1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/ScalarEvolution.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DiagnosticInfo.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/InstVisitor.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/UnrollLoop.h" 34 #include <climits> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-unroll" 39 40 static cl::opt<unsigned> 41 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, 42 cl::desc("The cut-off point for automatic loop unrolling")); 43 44 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 45 "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, 46 cl::desc("Don't allow loop unrolling to simulate more than this number of" 47 "iterations when checking full unroll profitability")); 48 49 static cl::opt<unsigned> UnrollMinPercentOfOptimized( 50 "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden, 51 cl::desc("If complete unrolling could trigger further optimizations, and, " 52 "by that, remove the given percent of instructions, perform the " 53 "complete unroll even if it's beyond the threshold")); 54 55 static cl::opt<unsigned> UnrollAbsoluteThreshold( 56 "unroll-absolute-threshold", cl::init(2000), cl::Hidden, 57 cl::desc("Don't unroll if the unrolled size is bigger than this threshold," 58 " even if we can remove big portion of instructions later.")); 59 60 static cl::opt<unsigned> 61 UnrollCount("unroll-count", cl::init(0), cl::Hidden, 62 cl::desc("Use this unroll count for all loops including those with " 63 "unroll_count pragma values, for testing purposes")); 64 65 static cl::opt<bool> 66 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, 67 cl::desc("Allows loops to be partially unrolled until " 68 "-unroll-threshold loop size is reached.")); 69 70 static cl::opt<bool> 71 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, 72 cl::desc("Unroll loops with run-time trip counts")); 73 74 static cl::opt<unsigned> 75 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 76 cl::desc("Unrolled size limit for loops with an unroll(full) or " 77 "unroll_count pragma.")); 78 79 namespace { 80 class LoopUnroll : public LoopPass { 81 public: 82 static char ID; // Pass ID, replacement for typeid 83 LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { 84 CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); 85 CurrentAbsoluteThreshold = UnrollAbsoluteThreshold; 86 CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized; 87 CurrentCount = (C == -1) ? UnrollCount : unsigned(C); 88 CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; 89 CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; 90 91 UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); 92 UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0); 93 UserPercentOfOptimized = 94 (UnrollMinPercentOfOptimized.getNumOccurrences() > 0); 95 UserAllowPartial = (P != -1) || 96 (UnrollAllowPartial.getNumOccurrences() > 0); 97 UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); 98 UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); 99 100 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 101 } 102 103 /// A magic value for use with the Threshold parameter to indicate 104 /// that the loop unroll should be performed regardless of how much 105 /// code expansion would result. 106 static const unsigned NoThreshold = UINT_MAX; 107 108 // Threshold to use when optsize is specified (and there is no 109 // explicit -unroll-threshold). 110 static const unsigned OptSizeUnrollThreshold = 50; 111 112 // Default unroll count for loops with run-time trip count if 113 // -unroll-count is not set 114 static const unsigned UnrollRuntimeCount = 8; 115 116 unsigned CurrentCount; 117 unsigned CurrentThreshold; 118 unsigned CurrentAbsoluteThreshold; 119 unsigned CurrentMinPercentOfOptimized; 120 bool CurrentAllowPartial; 121 bool CurrentRuntime; 122 bool UserCount; // CurrentCount is user-specified. 123 bool UserThreshold; // CurrentThreshold is user-specified. 124 bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is 125 // user-specified. 126 bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is 127 // user-specified. 128 bool UserAllowPartial; // CurrentAllowPartial is user-specified. 129 bool UserRuntime; // CurrentRuntime is user-specified. 