1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopPassManager.h" 23 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InstVisitor.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/UnrollLoop.h" 39 #include <climits> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 static cl::opt<unsigned> 47 UnrollThreshold("unroll-threshold", cl::Hidden, 48 cl::desc("The baseline cost threshold for loop unrolling")); 49 50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 51 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 52 cl::desc("The percentage of estimated dynamic cost which must be saved by " 53 "unrolling to allow unrolling up to the max threshold.")); 54 55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 56 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 57 cl::desc("This is the amount discounted from the total unroll cost when " 58 "the unrolled form has a high dynamic cost savings (triggered by " 59 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 60 61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 62 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 63 cl::desc("Don't allow loop unrolling to simulate more than this number of" 64 "iterations when checking full unroll profitability")); 65 66 static cl::opt<unsigned> UnrollCount( 67 "unroll-count", cl::Hidden, 68 cl::desc("Use this unroll count for all loops including those with " 69 "unroll_count pragma values, for testing purposes")); 70 71 static cl::opt<unsigned> UnrollMaxCount( 72 "unroll-max-count", cl::Hidden, 73 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 74 "testing purposes")); 75 76 static cl::opt<unsigned> UnrollFullMaxCount( 77 "unroll-full-max-count", cl::Hidden, 78 cl::desc( 79 "Set the max unroll count for full unrolling, for testing purposes")); 80 81 static cl::opt<bool> 82 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 83 cl::desc("Allows loops to be partially unrolled until " 84 "-unroll-threshold loop size is reached.")); 85 86 static cl::opt<bool> UnrollAllowRemainder( 87 "unroll-allow-remainder", cl::Hidden, 88 cl::desc("Allow generation of a loop remainder (extra iterations) " 89 "when unrolling a loop.")); 90 91 static cl::opt<bool> 92 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 93 cl::desc("Unroll loops with run-time trip counts")); 94 95 static cl::opt<unsigned> PragmaUnrollThreshold( 96 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 97 cl::desc("Unrolled size limit for loops with an unroll(full) or " 98 "unroll_count pragma.")); 99 100 /// A magic value for use with the Threshold parameter to indicate 101 /// that the loop unroll should be performed regardless of how much 102 /// code expansion would result. 103 static const unsigned NoThreshold = UINT_MAX; 104 105 /// Default unroll count for loops with run-time trip count if 106 /// -unroll-count is not set 107 static const unsigned DefaultUnrollRuntimeCount = 8; 108 109 /// Gather the various unrolling parameters based on the defaults, compiler 110 /// flags, TTI overrides and user specified parameters. 111 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 112 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 113 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 114 Optional<bool> UserRuntime) { 115 TargetTransformInfo::UnrollingPreferences UP; 116 117 // Set up the defaults 118 UP.Threshold = 150; 119 UP.PercentDynamicCostSavedThreshold = 50; 120 UP.DynamicCostSavingsDiscount = 100; 121 UP.OptSizeThreshold = 0; 122 UP.PartialThreshold = UP.Threshold; 123 UP.PartialOptSizeThreshold = 0; 124 UP.Count = 0; 125 UP.MaxCount = UINT_MAX; 126 UP.FullUnrollMaxCount = UINT_MAX; 127 UP.Partial = false; 128 UP.Runtime = false; 129 UP.AllowRemainder = true; 130 UP.AllowExpensiveTripCount = false; 131 UP.Force = false; 132 133 // Override with any target specific settings 134 TTI.getUnrollingPreferences(L, UP); 135 136 // Apply size attributes 137 if (L->getHeader()->getParent()->optForSize()) { 138 UP.Threshold = UP.OptSizeThreshold; 139 UP.PartialThreshold = UP.PartialOptSizeThreshold; 140 } 141 142 // Apply any user values specified by cl::opt 143 if (UnrollThreshold.getNumOccurrences() > 0) { 144 UP.Threshold = UnrollThreshold; 145 UP.PartialThreshold = UnrollThreshold; 146 } 147 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 148 UP.PercentDynamicCostSavedThreshold = 149 UnrollPercentDynamicCostSavedThreshold; 150 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 151 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 152 if (UnrollMaxCount.getNumOccurrences() > 0) 153 UP.MaxCount = UnrollMaxCount; 154 if (UnrollFullMaxCount.getNumOccurrences() > 0) 155 UP.FullUnrollMaxCount = UnrollFullMaxCount; 156 if (UnrollAllowPartial.getNumOccurrences() > 0) 157 UP.Partial = UnrollAllowPartial; 158 if (UnrollAllowRemainder.getNumOccurrences() > 0) 159 UP.AllowRemainder = UnrollAllowRemainder; 160 if (UnrollRuntime.getNumOccurrences() > 0) 161 UP.Runtime = UnrollRuntime; 162 163 // Apply user values provided by argument 164 if (UserThreshold.hasValue()) { 165 UP.Threshold = *UserThreshold; 166 UP.PartialThreshold = *UserThreshold; 167 } 168 if (UserCount.hasValue()) 169 UP.Count = *UserCount; 170 if (UserAllowPartial.hasValue()) 171 UP.Partial = *UserAllowPartial; 172 if (UserRuntime.hasValue()) 173 UP.Runtime = *UserRuntime; 174 175 return UP; 176 } 177 178 namespace { 179 /// A struct to densely store the state of an instruction after unrolling at 180 /// each iteration. 