1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/UnrollLoop.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <limits> 64 #include <string> 65 #include <tuple> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-unroll" 71 72 static cl::opt<unsigned> 73 UnrollThreshold("unroll-threshold", cl::Hidden, 74 cl::desc("The cost threshold for loop unrolling")); 75 76 static cl::opt<unsigned> UnrollPartialThreshold( 77 "unroll-partial-threshold", cl::Hidden, 78 cl::desc("The cost threshold for partial loop unrolling")); 79 80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 81 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 82 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 83 "to the threshold when aggressively unrolling a loop due to the " 84 "dynamic cost savings. If completely unrolling a loop will reduce " 85 "the total runtime from X to Y, we boost the loop unroll " 86 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 87 "X/Y). This limit avoids excessive code bloat.")); 88 89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 90 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 91 cl::desc("Don't allow loop unrolling to simulate more than this number of" 92 "iterations when checking full unroll profitability")); 93 94 static cl::opt<unsigned> UnrollCount( 95 "unroll-count", cl::Hidden, 96 cl::desc("Use this unroll count for all loops including those with " 97 "unroll_count pragma values, for testing purposes")); 98 99 static cl::opt<unsigned> UnrollMaxCount( 100 "unroll-max-count", cl::Hidden, 101 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 102 "testing purposes")); 103 104 static cl::opt<unsigned> UnrollFullMaxCount( 105 "unroll-full-max-count", cl::Hidden, 106 cl::desc( 107 "Set the max unroll count for full unrolling, for testing purposes")); 108 109 static cl::opt<unsigned> UnrollPeelCount( 110 "unroll-peel-count", cl::Hidden, 111 cl::desc("Set the unroll peeling count, for testing purposes")); 112 113 static cl::opt<bool> 114 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 115 cl::desc("Allows loops to be partially unrolled until " 116 "-unroll-threshold loop size is reached.")); 117 118 static cl::opt<bool> UnrollAllowRemainder( 119 "unroll-allow-remainder", cl::Hidden, 120 cl::desc("Allow generation of a loop remainder (extra iterations) " 121 "when unrolling a loop.")); 122 123 static cl::opt<bool> 124 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 125 cl::desc("Unroll loops with run-time trip counts")); 126 127 static cl::opt<unsigned> UnrollMaxUpperBound( 128 "unroll-max-upperbound", cl::init(8), cl::Hidden, 129 cl::desc( 130 "The max of trip count upper bound that is considered in unrolling")); 131 132 static cl::opt<unsigned> PragmaUnrollThreshold( 133 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 134 cl::desc("Unrolled size limit for loops with an unroll(full) or " 135 "unroll_count pragma.")); 136 137 static cl::opt<unsigned> FlatLoopTripCountThreshold( 138 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 139 cl::desc("If the runtime tripcount for the loop is lower than the " 140 "threshold, the loop is considered as flat and will be less " 141 "aggressively unrolled.")); 142 143 static cl::opt<bool> 144 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 145 cl::desc("Allows loops to be peeled when the dynamic " 146 "trip count is known to be low.")); 147 148 static cl::opt<bool> UnrollUnrollRemainder( 149 "unroll-remainder", cl::Hidden, 150 cl::desc("Allow the loop remainder to be unrolled.")); 151 152 // This option isn't ever intended to be enabled, it serves to allow 153 // experiments to check the assumptions about when this kind of revisit is 154 // necessary. 155 static cl::opt<bool> UnrollRevisitChildLoops( 156 "unroll-revisit-child-loops", cl::Hidden, 157 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 158 "This shouldn't typically be needed as child loops (or their " 159 "clones) were already visited.")); 160 161 /// A magic value for use with the Threshold parameter to indicate 162 /// that the loop unroll should be performed regardless of how much 163 /// code expansion would result. 164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 165 166 /// Gather the various unrolling parameters based on the defaults, compiler 167 /// flags, TTI overrides and user specified parameters. 168 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 169 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 170 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 171 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 172 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 173 TargetTransformInfo::UnrollingPreferences UP; 174 175 // Set up the defaults 176 UP.Threshold = OptLevel > 2 ? 300 : 150; 177 UP.MaxPercentThresholdBoost = 400; 178 UP.OptSizeThreshold = 0; 179 UP.PartialThreshold = 150; 180 UP.PartialOptSizeThreshold = 0; 181 UP.Count = 0; 182 UP.PeelCount = 0; 183 UP.DefaultUnrollRuntimeCount = 8; 184 UP.MaxCount = std::numeric_limits<unsigned>::max(); 185 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 186 UP.BEInsns = 2; 187 UP.Partial = false; 188 UP.Runtime = false; 189 UP.AllowRemainder = true; 190 UP.UnrollRemainder = false; 191 UP.AllowExpensiveTripCount = false; 192 UP.Force = false; 193 UP.UpperBound = false; 194 UP.AllowPeeling = true; 195 196 // Override with any target specific settings 197 TTI.getUnrollingPreferences(L, SE, UP); 198 199 // Apply size attributes 200 if (L->getHeader()->getParent()->optForSize()) { 201 UP.Threshold = UP.OptSizeThreshold; 202 UP.PartialThreshold = UP.PartialOptSizeThreshold; 203 } 204 205 // Apply any user values specified by cl::opt 206 if (UnrollThreshold.getNumOccurrences() > 0) 207 UP.Threshold = UnrollThreshold; 208 if (UnrollPartialThreshold.getNumOccurrences() > 0) 209 UP.PartialThreshold = UnrollPartialThreshold; 210 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 211 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 212 if (UnrollMaxCount.getNumOccurrences() > 0) 213 UP.MaxCount = UnrollMaxCount; 214 if (UnrollFullMaxCount.getNumOccurrences() > 0) 215 UP.FullUnrollMaxCount = UnrollFullMaxCount; 216 if (UnrollPeelCount.getNumOccurrences() > 0) 217 UP.PeelCount = UnrollPeelCount; 218 if (UnrollAllowPartial.getNumOccurrences() > 0) 219 UP.Partial = UnrollAllowPartial; 220 if (UnrollAllowRemainder.getNumOccurrences() > 0) 221 UP.AllowRemainder = UnrollAllowRemainder; 222 if (UnrollRuntime.getNumOccurrences() > 0) 223 UP.Runtime = UnrollRuntime; 224 if (UnrollMaxUpperBound == 0) 225 UP.UpperBound = false; 226 if (UnrollAllowPeeling.getNumOccurrences() > 0) 227 UP.AllowPeeling = UnrollAllowPeeling; 228 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 229 UP.UnrollRemainder = UnrollUnrollRemainder; 230 231 // Apply user values provided by argument 232 if (UserThreshold.hasValue()) { 233 UP.Threshold = *UserThreshold; 234 UP.PartialThreshold = *UserThreshold; 235 } 236 if (UserCount.hasValue()) 237 UP.Count = *UserCount; 238 if (UserAllowPartial.hasValue()) 239 UP.Partial = *UserAllowPartial; 240 if (UserRuntime.hasValue()) 241 UP.Runtime = *UserRuntime; 242 if (UserUpperBound.hasValue()) 243 UP.UpperBound = *UserUpperBound; 244 if (UserAllowPeeling.hasValue()) 245 UP.AllowPeeling = *UserAllowPeeling; 246 247 return UP; 248 } 249 250 namespace { 251 252 /// A struct to densely store the state of an instruction after unrolling at 253 /// each iteration. 254 /// 255 /// This is designed to work like a tuple of <Instruction *, int> for the 256 /// purposes of hashing and lookup, but to be able to associate two boolean 257 /// states with each key. 258 struct UnrolledInstState { 259 Instruction *I; 260 int Iteration : 30; 261 unsigned IsFree : 1; 262 unsigned IsCounted : 1; 263 }; 264 265 /// Hashing and equality testing for a set of the instruction states. 266 struct UnrolledInstStateKeyInfo { 267 using PtrInfo = DenseMapInfo<Instruction *>; 268 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 269 270 static inline UnrolledInstState getEmptyKey() { 271 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 272 } 273 274 static inline UnrolledInstState getTombstoneKey() { 275 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 276 } 277 278 static inline unsigned getHashValue(const UnrolledInstState &S) { 279 return PairInfo::getHashValue({S.I, S.Iteration}); 280 } 281 282 static inline bool isEqual(const UnrolledInstState &LHS, 283 const UnrolledInstState &RHS) { 284 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 285 } 286 }; 287 288 struct EstimatedUnrollCost { 289 /// The estimated cost after unrolling. 290 unsigned UnrolledCost; 291 292 /// The estimated dynamic cost of executing the instructions in the 293 /// rolled form. 294 unsigned RolledDynamicCost; 295 }; 296 297 } // end anonymous namespace 298 299 /// Figure out if the loop is worth full unrolling. 300 /// 301 /// Complete loop unrolling can make some loads constant, and we need to know 302 /// if that would expose any further optimization opportunities. This routine 303 /// estimates this optimization. It computes cost of unrolled loop 304 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 305 /// dynamic cost we mean that we won't count costs of blocks that are known not 306 /// to be executed (i.e. if we have a branch in the loop and we know that at the 307 /// given iteration its condition would be resolved to true, we won't add up the 308 /// cost of the 'false'-block). 309 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 310 /// the analysis failed (no benefits expected from the unrolling, or the loop is 311 /// too big to analyze), the returned value is None. 312 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 313 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 314 const SmallPtrSetImpl<const Value *> &EphValues, 315 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 316 // We want to be able to scale offsets by the trip count and add more offsets 317 // to them without checking for overflows, and we already don't want to 318 // analyze *massive* trip counts, so we force the max to be reasonably small. 319 assert(UnrollMaxIterationsCountToAnalyze < 320 (unsigned)(std::numeric_limits<int>::max() / 2) && 321 "The unroll iterations max is too large!"); 322 323 // Only analyze inner loops. We can't properly estimate cost of nested loops 324 // and we won't visit inner loops again anyway. 325 if (!L->empty()) 326 return None; 327 328 // Don't simulate loops with a big or unknown tripcount 329 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 330 TripCount > UnrollMaxIterationsCountToAnalyze) 331 return None; 332 333 SmallSetVector<BasicBlock *, 16> BBWorklist; 334 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 335 DenseMap<Value *, Constant *> SimplifiedValues; 336 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 337 338 // The estimated cost of the unrolled form of the loop. We try to estimate 339 // this by simplifying as much as we can while computing the estimate. 340 unsigned UnrolledCost = 0; 341 342 // We also track the estimated dynamic (that is, actually executed) cost in 343 // the rolled form. This helps identify cases when the savings from unrolling 344 // aren't just exposing dead control flows, but actual reduced dynamic 345 // instructions due to the simplifications which we expect to occur after 346 // unrolling. 347 unsigned RolledDynamicCost = 0; 348 349 // We track the simplification of each instruction in each iteration. We use 350 // this to recursively merge costs into the unrolled cost on-demand so that 351 // we don't count the cost of any dead code. This is essentially a map from 352 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 353 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 354 355 // A small worklist used to accumulate cost of instructions from each 356 // observable and reached root in the loop. 357 SmallVector<Instruction *, 16> CostWorklist; 358 359 // PHI-used worklist used between iterations while accumulating cost. 360 SmallVector<Instruction *, 4> PHIUsedList; 361 362 // Helper function to accumulate cost for instructions in the loop. 363 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 364 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 365 assert(CostWorklist.empty() && "Must start with an empty cost list"); 366 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 367 CostWorklist.push_back(&RootI); 368 for (;; --Iteration) { 369 do { 370 Instruction *I = CostWorklist.pop_back_val(); 371 372 // InstCostMap only uses I and Iteration as a key, the other two values 373 // don't matter here. 374 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 375 if (CostIter == InstCostMap.end()) 376 // If an input to a PHI node comes from a dead path through the loop 377 // we may have no cost data for it here. What that actually means is 378 // that it is free. 379 continue; 380 auto &Cost = *CostIter; 381 if (Cost.IsCounted) 382 // Already counted this instruction. 