1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopSimplify.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-unroll" 74 75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 76 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 77 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 78 " the current top-most loop. This is somtimes preferred to reduce" 79 " compile time.")); 80 81 static cl::opt<unsigned> 82 UnrollThreshold("unroll-threshold", cl::Hidden, 83 cl::desc("The cost threshold for loop unrolling")); 84 85 static cl::opt<unsigned> UnrollPartialThreshold( 86 "unroll-partial-threshold", cl::Hidden, 87 cl::desc("The cost threshold for partial loop unrolling")); 88 89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 90 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 91 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 92 "to the threshold when aggressively unrolling a loop due to the " 93 "dynamic cost savings. If completely unrolling a loop will reduce " 94 "the total runtime from X to Y, we boost the loop unroll " 95 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 96 "X/Y). This limit avoids excessive code bloat.")); 97 98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 99 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 100 cl::desc("Don't allow loop unrolling to simulate more than this number of" 101 "iterations when checking full unroll profitability")); 102 103 static cl::opt<unsigned> UnrollCount( 104 "unroll-count", cl::Hidden, 105 cl::desc("Use this unroll count for all loops including those with " 106 "unroll_count pragma values, for testing purposes")); 107 108 static cl::opt<unsigned> UnrollMaxCount( 109 "unroll-max-count", cl::Hidden, 110 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 111 "testing purposes")); 112 113 static cl::opt<unsigned> UnrollFullMaxCount( 114 "unroll-full-max-count", cl::Hidden, 115 cl::desc( 116 "Set the max unroll count for full unrolling, for testing purposes")); 117 118 static cl::opt<unsigned> UnrollPeelCount( 119 "unroll-peel-count", cl::Hidden, 120 cl::desc("Set the unroll peeling count, for testing purposes")); 121 122 static cl::opt<bool> 123 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 124 cl::desc("Allows loops to be partially unrolled until " 125 "-unroll-threshold loop size is reached.")); 126 127 static cl::opt<bool> UnrollAllowRemainder( 128 "unroll-allow-remainder", cl::Hidden, 129 cl::desc("Allow generation of a loop remainder (extra iterations) " 130 "when unrolling a loop.")); 131 132 static cl::opt<bool> 133 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 134 cl::desc("Unroll loops with run-time trip counts")); 135 136 static cl::opt<unsigned> UnrollMaxUpperBound( 137 "unroll-max-upperbound", cl::init(8), cl::Hidden, 138 cl::desc( 139 "The max of trip count upper bound that is considered in unrolling")); 140 141 static cl::opt<unsigned> PragmaUnrollThreshold( 142 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 143 cl::desc("Unrolled size limit for loops with an unroll(full) or " 144 "unroll_count pragma.")); 145 146 static cl::opt<unsigned> FlatLoopTripCountThreshold( 147 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 148 cl::desc("If the runtime tripcount for the loop is lower than the " 149 "threshold, the loop is considered as flat and will be less " 150 "aggressively unrolled.")); 151 152 static cl::opt<bool> 153 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 154 cl::desc("Allows loops to be peeled when the dynamic " 155 "trip count is known to be low.")); 156 157 static cl::opt<bool> UnrollUnrollRemainder( 158 "unroll-remainder", cl::Hidden, 159 cl::desc("Allow the loop remainder to be unrolled.")); 160 161 // This option isn't ever intended to be enabled, it serves to allow 162 // experiments to check the assumptions about when this kind of revisit is 163 // necessary. 164 static cl::opt<bool> UnrollRevisitChildLoops( 165 "unroll-revisit-child-loops", cl::Hidden, 166 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 167 "This shouldn't typically be needed as child loops (or their " 168 "clones) were already visited.")); 169 170 static cl::opt<unsigned> UnrollThresholdAggressive( 171 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 172 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 173 "optimizations")); 174 static cl::opt<unsigned> 175 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 176 cl::Hidden, 177 cl::desc("Default threshold (max size of unrolled " 178 "loop), used in all but O3 optimizations")); 179 180 /// A magic value for use with the Threshold parameter to indicate 181 /// that the loop unroll should be performed regardless of how much 182 /// code expansion would result. 183 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 184 185 /// Gather the various unrolling parameters based on the defaults, compiler 186 /// flags, TTI overrides and user specified parameters. 187 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 188 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 189 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 190 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 191 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 192 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 193 Optional<bool> UserAllowProfileBasedPeeling, 194 Optional<unsigned> UserFullUnrollMaxCount) { 195 TargetTransformInfo::UnrollingPreferences UP; 196 197 // Set up the defaults 198 UP.Threshold = 199 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 200 UP.MaxPercentThresholdBoost = 400; 201 UP.OptSizeThreshold = 0; 202 UP.PartialThreshold = 150; 203 UP.PartialOptSizeThreshold = 0; 204 UP.Count = 0; 205 UP.PeelCount = 0; 206 UP.DefaultUnrollRuntimeCount = 8; 207 UP.MaxCount = std::numeric_limits<unsigned>::max(); 208 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 209 UP.BEInsns = 2; 210 UP.Partial = false; 211 UP.Runtime = false; 212 UP.AllowRemainder = true; 213 UP.UnrollRemainder = false; 214 UP.AllowExpensiveTripCount = false; 215 UP.Force = false; 216 UP.UpperBound = false; 217 UP.AllowPeeling = true; 218 UP.UnrollAndJam = false; 219 UP.PeelProfiledIterations = true; 220 UP.UnrollAndJamInnerLoopThreshold = 60; 221 222 // Override with any target specific settings 223 TTI.getUnrollingPreferences(L, SE, UP); 224 225 // Apply size attributes 226 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 227 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 228 PGSOQueryType::IRPass); 229 if (OptForSize) { 230 UP.Threshold = UP.OptSizeThreshold; 231 UP.PartialThreshold = UP.PartialOptSizeThreshold; 232 UP.MaxPercentThresholdBoost = 100; 233 } 234 235 // Apply any user values specified by cl::opt 236 if (UnrollThreshold.getNumOccurrences() > 0) 237 UP.Threshold = UnrollThreshold; 238 if (UnrollPartialThreshold.getNumOccurrences() > 