181 /// 182 /// This is designed to work like a tuple of <Instruction *, int> for the 183 /// purposes of hashing and lookup, but to be able to associate two boolean 184 /// states with each key. 185 struct UnrolledInstState { 186 Instruction *I; 187 int Iteration : 30; 188 unsigned IsFree : 1; 189 unsigned IsCounted : 1; 190 }; 191 192 /// Hashing and equality testing for a set of the instruction states. 193 struct UnrolledInstStateKeyInfo { 194 typedef DenseMapInfo<Instruction *> PtrInfo; 195 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 196 static inline UnrolledInstState getEmptyKey() { 197 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 198 } 199 static inline UnrolledInstState getTombstoneKey() { 200 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 201 } 202 static inline unsigned getHashValue(const UnrolledInstState &S) { 203 return PairInfo::getHashValue({S.I, S.Iteration}); 204 } 205 static inline bool isEqual(const UnrolledInstState &LHS, 206 const UnrolledInstState &RHS) { 207 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 208 } 209 }; 210 } 211 212 namespace { 213 struct EstimatedUnrollCost { 214 /// \brief The estimated cost after unrolling. 215 int UnrolledCost; 216 217 /// \brief The estimated dynamic cost of executing the instructions in the 218 /// rolled form. 219 int RolledDynamicCost; 220 }; 221 } 222 223 /// \brief Figure out if the loop is worth full unrolling. 224 /// 225 /// Complete loop unrolling can make some loads constant, and we need to know 226 /// if that would expose any further optimization opportunities. This routine 227 /// estimates this optimization. It computes cost of unrolled loop 228 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 229 /// dynamic cost we mean that we won't count costs of blocks that are known not 230 /// to be executed (i.e. if we have a branch in the loop and we know that at the 231 /// given iteration its condition would be resolved to true, we won't add up the 232 /// cost of the 'false'-block). 233 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 234 /// the analysis failed (no benefits expected from the unrolling, or the loop is 235 /// too big to analyze), the returned value is None. 236 static Optional<EstimatedUnrollCost> 237 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 238 ScalarEvolution &SE, const TargetTransformInfo &TTI, 239 int MaxUnrolledLoopSize) { 240 // We want to be able to scale offsets by the trip count and add more offsets 241 // to them without checking for overflows, and we already don't want to 242 // analyze *massive* trip counts, so we force the max to be reasonably small. 243 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 244 "The unroll iterations max is too large!"); 245 246 // Only analyze inner loops. We can't properly estimate cost of nested loops 247 // and we won't visit inner loops again anyway. 248 if (!L->empty()) 249 return None; 250 251 // Don't simulate loops with a big or unknown tripcount 252 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 253 TripCount > UnrollMaxIterationsCountToAnalyze) 254 return None; 255 256 SmallSetVector<BasicBlock *, 16> BBWorklist; 257 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 258 DenseMap<Value *, Constant *> SimplifiedValues; 259 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 260 261 // The estimated cost of the unrolled form of the loop. We try to estimate 262 // this by simplifying as much as we can while computing the estimate. 263 int UnrolledCost = 0; 264 265 // We also track the estimated dynamic (that is, actually executed) cost in 266 // the rolled form. This helps identify cases when the savings from unrolling 267 // aren't just exposing dead control flows, but actual reduced dynamic 268 // instructions due to the simplifications which we expect to occur after 269 // unrolling. 270 int RolledDynamicCost = 0; 271 272 // We track the simplification of each instruction in each iteration. We use 273 // this to recursively merge costs into the unrolled cost on-demand so that 274 // we don't count the cost of any dead code. This is essentially a map from 275 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 276 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 277 278 // A small worklist used to accumulate cost of instructions from each 279 // observable and reached root in the loop. 280 SmallVector<Instruction *, 16> CostWorklist; 281 282 // PHI-used worklist used between iterations while accumulating cost. 283 SmallVector<Instruction *, 4> PHIUsedList; 284 285 // Helper function to accumulate cost for instructions in the loop. 286 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 287 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 288 assert(CostWorklist.empty() && "Must start with an empty cost list"); 289 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 290 CostWorklist.push_back(&RootI); 291 for (;; --Iteration) { 292 do { 293 Instruction *I = CostWorklist.pop_back_val(); 294 295 // InstCostMap only uses I and Iteration as a key, the other two values 296 // don't matter here. 297 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 298 if (CostIter == InstCostMap.end()) 299 // If an input to a PHI node comes from a dead path through the loop 300 // we may have no cost data for it here. What that actually means is 301 // that it is free. 302 continue; 303 auto &Cost = *CostIter; 304 if (Cost.IsCounted) 305 // Already counted this instruction. 