of the children appear to be new
1359   //   sibling loops.
1360   //
1361   // When a new loop appears as a sibling loop after fully unrolling,
1362   // its nesting structure has fundamentally changed and we want to revisit
1363   // it to reflect that.
1364   //
1365   // When unrolling has removed the current loop, we need to tell the
1366   // infrastructure that it is gone.
1367   //
1368   // Finally, we support a debugging/testing mode where we revisit child loops
1369   // as well. These are not expected to require further optimizations as either
1370   // they or the loop they were cloned from have been directly visited already.
1371   // But the debugging mode allows us to check this assumption.
1372   bool IsCurrentLoopValid = false;
1373   SmallVector<Loop *, 4> SibLoops;
1374   if (ParentL)
1375     SibLoops.append(ParentL->begin(), ParentL->end());
1376   else
1377     SibLoops.append(AR.LI.begin(), AR.LI.end());
1378   erase_if(SibLoops, [&](Loop *SibLoop) {
1379     if (SibLoop == &L) {
1380       IsCurrentLoopValid = true;
1381       return true;
1382     }
1383 
1384     // Otherwise erase the loop from the list if it was in the old loops.
1385     return OldLoops.count(SibLoop) != 0;
1386   });
1387   Updater.addSiblingLoops(SibLoops);
1388 
1389   if (!IsCurrentLoopValid) {
1390     Updater.markLoopAsDeleted(L, LoopName);
1391   } else {
1392     // We can only walk child loops if the current loop remained valid.
1393     if (UnrollRevisitChildLoops) {
1394       // Walk *all* of the child loops.
1395       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1396       Updater.addChildLoops(ChildLoops);
1397     }
1398   }
1399 
1400   return getLoopPassPreservedAnalyses();
1401 }
1402 
1403 PreservedAnalyses LoopUnrollPass::run(Function &F,
1404                                       FunctionAnalysisManager &AM) {
1405   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1406   auto &LI = AM.getResult<LoopAnalysis>(F);
1407   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1408   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1409   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1410   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1411 
1412   LoopAnalysisManager *LAM = nullptr;
1413   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1414     LAM = &LAMProxy->getManager();
1415 
1416   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1417   ProfileSummaryInfo *PSI =
1418       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1419   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1420       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1421 
1422   bool Changed = false;
1423 
1424   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1425   // Since simplification may add new inner loops, it has to run before the
1426   // legality and profitability checks. This means running the loop unroller
1427   // will simplify all loops, regardless of whether anything end up being
1428   // unrolled.
1429   for (auto &L : LI) {
1430     Changed |=
1431         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1432     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1433   }
1434 
1435   // Add the loop nests in the reverse order of LoopInfo. See method
1436   // declaration.
1437   SmallPriorityWorklist<Loop *, 4> Worklist;
1438   appendLoopsToWorklist(LI, Worklist);
1439 
1440   while (!Worklist.empty()) {
1441     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1442     // from back to front so that we work forward across the CFG, which
1443     // for unrolling is only needed to get optimization remarks emitted in
1444     // a forward order.
1445     Loop &L = *Worklist.pop_back_val();
1446 #ifndef NDEBUG
1447     Loop *ParentL = L.getParentLoop();
1448 #endif
1449 
1450     // Check if the profile summary indicates that the profiled application
1451     // has a huge working set size, in which case we disable peeling to avoid
1452     // bloating it further.
1453     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1454     if (PSI && PSI->hasHugeWorkingSetSize())
1455       LocalAllowPeeling = false;
1456     std::string LoopName = std::string(L.getName());
1457     // The API here is quite complex to call and we allow to select some
1458     // flavors of unrolling during construction time (by setting UnrollOpts).
1459     LoopUnrollResult Result = tryToUnrollLoop(
1460         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1461         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1462         UnrollOpts.ForgetSCEV, /*Count*/ None,
1463         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1464         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1465         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1466     Changed |= Result != LoopUnrollResult::Unmodified;
1467 
1468     // The parent must not be damaged by unrolling!
1469 #ifndef NDEBUG
1470     if (Result != LoopUnrollResult::Unmodified && ParentL)
1471       ParentL->verifyLoop();
1472 #endif
1473 
1474     // Clear any cached analysis results for L if we removed it completely.
1475     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1476       LAM->clear(L, LoopName);
1477   }
1478 
1479   if (!Changed)
1480     return PreservedAnalyses::all();
1481 
1482   return getLoopPassPreservedAnalyses();
1483 }
1484