0) 239 UP.PartialThreshold = UnrollPartialThreshold; 240 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 241 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 242 if (UnrollMaxCount.getNumOccurrences() > 0) 243 UP.MaxCount = UnrollMaxCount; 244 if (UnrollFullMaxCount.getNumOccurrences() > 0) 245 UP.FullUnrollMaxCount = UnrollFullMaxCount; 246 if (UnrollPeelCount.getNumOccurrences() > 0) 247 UP.PeelCount = UnrollPeelCount; 248 if (UnrollAllowPartial.getNumOccurrences() > 0) 249 UP.Partial = UnrollAllowPartial; 250 if (UnrollAllowRemainder.getNumOccurrences() > 0) 251 UP.AllowRemainder = UnrollAllowRemainder; 252 if (UnrollRuntime.getNumOccurrences() > 0) 253 UP.Runtime = UnrollRuntime; 254 if (UnrollMaxUpperBound == 0) 255 UP.UpperBound = false; 256 if (UnrollAllowPeeling.getNumOccurrences() > 0) 257 UP.AllowPeeling = UnrollAllowPeeling; 258 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 259 UP.UnrollRemainder = UnrollUnrollRemainder; 260 261 // Apply user values provided by argument 262 if (UserThreshold.hasValue()) { 263 UP.Threshold = *UserThreshold; 264 UP.PartialThreshold = *UserThreshold; 265 } 266 if (UserCount.hasValue()) 267 UP.Count = *UserCount; 268 if (UserAllowPartial.hasValue()) 269 UP.Partial = *UserAllowPartial; 270 if (UserRuntime.hasValue()) 271 UP.Runtime = *UserRuntime; 272 if (UserUpperBound.hasValue()) 273 UP.UpperBound = *UserUpperBound; 274 if (UserAllowPeeling.hasValue()) 275 UP.AllowPeeling = *UserAllowPeeling; 276 if (UserAllowProfileBasedPeeling.hasValue()) 277 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 278 if (UserFullUnrollMaxCount.hasValue()) 279 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 280 281 return UP; 282 } 283 284 namespace { 285 286 /// A struct to densely store the state of an instruction after unrolling at 287 /// each iteration. 288 /// 289 /// This is designed to work like a tuple of <Instruction *, int> for the 290 /// purposes of hashing and lookup, but to be able to associate two boolean 291 /// states with each key. 292 struct UnrolledInstState { 293 Instruction *I; 294 int Iteration : 30; 295 unsigned IsFree : 1; 296 unsigned IsCounted : 1; 297 }; 298 299 /// Hashing and equality testing for a set of the instruction states. 300 struct UnrolledInstStateKeyInfo { 301 using PtrInfo = DenseMapInfo<Instruction *>; 302 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 303 304 static inline UnrolledInstState getEmptyKey() { 305 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 306 } 307 308 static inline UnrolledInstState getTombstoneKey() { 309 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 310 } 311 312 static inline unsigned getHashValue(const UnrolledInstState &S) { 313 return PairInfo::getHashValue({S.I, S.Iteration}); 314 } 315 316 static inline bool isEqual(const UnrolledInstState &LHS, 317 const UnrolledInstState &RHS) { 318 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 319 } 320 }; 321 322 struct EstimatedUnrollCost { 323 /// The estimated cost after unrolling. 324 unsigned UnrolledCost; 325 326 /// The estimated dynamic cost of executing the instructions in the 327 /// rolled form. 328 unsigned RolledDynamicCost; 329 }; 330 331 } // end anonymous namespace 332 333 /// Figure out if the loop is worth full unrolling. 334 /// 335 /// Complete loop unrolling can make some loads constant, and we need to know 336 /// if that would expose any further optimization opportunities. This routine 337 /// estimates this optimization. It computes cost of unrolled loop 338 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 339 /// dynamic cost we mean that we won't count costs of blocks that are known not 340 /// to be executed (i.e. if we have a branch in the loop and we know that at the 341 /// given iteration its condition would be resolved to true, we won't add up the 342 /// cost of the 'false'-block). 343 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 344 /// the analysis failed (no benefits expected from the unrolling, or the loop is 345 /// too big to analyze), the returned value is None. 346 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 347 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 348 const SmallPtrSetImpl<const Value *> &EphValues, 349 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 350 // We want to be able to scale offsets by the trip count and add more offsets 351 // to them without checking for overflows, and we already don't want to 352 // analyze *massive* trip counts, so we force the max to be reasonably small. 353 assert(UnrollMaxIterationsCountToAnalyze < 354 (unsigned)(std::numeric_limits<int>::max() / 2) && 355 "The unroll iterations max is too large!"); 356 357 // Only analyze inner loops. We can't properly estimate cost of nested loops 358 // and we won't visit inner loops again anyway. 359 if (!L->empty()) 360 return None; 361 362 // Don't simulate loops with a big or unknown tripcount 363 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 364 TripCount > UnrollMaxIterationsCountToAnalyze) 365 return None; 366 367 SmallSetVector<BasicBlock *, 16> BBWorklist; 368 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 369 DenseMap<Value *, Constant *> SimplifiedValues; 370 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 371 372 // The estimated cost of the unrolled form of the loop. We try to estimate 373 // this by simplifying as much as we can while computing the estimate. 374 unsigned UnrolledCost = 0; 375 376 // We also track the estimated dynamic (that is, actually executed) cost in 377 // the rolled form. This helps identify cases when the savings from unrolling 378 // aren't just exposing dead control flows, but actual reduced dynamic 379 // instructions due to the simplifications which we expect to occur after 380 // unrolling. 381 unsigned RolledDynamicCost = 0; 382 383 // We track the simplification of each instruction in each iteration. We use 384 // this to recursively merge costs into the unrolled cost on-demand so that 385 // we don't count the cost of any dead code. This is essentially a map from 386 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 387 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 388 389 // A small worklist used to accumulate cost of instructions from each 390 // observable and reached root in the loop. 391 SmallVector<Instruction *, 16> CostWorklist; 392 393 // PHI-used worklist used between iterations while accumulating cost. 394 SmallVector<Instruction *, 4> PHIUsedList; 395 396 // Helper function to accumulate cost for instructions in the loop. 397 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 398 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 399 assert(CostWorklist.empty() && "Must start with an empty cost list"); 400 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 401 CostWorklist.push_back(&RootI); 402 for (;; --Iteration) { 403 do { 404 Instruction *I = CostWorklist.pop_back_val(); 405 406 // InstCostMap only uses I and Iteration as a key, the other two values 407 // don't matter here. 408 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 409 if (CostIter == InstCostMap.end()) 410 // If an input to a PHI node comes from a dead path through the loop 411 // we may have no cost data for it here. What that actually means is 412 // that it is free. 413 continue; 414 auto &Cost = *CostIter; 415 if (Cost.IsCounted) 416 // Already counted this instruction. 