306 continue; 307 308 // Mark that we are counting the cost of this instruction now. 309 Cost.IsCounted = true; 310 311 // If this is a PHI node in the loop header, just add it to the PHI set. 312 if (auto *PhiI = dyn_cast<PHINode>(I)) 313 if (PhiI->getParent() == L->getHeader()) { 314 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 315 "inherently simplify during unrolling."); 316 if (Iteration == 0) 317 continue; 318 319 // Push the incoming value from the backedge into the PHI used list 320 // if it is an in-loop instruction. We'll use this to populate the 321 // cost worklist for the next iteration (as we count backwards). 322 if (auto *OpI = dyn_cast<Instruction>( 323 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 324 if (L->contains(OpI)) 325 PHIUsedList.push_back(OpI); 326 continue; 327 } 328 329 // First accumulate the cost of this instruction. 330 if (!Cost.IsFree) { 331 UnrolledCost += TTI.getUserCost(I); 332 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 333 << "): "); 334 DEBUG(I->dump()); 335 } 336 337 // We must count the cost of every operand which is not free, 338 // recursively. If we reach a loop PHI node, simply add it to the set 339 // to be considered on the next iteration (backwards!). 340 for (Value *Op : I->operands()) { 341 // Check whether this operand is free due to being a constant or 342 // outside the loop. 343 auto *OpI = dyn_cast<Instruction>(Op); 344 if (!OpI || !L->contains(OpI)) 345 continue; 346 347 // Otherwise accumulate its cost. 348 CostWorklist.push_back(OpI); 349 } 350 } while (!CostWorklist.empty()); 351 352 if (PHIUsedList.empty()) 353 // We've exhausted the search. 354 break; 355 356 assert(Iteration > 0 && 357 "Cannot track PHI-used values past the first iteration!"); 358 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 359 PHIUsedList.clear(); 360 } 361 }; 362 363 // Ensure that we don't violate the loop structure invariants relied on by 364 // this analysis. 365 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 366 assert(L->isLCSSAForm(DT) && 367 "Must have loops in LCSSA form to track live-out values."); 368 369 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 370 371 // Simulate execution of each iteration of the loop counting instructions, 372 // which would be simplified. 373 // Since the same load will take different values on different iterations, 374 // we literally have to go through all loop's iterations. 375 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 376 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 377 378 // Prepare for the iteration by collecting any simplified entry or backedge 379 // inputs. 380 for (Instruction &I : *L->getHeader()) { 381 auto *PHI = dyn_cast<PHINode>(&I); 382 if (!PHI) 383 break; 384 385 // The loop header PHI nodes must have exactly two input: one from the 386 // loop preheader and one from the loop latch. 387 assert( 388 PHI->getNumIncomingValues() == 2 && 389 "Must have an incoming value only for the preheader and the latch."); 390 391 Value *V = PHI->getIncomingValueForBlock( 392 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 393 Constant *C = dyn_cast<Constant>(V); 394 if (Iteration != 0 && !C) 395 C = SimplifiedValues.lookup(V); 396 if (C) 397 SimplifiedInputValues.push_back({PHI, C}); 398 } 399 400 // Now clear and re-populate the map for the next iteration. 401 SimplifiedValues.clear(); 402 while (!SimplifiedInputValues.empty()) 403 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 404 405 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 406 407 BBWorklist.clear(); 408 BBWorklist.insert(L->getHeader()); 409 // Note that we *must not* cache the size, this loop grows the worklist. 410 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 411 BasicBlock *BB = BBWorklist[Idx]; 412 413 // Visit all instructions in the given basic block and try to simplify 414 // it. We don't change the actual IR, just count optimization 415 // opportunities. 416 for (Instruction &I : *BB) { 417 // Track this instruction's expected baseline cost when executing the 418 // rolled loop form. 419 RolledDynamicCost += TTI.getUserCost(&I); 420 421 // Visit the instruction to analyze its loop cost after unrolling, 422 // and if the visitor returns true, mark the instruction as free after 423 // unrolling and continue. 