xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 67efbd0bf1b2df8a479e09eb2be7db4c3c892f2c)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopPeel.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <optional>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of "
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 static cl::opt<unsigned> PragmaUnrollFullMaxIterations(
179     "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden,
180     cl::desc("Maximum allowed iterations to unroll under pragma unroll full."));
181 
182 /// A magic value for use with the Threshold parameter to indicate
183 /// that the loop unroll should be performed regardless of how much
184 /// code expansion would result.
185 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
186 
187 /// Gather the various unrolling parameters based on the defaults, compiler
188 /// flags, TTI overrides and user specified parameters.
189 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
190     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
191     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
192     OptimizationRemarkEmitter &ORE, int OptLevel,
193     std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
194     std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
195     std::optional<bool> UserUpperBound,
196     std::optional<unsigned> UserFullUnrollMaxCount) {
197   TargetTransformInfo::UnrollingPreferences UP;
198 
199   // Set up the defaults
200   UP.Threshold =
201       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
202   UP.MaxPercentThresholdBoost = 400;
203   UP.OptSizeThreshold = UnrollOptSizeThreshold;
204   UP.PartialThreshold = 150;
205   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
206   UP.Count = 0;
207   UP.DefaultUnrollRuntimeCount = 8;
208   UP.MaxCount = std::numeric_limits<unsigned>::max();
209   UP.MaxUpperBound = UnrollMaxUpperBound;
210   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
211   UP.BEInsns = 2;
212   UP.Partial = false;
213   UP.Runtime = false;
214   UP.AllowRemainder = true;
215   UP.UnrollRemainder = false;
216   UP.AllowExpensiveTripCount = false;
217   UP.Force = false;
218   UP.UpperBound = false;
219   UP.UnrollAndJam = false;
220   UP.UnrollAndJamInnerLoopThreshold = 60;
221   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
222   UP.SCEVExpansionBudget = SCEVCheapExpansionBudget;
223 
224   // Override with any target specific settings
225   TTI.getUnrollingPreferences(L, SE, UP, &ORE);
226 
227   // Apply size attributes
228   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
229                     // Let unroll hints / pragmas take precedence over PGSO.
230                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
231                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
232                                                  PGSOQueryType::IRPass));
233   if (OptForSize) {
234     UP.Threshold = UP.OptSizeThreshold;
235     UP.PartialThreshold = UP.PartialOptSizeThreshold;
236     UP.MaxPercentThresholdBoost = 100;
237   }
238 
239   // Apply any user values specified by cl::opt
240   if (UnrollThreshold.getNumOccurrences() > 0)
241     UP.Threshold = UnrollThreshold;
242   if (UnrollPartialThreshold.getNumOccurrences() > 0)
243     UP.PartialThreshold = UnrollPartialThreshold;
244   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
245     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
246   if (UnrollMaxCount.getNumOccurrences() > 0)
247     UP.MaxCount = UnrollMaxCount;
248   if (UnrollMaxUpperBound.getNumOccurrences() > 0)
249     UP.MaxUpperBound = UnrollMaxUpperBound;
250   if (UnrollFullMaxCount.getNumOccurrences() > 0)
251     UP.FullUnrollMaxCount = UnrollFullMaxCount;
252   if (UnrollAllowPartial.getNumOccurrences() > 0)
253     UP.Partial = UnrollAllowPartial;
254   if (UnrollAllowRemainder.getNumOccurrences() > 0)
255     UP.AllowRemainder = UnrollAllowRemainder;
256   if (UnrollRuntime.getNumOccurrences() > 0)
257     UP.Runtime = UnrollRuntime;
258   if (UnrollMaxUpperBound == 0)
259     UP.UpperBound = false;
260   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
261     UP.UnrollRemainder = UnrollUnrollRemainder;
262   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
263     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
264 
265   // Apply user values provided by argument
266   if (UserThreshold) {
267     UP.Threshold = *UserThreshold;
268     UP.PartialThreshold = *UserThreshold;
269   }
270   if (UserCount)
271     UP.Count = *UserCount;
272   if (UserAllowPartial)
273     UP.Partial = *UserAllowPartial;
274   if (UserRuntime)
275     UP.Runtime = *UserRuntime;
276   if (UserUpperBound)
277     UP.UpperBound = *UserUpperBound;
278   if (UserFullUnrollMaxCount)
279     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
280 
281   return UP;
282 }
283 
284 namespace {
285 
286 /// A struct to densely store the state of an instruction after unrolling at
287 /// each iteration.
288 ///
289 /// This is designed to work like a tuple of <Instruction *, int> for the
290 /// purposes of hashing and lookup, but to be able to associate two boolean
291 /// states with each key.
292 struct UnrolledInstState {
293   Instruction *I;
294   int Iteration : 30;
295   unsigned IsFree : 1;
296   unsigned IsCounted : 1;
297 };
298 
299 /// Hashing and equality testing for a set of the instruction states.
300 struct UnrolledInstStateKeyInfo {
301   using PtrInfo = DenseMapInfo<Instruction *>;
302   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
303 
304   static inline UnrolledInstState getEmptyKey() {
305     return {PtrInfo::getEmptyKey(), 0, 0, 0};
306   }
307 
308   static inline UnrolledInstState getTombstoneKey() {
309     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
310   }
311 
312   static inline unsigned getHashValue(const UnrolledInstState &S) {
313     return PairInfo::getHashValue({S.I, S.Iteration});
314   }
315 
316   static inline bool isEqual(const UnrolledInstState &LHS,
317                              const UnrolledInstState &RHS) {
318     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
319   }
320 };
321 
322 struct EstimatedUnrollCost {
323   /// The estimated cost after unrolling.
324   unsigned UnrolledCost;
325 
326   /// The estimated dynamic cost of executing the instructions in the
327   /// rolled form.
328   unsigned RolledDynamicCost;
329 };
330 
331 struct PragmaInfo {
332   PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
333       : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
334         PragmaEnableUnroll(PEU) {}
335   const bool UserUnrollCount;
336   const bool PragmaFullUnroll;
337   const unsigned PragmaCount;
338   const bool PragmaEnableUnroll;
339 };
340 
341 } // end anonymous namespace
342 
343 /// Figure out if the loop is worth full unrolling.
344 ///
345 /// Complete loop unrolling can make some loads constant, and we need to know
346 /// if that would expose any further optimization opportunities.  This routine
347 /// estimates this optimization.  It computes cost of unrolled loop
348 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
349 /// dynamic cost we mean that we won't count costs of blocks that are known not
350 /// to be executed (i.e. if we have a branch in the loop and we know that at the
351 /// given iteration its condition would be resolved to true, we won't add up the
352 /// cost of the 'false'-block).