417 continue; 418 419 // Mark that we are counting the cost of this instruction now. 420 Cost.IsCounted = true; 421 422 // If this is a PHI node in the loop header, just add it to the PHI set. 423 if (auto *PhiI = dyn_cast<PHINode>(I)) 424 if (PhiI->getParent() == L->getHeader()) { 425 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 426 "inherently simplify during unrolling."); 427 if (Iteration == 0) 428 continue; 429 430 // Push the incoming value from the backedge into the PHI used list 431 // if it is an in-loop instruction. We'll use this to populate the 432 // cost worklist for the next iteration (as we count backwards). 433 if (auto *OpI = dyn_cast<Instruction>( 434 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 435 if (L->contains(OpI)) 436 PHIUsedList.push_back(OpI); 437 continue; 438 } 439 440 // First accumulate the cost of this instruction. 441 if (!Cost.IsFree) { 442 UnrolledCost += TTI.getUserCost(I); 443 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 444 << Iteration << "): "); 445 LLVM_DEBUG(I->dump()); 446 } 447 448 // We must count the cost of every operand which is not free, 449 // recursively. If we reach a loop PHI node, simply add it to the set 450 // to be considered on the next iteration (backwards!). 451 for (Value *Op : I->operands()) { 452 // Check whether this operand is free due to being a constant or 453 // outside the loop. 454 auto *OpI = dyn_cast<Instruction>(Op); 455 if (!OpI || !L->contains(OpI)) 456 continue; 457 458 // Otherwise accumulate its cost. 459 CostWorklist.push_back(OpI); 460 } 461 } while (!CostWorklist.empty()); 462 463 if (PHIUsedList.empty()) 464 // We've exhausted the search. 465 break; 466 467 assert(Iteration > 0 && 468 "Cannot track PHI-used values past the first iteration!"); 469 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 470 PHIUsedList.clear(); 471 } 472 }; 473 474 // Ensure that we don't violate the loop structure invariants relied on by 475 // this analysis. 476 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 477 assert(L->isLCSSAForm(DT) && 478 "Must have loops in LCSSA form to track live-out values."); 479 480 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 481 482 // Simulate execution of each iteration of the loop counting instructions, 483 // which would be simplified. 484 // Since the same load will take different values on different iterations, 485 // we literally have to go through all loop's iterations. 486 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 487 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 488 489 // Prepare for the iteration by collecting any simplified entry or backedge 490 // inputs. 491 for (Instruction &I : *L->getHeader()) { 492 auto *PHI = dyn_cast<PHINode>(&I); 493 if (!PHI) 494 break; 495 496 // The loop header PHI nodes must have exactly two input: one from the 497 // loop preheader and one from the loop latch. 498 assert( 499 PHI->getNumIncomingValues() == 2 && 500 "Must have an incoming value only for the preheader and the latch."); 501 502 Value *V = PHI->getIncomingValueForBlock( 503 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 504 Constant *C = dyn_cast<Constant>(V); 505 if (Iteration != 0 && !C) 506 C = SimplifiedValues.lookup(V); 507 if (C) 508 SimplifiedInputValues.push_back({PHI, C}); 509 } 510 511 // Now clear and re-populate the map for the next iteration. 512 SimplifiedValues.clear(); 513 while (!SimplifiedInputValues.empty()) 514 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 515 516 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 517 518 BBWorklist.clear(); 519 BBWorklist.insert(L->getHeader()); 520 // Note that we *must not* cache the size, this loop grows the worklist. 521 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 522 BasicBlock *BB = BBWorklist[Idx]; 523 524 // Visit all instructions in the given basic block and try to simplify 525 // it. We don't change the actual IR, just count optimization 526 // opportunities. 527 for (Instruction &I : *BB) { 528 // These won't get into the final code - don't even try calculating the 529 // cost for them. 530 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 531 continue; 532 533 // Track this instruction's expected baseline cost when executing the 534 // rolled loop form. 535 RolledDynamicCost += TTI.getUserCost(&I); 536 537 // Visit the instruction to analyze its loop cost after unrolling, 538 // and if the visitor returns true, mark the instruction as free after 539 // unrolling and continue. 540 bool IsFree = Analyzer.visit(I); 541 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 542 (unsigned)IsFree, 543 /*IsCounted*/ false}).second; 544 (void)Inserted; 545 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 546 547 if (IsFree) 548 continue; 549 550 // Can't properly model a cost of a call. 551 // FIXME: With a proper cost model we should be able to do it. 552 if (auto *CI = dyn_cast<CallInst>(&I)) { 553 const Function *Callee = CI->getCalledFunction(); 554 if (!Callee || TTI.isLoweredToCall(Callee)) { 555 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 556 return None; 557 } 558 } 559 560 // If the instruction might have a side-effect recursively account for 561 // the cost of it and all the instructions leading up to it. 562 if (I.mayHaveSideEffects()) 563 AddCostRecursively(I, Iteration); 564 565 // If unrolled body turns out to be too big, bail out. 566 if (UnrolledCost > MaxUnrolledLoopSize) { 567 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 568 << " UnrolledCost: " << UnrolledCost 569 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 570 << "\n"); 571 return None; 572 } 573 } 574 575 Instruction *TI = BB->getTerminator(); 576 577 // Add in the live successors by first checking whether we have terminator 578 // that may be simplified based on the values simplified by this call. 579 BasicBlock *KnownSucc = nullptr; 580 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 581 if (BI->isConditional()) { 582 if (Constant *SimpleCond = 583 SimplifiedValues.lookup(BI->getCondition())) { 584 // Just take the first successor if condition is undef 585 if (isa<UndefValue>(SimpleCond)) 586 KnownSucc = BI->getSuccessor(0); 587 else if (ConstantInt *SimpleCondVal = 588 dyn_cast<ConstantInt>(SimpleCond)) 589 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 590 } 591 } 592 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 593 if (Constant *SimpleCond = 594 SimplifiedValues.lookup(SI->getCondition())) { 595 // Just take the first successor if condition is undef 596 if (isa<UndefValue>(SimpleCond)) 597 KnownSucc = SI->getSuccessor(0); 598 else if (ConstantInt *SimpleCondVal = 599 dyn_cast<ConstantInt>(SimpleCond)) 600 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 601 } 602 } 603 if (KnownSucc) { 604 if (L->contains(KnownSucc)) 605 BBWorklist.insert(KnownSucc); 606 else 607 ExitWorklist.insert({BB, KnownSucc}); 608 continue; 609 } 610 611 // Add BB's successors to the worklist. 