383 continue; 384 385 // Mark that we are counting the cost of this instruction now. 386 Cost.IsCounted = true; 387 388 // If this is a PHI node in the loop header, just add it to the PHI set. 389 if (auto *PhiI = dyn_cast<PHINode>(I)) 390 if (PhiI->getParent() == L->getHeader()) { 391 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 392 "inherently simplify during unrolling."); 393 if (Iteration == 0) 394 continue; 395 396 // Push the incoming value from the backedge into the PHI used list 397 // if it is an in-loop instruction. We'll use this to populate the 398 // cost worklist for the next iteration (as we count backwards). 399 if (auto *OpI = dyn_cast<Instruction>( 400 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 401 if (L->contains(OpI)) 402 PHIUsedList.push_back(OpI); 403 continue; 404 } 405 406 // First accumulate the cost of this instruction. 407 if (!Cost.IsFree) { 408 UnrolledCost += TTI.getUserCost(I); 409 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 410 << "): "); 411 DEBUG(I->dump()); 412 } 413 414 // We must count the cost of every operand which is not free, 415 // recursively. If we reach a loop PHI node, simply add it to the set 416 // to be considered on the next iteration (backwards!). 417 for (Value *Op : I->operands()) { 418 // Check whether this operand is free due to being a constant or 419 // outside the loop. 420 auto *OpI = dyn_cast<Instruction>(Op); 421 if (!OpI || !L->contains(OpI)) 422 continue; 423 424 // Otherwise accumulate its cost. 425 CostWorklist.push_back(OpI); 426 } 427 } while (!CostWorklist.empty()); 428 429 if (PHIUsedList.empty()) 430 // We've exhausted the search. 431 break; 432 433 assert(Iteration > 0 && 434 "Cannot track PHI-used values past the first iteration!"); 435 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 436 PHIUsedList.clear(); 437 } 438 }; 439 440 // Ensure that we don't violate the loop structure invariants relied on by 441 // this analysis. 442 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 443 assert(L->isLCSSAForm(DT) && 444 "Must have loops in LCSSA form to track live-out values."); 445 446 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 447 448 // Simulate execution of each iteration of the loop counting instructions, 449 // which would be simplified. 450 // Since the same load will take different values on different iterations, 451 // we literally have to go through all loop's iterations. 452 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 453 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 454 455 // Prepare for the iteration by collecting any simplified entry or backedge 456 // inputs. 457 for (Instruction &I : *L->getHeader()) { 458 auto *PHI = dyn_cast<PHINode>(&I); 459 if (!PHI) 460 break; 461 462 // The loop header PHI nodes must have exactly two input: one from the 463 // loop preheader and one from the loop latch. 464 assert( 465 PHI->getNumIncomingValues() == 2 && 466 "Must have an incoming value only for the preheader and the latch."); 467 468 Value *V = PHI->getIncomingValueForBlock( 469 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 470 Constant *C = dyn_cast<Constant>(V); 471 if (Iteration != 0 && !C) 472 C = SimplifiedValues.lookup(V); 473 if (C) 474 SimplifiedInputValues.push_back({PHI, C}); 475 } 476 477 // Now clear and re-populate the map for the next iteration. 478 SimplifiedValues.clear(); 479 while (!SimplifiedInputValues.empty()) 480 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 481 482 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 483 484 BBWorklist.clear(); 485 BBWorklist.insert(L->getHeader()); 486 // Note that we *must not* cache the size, this loop grows the worklist. 487 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 488 BasicBlock *BB = BBWorklist[Idx]; 489 490 // Visit all instructions in the given basic block and try to simplify 491 // it. We don't change the actual IR, just count optimization 492 // opportunities. 493 for (Instruction &I : *BB) { 494 // These won't get into the final code - don't even try calculating the 495 // cost for them. 496 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 497 continue; 498 499 // Track this instruction's expected baseline cost when executing the 500 // rolled loop form. 501 RolledDynamicCost += TTI.getUserCost(&I); 502 503 // Visit the instruction to analyze its loop cost after unrolling, 504 // and if the visitor returns true, mark the instruction as free after 505 // unrolling and continue. 506 bool IsFree = Analyzer.visit(I); 507 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 508 (unsigned)IsFree, 509 /*IsCounted*/ false}).second; 510 (void)Inserted; 511 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 512 513 if (IsFree) 514 continue; 515 516 // Can't properly model a cost of a call. 517 // FIXME: With a proper cost model we should be able to do it. 518 if(isa<CallInst>(&I)) 519 return None; 520 521 // If the instruction might have a side-effect recursively account for 522 // the cost of it and all the instructions leading up to it. 523 if (I.mayHaveSideEffects()) 524 AddCostRecursively(I, Iteration); 525 526 // If unrolled body turns out to be too big, bail out. 527 if (UnrolledCost > MaxUnrolledLoopSize) { 528 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 529 << " UnrolledCost: " << UnrolledCost 530 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 531 << "\n"); 532 return None; 533 } 534 } 535 536 TerminatorInst *TI = BB->getTerminator(); 537 538 // Add in the live successors by first checking whether we have terminator 539 // that may be simplified based on the values simplified by this call. 540 BasicBlock *KnownSucc = nullptr; 541 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 542 if (BI->isConditional()) { 543 if (Constant *SimpleCond = 544 SimplifiedValues.lookup(BI->getCondition())) { 545 // Just take the first successor if condition is undef 546 if (isa<UndefValue>(SimpleCond)) 547 KnownSucc = BI->getSuccessor(0); 548 else if (ConstantInt *SimpleCondVal = 549 dyn_cast<ConstantInt>(SimpleCond)) 550 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 551 } 552 } 553 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 554 if (Constant *SimpleCond = 555 SimplifiedValues.lookup(SI->getCondition())) { 556 // Just take the first successor if condition is undef 557 if (isa<UndefValue>(SimpleCond)) 558 KnownSucc = SI->getSuccessor(0); 559 else if (ConstantInt *SimpleCondVal = 560 dyn_cast<ConstantInt>(SimpleCond)) 561 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 562 } 563 } 564 if (KnownSucc) { 565 if (L->contains(KnownSucc)) 566 BBWorklist.insert(KnownSucc); 567 else 568 ExitWorklist.insert({BB, KnownSucc}); 569 continue; 570 } 571 572 // Add BB's successors to the worklist. 573 for (BasicBlock *Succ : successors(BB)) 574 if (L->contains(Succ)) 575 BBWorklist.insert(Succ); 576 else 577 ExitWorklist.insert({BB, Succ}); 578 AddCostRecursively(*TI, Iteration); 579 } 580 581 // If we found no optimization opportunities on the first iteration, we 582 // won't find them on later ones too. 583 if (UnrolledCost == RolledDynamicCost) { 584 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 585 << " UnrolledCost: " << UnrolledCost << "\n"); 586 return None; 587 } 588 } 589 590 while (!ExitWorklist.empty()) { 591 BasicBlock *ExitingBB, *ExitBB; 592 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 593 594 for (Instruction &I : *ExitBB) { 595 auto *PN = dyn_cast<PHINode>(&I); 596 if (!PN) 597 break; 598 599 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 600 if (auto *OpI = dyn_cast<Instruction>(Op)) 601 if (L->contains(OpI)) 602 AddCostRecursively(*OpI, TripCount - 1); 603 } 604 } 605 606 DEBUG(dbgs() << "Analysis finished:\n" 607 << "UnrolledCost: " << UnrolledCost << ", " 608 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 609 return {{UnrolledCost, RolledDynamicCost}}; 610 } 611 612 /// ApproximateLoopSize - Approximate the size of the loop. 613 static unsigned 614 ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, 615 bool &Convergent, const TargetTransformInfo &TTI, 616 const SmallPtrSetImpl<const Value *> &EphValues, 617 unsigned BEInsns) { 618 CodeMetrics Metrics; 619 for (BasicBlock *BB : L->blocks()) 620 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 621 NumCalls = Metrics.NumInlineCandidates; 622 NotDuplicatable = Metrics.notDuplicatable; 623 Convergent = Metrics.convergent; 624 625 unsigned LoopSize = Metrics.NumInsts; 626 627 // Don't allow an estimate of size zero. This would allows unrolling of loops 628 // with huge iteration counts, which is a compile time problem even if it's 629 // not a problem for code quality. Also, the code using this size may assume 630 // that each loop has at least three instructions (likely a conditional 631 // branch, a comparison feeding that branch, and some kind of loop increment 632 // feeding that comparison instruction). 633 LoopSize = std::max(LoopSize, BEInsns + 1); 634 635 return LoopSize; 636 } 637 638 // Returns the loop hint metadata node with the given name (for example, 639 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 640 // returned. 641 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 642 if (MDNode *LoopID = L->getLoopID()) 643 return GetUnrollMetadata(LoopID, Name); 644 return nullptr; 645 } 646 647 // Returns true if the loop has an unroll(full) pragma. 648 static bool HasUnrollFullPragma(const Loop *L) { 649 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 650 } 651 652 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 653 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 654 static bool HasUnrollEnablePragma(const Loop *L) { 655 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 656 } 657 658 // Returns true if the loop has an unroll(disable) pragma. 659 static bool HasUnrollDisablePragma(const Loop *L) { 660 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 661 } 662 663 // Returns true if the loop has an runtime unroll(disable) pragma. 664 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 665 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 666 } 667 668 // If loop has an unroll_count pragma return the (necessarily 669 // positive) value from the pragma. Otherwise return 0. 670 static unsigned UnrollCountPragmaValue(const Loop *L) { 671 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 672 if (MD) { 673 assert(MD->getNumOperands() == 2 && 674 "Unroll count hint metadata should have two operands."); 675 unsigned Count = 676 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 677 assert(Count >= 1 && "Unroll count must be positive."); 678 return Count; 679 } 680 return 0; 681 } 682 683 // Computes the boosting factor for complete unrolling. 684 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 685 // be beneficial to fully unroll the loop even if unrolledcost is large. We 686 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 687 // the unroll threshold. 688 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 689 unsigned MaxPercentThresholdBoost) { 690 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 691 return 100; 692 else if (Cost.UnrolledCost != 0) 693 // The boosting factor is RolledDynamicCost / UnrolledCost 694 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 695 MaxPercentThresholdBoost); 696 else 697 return MaxPercentThresholdBoost; 698 } 699 700 // Returns loop size estimation for unrolled loop. 701 static uint64_t getUnrolledLoopSize( 702 unsigned LoopSize, 703 TargetTransformInfo::UnrollingPreferences &UP) { 704 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 705 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 706 } 707 708 // Returns true if unroll count was set explicitly. 709 // Calculates unroll count and writes it to UP.Count. 710 static bool computeUnrollCount( 711 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 712 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 713 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 714 unsigned &TripMultiple, unsigned LoopSize, 715 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 716 // Check for explicit Count. 