353 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
354 /// the analysis failed (no benefits expected from the unrolling, or the loop is
355 /// too big to analyze), the returned value is std::nullopt.
356 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
357     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
358     const SmallPtrSetImpl<const Value *> &EphValues,
359     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
360     unsigned MaxIterationsCountToAnalyze) {
361   // We want to be able to scale offsets by the trip count and add more offsets
362   // to them without checking for overflows, and we already don't want to
363   // analyze *massive* trip counts, so we force the max to be reasonably small.
364   assert(MaxIterationsCountToAnalyze <
365              (unsigned)(std::numeric_limits<int>::max() / 2) &&
366          "The unroll iterations max is too large!");
367 
368   // Only analyze inner loops. We can't properly estimate cost of nested loops
369   // and we won't visit inner loops again anyway.
370   if (!L->isInnermost())
371     return std::nullopt;
372 
373   // Don't simulate loops with a big or unknown tripcount
374   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
375     return std::nullopt;
376 
377   SmallSetVector<BasicBlock *, 16> BBWorklist;
378   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
379   DenseMap<Value *, Value *> SimplifiedValues;
380   SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
381 
382   // The estimated cost of the unrolled form of the loop. We try to estimate
383   // this by simplifying as much as we can while computing the estimate.
384   InstructionCost UnrolledCost = 0;
385 
386   // We also track the estimated dynamic (that is, actually executed) cost in
387   // the rolled form. This helps identify cases when the savings from unrolling
388   // aren't just exposing dead control flows, but actual reduced dynamic
389   // instructions due to the simplifications which we expect to occur after
390   // unrolling.
391   InstructionCost RolledDynamicCost = 0;
392 
393   // We track the simplification of each instruction in each iteration. We use
394   // this to recursively merge costs into the unrolled cost on-demand so that
395   // we don't count the cost of any dead code. This is essentially a map from
396   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
397   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
398 
399   // A small worklist used to accumulate cost of instructions from each
400   // observable and reached root in the loop.
401   SmallVector<Instruction *, 16> CostWorklist;
402 
403   // PHI-used worklist used between iterations while accumulating cost.
404   SmallVector<Instruction *, 4> PHIUsedList;
405 
406   // Helper function to accumulate cost for instructions in the loop.
407   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
408     assert(Iteration >= 0 && "Cannot have a negative iteration!");
409     assert(CostWorklist.empty() && "Must start with an empty cost list");
410     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
411     CostWorklist.push_back(&RootI);
412     TargetTransformInfo::TargetCostKind CostKind =
413       RootI.getFunction()->hasMinSize() ?
414       TargetTransformInfo::TCK_CodeSize :
415       TargetTransformInfo::TCK_SizeAndLatency;
416     for (;; --Iteration) {
417       do {
418         Instruction *I = CostWorklist.pop_back_val();
419 
420         // InstCostMap only uses I and Iteration as a key, the other two values
421         // don't matter here.
422         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
423         if (CostIter == InstCostMap.end())
424           // If an input to a PHI node comes from a dead path through the loop
425           // we may have no cost data for it here. What that actually means is
426           // that it is free.
427           continue;
428         auto &Cost = *CostIter;
429         if (Cost.IsCounted)
430           // Already counted this instruction.
431           continue;
432 
433         // Mark that we are counting the cost of this instruction now.
434         Cost.IsCounted = true;
435 
436         // If this is a PHI node in the loop header, just add it to the PHI set.
437         if (auto *PhiI = dyn_cast<PHINode>(I))
438           if (PhiI->getParent() == L->getHeader()) {
439             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
440                                   "inherently simplify during unrolling.");
441             if (Iteration == 0)
442               continue;
443 
444             // Push the incoming value from the backedge into the PHI used list
445             // if it is an in-loop instruction. We'll use this to populate the
446             // cost worklist for the next iteration (as we count backwards).
447             if (auto *OpI = dyn_cast<Instruction>(
448                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
449               if (L->contains(OpI))
450                 PHIUsedList.push_back(OpI);
451             continue;
452           }
453 
454         // First accumulate the cost of this instruction.
455         if (!Cost.IsFree) {
456           // Consider simplified operands in instruction cost.
457           SmallVector<Value *, 4> Operands;
458           transform(I->operands(), std::back_inserter(Operands),
459                     [&](Value *Op) {
460                       if (auto Res = SimplifiedValues.lookup(Op))
461                         return Res;
462                       return Op;
463                     });
464           UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind);
465           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
466                             << Iteration << "): ");
467           LLVM_DEBUG(I->dump());
468         }
469 
470         // We must count the cost of every operand which is not free,
471         // recursively. If we reach a loop PHI node, simply add it to the set
472         // to be considered on the next iteration (backwards!).
473         for (Value *Op : I->operands()) {
474           // Check whether this operand is free due to being a constant or
475           // outside the loop.
476           auto *OpI = dyn_cast<Instruction>(Op);
477           if (!OpI || !L->contains(OpI))
478             continue;
479 
480           // Otherwise accumulate its cost.
481           CostWorklist.push_back(OpI);
482         }
483       } while (!CostWorklist.empty());
484 
485       if (PHIUsedList.empty())
486         // We've exhausted the search.
487         break;
488 
489       assert(Iteration > 0 &&
490              "Cannot track PHI-used values past the first iteration!");
491       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
492       PHIUsedList.clear();
493     }
494   };
495 
496   // Ensure that we don't violate the loop structure invariants relied on by
497   // this analysis.
498   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
499   assert(L->isLCSSAForm(DT) &&
500          "Must have loops in LCSSA form to track live-out values.");
501 
502   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
503 
504   TargetTransformInfo::TargetCostKind CostKind =
505     L->getHeader()->getParent()->hasMinSize() ?
506     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
507   // Simulate execution of each iteration of the loop counting instructions,
508   // which would be simplified.
509   // Since the same load will take different values on different iterations,
510   // we literally have to go through all loop's iterations.
511   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
512     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
513 
514     // Prepare for the iteration by collecting any simplified entry or backedge
515     // inputs.
516     for (Instruction &I : *L->getHeader()) {
517       auto *PHI = dyn_cast<PHINode>(&I);
518       if (!PHI)
519         break;
520 
521       // The loop header PHI nodes must have exactly two input: one from the
522       // loop preheader and one from the loop latch.
523       assert(
524           PHI->getNumIncomingValues() == 2 &&
525           "Must have an incoming value only for the preheader and the latch.");
526 
527       Value *V = PHI->getIncomingValueForBlock(
528           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
529       if (Iteration != 0 && SimplifiedValues.count(V))
530         V = SimplifiedValues.lookup(V);
531       SimplifiedInputValues.push_back({PHI, V});
532     }
533 
534     // Now clear and re-populate the map for the next iteration.