612 for (BasicBlock *Succ : successors(BB)) 613 if (L->contains(Succ)) 614 BBWorklist.insert(Succ); 615 else 616 ExitWorklist.insert({BB, Succ}); 617 AddCostRecursively(*TI, Iteration); 618 } 619 620 // If we found no optimization opportunities on the first iteration, we 621 // won't find them on later ones too. 622 if (UnrolledCost == RolledDynamicCost) { 623 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 624 << " UnrolledCost: " << UnrolledCost << "\n"); 625 return None; 626 } 627 } 628 629 while (!ExitWorklist.empty()) { 630 BasicBlock *ExitingBB, *ExitBB; 631 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 632 633 for (Instruction &I : *ExitBB) { 634 auto *PN = dyn_cast<PHINode>(&I); 635 if (!PN) 636 break; 637 638 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 639 if (auto *OpI = dyn_cast<Instruction>(Op)) 640 if (L->contains(OpI)) 641 AddCostRecursively(*OpI, TripCount - 1); 642 } 643 } 644 645 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 646 << "UnrolledCost: " << UnrolledCost << ", " 647 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 648 return {{UnrolledCost, RolledDynamicCost}}; 649 } 650 651 /// ApproximateLoopSize - Approximate the size of the loop. 652 unsigned llvm::ApproximateLoopSize( 653 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 654 const TargetTransformInfo &TTI, 655 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 656 CodeMetrics Metrics; 657 for (BasicBlock *BB : L->blocks()) 658 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 659 NumCalls = Metrics.NumInlineCandidates; 660 NotDuplicatable = Metrics.notDuplicatable; 661 Convergent = Metrics.convergent; 662 663 unsigned LoopSize = Metrics.NumInsts; 664 665 // Don't allow an estimate of size zero. This would allows unrolling of loops 666 // with huge iteration counts, which is a compile time problem even if it's 667 // not a problem for code quality. Also, the code using this size may assume 668 // that each loop has at least three instructions (likely a conditional 669 // branch, a comparison feeding that branch, and some kind of loop increment 670 // feeding that comparison instruction). 671 LoopSize = std::max(LoopSize, BEInsns + 1); 672 673 return LoopSize; 674 } 675 676 // Returns the loop hint metadata node with the given name (for example, 677 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 678 // returned. 679 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 680 if (MDNode *LoopID = L->getLoopID()) 681 return GetUnrollMetadata(LoopID, Name); 682 return nullptr; 683 } 684 685 // Returns true if the loop has an unroll(full) pragma. 686 static bool hasUnrollFullPragma(const Loop *L) { 687 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 688 } 689 690 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 691 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 692 static bool hasUnrollEnablePragma(const Loop *L) { 693 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 694 } 695 696 // Returns true if the loop has an runtime unroll(disable) pragma. 697 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 698 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 699 } 700 701 // If loop has an unroll_count pragma return the (necessarily 702 // positive) value from the pragma. Otherwise return 0. 703 static unsigned unrollCountPragmaValue(const Loop *L) { 704 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 705 if (MD) { 706 assert(MD->getNumOperands() == 2 && 707 "Unroll count hint metadata should have two operands."); 708 unsigned Count = 709 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 710 assert(Count >= 1 && "Unroll count must be positive."); 711 return Count; 712 } 713 return 0; 714 } 715 716 // Computes the boosting factor for complete unrolling. 717 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 718 // be beneficial to fully unroll the loop even if unrolledcost is large. We 719 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 720 // the unroll threshold. 721 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 722 unsigned MaxPercentThresholdBoost) { 723 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 724 return 100; 725 else if (Cost.UnrolledCost != 0) 726 // The boosting factor is RolledDynamicCost / UnrolledCost 727 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 728 MaxPercentThresholdBoost); 729 else 730 return MaxPercentThresholdBoost; 731 } 732 733 // Returns loop size estimation for unrolled loop. 734 static uint64_t getUnrolledLoopSize( 735 unsigned LoopSize, 736 TargetTransformInfo::UnrollingPreferences &UP) { 737 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 738 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 739 } 740 741 // Returns true if unroll count was set explicitly. 742 // Calculates unroll count and writes it to UP.Count. 743 // Unless IgnoreUser is true, will also use metadata and command-line options 744 // that are specific to to the LoopUnroll pass (which, for instance, are 745 // irrelevant for the LoopUnrollAndJam pass). 746 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 747 // many LoopUnroll-specific options. The shared functionality should be 748 // refactored into it own function. 749 bool llvm::computeUnrollCount( 750 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 751 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 752 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 753 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 754 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 755 756 // Check for explicit Count. 757 // 1st priority is unroll count set by "unroll-count" option. 758 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 759 if (UserUnrollCount) { 760 UP.Count = UnrollCount; 761 UP.AllowExpensiveTripCount = true; 762 UP.Force = true; 763 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 764 return true; 765 } 766 767 // 2nd priority is unroll count set by pragma. 