717 // 1st priority is unroll count set by "unroll-count" option. 718 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 719 if (UserUnrollCount) { 720 UP.Count = UnrollCount; 721 UP.AllowExpensiveTripCount = true; 722 UP.Force = true; 723 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 724 return true; 725 } 726 727 // 2nd priority is unroll count set by pragma. 728 unsigned PragmaCount = UnrollCountPragmaValue(L); 729 if (PragmaCount > 0) { 730 UP.Count = PragmaCount; 731 UP.Runtime = true; 732 UP.AllowExpensiveTripCount = true; 733 UP.Force = true; 734 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 735 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 736 return true; 737 } 738 bool PragmaFullUnroll = HasUnrollFullPragma(L); 739 if (PragmaFullUnroll && TripCount != 0) { 740 UP.Count = TripCount; 741 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 742 return false; 743 } 744 745 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 746 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 747 PragmaEnableUnroll || UserUnrollCount; 748 749 if (ExplicitUnroll && TripCount != 0) { 750 // If the loop has an unrolling pragma, we want to be more aggressive with 751 // unrolling limits. Set thresholds to at least the PragmaThreshold value 752 // which is larger than the default limits. 753 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 754 UP.PartialThreshold = 755 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 756 } 757 758 // 3rd priority is full unroll count. 759 // Full unroll makes sense only when TripCount or its upper bound could be 760 // statically calculated. 761 // Also we need to check if we exceed FullUnrollMaxCount. 762 // If using the upper bound to unroll, TripMultiple should be set to 1 because 763 // we do not know when loop may exit. 764 // MaxTripCount and ExactTripCount cannot both be non zero since we only 765 // compute the former when the latter is zero. 766 unsigned ExactTripCount = TripCount; 767 assert((ExactTripCount == 0 || MaxTripCount == 0) && 768 "ExtractTripCound and MaxTripCount cannot both be non zero."); 769 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 770 UP.Count = FullUnrollTripCount; 771 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 772 // When computing the unrolled size, note that BEInsns are not replicated 773 // like the rest of the loop body. 774 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 775 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 776 TripCount = FullUnrollTripCount; 777 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 778 return ExplicitUnroll; 779 } else { 780 // The loop isn't that small, but we still can fully unroll it if that 781 // helps to remove a significant number of instructions. 782 // To check that, run additional analysis on the loop. 783 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 784 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 785 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 786 unsigned Boost = 787 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 788 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 789 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 790 TripCount = FullUnrollTripCount; 791 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 792 return ExplicitUnroll; 793 } 794 } 795 } 796 } 797 798 // 4th priority is loop peeling 799 computePeelCount(L, LoopSize, UP, TripCount, SE); 800 if (UP.PeelCount) { 801 UP.Runtime = false; 802 UP.Count = 1; 803 return ExplicitUnroll; 804 } 805 806 // 5th priority is partial unrolling. 807 // Try partial unroll only when TripCount could be staticaly calculated. 808 if (TripCount) { 809 UP.Partial |= ExplicitUnroll; 810 if (!UP.Partial) { 811 DEBUG(dbgs() << " will not try to unroll partially because " 812 << "-unroll-allow-partial not given\n"); 813 UP.Count = 0; 814 return false; 815 } 816 if (UP.Count == 0) 817 UP.Count = TripCount; 818 if (UP.PartialThreshold != NoThreshold) { 819 // Reduce unroll count to be modulo of TripCount for partial unrolling. 820 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 821 UP.Count = 822 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 823 (LoopSize - UP.BEInsns); 824 if (UP.Count > UP.MaxCount) 825 UP.Count = UP.MaxCount; 826 while (UP.Count != 0 && TripCount % UP.Count != 0) 827 UP.Count--; 828 if (UP.AllowRemainder && UP.Count <= 1) { 829 // If there is no Count that is modulo of TripCount, set Count to 830 // largest power-of-two factor that satisfies the threshold limit. 831 // As we'll create fixup loop, do the type of unrolling only if 832 // remainder loop is allowed. 833 UP.Count = UP.DefaultUnrollRuntimeCount; 834 while (UP.Count != 0 && 835 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 836 UP.Count >>= 1; 837 } 838 if (UP.Count < 2) { 839 if (PragmaEnableUnroll) 840 ORE->emit([&]() { 841 return OptimizationRemarkMissed(DEBUG_TYPE, 842 "UnrollAsDirectedTooLarge", 843 L->getStartLoc(), L->getHeader()) 844 << "Unable to unroll loop as directed by unroll(enable) " 845 "pragma " 846 "because unrolled size is too large."; 847 }); 848 UP.Count = 0; 849 } 850 } else { 851 UP.Count = TripCount; 852 } 853 if (UP.Count > UP.MaxCount) 854 UP.Count = UP.MaxCount; 855 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 856 UP.Count != TripCount) 857 ORE->emit([&]() { 858 return OptimizationRemarkMissed(DEBUG_TYPE, 859 "FullUnrollAsDirectedTooLarge", 860 L->getStartLoc(), L->getHeader()) 861 << "Unable to fully unroll loop as directed by unroll pragma " 862 "because " 863 "unrolled size is too large."; 864 }); 865 return ExplicitUnroll; 866 } 867 assert(TripCount == 0 && 868 "All cases when TripCount is constant should be covered here."); 869 if (PragmaFullUnroll) 870 ORE->emit([&]() { 871 return OptimizationRemarkMissed( 872 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 873 L->getStartLoc(), L->getHeader()) 874 << "Unable to fully unroll loop as directed by unroll(full) " 875 "pragma " 876 "because loop has a runtime trip count."; 877 }); 878 879 // 6th priority is runtime unrolling. 880 // Don't unroll a runtime trip count loop when it is disabled. 