535     SimplifiedValues.clear();
536     while (!SimplifiedInputValues.empty())
537       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
538 
539     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
540 
541     BBWorklist.clear();
542     BBWorklist.insert(L->getHeader());
543     // Note that we *must not* cache the size, this loop grows the worklist.
544     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
545       BasicBlock *BB = BBWorklist[Idx];
546 
547       // Visit all instructions in the given basic block and try to simplify
548       // it.  We don't change the actual IR, just count optimization
549       // opportunities.
550       for (Instruction &I : *BB) {
551         // These won't get into the final code - don't even try calculating the
552         // cost for them.
553         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
554           continue;
555 
556         // Track this instruction's expected baseline cost when executing the
557         // rolled loop form.
558         RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
559 
560         // Visit the instruction to analyze its loop cost after unrolling,
561         // and if the visitor returns true, mark the instruction as free after
562         // unrolling and continue.
563         bool IsFree = Analyzer.visit(I);
564         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
565                                            (unsigned)IsFree,
566                                            /*IsCounted*/ false}).second;
567         (void)Inserted;
568         assert(Inserted && "Cannot have a state for an unvisited instruction!");
569 
570         if (IsFree)
571           continue;
572 
573         // Can't properly model a cost of a call.
574         // FIXME: With a proper cost model we should be able to do it.
575         if (auto *CI = dyn_cast<CallInst>(&I)) {
576           const Function *Callee = CI->getCalledFunction();
577           if (!Callee || TTI.isLoweredToCall(Callee)) {
578             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
579             return std::nullopt;
580           }
581         }
582 
583         // If the instruction might have a side-effect recursively account for
584         // the cost of it and all the instructions leading up to it.
585         if (I.mayHaveSideEffects())
586           AddCostRecursively(I, Iteration);
587 
588         // If unrolled body turns out to be too big, bail out.
589         if (UnrolledCost > MaxUnrolledLoopSize) {
590           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
591                             << "  UnrolledCost: " << UnrolledCost
592                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
593                             << "\n");
594           return std::nullopt;
595         }
596       }
597 
598       Instruction *TI = BB->getTerminator();
599 
600       auto getSimplifiedConstant = [&](Value *V) -> Constant * {
601         if (SimplifiedValues.count(V))
602           V = SimplifiedValues.lookup(V);
603         return dyn_cast<Constant>(V);
604       };
605 
606       // Add in the live successors by first checking whether we have terminator
607       // that may be simplified based on the values simplified by this call.
608       BasicBlock *KnownSucc = nullptr;
609       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
610         if (BI->isConditional()) {
611           if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
612             // Just take the first successor if condition is undef
613             if (isa<UndefValue>(SimpleCond))
614               KnownSucc = BI->getSuccessor(0);
615             else if (ConstantInt *SimpleCondVal =
616                          dyn_cast<ConstantInt>(SimpleCond))
617               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
618           }
619         }
620       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
621         if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
622           // Just take the first successor if condition is undef
623           if (isa<UndefValue>(SimpleCond))
624             KnownSucc = SI->getSuccessor(0);
625           else if (ConstantInt *SimpleCondVal =
626                        dyn_cast<ConstantInt>(SimpleCond))
627             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
628         }
629       }
630       if (KnownSucc) {
631         if (L->contains(KnownSucc))
632           BBWorklist.insert(KnownSucc);
633         else
634           ExitWorklist.insert({BB, KnownSucc});
635         continue;
636       }
637 
638       // Add BB's successors to the worklist.
639       for (BasicBlock *Succ : successors(BB))
640         if (L->contains(Succ))
641           BBWorklist.insert(Succ);
642         else
643           ExitWorklist.insert({BB, Succ});
644       AddCostRecursively(*TI, Iteration);
645     }
646 
647     // If we found no optimization opportunities on the first iteration, we
648     // won't find them on later ones too.
649     if (UnrolledCost == RolledDynamicCost) {
650       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
651                         << "  UnrolledCost: " << UnrolledCost << "\n");
652       return std::nullopt;
653     }
654   }
655 
656   while (!ExitWorklist.empty()) {
657     BasicBlock *ExitingBB, *ExitBB;
658     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
659 
660     for (Instruction &I : *ExitBB) {
661       auto *PN = dyn_cast<PHINode>(&I);
662       if (!PN)
663         break;
664 
665       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
666       if (auto *OpI = dyn_cast<Instruction>(Op))
667         if (L->contains(OpI))
668           AddCostRecursively(*OpI, TripCount - 1);
669     }
670   }
671 
672   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
673          "All instructions must have a valid cost, whether the "
674          "loop is rolled or unrolled.");
675 
676   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
677                     << "UnrolledCost: " << UnrolledCost << ", "
678                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
679   return {{unsigned(*UnrolledCost.getValue()),
680            unsigned(*RolledDynamicCost.getValue())}};
681 }
682 
683 UnrollCostEstimator::UnrollCostEstimator(
684     const Loop *L, const TargetTransformInfo &TTI,
685     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
686   CodeMetrics Metrics;
687   for (BasicBlock *BB : L->blocks())
688     Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false,
689                               L);
690   NumInlineCandidates = Metrics.NumInlineCandidates;
691   NotDuplicatable = Metrics.notDuplicatable;
692   Convergence = Metrics.Convergence;
693   LoopSize = Metrics.NumInsts;
694   ConvergenceAllowsRuntime =
695       Metrics.Convergence != ConvergenceKind::Uncontrolled &&
696       !getLoopConvergenceHeart(L);
697 
698   // Don't allow an estimate of size zero.  This would allows unrolling of loops
699   // with huge iteration counts, which is a compile time problem even if it's
700   // not a problem for code quality. Also, the code using this size may assume
701   // that each loop has at least three instructions (likely a conditional
702   // branch, a comparison feeding that branch, and some kind of loop increment
703   // feeding that comparison instruction).
704   if (LoopSize.isValid() && LoopSize < BEInsns + 1)
705     // This is an open coded max() on InstructionCost
706     LoopSize = BEInsns + 1;
707 }
708 
709 bool UnrollCostEstimator::canUnroll() const {
710   switch (Convergence) {
711   case ConvergenceKind::ExtendedLoop:
712     LLVM_DEBUG(dbgs() << "  Convergence prevents unrolling.\n");
713     return false;
714   default:
715     break;
716   }
717   if (!LoopSize.isValid()) {
718     LLVM_DEBUG(dbgs() << "  Invalid loop size prevents unrolling.\n");
719     return false;
720   }
721   if (NotDuplicatable) {
722     LLVM_DEBUG(dbgs() << "  Non-duplicatable blocks prevent unrolling.\n");
723     return false;
724   }
725   return true;
726 }
727 
728 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
729     const TargetTransformInfo::UnrollingPreferences &UP,
730     unsigned CountOverwrite) const {
731   unsigned LS = *LoopSize.getValue();
732   assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
733   if (CountOverwrite)
734     return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns;
735   else
736     return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns;
737 }
738 
739 // Returns the loop hint metadata node with the given name (for example,
740 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
741 // returned.