130 131 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 132 133 /// This transformation requires natural loop information & requires that 134 /// loop preheaders be inserted into the CFG... 135 /// 136 void getAnalysisUsage(AnalysisUsage &AU) const override { 137 AU.addRequired<AssumptionCacheTracker>(); 138 AU.addRequired<LoopInfoWrapperPass>(); 139 AU.addPreserved<LoopInfoWrapperPass>(); 140 AU.addRequiredID(LoopSimplifyID); 141 AU.addPreservedID(LoopSimplifyID); 142 AU.addRequiredID(LCSSAID); 143 AU.addPreservedID(LCSSAID); 144 AU.addRequired<ScalarEvolution>(); 145 AU.addPreserved<ScalarEvolution>(); 146 AU.addRequired<TargetTransformInfoWrapperPass>(); 147 // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. 148 // If loop unroll does not preserve dom info then LCSSA pass on next 149 // loop will receive invalid dom info. 150 // For now, recreate dom info, if loop is unrolled. 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 } 153 154 // Fill in the UnrollingPreferences parameter with values from the 155 // TargetTransformationInfo. 156 void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, 157 TargetTransformInfo::UnrollingPreferences &UP) { 158 UP.Threshold = CurrentThreshold; 159 UP.AbsoluteThreshold = CurrentAbsoluteThreshold; 160 UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized; 161 UP.OptSizeThreshold = OptSizeUnrollThreshold; 162 UP.PartialThreshold = CurrentThreshold; 163 UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; 164 UP.Count = CurrentCount; 165 UP.MaxCount = UINT_MAX; 166 UP.Partial = CurrentAllowPartial; 167 UP.Runtime = CurrentRuntime; 168 UP.AllowExpensiveTripCount = false; 169 TTI.getUnrollingPreferences(L, UP); 170 } 171 172 // Select and return an unroll count based on parameters from 173 // user, unroll preferences, unroll pragmas, or a heuristic. 174 // SetExplicitly is set to true if the unroll count is is set by 175 // the user or a pragma rather than selected heuristically. 176 unsigned 177 selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 178 unsigned PragmaCount, 179 const TargetTransformInfo::UnrollingPreferences &UP, 180 bool &SetExplicitly); 181 182 // Select threshold values used to limit unrolling based on a 183 // total unrolled size. Parameters Threshold and PartialThreshold 184 // are set to the maximum unrolled size for fully and partially 185 // unrolled loops respectively. 186 void selectThresholds(const Loop *L, bool HasPragma, 187 const TargetTransformInfo::UnrollingPreferences &UP, 188 unsigned &Threshold, unsigned &PartialThreshold, 189 unsigned &AbsoluteThreshold, 190 unsigned &PercentOfOptimizedForCompleteUnroll) { 191 // Determine the current unrolling threshold. While this is 192 // normally set from UnrollThreshold, it is overridden to a 193 // smaller value if the current function is marked as 194 // optimize-for-size, and the unroll threshold was not user 195 // specified. 196 Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; 197 PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; 198 AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold 199 : UP.AbsoluteThreshold; 200 PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized 201 ? CurrentMinPercentOfOptimized 202 : UP.MinPercentOfOptimized; 203 204 if (!UserThreshold && 205 L->getHeader()->getParent()->hasFnAttribute( 206 Attribute::OptimizeForSize)) { 207 Threshold = UP.OptSizeThreshold; 208 PartialThreshold = UP.PartialOptSizeThreshold; 209 } 210 if (HasPragma) { 211 // If the loop has an unrolling pragma, we want to be more 212 // aggressive with unrolling limits. Set thresholds to at 213 // least the PragmaTheshold value which is larger than the 214 // default limits. 215 if (Threshold != NoThreshold) 216 Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold); 217 if (PartialThreshold != NoThreshold) 218 PartialThreshold = 219 std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold); 220 } 221 } 222 bool canUnrollCompletely(Loop *L, unsigned Threshold, 223 unsigned AbsoluteThreshold, uint64_t UnrolledSize, 224 unsigned NumberOfOptimizedInstructions, 225 unsigned PercentOfOptimizedForCompleteUnroll); 226 }; 227 } 228 229 char LoopUnroll::ID = 0; 230 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 231 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 232 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 233 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 235 INITIALIZE_PASS_DEPENDENCY(LCSSA) 236 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 237 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 238 239 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 240 int Runtime) { 241 return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); 242 } 243 244 Pass *llvm::createSimpleLoopUnrollPass() { 245 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 246 } 247 248 namespace { 249 /// \brief SCEV expressions visitor used for finding expressions that would 250 /// become constants if the loop L is unrolled. 