424 bool IsFree = Analyzer.visit(I); 425 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 426 (unsigned)IsFree, 427 /*IsCounted*/ false}).second; 428 (void)Inserted; 429 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 430 431 if (IsFree) 432 continue; 433 434 // Can't properly model a cost of a call. 435 // FIXME: With a proper cost model we should be able to do it. 436 if(isa<CallInst>(&I)) 437 return None; 438 439 // If the instruction might have a side-effect recursively account for 440 // the cost of it and all the instructions leading up to it. 441 if (I.mayHaveSideEffects()) 442 AddCostRecursively(I, Iteration); 443 444 // If unrolled body turns out to be too big, bail out. 445 if (UnrolledCost > MaxUnrolledLoopSize) { 446 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 447 << " UnrolledCost: " << UnrolledCost 448 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 449 << "\n"); 450 return None; 451 } 452 } 453 454 TerminatorInst *TI = BB->getTerminator(); 455 456 // Add in the live successors by first checking whether we have terminator 457 // that may be simplified based on the values simplified by this call. 458 BasicBlock *KnownSucc = nullptr; 459 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 460 if (BI->isConditional()) { 461 if (Constant *SimpleCond = 462 SimplifiedValues.lookup(BI->getCondition())) { 463 // Just take the first successor if condition is undef 464 if (isa<UndefValue>(SimpleCond)) 465 KnownSucc = BI->getSuccessor(0); 466 else if (ConstantInt *SimpleCondVal = 467 dyn_cast<ConstantInt>(SimpleCond)) 468 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 469 } 470 } 471 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 472 if (Constant *SimpleCond = 473 SimplifiedValues.lookup(SI->getCondition())) { 474 // Just take the first successor if condition is undef 475 if (isa<UndefValue>(SimpleCond)) 476 KnownSucc = SI->getSuccessor(0); 477 else if (ConstantInt *SimpleCondVal = 478 dyn_cast<ConstantInt>(SimpleCond)) 479 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 480 } 481 } 482 if (KnownSucc) { 483 if (L->contains(KnownSucc)) 484 BBWorklist.insert(KnownSucc); 485 else 486 ExitWorklist.insert({BB, KnownSucc}); 487 continue; 488 } 489 490 // Add BB's successors to the worklist. 491 for (BasicBlock *Succ : successors(BB)) 492 if (L->contains(Succ)) 493 BBWorklist.insert(Succ); 494 else 495 ExitWorklist.insert({BB, Succ}); 496 AddCostRecursively(*TI, Iteration); 497 } 498 499 // If we found no optimization opportunities on the first iteration, we 500 // won't find them on later ones too. 501 if (UnrolledCost == RolledDynamicCost) { 502 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 503 << " UnrolledCost: " << UnrolledCost << "\n"); 504 return None; 505 } 506 } 507 508 while (!ExitWorklist.empty()) { 509 BasicBlock *ExitingBB, *ExitBB; 510 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 511 512 for (Instruction &I : *ExitBB) { 513 auto *PN = dyn_cast<PHINode>(&I); 514 if (!PN) 515 break; 516 517 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 518 if (auto *OpI = dyn_cast<Instruction>(Op)) 519 if (L->contains(OpI)) 520 AddCostRecursively(*OpI, TripCount - 1); 521 } 522 } 523 524 DEBUG(dbgs() << "Analysis finished:\n" 525 << "UnrolledCost: " << UnrolledCost << ", " 526 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 527 return {{UnrolledCost, RolledDynamicCost}}; 528 } 529 530 /// ApproximateLoopSize - Approximate the size of the loop. 531 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 532 bool &NotDuplicatable, bool &Convergent, 533 const TargetTransformInfo &TTI, 534 AssumptionCache *AC) { 535 SmallPtrSet<const Value *, 32> EphValues; 536 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 537 538 CodeMetrics Metrics; 539 for (BasicBlock *BB : L->blocks()) 540 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 541 NumCalls = Metrics.NumInlineCandidates; 542 NotDuplicatable = Metrics.notDuplicatable; 543 Convergent = Metrics.convergent; 544 545 unsigned LoopSize = Metrics.NumInsts; 546 547 // Don't allow an estimate of size zero. This would allows unrolling of loops 548 // with huge iteration counts, which is a compile time problem even if it's 549 // not a problem for code quality. Also, the code using this size may assume 550 // that each loop has at least three instructions (likely a conditional 551 // branch, a comparison feeding that branch, and some kind of loop increment 552 // feeding that comparison instruction). 553 LoopSize = std::max(LoopSize, 3u); 554 555 return LoopSize; 556 } 557 558 // Returns the loop hint metadata node with the given name (for example, 559 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 560 // returned. 561 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 562 if (MDNode *LoopID = L->getLoopID()) 563 return GetUnrollMetadata(LoopID, Name); 564 return nullptr; 565 } 566 567 // Returns true if the loop has an unroll(full) pragma. 