742 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
743   if (MDNode *LoopID = L->getLoopID())
744     return GetUnrollMetadata(LoopID, Name);
745   return nullptr;
746 }
747 
748 // Returns true if the loop has an unroll(full) pragma.
749 static bool hasUnrollFullPragma(const Loop *L) {
750   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
751 }
752 
753 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
754 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
755 static bool hasUnrollEnablePragma(const Loop *L) {
756   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
757 }
758 
759 // Returns true if the loop has an runtime unroll(disable) pragma.
760 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
761   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
762 }
763 
764 // If loop has an unroll_count pragma return the (necessarily
765 // positive) value from the pragma.  Otherwise return 0.
766 static unsigned unrollCountPragmaValue(const Loop *L) {
767   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
768   if (MD) {
769     assert(MD->getNumOperands() == 2 &&
770            "Unroll count hint metadata should have two operands.");
771     unsigned Count =
772         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
773     assert(Count >= 1 && "Unroll count must be positive.");
774     return Count;
775   }
776   return 0;
777 }
778 
779 // Computes the boosting factor for complete unrolling.
780 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
781 // be beneficial to fully unroll the loop even if unrolledcost is large. We
782 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
783 // the unroll threshold.
784 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
785                                             unsigned MaxPercentThresholdBoost) {
786   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
787     return 100;
788   else if (Cost.UnrolledCost != 0)
789     // The boosting factor is RolledDynamicCost / UnrolledCost
790     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
791                     MaxPercentThresholdBoost);
792   else
793     return MaxPercentThresholdBoost;
794 }
795 
796 static std::optional<unsigned>
797 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
798                    const unsigned TripMultiple, const unsigned TripCount,
799                    unsigned MaxTripCount, const UnrollCostEstimator UCE,
800                    const TargetTransformInfo::UnrollingPreferences &UP) {
801 
802   // Using unroll pragma
803   // 1st priority is unroll count set by "unroll-count" option.
804 
805   if (PInfo.UserUnrollCount) {
806     if (UP.AllowRemainder &&
807         UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
808       return (unsigned)UnrollCount;
809   }
810 
811   // 2nd priority is unroll count set by pragma.
812   if (PInfo.PragmaCount > 0) {
813     if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
814       return PInfo.PragmaCount;
815   }
816 
817   if (PInfo.PragmaFullUnroll && TripCount != 0) {
818     // Certain cases with UBSAN can cause trip count to be calculated as
819     // INT_MAX, Block full unrolling at a reasonable limit so that the compiler
820     // doesn't hang trying to unroll the loop. See PR77842
821     if (TripCount > PragmaUnrollFullMaxIterations) {
822       LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n");
823       return std::nullopt;
824     }
825 
826     return TripCount;
827   }
828 
829   if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount &&
830       MaxTripCount <= UP.MaxUpperBound)
831     return MaxTripCount;
832 
833   // if didn't return until here, should continue to other priorties
834   return std::nullopt;
835 }
836 
837 static std::optional<unsigned> shouldFullUnroll(
838     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
839     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
840     const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
841     const TargetTransformInfo::UnrollingPreferences &UP) {
842   assert(FullUnrollTripCount && "should be non-zero!");
843 
844   if (FullUnrollTripCount > UP.FullUnrollMaxCount)
845     return std::nullopt;
846 
847   // When computing the unrolled size, note that BEInsns are not replicated
848   // like the rest of the loop body.
849   if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
850     return FullUnrollTripCount;
851 
852   // The loop isn't that small, but we still can fully unroll it if that
853   // helps to remove a significant number of instructions.
854   // To check that, run additional analysis on the loop.
855   if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
856           L, FullUnrollTripCount, DT, SE, EphValues, TTI,
857           UP.Threshold * UP.MaxPercentThresholdBoost / 100,
858           UP.MaxIterationsCountToAnalyze)) {
859     unsigned Boost =
860       getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
861     if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
862       return FullUnrollTripCount;
863   }
864   return std::nullopt;
865 }
866 
867 static std::optional<unsigned>
868 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
869                     const UnrollCostEstimator UCE,
870                     const TargetTransformInfo::UnrollingPreferences &UP) {
871 
872   if (!TripCount)
873     return std::nullopt;
874 
875   if (!UP.Partial) {
876     LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
877                << "-unroll-allow-partial not given\n");
878     return 0;
879   }
880   unsigned count = UP.Count;
881   if (count == 0)
882     count = TripCount;
883   if (UP.PartialThreshold != NoThreshold) {
884     // Reduce unroll count to be modulo of TripCount for partial unrolling.
885     if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
886       count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
887         (LoopSize - UP.BEInsns);
888     if (count > UP.MaxCount)
889       count = UP.MaxCount;
890     while (count != 0 && TripCount % count != 0)
891       count--;
892     if (UP.AllowRemainder && count <= 1) {
893       // If there is no Count that is modulo of TripCount, set Count to
894       // largest power-of-two factor that satisfies the threshold limit.
895       // As we'll create fixup loop, do the type of unrolling only if
896       // remainder loop is allowed.
897       count = UP.DefaultUnrollRuntimeCount;
898       while (count != 0 &&
899              UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
900         count >>= 1;
901     }
902     if (count < 2) {
903       count = 0;
904     }
905   } else {
906     count = TripCount;
907   }
908   if (count > UP.MaxCount)
909     count = UP.MaxCount;
910 
911   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << count << "\n");
912 
913   return count;
914 }
915 // Returns true if unroll count was set explicitly.
916 // Calculates unroll count and writes it to UP.Count.
917 // Unless IgnoreUser is true, will also use metadata and command-line options
918 // that are specific to to the LoopUnroll pass (which, for instance, are
919 // irrelevant for the LoopUnrollAndJam pass).
920 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
921 // many LoopUnroll-specific options. The shared functionality should be
922 // refactored into it own function.
923 bool llvm::computeUnrollCount(
924     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
925     AssumptionCache *AC, ScalarEvolution &SE,
926     const SmallPtrSetImpl<const Value *> &EphValues,
927     OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
928     bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE,
929     TargetTransformInfo::UnrollingPreferences &UP,
930     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
931 
932   unsigned LoopSize = UCE.getRolledLoopSize();
933 
934   const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
935   const bool PragmaFullUnroll = hasUnrollFullPragma(L);
936   const unsigned PragmaCount = unrollCountPragmaValue(L);
937   const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
938 
939   const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
940                               PragmaEnableUnroll || UserUnrollCount;
941 
942   PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
943                    PragmaEnableUnroll);
944   // Use an explicit peel count that has been specified for testing. In this
945   // case it's not permitted to also specify an explicit unroll count.