251 struct FindConstantPointers { 252 /// \brief Shows whether the expression is ConstAddress+Constant or not. 253 bool IndexIsConstant; 254 255 /// \brief Used for filtering out SCEV expressions with two or more AddRec 256 /// subexpressions. 257 /// 258 /// Used to filter out complicated SCEV expressions, having several AddRec 259 /// sub-expressions. We don't handle them, because unrolling one loop 260 /// would help to replace only one of these inductions with a constant, and 261 /// consequently, the expression would remain non-constant. 262 bool HaveSeenAR; 263 264 /// \brief If the SCEV expression becomes ConstAddress+Constant, this value 265 /// holds ConstAddress. Otherwise, it's nullptr. 266 Value *BaseAddress; 267 268 /// \brief The loop, which we try to completely unroll. 269 const Loop *L; 270 271 ScalarEvolution &SE; 272 273 FindConstantPointers(const Loop *L, ScalarEvolution &SE) 274 : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr), 275 L(L), SE(SE) {} 276 277 /// Examine the given expression S and figure out, if it can be a part of an 278 /// expression, that could become a constant after the loop is unrolled. 279 /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis 280 /// results. 281 /// \returns true if we need to examine subexpressions, and false otherwise. 282 bool follow(const SCEV *S) { 283 if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) { 284 // We've reached the leaf node of SCEV, it's most probably just a 285 // variable. 286 // If it's the only one SCEV-subexpression, then it might be a base 287 // address of an index expression. 288 // If we've already recorded base address, then just give up on this SCEV 289 // - it's too complicated. 290 if (BaseAddress) { 291 IndexIsConstant = false; 292 return false; 293 } 294 BaseAddress = SC->getValue(); 295 return false; 296 } 297 if (isa<SCEVConstant>(S)) 298 return false; 299 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 300 // If the current SCEV expression is AddRec, and its loop isn't the loop 301 // we are about to unroll, then we won't get a constant address after 302 // unrolling, and thus, won't be able to eliminate the load. 303 if (AR->getLoop() != L) { 304 IndexIsConstant = false; 305 return false; 306 } 307 // We don't handle multiple AddRecs here, so give up in this case. 308 if (HaveSeenAR) { 309 IndexIsConstant = false; 310 return false; 311 } 312 HaveSeenAR = true; 313 } 314 315 // Continue traversal. 316 return true; 317 } 318 bool isDone() const { return !IndexIsConstant; } 319 }; 320 } // End anonymous namespace. 321 322 namespace { 323 /// \brief Struct to represent a GEP whose start and step are known fixed 324 /// offsets from a base address due to SCEV's analysis. 325 struct SCEVGEPDescriptor { 326 Value *BaseAddr; 327 unsigned Start; 328 unsigned Step; 329 }; 330 } // End anonymous namespace. 331 332 /// \brief Build a cache of all the GEP instructions which SCEV can describe. 333 /// 334 /// Visit all GEPs in the loop and find those which after complete loop 335 /// unrolling would become a constant, or BaseAddress+Constant. For those where 336 /// we can identify small constant starts and steps from a base address, return 337 /// a map from the GEP to the base, start, and step relevant for that GEP. This 338 /// is essentially a simplified and fast to query form of the SCEV analysis 339 /// which we can afford to look into repeatedly for different iterations of the 340 /// loop. 341 static SmallDenseMap<Value *, SCEVGEPDescriptor> 342 buildSCEVGEPCache(const Loop &L, ScalarEvolution &SE) { 343 SmallDenseMap<Value *, SCEVGEPDescriptor> Cache; 344 345 for (auto BB : L.getBlocks()) { 346 for (Instruction &I : *BB) { 347 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 348 Value *V = cast<Value>(GEP); 349 if (!SE.isSCEVable(V->getType())) 350 continue; 351 const SCEV *S = SE.getSCEV(V); 352 353 // FIXME: It'd be nice if the worklist and set used by the 354 // SCEVTraversal could be re-used between loop iterations, but the 355 // interface doesn't support that. There is no way to clear the visited 356 // sets between uses. 357 FindConstantPointers Visitor(&L, SE); 358 SCEVTraversal<FindConstantPointers> T(Visitor); 359 360 // Try to find (BaseAddress+Step+Offset) tuple. 361 // If succeeded, save it to the cache - it might help in folding 362 // loads. 