568 static bool HasUnrollFullPragma(const Loop *L) { 569 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 570 } 571 572 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 573 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 574 static bool HasUnrollEnablePragma(const Loop *L) { 575 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 576 } 577 578 // Returns true if the loop has an unroll(disable) pragma. 579 static bool HasUnrollDisablePragma(const Loop *L) { 580 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 581 } 582 583 // Returns true if the loop has an runtime unroll(disable) pragma. 584 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 585 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 586 } 587 588 // If loop has an unroll_count pragma return the (necessarily 589 // positive) value from the pragma. Otherwise return 0. 590 static unsigned UnrollCountPragmaValue(const Loop *L) { 591 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 592 if (MD) { 593 assert(MD->getNumOperands() == 2 && 594 "Unroll count hint metadata should have two operands."); 595 unsigned Count = 596 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 597 assert(Count >= 1 && "Unroll count must be positive."); 598 return Count; 599 } 600 return 0; 601 } 602 603 // Remove existing unroll metadata and add unroll disable metadata to 604 // indicate the loop has already been unrolled. This prevents a loop 605 // from being unrolled more than is directed by a pragma if the loop 606 // unrolling pass is run more than once (which it generally is). 607 static void SetLoopAlreadyUnrolled(Loop *L) { 608 MDNode *LoopID = L->getLoopID(); 609 // First remove any existing loop unrolling metadata. 610 SmallVector<Metadata *, 4> MDs; 611 // Reserve first location for self reference to the LoopID metadata node. 612 MDs.push_back(nullptr); 613 614 if (LoopID) { 615 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 616 bool IsUnrollMetadata = false; 617 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 618 if (MD) { 619 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 620 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 621 } 622 if (!IsUnrollMetadata) 623 MDs.push_back(LoopID->getOperand(i)); 624 } 625 } 626 627 // Add unroll(disable) metadata to disable future unrolling. 628 LLVMContext &Context = L->getHeader()->getContext(); 629 SmallVector<Metadata *, 1> DisableOperands; 630 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 631 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 632 MDs.push_back(DisableNode); 633 634 MDNode *NewLoopID = MDNode::get(Context, MDs); 635 // Set operand 0 to refer to the loop id itself. 636 NewLoopID->replaceOperandWith(0, NewLoopID); 637 L->setLoopID(NewLoopID); 638 } 639 640 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 641 unsigned PercentDynamicCostSavedThreshold, 642 unsigned DynamicCostSavingsDiscount, 643 uint64_t UnrolledCost, 644 uint64_t RolledDynamicCost) { 645 if (Threshold == NoThreshold) { 646 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 647 return true; 648 } 649 650 if (UnrolledCost <= Threshold) { 651 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 652 << UnrolledCost << "<" << Threshold << "\n"); 653 return true; 654 } 655 656 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 657 assert(RolledDynamicCost >= UnrolledCost && 658 "Cannot have a higher unrolled cost than a rolled cost!"); 659 660 // Compute the percentage of the dynamic cost in the rolled form that is 661 // saved when unrolled. If unrolling dramatically reduces the estimated 662 // dynamic cost of the loop, we use a higher threshold to allow more 663 // unrolling. 664 unsigned PercentDynamicCostSaved = 665 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 666 667 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 668 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 669 (int64_t)Threshold) { 670 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 671 "expected dynamic cost by " 672 << PercentDynamicCostSaved << "% (threshold: " 673 << PercentDynamicCostSavedThreshold << "%)\n" 674 << " and the unrolled cost (" << UnrolledCost 675 << ") is less than the max threshold (" 676 << DynamicCostSavingsDiscount << ").\n"); 677 return true; 678 } 679 680 DEBUG(dbgs() << " Too large to fully unroll:\n"); 681 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 682 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 683 DEBUG(dbgs() << " Percent cost saved threshold: " 684 << PercentDynamicCostSavedThreshold << "%\n"); 685 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 686 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 687 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 688 << "\n"); 689 return false; 690 } 691 692 // Returns true if unroll count was set explicitly. 693 // Calculates unroll count and writes it to UP.Count. 694 static bool computeUnrollCount(Loop *L, const TargetTransformInfo &TTI, 695 DominatorTree &DT, LoopInfo *LI, 696 ScalarEvolution *SE, 697 OptimizationRemarkEmitter *ORE, 698 unsigned TripCount, unsigned TripMultiple, 699 unsigned LoopSize, 700 TargetTransformInfo::UnrollingPreferences &UP) { 701 // BEInsns represents number of instructions optimized when "back edge" 702 // becomes "fall through" in unrolled loop. 703 // For now we count a conditional branch on a backedge and a comparison 704 // feeding it. 705 unsigned BEInsns = 2; 706 // Check for explicit Count. 