946   if (PP.PeelCount) {
947     if (UnrollCount.getNumOccurrences() > 0) {
948       report_fatal_error("Cannot specify both explicit peel count and "
949                          "explicit unroll count", /*GenCrashDiag=*/false);
950     }
951     UP.Count = 1;
952     UP.Runtime = false;
953     return true;
954   }
955   // Check for explicit Count.
956   // 1st priority is unroll count set by "unroll-count" option.
957   // 2nd priority is unroll count set by pragma.
958   if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
959                                              MaxTripCount, UCE, UP)) {
960     UP.Count = *UnrollFactor;
961 
962     if (UserUnrollCount || (PragmaCount > 0)) {
963       UP.AllowExpensiveTripCount = true;
964       UP.Force = true;
965     }
966     UP.Runtime |= (PragmaCount > 0);
967     return ExplicitUnroll;
968   } else {
969     if (ExplicitUnroll && TripCount != 0) {
970       // If the loop has an unrolling pragma, we want to be more aggressive with
971       // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
972       // value which is larger than the default limits.
973       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
974       UP.PartialThreshold =
975           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
976     }
977   }
978 
979   // 3rd priority is exact full unrolling.  This will eliminate all copies
980   // of some exit test.
981   UP.Count = 0;
982   if (TripCount) {
983     UP.Count = TripCount;
984     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
985                                              TripCount, UCE, UP)) {
986       UP.Count = *UnrollFactor;
987       UseUpperBound = false;
988       return ExplicitUnroll;
989     }
990   }
991 
992   // 4th priority is bounded unrolling.
993   // We can unroll by the upper bound amount if it's generally allowed or if
994   // we know that the loop is executed either the upper bound or zero times.
995   // (MaxOrZero unrolling keeps only the first loop test, so the number of
996   // loop tests remains the same compared to the non-unrolled version, whereas
997   // the generic upper bound unrolling keeps all but the last loop test so the
998   // number of loop tests goes up which may end up being worse on targets with
999   // constrained branch predictor resources so is controlled by an option.)
1000   // In addition we only unroll small upper bounds.
1001   // Note that the cost of bounded unrolling is always strictly greater than
1002   // cost of exact full unrolling.  As such, if we have an exact count and
1003   // found it unprofitable, we'll never chose to bounded unroll.
1004   if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
1005       MaxTripCount <= UP.MaxUpperBound) {
1006     UP.Count = MaxTripCount;
1007     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
1008                                              MaxTripCount, UCE, UP)) {
1009       UP.Count = *UnrollFactor;
1010       UseUpperBound = true;
1011       return ExplicitUnroll;
1012     }
1013   }
1014 
1015   // 5th priority is loop peeling.
1016   computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
1017   if (PP.PeelCount) {
1018     UP.Runtime = false;
1019     UP.Count = 1;
1020     return ExplicitUnroll;
1021   }
1022 
1023   // Before starting partial unrolling, set up.partial to true,
1024   // if user explicitly asked  for unrolling
1025   if (TripCount)
1026     UP.Partial |= ExplicitUnroll;
1027 
1028   // 6th priority is partial unrolling.
1029   // Try partial unroll only when TripCount could be statically calculated.
1030   if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
1031     UP.Count = *UnrollFactor;
1032 
1033     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1034         UP.Count != TripCount)
1035       ORE->emit([&]() {
1036         return OptimizationRemarkMissed(DEBUG_TYPE,
1037                                         "FullUnrollAsDirectedTooLarge",
1038                                         L->getStartLoc(), L->getHeader())
1039                << "Unable to fully unroll loop as directed by unroll pragma "
1040                   "because "
1041                   "unrolled size is too large.";
1042       });
1043 
1044     if (UP.PartialThreshold != NoThreshold) {
1045       if (UP.Count == 0) {
1046         if (PragmaEnableUnroll)
1047           ORE->emit([&]() {
1048             return OptimizationRemarkMissed(DEBUG_TYPE,
1049                                             "UnrollAsDirectedTooLarge",
1050                                             L->getStartLoc(), L->getHeader())
1051                    << "Unable to unroll loop as directed by unroll(enable) "
1052                       "pragma "
1053                       "because unrolled size is too large.";
1054           });
1055       }
1056     }
1057     return ExplicitUnroll;
1058   }
1059   assert(TripCount == 0 &&
1060          "All cases when TripCount is constant should be covered here.");
1061   if (PragmaFullUnroll)
1062     ORE->emit([&]() {
1063       return OptimizationRemarkMissed(
1064                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1065                  L->getStartLoc(), L->getHeader())
1066              << "Unable to fully unroll loop as directed by unroll(full) "
1067                 "pragma "
1068                 "because loop has a runtime trip count.";
1069     });
1070 
1071   // 7th priority is runtime unrolling.
1072   // Don't unroll a runtime trip count loop when it is disabled.
1073   if (hasRuntimeUnrollDisablePragma(L)) {
1074     UP.Count = 0;
1075     return false;
1076   }
1077 
1078   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1079   if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) {
1080     UP.Count = 0;
1081     return false;
1082   }
1083 
1084   // Check if the runtime trip count is too small when profile is available.
1085   if (L->getHeader()->getParent()->hasProfileData()) {
1086     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1087       if (*ProfileTripCount < FlatLoopTripCountThreshold)
1088         return false;
1089       else
1090         UP.AllowExpensiveTripCount = true;
1091     }
1092   }
1093   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1094   if (!UP.Runtime) {
1095     LLVM_DEBUG(
1096         dbgs() << "  will not try to unroll loop with runtime trip count "
1097                << "-unroll-runtime not given\n");
1098     UP.Count = 0;
1099     return false;
1100   }
1101   if (UP.Count == 0)
1102     UP.Count = UP.DefaultUnrollRuntimeCount;
1103 
1104   // Reduce unroll count to be the largest power-of-two factor of
1105   // the original count which satisfies the threshold limit.