768 unsigned PragmaCount = unrollCountPragmaValue(L); 769 if (PragmaCount > 0) { 770 UP.Count = PragmaCount; 771 UP.Runtime = true; 772 UP.AllowExpensiveTripCount = true; 773 UP.Force = true; 774 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 775 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 776 return true; 777 } 778 bool PragmaFullUnroll = hasUnrollFullPragma(L); 779 if (PragmaFullUnroll && TripCount != 0) { 780 UP.Count = TripCount; 781 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 782 return false; 783 } 784 785 bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 786 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 787 PragmaEnableUnroll || UserUnrollCount; 788 789 if (ExplicitUnroll && TripCount != 0) { 790 // If the loop has an unrolling pragma, we want to be more aggressive with 791 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 792 // value which is larger than the default limits. 793 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 794 UP.PartialThreshold = 795 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 796 } 797 798 // 3rd priority is full unroll count. 799 // Full unroll makes sense only when TripCount or its upper bound could be 800 // statically calculated. 801 // Also we need to check if we exceed FullUnrollMaxCount. 802 // If using the upper bound to unroll, TripMultiple should be set to 1 because 803 // we do not know when loop may exit. 804 805 // We can unroll by the upper bound amount if it's generally allowed or if 806 // we know that the loop is executed either the upper bound or zero times. 807 // (MaxOrZero unrolling keeps only the first loop test, so the number of 808 // loop tests remains the same compared to the non-unrolled version, whereas 809 // the generic upper bound unrolling keeps all but the last loop test so the 810 // number of loop tests goes up which may end up being worse on targets with 811 // constrained branch predictor resources so is controlled by an option.) 812 // In addition we only unroll small upper bounds. 813 unsigned FullUnrollMaxTripCount = MaxTripCount; 814 if (!(UP.UpperBound || MaxOrZero) || 815 FullUnrollMaxTripCount > UnrollMaxUpperBound) 816 FullUnrollMaxTripCount = 0; 817 818 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 819 // compute the former when the latter is zero. 820 unsigned ExactTripCount = TripCount; 821 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 822 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 823 824 unsigned FullUnrollTripCount = 825 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 826 UP.Count = FullUnrollTripCount; 827 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 828 // When computing the unrolled size, note that BEInsns are not replicated 829 // like the rest of the loop body. 830 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 831 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 832 TripCount = FullUnrollTripCount; 833 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 834 return ExplicitUnroll; 835 } else { 836 // The loop isn't that small, but we still can fully unroll it if that 837 // helps to remove a significant number of instructions. 838 // To check that, run additional analysis on the loop. 839 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 840 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 841 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 842 unsigned Boost = 843 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 844 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 845 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 846 TripCount = FullUnrollTripCount; 847 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 848 return ExplicitUnroll; 849 } 850 } 851 } 852 } 853 854 // 4th priority is loop peeling. 855 computePeelCount(L, LoopSize, UP, TripCount, SE); 856 if (UP.PeelCount) { 857 UP.Runtime = false; 858 UP.Count = 1; 859 return ExplicitUnroll; 860 } 861 862 // 5th priority is partial unrolling. 863 // Try partial unroll only when TripCount could be statically calculated. 864 if (TripCount) { 865 UP.Partial |= ExplicitUnroll; 866 if (!UP.Partial) { 867 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 868 << "-unroll-allow-partial not given\n"); 869 UP.Count = 0; 870 return false; 871 } 872 if (UP.Count == 0) 873 UP.Count = TripCount; 874 if (UP.PartialThreshold != NoThreshold) { 875 // Reduce unroll count to be modulo of TripCount for partial unrolling. 876 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 877 UP.Count = 878 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 879 (LoopSize - UP.BEInsns); 880 if (UP.Count > UP.MaxCount) 881 UP.Count = UP.MaxCount; 882 while (UP.Count != 0 && TripCount % UP.Count != 0) 883 UP.Count--; 884 if (UP.AllowRemainder && UP.Count <= 1) { 885 // If there is no Count that is modulo of TripCount, set Count to 886 // largest power-of-two factor that satisfies the threshold limit. 887 // As we'll create fixup loop, do the type of unrolling only if 888 // remainder loop is allowed. 889 UP.Count = UP.DefaultUnrollRuntimeCount; 890 while (UP.Count != 0 && 891 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 892 UP.Count >>= 1; 893 } 894 if (UP.Count < 2) { 895 if (PragmaEnableUnroll) 896 ORE->emit([&]() { 897 return OptimizationRemarkMissed(DEBUG_TYPE, 898 "UnrollAsDirectedTooLarge", 899 L->getStartLoc(), L->getHeader()) 900 << "Unable to unroll loop as directed by unroll(enable) " 901 "pragma " 902 "because unrolled size is too large."; 903 }); 904 UP.Count = 0; 905 } 906 } else { 907 UP.Count = TripCount; 908 } 909 if (UP.Count > UP.MaxCount) 910 UP.Count = UP.MaxCount; 911 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 912 UP.Count != TripCount) 913 ORE->emit([&]() { 914 return OptimizationRemarkMissed(DEBUG_TYPE, 915 "FullUnrollAsDirectedTooLarge", 916 L->getStartLoc(), L->getHeader()) 917 << "Unable to fully unroll loop as directed by unroll pragma " 918 "because " 919 "unrolled size is too large."; 920 }); 921 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 922 << "\n"); 923 return ExplicitUnroll; 924 } 925 assert(TripCount == 0 && 926 "All cases when TripCount is constant should be covered here."); 927 if (PragmaFullUnroll) 928 ORE->emit([&]() { 929 return OptimizationRemarkMissed( 930 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 931 L->getStartLoc(), L->getHeader()) 932 << "Unable to fully unroll loop as directed by unroll(full) " 933 "pragma " 934 "because loop has a runtime trip count."; 935 }); 936 937 // 6th priority is runtime unrolling. 938 // Don't unroll a runtime trip count loop when it is disabled. 939 if (hasRuntimeUnrollDisablePragma(L)) { 940 UP.Count = 0; 941 return false; 942 } 943 944 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 945 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 946 UP.Count = 0; 947 return false; 948 } 949 950 // Check if the runtime trip count is too small when profile is available. 