707 // 1st priority is unroll count set by "unroll-count" option. 708 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 709 if (UserUnrollCount) { 710 UP.Count = UnrollCount; 711 UP.AllowExpensiveTripCount = true; 712 UP.Force = true; 713 if (UP.AllowRemainder && 714 (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold) 715 return true; 716 } 717 718 // 2nd priority is unroll count set by pragma. 719 unsigned PragmaCount = UnrollCountPragmaValue(L); 720 if (PragmaCount > 0) { 721 UP.Count = PragmaCount; 722 UP.Runtime = true; 723 UP.AllowExpensiveTripCount = true; 724 UP.Force = true; 725 if (UP.AllowRemainder && 726 (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold) 727 return true; 728 } 729 bool PragmaFullUnroll = HasUnrollFullPragma(L); 730 if (PragmaFullUnroll && TripCount != 0) { 731 UP.Count = TripCount; 732 if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold) 733 return false; 734 } 735 736 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 737 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 738 PragmaEnableUnroll || UserUnrollCount; 739 740 uint64_t UnrolledSize; 741 742 if (ExplicitUnroll && TripCount != 0) { 743 // If the loop has an unrolling pragma, we want to be more aggressive with 744 // unrolling limits. Set thresholds to at least the PragmaThreshold value 745 // which is larger than the default limits. 746 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 747 UP.PartialThreshold = 748 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 749 } 750 751 // 3rd priority is full unroll count. 752 // Full unroll make sense only when TripCount could be staticaly calculated. 753 // Also we need to check if we exceed FullUnrollMaxCount. 754 if (TripCount && TripCount <= UP.FullUnrollMaxCount) { 755 // When computing the unrolled size, note that BEInsns are not replicated 756 // like the rest of the loop body. 757 UnrolledSize = (uint64_t)(LoopSize - BEInsns) * TripCount + BEInsns; 758 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 759 UnrolledSize, UnrolledSize)) { 760 UP.Count = TripCount; 761 return ExplicitUnroll; 762 } else { 763 // The loop isn't that small, but we still can fully unroll it if that 764 // helps to remove a significant number of instructions. 765 // To check that, run additional analysis on the loop. 766 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 767 L, TripCount, DT, *SE, TTI, 768 UP.Threshold + UP.DynamicCostSavingsDiscount)) 769 if (canUnrollCompletely(L, UP.Threshold, 770 UP.PercentDynamicCostSavedThreshold, 771 UP.DynamicCostSavingsDiscount, 772 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 773 UP.Count = TripCount; 774 return ExplicitUnroll; 775 } 776 } 777 } 778 779 // 4rd priority is partial unrolling. 780 // Try partial unroll only when TripCount could be staticaly calculated. 781 if (TripCount) { 782 if (UP.Count == 0) 783 UP.Count = TripCount; 784 UP.Partial |= ExplicitUnroll; 785 if (!UP.Partial) { 786 DEBUG(dbgs() << " will not try to unroll partially because " 787 << "-unroll-allow-partial not given\n"); 788 UP.Count = 0; 789 return false; 790 } 791 if (UP.PartialThreshold != NoThreshold) { 792 // Reduce unroll count to be modulo of TripCount for partial unrolling. 793 UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns; 794 if (UnrolledSize > UP.PartialThreshold) 795 UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) / 796 (LoopSize - BEInsns); 797 if (UP.Count > UP.MaxCount) 798 UP.Count = UP.MaxCount; 799 while (UP.Count != 0 && TripCount % UP.Count != 0) 800 UP.Count--; 801 if (UP.AllowRemainder && UP.Count <= 1) { 802 // If there is no Count that is modulo of TripCount, set Count to 803 // largest power-of-two factor that satisfies the threshold limit. 804 // As we'll create fixup loop, do the type of unrolling only if 805 // remainder loop is allowed. 806 UP.Count = DefaultUnrollRuntimeCount; 807 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 808 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) { 809 UP.Count >>= 1; 810 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 811 } 812 } 813 if (UP.Count < 2) { 814 if (PragmaEnableUnroll) 815 ORE->emitOptimizationRemarkMissed( 816 DEBUG_TYPE, L, 817 "Unable to unroll loop as directed by unroll(enable) pragma " 818 "because unrolled size is too large."); 819 UP.Count = 0; 820 } 821 } else { 822 UP.Count = TripCount; 823 } 824 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 825 UP.Count != TripCount) 826 ORE->emitOptimizationRemarkMissed( 827 DEBUG_TYPE, L, 828 "Unable to fully unroll loop as directed by unroll pragma because " 829 "unrolled size is too large."); 830 return ExplicitUnroll; 831 } 832 assert(TripCount == 0 && 833 "All cases when TripCount is constant should be covered here."); 834 if (PragmaFullUnroll) 835 ORE->emitOptimizationRemarkMissed( 836 DEBUG_TYPE, L, 837 "Unable to fully unroll loop as directed by unroll(full) pragma " 838 "because loop has a runtime trip count."); 839 840 // 5th priority is runtime unrolling. 