363 T.visitAll(S); 364 if (!Visitor.IndexIsConstant || !Visitor.BaseAddress) 365 continue; 366 367 const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress); 368 if (BaseAddrSE->getType() != S->getType()) 369 continue; 370 const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); 371 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE); 372 373 if (!AR) 374 continue; 375 376 const SCEVConstant *StepSE = 377 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)); 378 const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()); 379 if (!StepSE || !StartSE) 380 continue; 381 382 // Check and skip caching if doing so would require lots of bits to 383 // avoid overflow. 384 APInt Start = StartSE->getValue()->getValue(); 385 APInt Step = StepSE->getValue()->getValue(); 386 if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32) 387 continue; 388 389 // We found a cacheable SCEV model for the GEP. 390 Cache[V] = {Visitor.BaseAddress, 391 (unsigned)Start.getLimitedValue(), 392 (unsigned)Step.getLimitedValue()}; 393 } 394 } 395 } 396 397 return Cache; 398 } 399 400 namespace { 401 // This class is used to get an estimate of the optimization effects that we 402 // could get from complete loop unrolling. It comes from the fact that some 403 // loads might be replaced with concrete constant values and that could trigger 404 // a chain of instruction simplifications. 405 // 406 // E.g. we might have: 407 // int a[] = {0, 1, 0}; 408 // v = 0; 409 // for (i = 0; i < 3; i ++) 410 // v += b[i]*a[i]; 411 // If we completely unroll the loop, we would get: 412 // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] 413 // Which then will be simplified to: 414 // v = b[0]* 0 + b[1]* 1 + b[2]* 0 415 // And finally: 416 // v = b[1] 417 class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> { 418 typedef InstVisitor<UnrollAnalyzer, bool> Base; 419 friend class InstVisitor<UnrollAnalyzer, bool>; 420 421 /// \brief The loop we're going to analyze. 422 const Loop *L; 423 424 /// \brief TripCount of the given loop. 425 unsigned TripCount; 426 427 ScalarEvolution &SE; 428 429 const TargetTransformInfo &TTI; 430 431 // While we walk the loop instructions, we we build up and maintain a mapping 432 // of simplified values specific to this iteration. The idea is to propagate 433 // any special information we have about loads that can be replaced with 434 // constants after complete unrolling, and account for likely simplifications 435 // post-unrolling. 436 DenseMap<Value *, Constant *> SimplifiedValues; 437 438 // To avoid requesting SCEV info on every iteration, request it once, and 439 // for each value that would become ConstAddress+Constant after loop 440 // unrolling, save the corresponding data. 441 SmallDenseMap<Value *, SCEVGEPDescriptor> SCEVGEPCache; 442 443 /// \brief Number of currently simulated iteration. 444 /// 445 /// If an expression is ConstAddress+Constant, then the Constant is 446 /// Start + Iteration*Step, where Start and Step could be obtained from 447 /// SCEVGEPCache. 448 unsigned Iteration; 449 450 /// \brief Upper threshold for complete unrolling. 451 unsigned MaxUnrolledLoopSize; 452 453 /// Base case for the instruction visitor. 454 bool visitInstruction(Instruction &I) { return false; }; 455 456 /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt. 457 458 /// Try to simplify binary operator I. 459 /// 460 /// TODO: Probaly it's worth to hoist the code for estimating the 461 /// simplifications effects to a separate class, since we have a very similar 462 /// code in InlineCost already. 463 bool visitBinaryOperator(BinaryOperator &I) { 464 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 465 if (!isa<Constant>(LHS)) 466 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 467 LHS = SimpleLHS; 468 if (!isa<Constant>(RHS)) 469 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 470 RHS = SimpleRHS; 471 Value *SimpleV = nullptr; 472 const DataLayout &DL = I.getModule()->getDataLayout(); 473 if (auto FI = dyn_cast<FPMathOperator>(&I)) 474 SimpleV = 475 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); 476 else 477 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); 478 479 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 480 SimplifiedValues[&I] = C; 481 482 return SimpleV; 483 } 484 485 /// Try to fold load I. 486 bool visitLoad(LoadInst &I) { 487 Value *AddrOp = I.getPointerOperand(); 488 if (!isa<Constant>(AddrOp)) 489 if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp)) 490 AddrOp = SimplifiedAddrOp; 491 492 auto It = SCEVGEPCache.find(AddrOp); 493 if (It == SCEVGEPCache.end()) 494 return false; 495 SCEVGEPDescriptor GEPDesc = It->second; 496 497 auto GV = dyn_cast<GlobalVariable>(GEPDesc.BaseAddr); 498 // We're only interested in loads that can be completely folded to a 499 // constant. 