951 if (L->getHeader()->getParent()->hasProfileData()) { 952 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 953 if (*ProfileTripCount < FlatLoopTripCountThreshold) 954 return false; 955 else 956 UP.AllowExpensiveTripCount = true; 957 } 958 } 959 960 // Reduce count based on the type of unrolling and the threshold values. 961 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 962 if (!UP.Runtime) { 963 LLVM_DEBUG( 964 dbgs() << " will not try to unroll loop with runtime trip count " 965 << "-unroll-runtime not given\n"); 966 UP.Count = 0; 967 return false; 968 } 969 if (UP.Count == 0) 970 UP.Count = UP.DefaultUnrollRuntimeCount; 971 972 // Reduce unroll count to be the largest power-of-two factor of 973 // the original count which satisfies the threshold limit. 974 while (UP.Count != 0 && 975 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 976 UP.Count >>= 1; 977 978 #ifndef NDEBUG 979 unsigned OrigCount = UP.Count; 980 #endif 981 982 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 983 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 984 UP.Count >>= 1; 985 LLVM_DEBUG( 986 dbgs() << "Remainder loop is restricted (that could architecture " 987 "specific or because the loop contains a convergent " 988 "instruction), so unroll count must divide the trip " 989 "multiple, " 990 << TripMultiple << ". Reducing unroll count from " << OrigCount 991 << " to " << UP.Count << ".\n"); 992 993 using namespace ore; 994 995 if (PragmaCount > 0 && !UP.AllowRemainder) 996 ORE->emit([&]() { 997 return OptimizationRemarkMissed(DEBUG_TYPE, 998 "DifferentUnrollCountFromDirected", 999 L->getStartLoc(), L->getHeader()) 1000 << "Unable to unroll loop the number of times directed by " 1001 "unroll_count pragma because remainder loop is restricted " 1002 "(that could architecture specific or because the loop " 1003 "contains a convergent instruction) and so must have an " 1004 "unroll " 1005 "count that divides the loop trip multiple of " 1006 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1007 << NV("UnrollCount", UP.Count) << " time(s)."; 1008 }); 1009 } 1010 1011 if (UP.Count > UP.MaxCount) 1012 UP.Count = UP.MaxCount; 1013 1014 if (MaxTripCount && UP.Count > MaxTripCount) 1015 UP.Count = MaxTripCount; 1016 1017 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1018 << "\n"); 1019 if (UP.Count < 2) 1020 UP.Count = 0; 1021 return ExplicitUnroll; 1022 } 1023 1024 static LoopUnrollResult tryToUnrollLoop( 1025 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1026 const TargetTransformInfo &TTI, AssumptionCache &AC, 1027 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1028 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1029 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1030 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1031 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1032 Optional<bool> ProvidedAllowPeeling, 1033 Optional<bool> ProvidedAllowProfileBasedPeeling, 1034 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1035 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1036 << L->getHeader()->getParent()->getName() << "] Loop %" 1037 << L->getHeader()->getName() << "\n"); 1038 TransformationMode TM = hasUnrollTransformation(L); 1039 if (TM & TM_Disable) 1040 return LoopUnrollResult::Unmodified; 1041 if (!L->isLoopSimplifyForm()) { 1042 LLVM_DEBUG( 1043 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1044 return LoopUnrollResult::Unmodified; 1045 } 1046 1047 // When automtatic unrolling is disabled, do not unroll unless overridden for 1048 // this loop. 1049 if (OnlyWhenForced && !(TM & TM_Enable)) 1050 return LoopUnrollResult::Unmodified; 1051 1052 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1053 unsigned NumInlineCandidates; 1054 bool NotDuplicatable; 1055 bool Convergent; 1056 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1057 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1058 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1059 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1060 ProvidedFullUnrollMaxCount); 1061 1062 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1063 // as threshold later on. 1064 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1065 !OptForSize) 1066 return LoopUnrollResult::Unmodified; 1067 1068 SmallPtrSet<const Value *, 32> EphValues; 1069 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1070 1071 unsigned LoopSize = 1072 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1073 TTI, EphValues, UP.BEInsns); 1074 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1075 if (NotDuplicatable) { 1076 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1077 << " instructions.\n"); 1078 return LoopUnrollResult::Unmodified; 1079 } 1080 1081 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1082 // later), to (fully) unroll loops, if it does not increase code size. 1083 if (OptForSize) 1084 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1085 1086 if (NumInlineCandidates != 0) { 1087 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1088 return LoopUnrollResult::Unmodified; 1089 } 1090 1091 // Find trip count and trip multiple if count is not available 1092 unsigned TripCount = 0; 1093 unsigned TripMultiple = 1; 1094 // If there are multiple exiting blocks but one of them is the latch, use the 1095 // latch for the trip count estimation. Otherwise insist on a single exiting 1096 // block for the trip count estimation. 1097 BasicBlock *ExitingBlock = L->getLoopLatch(); 1098 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1099 ExitingBlock = L->getExitingBlock(); 1100 if (ExitingBlock) { 1101 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1102 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1103 } 1104 1105 // If the loop contains a convergent operation, the prelude we'd add 1106 // to do the first few instructions before we hit the unrolled loop 1107 // is unsafe -- it adds a control-flow dependency to the convergent 1108 // operation. Therefore restrict remainder loop (try unrollig without). 1109 // 1110 // TODO: This is quite conservative. In practice, convergent_op() 1111 // is likely to be called unconditionally in the loop. In this 1112 // case, the program would be ill-formed (on most architectures) 1113 // unless n were the same on all threads in a thread group. 1114 // Assuming n is the same on all threads, any kind of unrolling is 1115 // safe. But currently llvm's notion of convergence isn't powerful 1116 // enough to express this. 1117 if (Convergent) 1118 UP.AllowRemainder = false; 1119 1120 // Try to find the trip count upper bound if we cannot find the exact trip 1121 // count. 