841 // Don't unroll a runtime trip count loop when it is disabled. 842 if (HasRuntimeUnrollDisablePragma(L)) { 843 UP.Count = 0; 844 return false; 845 } 846 // Reduce count based on the type of unrolling and the threshold values. 847 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 848 if (!UP.Runtime) { 849 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 850 << "-unroll-runtime not given\n"); 851 UP.Count = 0; 852 return false; 853 } 854 if (UP.Count == 0) 855 UP.Count = DefaultUnrollRuntimeCount; 856 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 857 858 // Reduce unroll count to be the largest power-of-two factor of 859 // the original count which satisfies the threshold limit. 860 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) { 861 UP.Count >>= 1; 862 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns; 863 } 864 865 #ifndef NDEBUG 866 unsigned OrigCount = UP.Count; 867 #endif 868 869 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 870 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 871 UP.Count >>= 1; 872 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 873 "specific or because the loop contains a convergent " 874 "instruction), so unroll count must divide the trip " 875 "multiple, " 876 << TripMultiple << ". Reducing unroll count from " 877 << OrigCount << " to " << UP.Count << ".\n"); 878 if (PragmaCount > 0 && !UP.AllowRemainder) 879 ORE->emitOptimizationRemarkMissed( 880 DEBUG_TYPE, L, 881 Twine("Unable to unroll loop the number of times directed by " 882 "unroll_count pragma because remainder loop is restricted " 883 "(that could architecture specific or because the loop " 884 "contains a convergent instruction) and so must have an unroll " 885 "count that divides the loop trip multiple of ") + 886 Twine(TripMultiple) + ". Unrolling instead " + Twine(UP.Count) + 887 " time(s)."); 888 } 889 890 if (UP.Count > UP.MaxCount) 891 UP.Count = UP.MaxCount; 892 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 893 if (UP.Count < 2) 894 UP.Count = 0; 895 return ExplicitUnroll; 896 } 897 898 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 899 ScalarEvolution *SE, const TargetTransformInfo &TTI, 900 AssumptionCache &AC, OptimizationRemarkEmitter &ORE, 901 bool PreserveLCSSA, 902 Optional<unsigned> ProvidedCount, 903 Optional<unsigned> ProvidedThreshold, 904 Optional<bool> ProvidedAllowPartial, 905 Optional<bool> ProvidedRuntime) { 906 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 907 << "] Loop %" << L->getHeader()->getName() << "\n"); 908 if (HasUnrollDisablePragma(L)) { 909 return false; 910 } 911 912 unsigned NumInlineCandidates; 913 bool NotDuplicatable; 914 bool Convergent; 915 unsigned LoopSize = ApproximateLoopSize( 916 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 917 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 918 if (NotDuplicatable) { 919 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 920 << " instructions.\n"); 921 return false; 922 } 923 if (NumInlineCandidates != 0) { 924 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 925 return false; 926 } 927 if (!L->isLoopSimplifyForm()) { 928 DEBUG( 929 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 930 return false; 931 } 932 933 // Find trip count and trip multiple if count is not available 934 unsigned TripCount = 0; 935 unsigned TripMultiple = 1; 936 // If there are multiple exiting blocks but one of them is the latch, use the 937 // latch for the trip count estimation. Otherwise insist on a single exiting 938 // block for the trip count estimation. 939 BasicBlock *ExitingBlock = L->getLoopLatch(); 940 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 941 ExitingBlock = L->getExitingBlock(); 942 if (ExitingBlock) { 943 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 944 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 945 } 946 947 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 948 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 949 ProvidedRuntime); 950 951 // Exit early if unrolling is disabled. 952 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 953 return false; 954 955 // If the loop contains a convergent operation, the prelude we'd add 956 // to do the first few instructions before we hit the unrolled loop 957 // is unsafe -- it adds a control-flow dependency to the convergent 958 // operation. Therefore restrict remainder loop (try unrollig without). 959 // 960 // TODO: This is quite conservative. In practice, convergent_op() 961 // is likely to be called unconditionally in the loop. In this 962 // case, the program would be ill-formed (on most architectures) 963 // unless n were the same on all threads in a thread group. 964 // Assuming n is the same on all threads, any kind of unrolling is 965 // safe. But currently llvm's notion of convergence isn't powerful 966 // enough to express this. 967 if (Convergent) 968 UP.AllowRemainder = false; 969 970 bool IsCountSetExplicitly = computeUnrollCount( 971 L, TTI, DT, LI, SE, &ORE, TripCount, TripMultiple, LoopSize, UP); 972 if (!UP.Count) 973 return false; 974 // Unroll factor (Count) must be less or equal to TripCount. 