881 if (HasRuntimeUnrollDisablePragma(L)) { 882 UP.Count = 0; 883 return false; 884 } 885 886 // Check if the runtime trip count is too small when profile is available. 887 if (L->getHeader()->getParent()->hasProfileData()) { 888 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 889 if (*ProfileTripCount < FlatLoopTripCountThreshold) 890 return false; 891 else 892 UP.AllowExpensiveTripCount = true; 893 } 894 } 895 896 // Reduce count based on the type of unrolling and the threshold values. 897 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 898 if (!UP.Runtime) { 899 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 900 << "-unroll-runtime not given\n"); 901 UP.Count = 0; 902 return false; 903 } 904 if (UP.Count == 0) 905 UP.Count = UP.DefaultUnrollRuntimeCount; 906 907 // Reduce unroll count to be the largest power-of-two factor of 908 // the original count which satisfies the threshold limit. 909 while (UP.Count != 0 && 910 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 911 UP.Count >>= 1; 912 913 #ifndef NDEBUG 914 unsigned OrigCount = UP.Count; 915 #endif 916 917 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 918 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 919 UP.Count >>= 1; 920 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 921 "specific or because the loop contains a convergent " 922 "instruction), so unroll count must divide the trip " 923 "multiple, " 924 << TripMultiple << ". Reducing unroll count from " 925 << OrigCount << " to " << UP.Count << ".\n"); 926 927 using namespace ore; 928 929 if (PragmaCount > 0 && !UP.AllowRemainder) 930 ORE->emit([&]() { 931 return OptimizationRemarkMissed(DEBUG_TYPE, 932 "DifferentUnrollCountFromDirected", 933 L->getStartLoc(), L->getHeader()) 934 << "Unable to unroll loop the number of times directed by " 935 "unroll_count pragma because remainder loop is restricted " 936 "(that could architecture specific or because the loop " 937 "contains a convergent instruction) and so must have an " 938 "unroll " 939 "count that divides the loop trip multiple of " 940 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 941 << NV("UnrollCount", UP.Count) << " time(s)."; 942 }); 943 } 944 945 if (UP.Count > UP.MaxCount) 946 UP.Count = UP.MaxCount; 947 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 948 if (UP.Count < 2) 949 UP.Count = 0; 950 return ExplicitUnroll; 951 } 952 953 static LoopUnrollResult tryToUnrollLoop( 954 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 955 const TargetTransformInfo &TTI, AssumptionCache &AC, 956 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 957 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 958 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 959 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 960 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 961 << "] Loop %" << L->getHeader()->getName() << "\n"); 962 if (HasUnrollDisablePragma(L)) 963 return LoopUnrollResult::Unmodified; 964 if (!L->isLoopSimplifyForm()) { 965 DEBUG( 966 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 967 return LoopUnrollResult::Unmodified; 968 } 969 970 unsigned NumInlineCandidates; 971 bool NotDuplicatable; 972 bool Convergent; 973 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 974 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 975 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 976 ProvidedAllowPeeling); 977 // Exit early if unrolling is disabled. 978 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 979 return LoopUnrollResult::Unmodified; 980 981 SmallPtrSet<const Value *, 32> EphValues; 982 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 983 984 unsigned LoopSize = 985 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 986 TTI, EphValues, UP.BEInsns); 987 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 988 if (NotDuplicatable) { 989 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 990 << " instructions.\n"); 991 return LoopUnrollResult::Unmodified; 992 } 993 if (NumInlineCandidates != 0) { 994 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 995 return LoopUnrollResult::Unmodified; 996 } 997 998 // Find trip count and trip multiple if count is not available 999 unsigned TripCount = 0; 1000 unsigned MaxTripCount = 0; 1001 unsigned TripMultiple = 1; 1002 // If there are multiple exiting blocks but one of them is the latch, use the 1003 // latch for the trip count estimation. Otherwise insist on a single exiting 1004 // block for the trip count estimation. 1005 BasicBlock *ExitingBlock = L->getLoopLatch(); 1006 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1007 ExitingBlock = L->getExitingBlock(); 1008 if (ExitingBlock) { 1009 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1010 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1011 } 1012 1013 // If the loop contains a convergent operation, the prelude we'd add 1014 // to do the first few instructions before we hit the unrolled loop 1015 // is unsafe -- it adds a control-flow dependency to the convergent 1016 // operation. Therefore restrict remainder loop (try unrollig without). 1017 // 1018 // TODO: This is quite conservative. In practice, convergent_op() 1019 // is likely to be called unconditionally in the loop. In this 1020 // case, the program would be ill-formed (on most architectures) 1021 // unless n were the same on all threads in a thread group. 1022 // Assuming n is the same on all threads, any kind of unrolling is 1023 // safe. But currently llvm's notion of convergence isn't powerful 1024 // enough to express this. 1025 if (Convergent) 1026 UP.AllowRemainder = false; 1027 1028 // Try to find the trip count upper bound if we cannot find the exact trip 1029 // count. 1030 bool MaxOrZero = false; 1031 if (!TripCount) { 1032 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1033 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1034 // We can unroll by the upper bound amount if it's generally allowed or if 1035 // we know that the loop is executed either the upper bound or zero times. 1036 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1037 // loop tests remains the same compared to the non-unrolled version, whereas 1038 // the generic upper bound unrolling keeps all but the last loop test so the 1039 // number of loop tests goes up which may end up being worse on targets with 1040 // constriained branch predictor resources so is controlled by an option.) 