1122 unsigned MaxTripCount = 0; 1123 bool MaxOrZero = false; 1124 if (!TripCount) { 1125 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1126 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1127 } 1128 1129 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1130 // fully unroll the loop. 1131 bool UseUpperBound = false; 1132 bool IsCountSetExplicitly = computeUnrollCount( 1133 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1134 TripMultiple, LoopSize, UP, UseUpperBound); 1135 if (!UP.Count) 1136 return LoopUnrollResult::Unmodified; 1137 // Unroll factor (Count) must be less or equal to TripCount. 1138 if (TripCount && UP.Count > TripCount) 1139 UP.Count = TripCount; 1140 1141 // Save loop properties before it is transformed. 1142 MDNode *OrigLoopID = L->getLoopID(); 1143 1144 // Unroll the loop. 1145 Loop *RemainderLoop = nullptr; 1146 LoopUnrollResult UnrollResult = UnrollLoop( 1147 L, 1148 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1149 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1150 ForgetAllSCEV}, 1151 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1152 if (UnrollResult == LoopUnrollResult::Unmodified) 1153 return LoopUnrollResult::Unmodified; 1154 1155 if (RemainderLoop) { 1156 Optional<MDNode *> RemainderLoopID = 1157 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1158 LLVMLoopUnrollFollowupRemainder}); 1159 if (RemainderLoopID.hasValue()) 1160 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1161 } 1162 1163 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1164 Optional<MDNode *> NewLoopID = 1165 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1166 LLVMLoopUnrollFollowupUnrolled}); 1167 if (NewLoopID.hasValue()) { 1168 L->setLoopID(NewLoopID.getValue()); 1169 1170 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1171 // explicitly. 1172 return UnrollResult; 1173 } 1174 } 1175 1176 // If loop has an unroll count pragma or unrolled by explicitly set count 1177 // mark loop as unrolled to prevent unrolling beyond that requested. 1178 // If the loop was peeled, we already "used up" the profile information 1179 // we had, so we don't want to unroll or peel again. 1180 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1181 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1182 L->setLoopAlreadyUnrolled(); 1183 1184 return UnrollResult; 1185 } 1186 1187 namespace { 1188 1189 class LoopUnroll : public LoopPass { 1190 public: 1191 static char ID; // Pass ID, replacement for typeid 1192 1193 int OptLevel; 1194 1195 /// If false, use a cost model to determine whether unrolling of a loop is 1196 /// profitable. If true, only loops that explicitly request unrolling via 1197 /// metadata are considered. All other loops are skipped. 1198 bool OnlyWhenForced; 1199 1200 /// If false, when SCEV is invalidated, only forget everything in the 1201 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1202 /// Otherwise, forgetAllLoops and rebuild when needed next. 1203 bool ForgetAllSCEV; 1204 1205 Optional<unsigned> ProvidedCount; 1206 Optional<unsigned> ProvidedThreshold; 1207 Optional<bool> ProvidedAllowPartial; 1208 Optional<bool> ProvidedRuntime; 1209 Optional<bool> ProvidedUpperBound; 1210 Optional<bool> ProvidedAllowPeeling; 1211 Optional<bool> ProvidedAllowProfileBasedPeeling; 1212 Optional<unsigned> ProvidedFullUnrollMaxCount; 1213 1214 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1215 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1216 Optional<unsigned> Count = None, 1217 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1218 Optional<bool> UpperBound = None, 1219 Optional<bool> AllowPeeling = None, 1220 Optional<bool> AllowProfileBasedPeeling = None, 1221 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1222 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1223 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1224 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1225 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1226 ProvidedAllowPeeling(AllowPeeling), 1227 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1228 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1229 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1230 } 1231 1232 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1233 if (skipLoop(L)) 1234 return false; 1235 1236 Function &F = *L->getHeader()->getParent(); 1237 1238 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1239 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1240 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1241 const TargetTransformInfo &TTI = 1242 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1243 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1244 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1245 // pass. Function analyses need to be preserved across loop transformations 1246 // but ORE cannot be preserved (see comment before the pass definition). 1247 OptimizationRemarkEmitter ORE(&F); 1248 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1249 1250 LoopUnrollResult Result = tryToUnrollLoop( 1251 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1252 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1253 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1254 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1255 ProvidedFullUnrollMaxCount); 1256 1257 if (Result == LoopUnrollResult::FullyUnrolled) 1258 LPM.markLoopAsDeleted(*L); 1259 1260 return Result != LoopUnrollResult::Unmodified; 1261 } 1262 1263 /// This transformation requires natural loop information & requires that 1264 /// loop preheaders be inserted into the CFG... 1265 void getAnalysisUsage(AnalysisUsage &AU) const override { 1266 AU.addRequired<AssumptionCacheTracker>(); 1267 AU.addRequired<TargetTransformInfoWrapperPass>(); 1268 // FIXME: Loop passes are required to preserve domtree, and for now we just 1269 // recreate dom info if anything gets unrolled. 1270 getLoopAnalysisUsage(AU); 1271 } 1272 }; 1273 1274 } // end anonymous namespace 1275 1276 char LoopUnroll::ID = 0; 1277 1278 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1279 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1280 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1281 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1282 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1283 1284 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1285 bool ForgetAllSCEV, int Threshold, int Count, 1286 int AllowPartial, int Runtime, int UpperBound, 1287 int AllowPeeling) { 1288 // TODO: It would make more sense for this function to take the optionals 1289 // directly, but that's dangerous since it would silently break out of tree 1290 // callers. 