975 if (TripCount && UP.Count > TripCount) 976 UP.Count = TripCount; 977 978 // Unroll the loop. 979 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 980 UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC, 981 &ORE, PreserveLCSSA)) 982 return false; 983 984 // If loop has an unroll count pragma or unrolled by explicitly set count 985 // mark loop as unrolled to prevent unrolling beyond that requested. 986 if (IsCountSetExplicitly) 987 SetLoopAlreadyUnrolled(L); 988 return true; 989 } 990 991 namespace { 992 class LoopUnroll : public LoopPass { 993 public: 994 static char ID; // Pass ID, replacement for typeid 995 LoopUnroll(Optional<unsigned> Threshold = None, 996 Optional<unsigned> Count = None, 997 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) 998 : LoopPass(ID), ProvidedCount(std::move(Count)), 999 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1000 ProvidedRuntime(Runtime) { 1001 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1002 } 1003 1004 Optional<unsigned> ProvidedCount; 1005 Optional<unsigned> ProvidedThreshold; 1006 Optional<bool> ProvidedAllowPartial; 1007 Optional<bool> ProvidedRuntime; 1008 1009 bool runOnLoop(Loop *L, LPPassManager &) override { 1010 if (skipLoop(L)) 1011 return false; 1012 1013 Function &F = *L->getHeader()->getParent(); 1014 1015 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1016 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1017 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1018 const TargetTransformInfo &TTI = 1019 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1020 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1021 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1022 // pass. Function analyses need to be preserved across loop transformations 1023 // but ORE cannot be preserved (see comment before the pass definition). 1024 OptimizationRemarkEmitter ORE(&F); 1025 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1026 1027 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, 1028 ProvidedCount, ProvidedThreshold, 1029 ProvidedAllowPartial, ProvidedRuntime); 1030 } 1031 1032 /// This transformation requires natural loop information & requires that 1033 /// loop preheaders be inserted into the CFG... 1034 /// 1035 void getAnalysisUsage(AnalysisUsage &AU) const override { 1036 AU.addRequired<AssumptionCacheTracker>(); 1037 AU.addRequired<TargetTransformInfoWrapperPass>(); 1038 // FIXME: Loop passes are required to preserve domtree, and for now we just 1039 // recreate dom info if anything gets unrolled. 1040 getLoopAnalysisUsage(AU); 1041 } 1042 }; 1043 } 1044 1045 char LoopUnroll::ID = 0; 1046 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1047 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1048 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1049 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1050 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1051 1052 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1053 int Runtime) { 1054 // TODO: It would make more sense for this function to take the optionals 1055 // directly, but that's dangerous since it would silently break out of tree 1056 // callers. 1057 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1058 Count == -1 ? None : Optional<unsigned>(Count), 1059 AllowPartial == -1 ? None 1060 : Optional<bool>(AllowPartial), 1061 Runtime == -1 ? None : Optional<bool>(Runtime)); 1062 } 1063 1064 Pass *llvm::createSimpleLoopUnrollPass() { 1065 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 1066 } 1067 1068 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1069 const auto &FAM = 1070 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1071 Function *F = L.getHeader()->getParent(); 1072 1073 1074 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1075 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1076 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1077 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1078 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 1079 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1080 if (!DT) 1081 report_fatal_error("LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1082 if (!LI) 1083 report_fatal_error("LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1084 if (!SE) 1085 report_fatal_error("LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1086 if (!TTI) 1087 report_fatal_error("LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1088 if (!AC) 1089 report_fatal_error("LoopUnrollPass: AssumptionAnalysis not cached at a higher level"); 1090 if (!ORE) 1091 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1092 "cached at a higher level"); 1093 1094 bool Changed = tryToUnrollLoop( 1095 &L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, ProvidedCount, 1096 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime); 1097 1098 if (!Changed) 1099 return PreservedAnalyses::all(); 1100 return getLoopPassPreservedAnalyses(); 1101 } 1102