1106   while (UP.Count != 0 &&
1107          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1108     UP.Count >>= 1;
1109 
1110 #ifndef NDEBUG
1111   unsigned OrigCount = UP.Count;
1112 #endif
1113 
1114   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1115     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1116       UP.Count >>= 1;
1117     LLVM_DEBUG(
1118         dbgs() << "Remainder loop is restricted (that could architecture "
1119                   "specific or because the loop contains a convergent "
1120                   "instruction), so unroll count must divide the trip "
1121                   "multiple, "
1122                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1123                << " to " << UP.Count << ".\n");
1124 
1125     using namespace ore;
1126 
1127     if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1128       ORE->emit([&]() {
1129         return OptimizationRemarkMissed(DEBUG_TYPE,
1130                                         "DifferentUnrollCountFromDirected",
1131                                         L->getStartLoc(), L->getHeader())
1132                << "Unable to unroll loop the number of times directed by "
1133                   "unroll_count pragma because remainder loop is restricted "
1134                   "(that could architecture specific or because the loop "
1135                   "contains a convergent instruction) and so must have an "
1136                   "unroll "
1137                   "count that divides the loop trip multiple of "
1138                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1139                << NV("UnrollCount", UP.Count) << " time(s).";
1140       });
1141   }
1142 
1143   if (UP.Count > UP.MaxCount)
1144     UP.Count = UP.MaxCount;
1145 
1146   if (MaxTripCount && UP.Count > MaxTripCount)
1147     UP.Count = MaxTripCount;
1148 
1149   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1150                     << "\n");
1151   if (UP.Count < 2)
1152     UP.Count = 0;
1153   return ExplicitUnroll;
1154 }
1155 
1156 static LoopUnrollResult
1157 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1158                 const TargetTransformInfo &TTI, AssumptionCache &AC,
1159                 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1160                 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1161                 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV,
1162                 std::optional<unsigned> ProvidedCount,
1163                 std::optional<unsigned> ProvidedThreshold,
1164                 std::optional<bool> ProvidedAllowPartial,
1165                 std::optional<bool> ProvidedRuntime,
1166                 std::optional<bool> ProvidedUpperBound,
1167                 std::optional<bool> ProvidedAllowPeeling,
1168                 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1169                 std::optional<unsigned> ProvidedFullUnrollMaxCount,
1170                 AAResults *AA = nullptr) {
1171 
1172   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1173                     << L->getHeader()->getParent()->getName() << "] Loop %"
1174                     << L->getHeader()->getName() << "\n");
1175   TransformationMode TM = hasUnrollTransformation(L);
1176   if (TM & TM_Disable)
1177     return LoopUnrollResult::Unmodified;
1178 
1179   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1180   // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1181   // automatic unrolling from interfering with the user requested
1182   // transformation.
1183   Loop *ParentL = L->getParentLoop();
1184   if (ParentL != nullptr &&
1185       hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1186       hasUnrollTransformation(L) != TM_ForcedByUser) {
1187     LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1188                       << " llvm.loop.unroll_and_jam.\n");
1189     return LoopUnrollResult::Unmodified;
1190   }
1191 
1192   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1193   // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1194   // unrolling from interfering with the user requested transformation.
1195   if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1196       hasUnrollTransformation(L) != TM_ForcedByUser) {
1197     LLVM_DEBUG(
1198         dbgs()
1199         << "  Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1200     return LoopUnrollResult::Unmodified;
1201   }
1202 
1203   if (!L->isLoopSimplifyForm()) {
1204     LLVM_DEBUG(
1205         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1206     return LoopUnrollResult::Unmodified;
1207   }
1208 
1209   // When automatic unrolling is disabled, do not unroll unless overridden for
1210   // this loop.
1211   if (OnlyWhenForced && !(TM & TM_Enable))
1212     return LoopUnrollResult::Unmodified;
1213 
1214   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1215   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1216       L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1217       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1218       ProvidedFullUnrollMaxCount);
1219   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1220       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1221 
1222   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1223   // as threshold later on.
1224   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1225       !OptForSize)
1226     return LoopUnrollResult::Unmodified;
1227 
1228   SmallPtrSet<const Value *, 32> EphValues;
1229   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1230 
1231   UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
1232   if (!UCE.canUnroll()) {
1233     LLVM_DEBUG(dbgs() << "  Loop not considered unrollable.\n");
1234     return LoopUnrollResult::Unmodified;
1235   }
1236 
1237   unsigned LoopSize = UCE.getRolledLoopSize();
1238   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1239 
1240   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1241   // later), to (fully) unroll loops, if it does not increase code size.
1242   if (OptForSize)
1243     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1244 
1245   if (UCE.NumInlineCandidates != 0) {
1246     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1247     return LoopUnrollResult::Unmodified;
1248   }
1249 
1250   // Find the smallest exact trip count for any exit. This is an upper bound
1251   // on the loop trip count, but an exit at an earlier iteration is still
1252   // possible. An unroll by the smallest exact trip count guarantees that all
1253   // branches relating to at least one exit can be eliminated. This is unlike
1254   // the max trip count, which only guarantees that the backedge can be broken.
1255   unsigned TripCount = 0;
1256   unsigned TripMultiple = 1;
1257   SmallVector<BasicBlock *, 8> ExitingBlocks;
1258   L->getExitingBlocks(ExitingBlocks);
1259   for (BasicBlock *ExitingBlock : ExitingBlocks)
1260     if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1261       if (!TripCount || TC < TripCount)
1262         TripCount = TripMultiple = TC;
1263 
1264   if (!TripCount) {
1265     // If no exact trip count is known, determine the trip multiple of either
1266     // the loop latch or the single exiting block.
1267     // TODO: Relax for multiple exits.
1268     BasicBlock *ExitingBlock = L->getLoopLatch();
1269     if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1270       ExitingBlock = L->getExitingBlock();
1271     if (ExitingBlock)
1272       TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1273   }
1274 
1275   // If the loop contains a convergent operation, the prelude we'd add
1276   // to do the first few instructions before we hit the unrolled loop
1277   // is unsafe -- it adds a control-flow dependency to the convergent
1278   // operation.  Therefore restrict remainder loop (try unrolling without).
1279   //
1280   // TODO: This is somewhat conservative; we could allow the remainder if the
1281   // trip count is uniform.
1282   UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime;
1283 
1284   // Try to find the trip count upper bound if we cannot find the exact trip
1285   // count.
1286   unsigned MaxTripCount = 0;
1287   bool MaxOrZero = false;
1288   if (!TripCount) {
1289     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1290     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1291   }
1292 
1293   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1294   // fully unroll the loop.
1295   bool UseUpperBound = false;
1296   bool IsCountSetExplicitly = computeUnrollCount(
1297       L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount,
1298       MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound);
1299   if (!UP.Count)
1300     return LoopUnrollResult::Unmodified;
1301 
1302   UP.Runtime &= UCE.ConvergenceAllowsRuntime;
1303 
1304   if (PP.PeelCount) {
1305     assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1306     LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1307                       << " with iteration count " << PP.PeelCount << "!\n");
1308     ORE.emit([&]() {
1309       return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1310                                 L->getHeader())
1311              << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1312              << " iterations";
1313     });
1314 
1315     ValueToValueMapTy VMap;
1316     if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) {
1317       simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI, nullptr);
1318       // If the loop was peeled, we already "used up" the profile information
1319       // we had, so we don't want to unroll or peel again.