500 if (!GV || !GV->hasInitializer()) 501 return false; 502 503 ConstantDataSequential *CDS = 504 dyn_cast<ConstantDataSequential>(GV->getInitializer()); 505 if (!CDS) 506 return false; 507 508 // This calculation should never overflow because we bound Iteration quite 509 // low and both the start and step are 32-bit integers. We use signed 510 // integers so that UBSan will catch if a bug sneaks into the code. 511 int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; 512 int64_t Index = ((int64_t)GEPDesc.Start + 513 (int64_t)GEPDesc.Step * (int64_t)Iteration) / 514 ElemSize; 515 if (Index >= CDS->getNumElements()) { 516 // FIXME: For now we conservatively ignore out of bound accesses, but 517 // we're allowed to perform the optimization in this case. 518 return false; 519 } 520 521 Constant *CV = CDS->getElementAsConstant(Index); 522 assert(CV && "Constant expected."); 523 SimplifiedValues[&I] = CV; 524 525 return true; 526 } 527 528 public: 529 UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE, 530 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) 531 : L(L), TripCount(TripCount), SE(SE), TTI(TTI), 532 MaxUnrolledLoopSize(MaxUnrolledLoopSize), 533 NumberOfOptimizedInstructions(0), UnrolledLoopSize(0) {} 534 535 /// \brief Count the number of optimized instructions. 536 unsigned NumberOfOptimizedInstructions; 537 538 /// \brief Count the total number of instructions. 539 unsigned UnrolledLoopSize; 540 541 /// \brief Figure out if the loop is worth full unrolling. 542 /// 543 /// Complete loop unrolling can make some loads constant, and we need to know 544 /// if that would expose any further optimization opportunities. This routine 545 /// estimates this optimization. It assigns computed number of instructions, 546 /// that potentially might be optimized away, to 547 /// NumberOfOptimizedInstructions, and total number of instructions to 548 /// UnrolledLoopSize (not counting blocks that won't be reached, if we were 549 /// able to compute the condition). 550 /// \returns false if we can't analyze the loop, or if we discovered that 551 /// unrolling won't give anything. Otherwise, returns true. 552 bool analyzeLoop() { 553 SmallSetVector<BasicBlock *, 16> BBWorklist; 554 555 // We want to be able to scale offsets by the trip count and add more 556 // offsets to them without checking for overflows, and we already don't want 557 // to analyze *massive* trip counts, so we force the max to be reasonably 558 // small. 559 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 560 "The unroll iterations max is too large!"); 561 562 // Don't simulate loops with a big or unknown tripcount 563 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 564 TripCount > UnrollMaxIterationsCountToAnalyze) 565 return false; 566 567 // To avoid compute SCEV-expressions on every iteration, compute them once 568 // and store interesting to us in SCEVGEPCache. 569 SCEVGEPCache = buildSCEVGEPCache(*L, SE); 570 571 // Simulate execution of each iteration of the loop counting instructions, 572 // which would be simplified. 573 // Since the same load will take different values on different iterations, 574 // we literally have to go through all loop's iterations. 575 for (Iteration = 0; Iteration < TripCount; ++Iteration) { 576 SimplifiedValues.clear(); 577 BBWorklist.clear(); 578 BBWorklist.insert(L->getHeader()); 579 // Note that we *must not* cache the size, this loop grows the worklist. 580 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 581 BasicBlock *BB = BBWorklist[Idx]; 582 583 // Visit all instructions in the given basic block and try to simplify 584 // it. We don't change the actual IR, just count optimization 585 // opportunities. 586 for (Instruction &I : *BB) { 587 UnrolledLoopSize += TTI.getUserCost(&I); 588 589 // Visit the instruction to analyze its loop cost after unrolling, 590 // and if the visitor returns true, then we can optimize this 591 // instruction away. 592 if (Base::visit(I)) 593 NumberOfOptimizedInstructions += TTI.getUserCost(&I); 594 595 // If unrolled body turns out to be too big, bail out. 596 if (UnrolledLoopSize - NumberOfOptimizedInstructions > 597 MaxUnrolledLoopSize) 598 return false; 599 } 600 601 // Add BB's successors to the worklist. 