1041 // In addition we only unroll small upper bounds. 1042 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1043 MaxTripCount = 0; 1044 } 1045 } 1046 1047 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1048 // fully unroll the loop. 1049 bool UseUpperBound = false; 1050 bool IsCountSetExplicitly = computeUnrollCount( 1051 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1052 TripMultiple, LoopSize, UP, UseUpperBound); 1053 if (!UP.Count) 1054 return LoopUnrollResult::Unmodified; 1055 // Unroll factor (Count) must be less or equal to TripCount. 1056 if (TripCount && UP.Count > TripCount) 1057 UP.Count = TripCount; 1058 1059 // Unroll the loop. 1060 LoopUnrollResult UnrollResult = UnrollLoop( 1061 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1062 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1063 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA); 1064 if (UnrollResult == LoopUnrollResult::Unmodified) 1065 return LoopUnrollResult::Unmodified; 1066 1067 // If loop has an unroll count pragma or unrolled by explicitly set count 1068 // mark loop as unrolled to prevent unrolling beyond that requested. 1069 // If the loop was peeled, we already "used up" the profile information 1070 // we had, so we don't want to unroll or peel again. 1071 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1072 (IsCountSetExplicitly || UP.PeelCount)) 1073 L->setLoopAlreadyUnrolled(); 1074 1075 return UnrollResult; 1076 } 1077 1078 namespace { 1079 1080 class LoopUnroll : public LoopPass { 1081 public: 1082 static char ID; // Pass ID, replacement for typeid 1083 1084 int OptLevel; 1085 Optional<unsigned> ProvidedCount; 1086 Optional<unsigned> ProvidedThreshold; 1087 Optional<bool> ProvidedAllowPartial; 1088 Optional<bool> ProvidedRuntime; 1089 Optional<bool> ProvidedUpperBound; 1090 Optional<bool> ProvidedAllowPeeling; 1091 1092 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1093 Optional<unsigned> Count = None, 1094 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1095 Optional<bool> UpperBound = None, 1096 Optional<bool> AllowPeeling = None) 1097 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1098 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1099 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1100 ProvidedAllowPeeling(AllowPeeling) { 1101 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1102 } 1103 1104 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1105 if (skipLoop(L)) 1106 return false; 1107 1108 Function &F = *L->getHeader()->getParent(); 1109 1110 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1111 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1112 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1113 const TargetTransformInfo &TTI = 1114 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1115 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1116 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1117 // pass. Function analyses need to be preserved across loop transformations 1118 // but ORE cannot be preserved (see comment before the pass definition). 1119 OptimizationRemarkEmitter ORE(&F); 1120 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1121 1122 LoopUnrollResult Result = tryToUnrollLoop( 1123 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount, 1124 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1125 ProvidedUpperBound, ProvidedAllowPeeling); 1126 1127 if (Result == LoopUnrollResult::FullyUnrolled) 1128 LPM.markLoopAsDeleted(*L); 1129 1130 return Result != LoopUnrollResult::Unmodified; 1131 } 1132 1133 /// This transformation requires natural loop information & requires that 1134 /// loop preheaders be inserted into the CFG... 1135 void getAnalysisUsage(AnalysisUsage &AU) const override { 1136 AU.addRequired<AssumptionCacheTracker>(); 1137 AU.addRequired<TargetTransformInfoWrapperPass>(); 1138 // FIXME: Loop passes are required to preserve domtree, and for now we just 1139 // recreate dom info if anything gets unrolled. 1140 getLoopAnalysisUsage(AU); 1141 } 1142 }; 1143 1144 } // end anonymous namespace 1145 1146 char LoopUnroll::ID = 0; 1147 1148 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1149 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1150 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1151 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1152 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1153 1154 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1155 int AllowPartial, int Runtime, int UpperBound, 1156 int AllowPeeling) { 1157 // TODO: It would make more sense for this function to take the optionals 1158 // directly, but that's dangerous since it would silently break out of tree 1159 // callers. 1160 return new LoopUnroll( 1161 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1162 Count == -1 ? None : Optional<unsigned>(Count), 1163 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1164 Runtime == -1 ? None : Optional<bool>(Runtime), 1165 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1166 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1167 } 1168 1169 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1170 return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1171 } 1172 1173 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1174 LoopStandardAnalysisResults &AR, 1175 LPMUpdater &Updater) { 1176 const auto &FAM = 1177 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1178 Function *F = L.getHeader()->getParent(); 1179 1180 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1181 // FIXME: This should probably be optional rather than required. 1182 if (!ORE) 1183 report_fatal_error( 1184 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1185 "cached at a higher level"); 1186 1187 // Keep track of the previous loop structure so we can identify new loops 1188 // created by unrolling. 