1320       if (PP.PeelProfiledIterations)
1321         L->setLoopAlreadyUnrolled();
1322       return LoopUnrollResult::PartiallyUnrolled;
1323     }
1324     return LoopUnrollResult::Unmodified;
1325   }
1326 
1327   // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1328   if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) {
1329     LLVM_DEBUG(
1330         dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1331     return LoopUnrollResult::Unmodified;
1332   }
1333 
1334   // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1335   // However, we only want to actually perform it if we don't know the trip
1336   // count and the unroll count doesn't divide the known trip multiple.
1337   // TODO: This decision should probably be pushed up into
1338   // computeUnrollCount().
1339   UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1340 
1341   // Save loop properties before it is transformed.
1342   MDNode *OrigLoopID = L->getLoopID();
1343 
1344   // Unroll the loop.
1345   Loop *RemainderLoop = nullptr;
1346   UnrollLoopOptions ULO;
1347   ULO.Count = UP.Count;
1348   ULO.Force = UP.Force;
1349   ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount;
1350   ULO.UnrollRemainder = UP.UnrollRemainder;
1351   ULO.Runtime = UP.Runtime;
1352   ULO.ForgetAllSCEV = ForgetAllSCEV;
1353   ULO.Heart = getLoopConvergenceHeart(L);
1354   ULO.SCEVExpansionBudget = UP.SCEVExpansionBudget;
1355   LoopUnrollResult UnrollResult = UnrollLoop(
1356       L, ULO, LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop, AA);
1357   if (UnrollResult == LoopUnrollResult::Unmodified)
1358     return LoopUnrollResult::Unmodified;
1359 
1360   if (RemainderLoop) {
1361     std::optional<MDNode *> RemainderLoopID =
1362         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1363                                         LLVMLoopUnrollFollowupRemainder});
1364     if (RemainderLoopID)
1365       RemainderLoop->setLoopID(*RemainderLoopID);
1366   }
1367 
1368   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1369     std::optional<MDNode *> NewLoopID =
1370         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1371                                         LLVMLoopUnrollFollowupUnrolled});
1372     if (NewLoopID) {
1373       L->setLoopID(*NewLoopID);
1374 
1375       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1376       // explicitly.
1377       return UnrollResult;
1378     }
1379   }
1380 
1381   // If loop has an unroll count pragma or unrolled by explicitly set count
1382   // mark loop as unrolled to prevent unrolling beyond that requested.
1383   if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1384     L->setLoopAlreadyUnrolled();
1385 
1386   return UnrollResult;
1387 }
1388 
1389 namespace {
1390 
1391 class LoopUnroll : public LoopPass {
1392 public:
1393   static char ID; // Pass ID, replacement for typeid
1394 
1395   int OptLevel;
1396 
1397   /// If false, use a cost model to determine whether unrolling of a loop is
1398   /// profitable. If true, only loops that explicitly request unrolling via
1399   /// metadata are considered. All other loops are skipped.
1400   bool OnlyWhenForced;
1401 
1402   /// If false, when SCEV is invalidated, only forget everything in the
1403   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1404   /// Otherwise, forgetAllLoops and rebuild when needed next.
1405   bool ForgetAllSCEV;
1406 
1407   std::optional<unsigned> ProvidedCount;
1408   std::optional<unsigned> ProvidedThreshold;
1409   std::optional<bool> ProvidedAllowPartial;
1410   std::optional<bool> ProvidedRuntime;
1411   std::optional<bool> ProvidedUpperBound;
1412   std::optional<bool> ProvidedAllowPeeling;
1413   std::optional<bool> ProvidedAllowProfileBasedPeeling;
1414   std::optional<unsigned> ProvidedFullUnrollMaxCount;
1415 
1416   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1417              bool ForgetAllSCEV = false,
1418              std::optional<unsigned> Threshold = std::nullopt,
1419              std::optional<unsigned> Count = std::nullopt,
1420              std::optional<bool> AllowPartial = std::nullopt,
1421              std::optional<bool> Runtime = std::nullopt,
1422              std::optional<bool> UpperBound = std::nullopt,
1423              std::optional<bool> AllowPeeling = std::nullopt,
1424              std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1425              std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1426       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1427         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1428         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1429         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1430         ProvidedAllowPeeling(AllowPeeling),
1431         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1432         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1433     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1434   }
1435 
1436   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1437     if (skipLoop(L))
1438       return false;
1439 
1440     Function &F = *L->getHeader()->getParent();
1441 
1442     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1443     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1444     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1445     const TargetTransformInfo &TTI =
1446         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1447     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1448     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1449     // pass.  Function analyses need to be preserved across loop transformations
1450     // but ORE cannot be preserved (see comment before the pass definition).
1451     OptimizationRemarkEmitter ORE(&F);
1452     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1453 
1454     LoopUnrollResult Result = tryToUnrollLoop(
1455         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1456         /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount,
1457         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1458         ProvidedUpperBound, ProvidedAllowPeeling,
1459         ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount);
1460 
1461     if (Result == LoopUnrollResult::FullyUnrolled)
1462       LPM.markLoopAsDeleted(*L);
1463 
1464     return Result != LoopUnrollResult::Unmodified;
1465   }
1466 
1467   /// This transformation requires natural loop information & requires that
1468   /// loop preheaders be inserted into the CFG...
1469   void getAnalysisUsage(AnalysisUsage &AU) const override {
1470     AU.addRequired<AssumptionCacheTracker>();
1471     AU.addRequired<TargetTransformInfoWrapperPass>();
1472     // FIXME: Loop passes are required to preserve domtree, and for now we just
1473     // recreate dom info if anything gets unrolled.
1474     getLoopAnalysisUsage(AU);
1475   }
1476 };
1477 
1478 } // end anonymous namespace
1479 
1480 char LoopUnroll::ID = 0;
1481 
1482 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1484 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1486 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1487 
1488 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1489                                  bool ForgetAllSCEV, int Threshold, int Count,
1490                                  int AllowPartial, int Runtime, int UpperBound,
1491                                  int AllowPeeling) {
1492   // TODO: It would make more sense for this function to take the optionals
1493   // directly, but that's dangerous since it would silently break out of tree
1494   // callers.
1495   return new LoopUnroll(
1496       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1497       Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1498       Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1499       AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1500       Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1501       UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1502       AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1503 }
1504 
1505 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1506                                           LoopStandardAnalysisResults &AR,
1507                                           LPMUpdater &Updater) {
1508   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1509   // pass. Function analyses need to be preserved across loop transformations
1510   // but ORE cannot be preserved (see comment before the pass definition).