602 for (BasicBlock *Succ : successors(BB)) 603 if (L->contains(Succ)) 604 BBWorklist.insert(Succ); 605 } 606 607 // If we found no optimization opportunities on the first iteration, we 608 // won't find them on later ones too. 609 if (!NumberOfOptimizedInstructions) 610 return false; 611 } 612 return true; 613 } 614 }; 615 } // namespace 616 617 /// ApproximateLoopSize - Approximate the size of the loop. 618 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 619 bool &NotDuplicatable, 620 const TargetTransformInfo &TTI, 621 AssumptionCache *AC) { 622 SmallPtrSet<const Value *, 32> EphValues; 623 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 624 625 CodeMetrics Metrics; 626 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 627 I != E; ++I) 628 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 629 NumCalls = Metrics.NumInlineCandidates; 630 NotDuplicatable = Metrics.notDuplicatable; 631 632 unsigned LoopSize = Metrics.NumInsts; 633 634 // Don't allow an estimate of size zero. This would allows unrolling of loops 635 // with huge iteration counts, which is a compile time problem even if it's 636 // not a problem for code quality. Also, the code using this size may assume 637 // that each loop has at least three instructions (likely a conditional 638 // branch, a comparison feeding that branch, and some kind of loop increment 639 // feeding that comparison instruction). 640 LoopSize = std::max(LoopSize, 3u); 641 642 return LoopSize; 643 } 644 645 // Returns the loop hint metadata node with the given name (for example, 646 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 647 // returned. 648 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 649 if (MDNode *LoopID = L->getLoopID()) 650 return GetUnrollMetadata(LoopID, Name); 651 return nullptr; 652 } 653 654 // Returns true if the loop has an unroll(full) pragma. 655 static bool HasUnrollFullPragma(const Loop *L) { 656 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 657 } 658 659 // Returns true if the loop has an unroll(disable) pragma. 660 static bool HasUnrollDisablePragma(const Loop *L) { 661 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 662 } 663 664 // Returns true if the loop has an runtime unroll(disable) pragma. 665 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 666 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 667 } 668 669 // If loop has an unroll_count pragma return the (necessarily 670 // positive) value from the pragma. Otherwise return 0. 671 static unsigned UnrollCountPragmaValue(const Loop *L) { 672 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 673 if (MD) { 674 assert(MD->getNumOperands() == 2 && 675 "Unroll count hint metadata should have two operands."); 676 unsigned Count = 677 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 678 assert(Count >= 1 && "Unroll count must be positive."); 679 return Count; 680 } 681 return 0; 682 } 683 684 // Remove existing unroll metadata and add unroll disable metadata to 685 // indicate the loop has already been unrolled. This prevents a loop 686 // from being unrolled more than is directed by a pragma if the loop 687 // unrolling pass is run more than once (which it generally is). 688 static void SetLoopAlreadyUnrolled(Loop *L) { 689 MDNode *LoopID = L->getLoopID(); 690 if (!LoopID) return; 691 692 // First remove any existing loop unrolling metadata. 693 SmallVector<Metadata *, 4> MDs; 694 // Reserve first location for self reference to the LoopID metadata node. 695 MDs.push_back(nullptr); 696 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 697 bool IsUnrollMetadata = false; 698 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 699 if (MD) { 700 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 701 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 702 } 703 if (!IsUnrollMetadata) 704 MDs.push_back(LoopID->getOperand(i)); 705 } 706 707 // Add unroll(disable) metadata to disable future unrolling. 708 LLVMContext &Context = L->getHeader()->getContext(); 709 SmallVector<Metadata *, 1> DisableOperands; 710 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 711 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 712 MDs.push_back(DisableNode); 713 714 MDNode *NewLoopID = MDNode::get(Context, MDs); 715 // Set operand 0 to refer to the loop id itself. 