1189 Loop *ParentL = L.getParentLoop(); 1190 SmallPtrSet<Loop *, 4> OldLoops; 1191 if (ParentL) 1192 OldLoops.insert(ParentL->begin(), ParentL->end()); 1193 else 1194 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1195 1196 std::string LoopName = L.getName(); 1197 1198 bool Changed = 1199 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1200 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1201 /*Threshold*/ None, /*AllowPartial*/ false, 1202 /*Runtime*/ false, /*UpperBound*/ false, 1203 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1204 if (!Changed) 1205 return PreservedAnalyses::all(); 1206 1207 // The parent must not be damaged by unrolling! 1208 #ifndef NDEBUG 1209 if (ParentL) 1210 ParentL->verifyLoop(); 1211 #endif 1212 1213 // Unrolling can do several things to introduce new loops into a loop nest: 1214 // - Full unrolling clones child loops within the current loop but then 1215 // removes the current loop making all of the children appear to be new 1216 // sibling loops. 1217 // 1218 // When a new loop appears as a sibling loop after fully unrolling, 1219 // its nesting structure has fundamentally changed and we want to revisit 1220 // it to reflect that. 1221 // 1222 // When unrolling has removed the current loop, we need to tell the 1223 // infrastructure that it is gone. 1224 // 1225 // Finally, we support a debugging/testing mode where we revisit child loops 1226 // as well. These are not expected to require further optimizations as either 1227 // they or the loop they were cloned from have been directly visited already. 1228 // But the debugging mode allows us to check this assumption. 1229 bool IsCurrentLoopValid = false; 1230 SmallVector<Loop *, 4> SibLoops; 1231 if (ParentL) 1232 SibLoops.append(ParentL->begin(), ParentL->end()); 1233 else 1234 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1235 erase_if(SibLoops, [&](Loop *SibLoop) { 1236 if (SibLoop == &L) { 1237 IsCurrentLoopValid = true; 1238 return true; 1239 } 1240 1241 // Otherwise erase the loop from the list if it was in the old loops. 1242 return OldLoops.count(SibLoop) != 0; 1243 }); 1244 Updater.addSiblingLoops(SibLoops); 1245 1246 if (!IsCurrentLoopValid) { 1247 Updater.markLoopAsDeleted(L, LoopName); 1248 } else { 1249 // We can only walk child loops if the current loop remained valid. 1250 if (UnrollRevisitChildLoops) { 1251 // Walk *all* of the child loops. 1252 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1253 Updater.addChildLoops(ChildLoops); 1254 } 1255 } 1256 1257 return getLoopPassPreservedAnalyses(); 1258 } 1259 1260 template <typename RangeT> 1261 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1262 SmallVector<Loop *, 8> Worklist; 1263 // We use an internal worklist to build up the preorder traversal without 1264 // recursion. 1265 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1266 1267 for (Loop *RootL : Loops) { 1268 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1269 assert(PreOrderWorklist.empty() && 1270 "Must start with an empty preorder walk worklist."); 1271 PreOrderWorklist.push_back(RootL); 1272 do { 1273 Loop *L = PreOrderWorklist.pop_back_val(); 1274 PreOrderWorklist.append(L->begin(), L->end()); 1275 PreOrderLoops.push_back(L); 1276 } while (!PreOrderWorklist.empty()); 1277 1278 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1279 PreOrderLoops.clear(); 1280 } 1281 return Worklist; 1282 } 1283 1284 PreservedAnalyses LoopUnrollPass::run(Function &F, 1285 FunctionAnalysisManager &AM) { 1286 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1287 auto &LI = AM.getResult<LoopAnalysis>(F); 1288 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1289 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1290 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1291 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1292 1293 LoopAnalysisManager *LAM = nullptr; 1294 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1295 LAM = &LAMProxy->getManager(); 1296 1297 const ModuleAnalysisManager &MAM = 1298 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1299 ProfileSummaryInfo *PSI = 1300 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1301 1302 bool Changed = false; 1303 1304 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1305 // Since simplification may add new inner loops, it has to run before the 1306 // legality and profitability checks. This means running the loop unroller 1307 // will simplify all loops, regardless of whether anything end up being 1308 // unrolled. 1309 for (auto &L : LI) { 1310 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1311 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1312 } 1313 1314 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1315 1316 while (!Worklist.empty()) { 1317 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1318 // from back to front so that we work forward across the CFG, which 1319 // for unrolling is only needed to get optimization remarks emitted in 1320 // a forward order. 1321 Loop &L = *Worklist.pop_back_val(); 1322 #ifndef NDEBUG 1323 Loop *ParentL = L.getParentLoop(); 1324 #endif 1325 1326 // The API here is quite complex to call, but there are only two interesting 1327 // states we support: partial and full (or "simple") unrolling. However, to 1328 // enable these things we actually pass "None" in for the optional to avoid 1329 // providing an explicit choice. 1330 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1331 AllowPeeling; 1332 // Check if the profile summary indicates that the profiled application 1333 // has a huge working set size, in which case we disable peeling to avoid 1334 // bloating it further. 1335 if (PSI && PSI->hasHugeWorkingSetSize()) 1336 AllowPeeling = false; 1337 std::string LoopName = L.getName(); 1338 LoopUnrollResult Result = 1339 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1340 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1341 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1342 UpperBoundParam, AllowPeeling); 1343 Changed |= Result != LoopUnrollResult::Unmodified; 1344 1345 // The parent must not be damaged by unrolling! 1346 #ifndef NDEBUG 1347 if (Result != LoopUnrollResult::Unmodified && ParentL) 1348 ParentL->verifyLoop(); 1349 #endif 1350 1351 // Clear any cached analysis results for L if we removed it completely. 1352 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1353 LAM->clear(L, LoopName); 1354 } 1355 1356 if (!Changed) 1357 return PreservedAnalyses::all(); 1358 1359 return getLoopPassPreservedAnalyses(); 1360 } 1361