1511   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1512 
1513   // Keep track of the previous loop structure so we can identify new loops
1514   // created by unrolling.
1515   Loop *ParentL = L.getParentLoop();
1516   SmallPtrSet<Loop *, 4> OldLoops;
1517   if (ParentL)
1518     OldLoops.insert(ParentL->begin(), ParentL->end());
1519   else
1520     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1521 
1522   std::string LoopName = std::string(L.getName());
1523 
1524   bool Changed =
1525       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1526                       /*BFI*/ nullptr, /*PSI*/ nullptr,
1527                       /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true,
1528                       OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt,
1529                       /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1530                       /*Runtime*/ false, /*UpperBound*/ false,
1531                       /*AllowPeeling*/ true,
1532                       /*AllowProfileBasedPeeling*/ false,
1533                       /*FullUnrollMaxCount*/ std::nullopt) !=
1534       LoopUnrollResult::Unmodified;
1535   if (!Changed)
1536     return PreservedAnalyses::all();
1537 
1538   // The parent must not be damaged by unrolling!
1539 #ifndef NDEBUG
1540   if (ParentL)
1541     ParentL->verifyLoop();
1542 #endif
1543 
1544   // Unrolling can do several things to introduce new loops into a loop nest:
1545   // - Full unrolling clones child loops within the current loop but then
1546   //   removes the current loop making all of the children appear to be new
1547   //   sibling loops.
1548   //
1549   // When a new loop appears as a sibling loop after fully unrolling,
1550   // its nesting structure has fundamentally changed and we want to revisit
1551   // it to reflect that.
1552   //
1553   // When unrolling has removed the current loop, we need to tell the
1554   // infrastructure that it is gone.
1555   //
1556   // Finally, we support a debugging/testing mode where we revisit child loops
1557   // as well. These are not expected to require further optimizations as either
1558   // they or the loop they were cloned from have been directly visited already.
1559   // But the debugging mode allows us to check this assumption.
1560   bool IsCurrentLoopValid = false;
1561   SmallVector<Loop *, 4> SibLoops;
1562   if (ParentL)
1563     SibLoops.append(ParentL->begin(), ParentL->end());
1564   else
1565     SibLoops.append(AR.LI.begin(), AR.LI.end());
1566   erase_if(SibLoops, [&](Loop *SibLoop) {
1567     if (SibLoop == &L) {
1568       IsCurrentLoopValid = true;
1569       return true;
1570     }
1571 
1572     // Otherwise erase the loop from the list if it was in the old loops.
1573     return OldLoops.contains(SibLoop);
1574   });
1575   Updater.addSiblingLoops(SibLoops);
1576 
1577   if (!IsCurrentLoopValid) {
1578     Updater.markLoopAsDeleted(L, LoopName);
1579   } else {
1580     // We can only walk child loops if the current loop remained valid.
1581     if (UnrollRevisitChildLoops) {
1582       // Walk *all* of the child loops.
1583       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1584       Updater.addChildLoops(ChildLoops);
1585     }
1586   }
1587 
1588   return getLoopPassPreservedAnalyses();
1589 }
1590 
1591 PreservedAnalyses LoopUnrollPass::run(Function &F,
1592                                       FunctionAnalysisManager &AM) {
1593   auto &LI = AM.getResult<LoopAnalysis>(F);
1594   // There are no loops in the function. Return before computing other expensive
1595   // analyses.
1596   if (LI.empty())
1597     return PreservedAnalyses::all();
1598   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1599   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1600   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1601   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1602   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1603   AAResults &AA = AM.getResult<AAManager>(F);
1604 
1605   LoopAnalysisManager *LAM = nullptr;
1606   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1607     LAM = &LAMProxy->getManager();
1608 
1609   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1610   ProfileSummaryInfo *PSI =
1611       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1612   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1613       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1614 
1615   bool Changed = false;
1616 
1617   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1618   // Since simplification may add new inner loops, it has to run before the
1619   // legality and profitability checks. This means running the loop unroller
1620   // will simplify all loops, regardless of whether anything end up being
1621   // unrolled.
1622   for (const auto &L : LI) {
1623     Changed |=
1624         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1625     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1626   }
1627 
1628   // Add the loop nests in the reverse order of LoopInfo. See method
1629   // declaration.
1630   SmallPriorityWorklist<Loop *, 4> Worklist;
1631   appendLoopsToWorklist(LI, Worklist);
1632 
1633   while (!Worklist.empty()) {
1634     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1635     // from back to front so that we work forward across the CFG, which
1636     // for unrolling is only needed to get optimization remarks emitted in
1637     // a forward order.
1638     Loop &L = *Worklist.pop_back_val();
1639 #ifndef NDEBUG
1640     Loop *ParentL = L.getParentLoop();
1641 #endif
1642 
1643     // Check if the profile summary indicates that the profiled application
1644     // has a huge working set size, in which case we disable peeling to avoid
1645     // bloating it further.
1646     std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1647     if (PSI && PSI->hasHugeWorkingSetSize())
1648       LocalAllowPeeling = false;
1649     std::string LoopName = std::string(L.getName());
1650     // The API here is quite complex to call and we allow to select some
1651     // flavors of unrolling during construction time (by setting UnrollOpts).
1652     LoopUnrollResult Result = tryToUnrollLoop(
1653         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1654         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false,
1655         UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV,
1656         /*Count*/ std::nullopt,
1657         /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1658         UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1659         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount,
1660         &AA);
1661     Changed |= Result != LoopUnrollResult::Unmodified;
1662 
1663     // The parent must not be damaged by unrolling!
1664 #ifndef NDEBUG
1665     if (Result != LoopUnrollResult::Unmodified && ParentL)
1666       ParentL->verifyLoop();
1667 #endif
1668 
1669     // Clear any cached analysis results for L if we removed it completely.
1670     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1671       LAM->clear(L, LoopName);
1672   }
1673 
1674   if (!Changed)
1675     return PreservedAnalyses::all();
1676 
1677   return getLoopPassPreservedAnalyses();
1678 }
1679 
1680 void LoopUnrollPass::printPipeline(
1681     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1682   static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1683       OS, MapClassName2PassName);
1684   OS << '<';
1685   if (UnrollOpts.AllowPartial != std::nullopt)
1686     OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1687   if (UnrollOpts.AllowPeeling != std::nullopt)
1688     OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1689   if (UnrollOpts.AllowRuntime != std::nullopt)
1690     OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1691   if (UnrollOpts.AllowUpperBound != std::nullopt)
1692     OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1693   if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1694     OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1695        << "profile-peeling;";
1696   if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1697     OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';';
1698   OS << 'O' << UnrollOpts.OptLevel;
1699   OS << '>';
1700 }
1701