716 NewLoopID->replaceOperandWith(0, NewLoopID); 717 L->setLoopID(NewLoopID); 718 } 719 720 bool LoopUnroll::canUnrollCompletely( 721 Loop *L, unsigned Threshold, unsigned AbsoluteThreshold, 722 uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions, 723 unsigned PercentOfOptimizedForCompleteUnroll) { 724 725 if (Threshold == NoThreshold) { 726 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 727 return true; 728 } 729 730 if (UnrolledSize <= Threshold) { 731 DEBUG(dbgs() << " Can fully unroll, because unrolled size: " 732 << UnrolledSize << "<" << Threshold << "\n"); 733 return true; 734 } 735 736 assert(UnrolledSize && "UnrolledSize can't be 0 at this point."); 737 unsigned PercentOfOptimizedInstructions = 738 (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize; 739 740 if (UnrolledSize <= AbsoluteThreshold && 741 PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) { 742 DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing " 743 << PercentOfOptimizedInstructions 744 << "% instructions (threshold: " 745 << PercentOfOptimizedForCompleteUnroll << "%)\n"); 746 DEBUG(dbgs() << " Unrolled size (" << UnrolledSize 747 << ") is less than the threshold (" << AbsoluteThreshold 748 << ").\n"); 749 return true; 750 } 751 752 DEBUG(dbgs() << " Too large to fully unroll:\n"); 753 DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n"); 754 DEBUG(dbgs() << " Estimated number of optimized instructions: " 755 << NumberOfOptimizedInstructions << "\n"); 756 DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n"); 757 DEBUG(dbgs() << " Minimum percent of removed instructions: " 758 << PercentOfOptimizedForCompleteUnroll << "\n"); 759 DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n"); 760 return false; 761 } 762 763 unsigned LoopUnroll::selectUnrollCount( 764 const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 765 unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, 766 bool &SetExplicitly) { 767 SetExplicitly = true; 768 769 // User-specified count (either as a command-line option or 770 // constructor parameter) has highest precedence. 771 unsigned Count = UserCount ? CurrentCount : 0; 772 773 // If there is no user-specified count, unroll pragmas have the next 774 // highest precendence. 775 if (Count == 0) { 776 if (PragmaCount) { 777 Count = PragmaCount; 778 } else if (PragmaFullUnroll) { 779 Count = TripCount; 780 } 781 } 782 783 if (Count == 0) 784 Count = UP.Count; 785 786 if (Count == 0) { 787 SetExplicitly = false; 788 if (TripCount == 0) 789 // Runtime trip count. 790 Count = UnrollRuntimeCount; 791 else 792 // Conservative heuristic: if we know the trip count, see if we can 793 // completely unroll (subject to the threshold, checked below); otherwise 794 // try to find greatest modulo of the trip count which is still under 795 // threshold value. 796 Count = TripCount; 797 } 798 if (TripCount && Count > TripCount) 799 return TripCount; 800 return Count; 801 } 802 803 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { 804 if (skipOptnoneFunction(L)) 805 return false; 806 807 Function &F = *L->getHeader()->getParent(); 808 809 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 810 ScalarEvolution *SE = &getAnalysis<ScalarEvolution>(); 811 const TargetTransformInfo &TTI = 812 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 813 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 814 815 BasicBlock *Header = L->getHeader(); 816 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 817 << "] Loop %" << Header->getName() << "\n"); 818 819 if (HasUnrollDisablePragma(L)) { 820 return false; 821 } 822 bool PragmaFullUnroll = HasUnrollFullPragma(L); 823 unsigned PragmaCount = UnrollCountPragmaValue(L); 824 bool HasPragma = PragmaFullUnroll || PragmaCount > 0; 825 826 TargetTransformInfo::UnrollingPreferences UP; 827 getUnrollingPreferences(L, TTI, UP); 828 829 // Find trip count and trip multiple if count is not available 830 unsigned TripCount = 0; 831 unsigned TripMultiple = 1; 832 // If there are multiple exiting blocks but one of them is the latch, use the 833 // latch for the trip count estimation. Otherwise insist on a single exiting 834 // block for the trip count estimation. 835 BasicBlock *ExitingBlock = L->getLoopLatch(); 836 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 837 ExitingBlock = L->getExitingBlock(); 838 if (ExitingBlock) { 839 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 840 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 841 } 842 843 // Select an initial unroll count. This may be reduced later based 844 // on size thresholds. 845 bool CountSetExplicitly; 846 unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, 847 PragmaCount, UP, CountSetExplicitly); 848 849 unsigned NumInlineCandidates; 850 bool notDuplicatable; 851 unsigned LoopSize = 852 ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); 853 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 854 855 // When computing the unrolled size, note that the conditional branch on the 856 // backedge and the comparison feeding it are not replicated like the rest of 857 // the loop body (which is why 2 is subtracted). 