1291 return new LoopUnroll( 1292 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1293 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1294 Count == -1 ? None : Optional<unsigned>(Count), 1295 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1296 Runtime == -1 ? None : Optional<bool>(Runtime), 1297 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1298 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1299 } 1300 1301 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1302 bool ForgetAllSCEV) { 1303 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1304 0, 0, 0, 0); 1305 } 1306 1307 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1308 LoopStandardAnalysisResults &AR, 1309 LPMUpdater &Updater) { 1310 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1311 // pass. Function analyses need to be preserved across loop transformations 1312 // but ORE cannot be preserved (see comment before the pass definition). 1313 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1314 1315 // Keep track of the previous loop structure so we can identify new loops 1316 // created by unrolling. 1317 Loop *ParentL = L.getParentLoop(); 1318 SmallPtrSet<Loop *, 4> OldLoops; 1319 if (ParentL) 1320 OldLoops.insert(ParentL->begin(), ParentL->end()); 1321 else 1322 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1323 1324 std::string LoopName = std::string(L.getName()); 1325 1326 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1327 /*BFI*/ nullptr, /*PSI*/ nullptr, 1328 /*PreserveLCSSA*/ true, OptLevel, 1329 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1330 /*Threshold*/ None, /*AllowPartial*/ false, 1331 /*Runtime*/ false, /*UpperBound*/ false, 1332 /*AllowPeeling*/ false, 1333 /*AllowProfileBasedPeeling*/ false, 1334 /*FullUnrollMaxCount*/ None) != 1335 LoopUnrollResult::Unmodified; 1336 if (!Changed) 1337 return PreservedAnalyses::all(); 1338 1339 // The parent must not be damaged by unrolling! 1340 #ifndef NDEBUG 1341 if (ParentL) 1342 ParentL->verifyLoop(); 1343 #endif 1344 1345 // Unrolling can do several things to introduce new loops into a loop nest: 1346 // - Full unrolling clones child loops within the current loop but then 1347 // removes the current loop making all of the children appear to be new 1348 // sibling loops. 1349 // 1350 // When a new loop appears as a sibling loop after fully unrolling, 1351 // its nesting structure has fundamentally changed and we want to revisit 1352 // it to reflect that. 1353 // 1354 // When unrolling has removed the current loop, we need to tell the 1355 // infrastructure that it is gone. 1356 // 1357 // Finally, we support a debugging/testing mode where we revisit child loops 1358 // as well. These are not expected to require further optimizations as either 1359 // they or the loop they were cloned from have been directly visited already. 1360 // But the debugging mode allows us to check this assumption. 1361 bool IsCurrentLoopValid = false; 1362 SmallVector<Loop *, 4> SibLoops; 1363 if (ParentL) 1364 SibLoops.append(ParentL->begin(), ParentL->end()); 1365 else 1366 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1367 erase_if(SibLoops, [&](Loop *SibLoop) { 1368 if (SibLoop == &L) { 1369 IsCurrentLoopValid = true; 1370 return true; 1371 } 1372 1373 // Otherwise erase the loop from the list if it was in the old loops. 1374 return OldLoops.count(SibLoop) != 0; 1375 }); 1376 Updater.addSiblingLoops(SibLoops); 1377 1378 if (!IsCurrentLoopValid) { 1379 Updater.markLoopAsDeleted(L, LoopName); 1380 } else { 1381 // We can only walk child loops if the current loop remained valid. 1382 if (UnrollRevisitChildLoops) { 1383 // Walk *all* of the child loops. 1384 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1385 Updater.addChildLoops(ChildLoops); 1386 } 1387 } 1388 1389 return getLoopPassPreservedAnalyses(); 1390 } 1391 1392 PreservedAnalyses LoopUnrollPass::run(Function &F, 1393 FunctionAnalysisManager &AM) { 1394 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1395 auto &LI = AM.getResult<LoopAnalysis>(F); 1396 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1397 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1398 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1399 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1400 1401 LoopAnalysisManager *LAM = nullptr; 1402 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1403 LAM = &LAMProxy->getManager(); 1404 1405 const ModuleAnalysisManager &MAM = 1406 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1407 ProfileSummaryInfo *PSI = 1408 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1409 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1410 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1411 1412 bool Changed = false; 1413 1414 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1415 // Since simplification may add new inner loops, it has to run before the 1416 // legality and profitability checks. This means running the loop unroller 1417 // will simplify all loops, regardless of whether anything end up being 1418 // unrolled. 1419 for (auto &L : LI) { 1420 Changed |= 1421 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1422 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1423 } 1424 1425 // Add the loop nests in the reverse order of LoopInfo. See method 1426 // declaration. 1427 SmallPriorityWorklist<Loop *, 4> Worklist; 1428 appendLoopsToWorklist(LI, Worklist); 1429 1430 while (!Worklist.empty()) { 1431 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1432 // from back to front so that we work forward across the CFG, which 1433 // for unrolling is only needed to get optimization remarks emitted in 1434 // a forward order. 1435 Loop &L = *Worklist.pop_back_val(); 1436 #ifndef NDEBUG 1437 Loop *ParentL = L.getParentLoop(); 1438 #endif 1439 1440 // Check if the profile summary indicates that the profiled application 1441 // has a huge working set size, in which case we disable peeling to avoid 1442 // bloating it further. 1443 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1444 if (PSI && PSI->hasHugeWorkingSetSize()) 1445 LocalAllowPeeling = false; 1446 std::string LoopName = std::string(L.getName()); 1447 // The API here is quite complex to call and we allow to select some 1448 // flavors of unrolling during construction time (by setting UnrollOpts). 1449 LoopUnrollResult Result = tryToUnrollLoop( 1450 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1451 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1452 UnrollOpts.ForgetSCEV, /*Count*/ None, 1453 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1454 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1455 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1456 Changed |= Result != LoopUnrollResult::Unmodified; 1457 1458 // The parent must not be damaged by unrolling! 1459 #ifndef NDEBUG 1460 if (Result != LoopUnrollResult::Unmodified && ParentL) 1461 ParentL->verifyLoop(); 1462 #endif 1463 1464 // Clear any cached analysis results for L if we removed it completely. 1465 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1466 LAM->clear(L, LoopName); 1467 } 1468 1469 if (!Changed) 1470 return PreservedAnalyses::all(); 1471 1472 return getLoopPassPreservedAnalyses(); 1473 } 1474