858 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; 859 if (notDuplicatable) { 860 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 861 << " instructions.\n"); 862 return false; 863 } 864 if (NumInlineCandidates != 0) { 865 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 866 return false; 867 } 868 869 unsigned Threshold, PartialThreshold; 870 unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll; 871 selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, 872 AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll); 873 874 // Given Count, TripCount and thresholds determine the type of 875 // unrolling which is to be performed. 876 enum { Full = 0, Partial = 1, Runtime = 2 }; 877 int Unrolling; 878 if (TripCount && Count == TripCount) { 879 Unrolling = Partial; 880 // If the loop is really small, we don't need to run an expensive analysis. 881 if (canUnrollCompletely( 882 L, Threshold, AbsoluteThreshold, 883 UnrolledSize, 0, 100)) { 884 Unrolling = Full; 885 } else { 886 // The loop isn't that small, but we still can fully unroll it if that 887 // helps to remove a significant number of instructions. 888 // To check that, run additional analysis on the loop. 889 UnrollAnalyzer UA(L, TripCount, *SE, TTI, AbsoluteThreshold); 890 if (UA.analyzeLoop() && 891 canUnrollCompletely(L, Threshold, AbsoluteThreshold, 892 UA.UnrolledLoopSize, 893 UA.NumberOfOptimizedInstructions, 894 PercentOfOptimizedForCompleteUnroll)) { 895 Unrolling = Full; 896 } 897 } 898 } else if (TripCount && Count < TripCount) { 899 Unrolling = Partial; 900 } else { 901 Unrolling = Runtime; 902 } 903 904 // Reduce count based on the type of unrolling and the threshold values. 905 unsigned OriginalCount = Count; 906 bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; 907 if (HasRuntimeUnrollDisablePragma(L)) { 908 AllowRuntime = false; 909 } 910 if (Unrolling == Partial) { 911 bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; 912 if (!AllowPartial && !CountSetExplicitly) { 913 DEBUG(dbgs() << " will not try to unroll partially because " 914 << "-unroll-allow-partial not given\n"); 915 return false; 916 } 917 if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { 918 // Reduce unroll count to be modulo of TripCount for partial unrolling. 919 Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); 920 while (Count != 0 && TripCount % Count != 0) 921 Count--; 922 } 923 } else if (Unrolling == Runtime) { 924 if (!AllowRuntime && !CountSetExplicitly) { 925 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 926 << "-unroll-runtime not given\n"); 927 return false; 928 } 929 // Reduce unroll count to be the largest power-of-two factor of 930 // the original count which satisfies the threshold limit. 931 while (Count != 0 && UnrolledSize > PartialThreshold) { 932 Count >>= 1; 933 UnrolledSize = (LoopSize-2) * Count + 2; 934 } 935 if (Count > UP.MaxCount) 936 Count = UP.MaxCount; 937 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 938 } 939 940 if (HasPragma) { 941 if (PragmaCount != 0) 942 // If loop has an unroll count pragma mark loop as unrolled to prevent 943 // unrolling beyond that requested by the pragma. 944 SetLoopAlreadyUnrolled(L); 945 946 // Emit optimization remarks if we are unable to unroll the loop 947 // as directed by a pragma. 948 DebugLoc LoopLoc = L->getStartLoc(); 949 Function *F = Header->getParent(); 950 LLVMContext &Ctx = F->getContext(); 951 if (PragmaFullUnroll && PragmaCount == 0) { 952 if (TripCount && Count != TripCount) { 953 emitOptimizationRemarkMissed( 954 Ctx, DEBUG_TYPE, *F, LoopLoc, 955 "Unable to fully unroll loop as directed by unroll(full) pragma " 956 "because unrolled size is too large."); 957 } else if (!TripCount) { 958 emitOptimizationRemarkMissed( 959 Ctx, DEBUG_TYPE, *F, LoopLoc, 960 "Unable to fully unroll loop as directed by unroll(full) pragma " 961 "because loop has a runtime trip count."); 962 } 963 } else if (PragmaCount > 0 && Count != OriginalCount) { 964 emitOptimizationRemarkMissed( 965 Ctx, DEBUG_TYPE, *F, LoopLoc, 966 "Unable to unroll loop the number of times directed by " 967 "unroll_count pragma because unrolled size is too large."); 968 } 969 } 970 971 if (Unrolling != Full && Count < 2) { 972 // Partial unrolling by 1 is a nop. For full unrolling, a factor 973 // of 1 makes sense because loop control can be eliminated. 974 return false; 975 } 976 977 // Unroll the loop. 978 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 979 TripMultiple, LI, this, &LPM, &AC)) 980 return false; 981 982 return true; 983 } 984